

 Phoenix.HTML

 v4.3.0

 Table of contents

 	Changelog

 	
 Modules

 	Phoenix.HTML

 	Phoenix.HTML.Engine

 	Phoenix.HTML.Form

 	Phoenix.HTML.FormData

 	Phoenix.HTML.FormField

 	Phoenix.HTML.Safe

 Changelog

4.3.0 (2025-09-28)
	Enhancements
	Implement Phoenix.HTML.Safe for Duration
	Add function head for argument names of normalize_value/2 to improve documentation
	Allow custom tags in options_for_select
	Allow datetime as form option values

	Bug fixes
	Avoid false positive warnings on Elixir v1.19

4.2.1 (2025-02-21)
	Enhancements	Add type to Phoenix.HTML.FormField
	Allow keyword lists in options to use nil as key/value

4.2.0 (2024-12-28)
	Enhancements
	Add Phoenix.HTML.css_escape/1 to escape strings for use inside CSS selectors
	Add the ability to pass :hr to options_for_select/2 to render a horizontal rule

	Bug fixes
	Pass form action through in FormData implementation

v4.1.1 (2024-03-01)
	Fix dependency resolution error

v4.1.0 (2024-02-29)
	Enhancements	Introduce form :action and consider input as changed if action changes to support better change tracking

v4.0.0 (2023-12-19)
This version removes deprecated functionality and moved all HTML helpers to a separate library. HTML Helpers are no longer used in new apps from Phoenix v1.7, instead it relies on function components from Phoenix.LiveView. Older applications who wish to maintain compatibility, add {:phoenix_html_helpers, "~> 1.0"} to your mix.exs and then replace use Phoenix.HTML in your applications by:
import Phoenix.HTML
import Phoenix.HTML.Form
use PhoenixHTMLHelpers
v3.3.3 (2023-10-09)
	Enhancements	Allow string fields on input_changed?

v3.3.2 (2023-08-10)
	Enhancements
	Address deprecations in Elixir v1.16+

	Deprecations
	Deprecate inputs_for/2 and inputs_for/3 (without anonymous functions)

v3.3.1 (2023-02-27)
	Bug fix	Set display to none on generated forms
	Warn for maps with atom keys

v3.3.0 (2023-02-10)
	Enhancements
	Support deeply nested class lists
	Implement Phoenix.HTML.Safe for URI
	Implement Phoenix.HTML.FormData for Map

	Bug fix
	Generate unique IDs for checkboxes based on the value
	Use artificial button click instead of form.submit in JavaScript to trigger all relevant events
	Fix a bug where nil/false/true attributes in aria/data/phx would emit empty or literal values, such as "true" and "false". This release aligns them with all other attributes so both nil and false emit nothing. true emits the attribute with no value.

	Deprecations
	Phoenix.HTML.Tag.attributes_escape/1 is deprecated in favor of Phoenix.HTML.attributes_escape/1

v3.2.0 (2021-12-18)
	Enhancements	Raise if the id attribute is set to a number. This is actually an invalid value according to the HTML spec and it can lead to problematic client behaviour, especially in LiveView and other client frameworks.
	Allow phx attributes to be nested, similar to aria and data attributes
	Allow hidden fields in forms to be a list of values

v3.1.0 (2021-10-23)
	Bug fix	Do not submit data-method links if default has been prevented

	Deprecations	Deprecate ~E and Phoenix.HTML.Tag.attributes_escape/1
	Remove deprecated Phoenix.HTML.Link.link/1

v3.0.4 (2021-09-23)
	Bug fix	Ensure class={@class} in HEEx templates and :class attribute in content_tag are properly escaped against XSS

v3.0.3 (2021-09-04)
	Bug fix	Fix sorting of attributes in tag/content_tag

v3.0.2 (2021-08-19)
	Enhancements	Support maps on Phoenix.HTML.Tag.attributes_escape/1

v3.0.1 (2021-08-14)
	Enhancements	Add Phoenix.HTML.Tag.csrf_input_tag/2

v3.0.0 (2021-08-06)
	Enhancements
	Allow extra html attributes on the :prompt option in select
	Make Plug an optional dependency
	Prefix form id on inputs when it is given to form_for/3
	Allow %URI{} to be passed to link/2 and button/2 as :to
	Expose Phoenix.HTML.Tag.csrf_token_value/1
	Add Phoenix.HTML.Tag.attributes_escape/1

	Bug fixes
	Honor the form attribute when creating hidden checkbox input
	Use to_iso8601 as the standard implementation for safe dates and times

	Deprecations
	form_for without an anonymous function has been deprecated. v3.0 has deprecated the usage, v3.1 will emit warnings, and v3.2 will fully remove the functionality

	Backwards incompatible changes
	Strings given as attributes keys in tag and content_tag are now emitted as is (without being dasherized) and are also HTML escaped
	Prefix form id on inputs when it is given to form_for/3
	By default dates and times will format to the to_iso8601 functions provided by their implementation
	Do not include csrf-param and method-param in generated csrf_meta_tag
	Remove deprecated escape_javascript in favor of javascript_escape
	Remove deprecated field_value in favor of input_value
	Remove deprecated field_name in favor of input_name
	Remove deprecated field_id in favor of input_id

v2.14.3 (2020-12-12)
	Bug fixes	Fix warnings on Elixir v1.12

v2.14.2 (2020-04-30)
	Deprecations	Deprecate Phoenix-specific assigns :view_module and :view_template

v2.14.1 (2020-03-20)
	Enhancements
	Add Phoenix.HTML.Form.options_for_select/2
	Add Phoenix.HTML.Form.inputs_for/3

	Bug fixes
	Disable hidden input for disabled checkboxes

v2.14.0 (2020-01-28)
	Enhancements	Remove enforce_utf8 workaround on forms as it is no longer required by browser
	Remove support tuple-based date/time with microseconds calendar types
	Allow strings as first element in content_tag
	Add :srcset support to img_tag
	Allow inputs_for to skip hidden fields

v2.13.4 (2020-01-28)
	Bug fixes	Fix invalid :line in Elixir v1.10.0

v2.13.3 (2019-05-31)
	Enhancements
	Add atom support to FormData

	Bug fixes
	Keep proper line numbers on .eex templates for proper coverage

v2.13.2 (2019-03-29)
	Bug fixes	Stop event propagation when confirm dialog is canceled

v2.13.1 (2019-01-05)
	Enhancements
	Allow safe content to be given to label
	Also escale template literals in javascript_escape/1

	Bug fixes
	Fix deprecation warnings to point to the correct alternative

v2.13.0 (2018-12-09)
	Enhancements
	Require Elixir v1.5+ for more efficient template compilation/rendering
	Add Phoenix.HTML.Engine.encode_to_iodata!/1
	Add Phoenix.HTML.Form.form_for/3 that works without an anonymous function

	Deprecations
	Deprecate Phoenix.HTML.escape_javascript/1 in favor of Phoenix.HTML.javascript_escape/1 for consistency

v2.12.0 (2018-08-06)
	Enhancements
	Configurable and extendable data-confirm behaviour
	Allow data-confirm with submit buttons
	Support ISO 8601 formatted strings for date and time values

	Bug fixes
	Provide a default id of the field name for @conn based forms

v2.11.2 (2018-04-13)
	Enhancements
	Support custom precision on time input

	Bug fixes
	Do not raise when : is part of a path on link/button attributes

v2.11.1 (2018-03-20)
	Enhancements
	Add label/1
	Copy the target attribute of the link in the generated JS form

	Bug fixes
	Support any value that is html escapable in radio_button

v2.11.0 (2018-03-09)
	Enhancements
	Add date, datetime-local and time input types
	Enable string keys to be usable with forms
	Support carriage return in text_to_html
	Add support for HTML5 boolean attributes to content_tag and tag
	Improve performance by relying on html_safe_to_iodata/1
	Protect against CSRF tokens leaking across hosts when the POST URL is dynamic
	Require to attribute in links and buttons to explicitly pass protocols as a separate option for safety reasons

	Bug fixes
	Guarantee input_name/2 always returns strings
	Improve handling of uncommon whitespace and null in escape_javascript
	Escape value attribute so it is never treated as a boolean

	Backwards incompatible changes
	The :csrf_token_generator configuration in the Phoenix.HTML app no longer works due to the improved security mechanisms

v2.10.5 (2017-11-08)
	Enhancements	Do not require the :as option in form_for

v2.10.4 (2017-08-15)
	Bug fixes	Fix formatting of days in datetime_builder

v2.10.3 (2017-07-30)
	Enhancements
	Allow specifying a custom CSRF token generator

	Bug fixes
	Do not submit method: :get in buttons as "post"

v2.10.2 (2017-07-24)
	Bug fixes	Traverse DOM elements up when handling data-method

v2.10.1 (2017-07-22)
	Bug fixes	Only generate CSRF token if necessary

v2.10.0 (2017-07-21)
	Enhancements
	Support custom attributes in options in select

	Bug fixes
	Accept non-binary values in textarea's content
	Allow nested forms on the javascript side. This means link and button no longer generate a child form such as the :form option has no effect and "data-submit=parent" is no longer supported. Instead "data-to" and "data-method" are set on the entities and the form is generated on the javascript side of things

v2.9.3 (2016-12-24)
	Bug fixes	Once again support any name for atom forms

v2.9.2 (2016-12-24)
	Bug fixes	Always read from form.params and then from :selected in select and multiple_select before falling back to input_value/2

v2.9.1 (2016-12-20)
	Bug fixes	Implement proper input_value/3 callback

v2.9.0 (2016-12-19)
	Enhancements	Add img_tag/2 helper to Phoenix.HTML.Tag
	Submit nearest form even if not direct descendent
	Use more iodata for tag/2 and content_tag/3
	Add input_value/3, input_id/2 and input_name/2 as a unified API around the input (alongside input_type/3 and input_validations/2)

v2.8.0 (2016-11-15)
	Enhancements	Add csrf_meta_tag/0 helper to Phoenix.HTML.Tag
	Allow passing a do: option to Phoenix.HTML.Link.button/2

v2.7.0 (2016-09-21)
	Enhancements	Render button tags for form submits and in the button/2 function
	Allow submit/2 and button/2 to receive do blocks
	Support the :multiple option in file_input/3
	Remove previously deprecated and unused model field

v2.6.1 (2016-07-08)
	Enhancements
	Remove warnings on v1.4

	Bug fixes
	Ensure some contents are properly escaped as an integer
	Ensure JavaScript data-submit events bubble up until it finds the proper parent

v2.6.0 (2016-06-16)
	Enhancements
	Raise helpful error when using invalid iodata
	Inline date/time API with Elixir v1.3 Calendar types
	Add :insert_brs option to text_to_html/2
	Run on Erlang 19 without warnings

	Client-side changes
	Use event delegation in phoenix_html.js
	Drop IE8 support on phoenix_html.js

	Backwards incompatible changes
	:min, :sec option in Phoenix.HTML.Form (datetime_select/3 and time_select/3) are no longer supported. Use :minute or :second instead.

v2.5.1 (2016-03-12)
	Bug fixes	Ensure multipart files work with inputs_for

v2.5.0 (2016-01-28)
	Enhancements	Introduce form.data field instead of form.model. Currently those values are kept in sync then the form is built but form.model will be deprecated in the long term

v2.4.0 (2016-01-21)
	Enhancements
	Add rel=nofollow auto generation for non-get links
	Introduce :selected option for select and multiple_select

	Bug fixes
	Fix safe engine incorrectly marking safe code as unsafe when last expression is <% ... %>

v2.3.0 (2015-12-16)
	Enhancements	Add escape_javascript/1
	Add helpful error message when using unknown @inner assign
	Add Phoenix.HTML.Format.text_to_html/2

v2.2.0 (2015-09-01)
	Bug fix	Allow the :name to be given in forms. For this, using :name to configure the underlying input name prefix has been deprecated in favor of :as

v2.1.2 (2015-08-22)
	Bug fix	Do not include values in password_input/3

v2.1.1 (2015-08-15)
	Enhancements	Allow nil in raw/1
	Allow block options in label/3
	Introduce :skip_deleted in inputs_for/4

v2.1.0 (2015-08-06)
	Enhancements	Add an index field to forms to be used by inputs_for/4 collections

v2.0.1 (2015-07-31)
	Bug fix	Include web directory in Hex package

v2.0.0 (2015-07-30)
	Enhancements
	No longer generate onclick attributes.
The main motivation for this is to provide support
for Content Security Policy, which recommends
disabling all inline scripts in a page.
We took the opportunity to also add support for
data-confirm in link/2.

v1.4.0 (2015-07-26)
	Enhancements	Support input_type/2 and input_validations/2 as reflection mechanisms

v1.3.0 (2015-07-23)
	Enhancements	Add Phoenix.HTML.Form.inputs_for/4 support
	Add multiple select support
	Add reset input
	Infer default text context for labels

v1.2.1 (2015-06-02)
	Bug fix	Ensure nil parameters are not discarded when rendering input

v1.2.0 (2015-05-30)
	Enhancements	Add label/3 for generating a label tag within a form

v1.1.0 (2015-05-20)
	Enhancements	Allow do/end syntax with link/2
	Raise on missing assigns

v1.0.1
	Bug fixes	Avoid variable clash in Phoenix.HTML engine buffers

v1.0.0
	Enhancements	Provides an EEx engine with HTML safe rendering
	Provides a Phoenix.HTML.Safe protocol
	Provides a Phoenix.HTML.FormData protocol
	Provides functions for generating tags, links and form builders in a safe way

Phoenix.HTML

Building blocks for working with HTML in Phoenix.
This library provides three main functionalities:
	HTML safety
	Form abstractions
	A tiny JavaScript library to enhance applications

HTML safety
One of the main responsibilities of this package is to
provide convenience functions for escaping and marking
HTML code as safe.
By default, data output in templates is not considered
safe:
<%= "<hello>" %>
will be shown as:
<hello>
User data or data coming from the database is almost never
considered safe. However, in some cases, you may want to tag
it as safe and show its "raw" contents:
<%= raw "<hello>" %>
Form handling
This libraries also provides an abstraction and a protocol
to build forms. See Phoenix.HTML.Form.
JavaScript library
This project ships with a tiny bit of JavaScript that listens
to all click events to:
	Support data-confirm="message" attributes, which shows
a confirmation modal with the given message

	Support data-method="patch|post|put|delete" attributes,
which sends the current click as a PATCH/POST/PUT/DELETE
HTTP request. You will need to add data-to with the URL
and data-csrf with the CSRF token value

	Dispatch a "phoenix.link.click" event. You can listen to this
event to customize the behaviour above. Returning false from
this event will disable data-method. Stopping propagation
will disable data-confirm

To use the functionality above, you must load priv/static/phoenix_html.js
into your build tool.
Overriding the default confirmation behaviour
You can override the default implementation by hooking
into phoenix.link.click. Here is an example:
window.addEventListener('phoenix.link.click', function (e) {
 // Introduce custom behaviour
 var message = e.target.getAttribute("data-prompt");
 var answer = e.target.getAttribute("data-prompt-answer");
 if(message && answer && (answer != window.prompt(message))) {
 e.preventDefault();
 }
}, false);

 Summary

 Types

 safe()

 Guaranteed to be safe

 unsafe()

 May be safe or unsafe (i.e. it needs to be converted)

 Functions

 attributes_escape(attrs)

 Escapes an enumerable of attributes, returning iodata.

 css_escape(value)

 Escapes a string for use as a CSS identifier.

 html_escape(safe)

 Escapes the HTML entities in the given term, returning safe iodata.

 javascript_escape(data)

 Escapes HTML content to be inserted into a JavaScript string.

 raw(value)

 Marks the given content as raw.

 safe_to_string(arg)

 Converts a safe result into a string.

 Types

 safe()

 @type safe() :: {:safe, iodata()}

Guaranteed to be safe

 unsafe()

 @type unsafe() :: Phoenix.HTML.Safe.t()

May be safe or unsafe (i.e. it needs to be converted)

 Functions

 attributes_escape(attrs)

Escapes an enumerable of attributes, returning iodata.
The attributes are rendered in the given order. Note if
a map is given, the key ordering is not guaranteed.
The keys and values can be of any shape, as long as they
implement the Phoenix.HTML.Safe protocol. In addition,
if the key is an atom, it will be "dasherized". In other
words, :phx_value_id will be converted to phx-value-id.
Furthermore, the following attributes provide behaviour:
	:aria, :data, and :phx - they accept a keyword list as
value. data: [confirm: "are you sure?"] is converted to
data-confirm="are you sure?".

	:class - it accepts a list of classes as argument. Each
element in the list is separated by space. nil and false
elements are discarded. class: ["foo", nil, "bar"] then
becomes class="foo bar".

	:id - it is validated raise if a number is given as ID,
which is not allowed by the HTML spec and leads to unpredictable
behaviour.

Examples
iex> safe_to_string attributes_escape(title: "the title", id: "the id", selected: true)
" title=\"the title\" id=\"the id\" selected"

iex> safe_to_string attributes_escape(%{data: [confirm: "Are you sure?"]})
" data-confirm=\"Are you sure?\""

iex> safe_to_string attributes_escape(%{phx: [value: [foo: "bar"]]})
" phx-value-foo=\"bar\""

 css_escape(value)

 @spec css_escape(String.t()) :: String.t()

Escapes a string for use as a CSS identifier.
Examples
iex> css_escape("hello world")
"hello\\ world"

iex> css_escape("-123")
"-\\31 23"

 html_escape(safe)

 @spec html_escape(unsafe()) :: safe()

Escapes the HTML entities in the given term, returning safe iodata.
iex> html_escape("<hello>")
{:safe, [[[] | "<"], "hello" | ">"]}

iex> html_escape(~c"<hello>")
{:safe, ["<", 104, 101, 108, 108, 111, ">"]}

iex> html_escape(1)
{:safe, "1"}

iex> html_escape({:safe, "<hello>"})
{:safe, "<hello>"}

 javascript_escape(data)

 @spec javascript_escape(binary()) :: binary()

 @spec javascript_escape(safe()) :: safe()

Escapes HTML content to be inserted into a JavaScript string.
This function is useful in JavaScript responses when there is a need
to escape HTML rendered from other templates, like in the following:
$("#container").append("<%= javascript_escape(render("post.html", post: @post)) %>");
It escapes quotes (double and single), double backslashes and others.

 raw(value)

 @spec raw(iodata() | safe() | nil) :: safe()

Marks the given content as raw.
This means any HTML code inside the given
string won't be escaped.
iex> raw("<hello>")
{:safe, "<hello>"}
iex> raw({:safe, "<hello>"})
{:safe, "<hello>"}
iex> raw(nil)
{:safe, ""}

 safe_to_string(arg)

 @spec safe_to_string(safe()) :: String.t()

Converts a safe result into a string.
Fails if the result is not safe. In such cases, you can
invoke html_escape/1 or raw/1 accordingly before.
You can combine html_escape/1 and safe_to_string/1
to convert a data structure to a escaped string:
data |> html_escape() |> safe_to_string()

Phoenix.HTML.Engine

An EEx.Engine that guarantees templates are HTML Safe.

 Summary

 Functions

 encode_to_iodata!(bin)

 Encodes the HTML templates to iodata.

 Functions

 encode_to_iodata!(bin)

Encodes the HTML templates to iodata.

Phoenix.HTML.Form

Define a Phoenix.HTML.Form struct and functions to interact with it.
For building actual forms in your Phoenix application, see
the Phoenix.Component.form/1 component.
Access behaviour
The Phoenix.HTML.Form struct implements the Access behaviour.
When you do form[field], it returns a Phoenix.HTML.FormField
struct with the id, name, value, and errors prefilled.
The field name can be either an atom or a string. If it is an atom,
it assumes the form keeps both data and errors as atoms. If it is a
string, it considers that data and errors are stored as strings for said
field. Forms backed by an Ecto.Changeset only support atom field names.
It is possible to "access" fields which do not exist in the source data
structure. A Phoenix.HTML.FormField struct will be dynamically created
with some attributes such as name and id populated.
Custom implementations
There is a protocol named Phoenix.HTML.FormData which can be implemented
by any data structure that wants to be cast to the Phoenix.HTML.Form struct.

 Summary

 Types

 field()

 t()

 Functions

 %Phoenix.HTML.Form{}

 Defines the Phoenix.HTML.Form struct.

 input_changed?(form1, form2, field)

 Receives two forms structs and checks if the given field changed.

 input_id(name, field)

 Returns an id of a corresponding form field.

 input_id(name, field, value)

 Returns an id of a corresponding form field and value attached to it.

 input_name(form_or_name, field)

 Returns a name of a corresponding form field.

 input_validations(form, field)

 Returns the HTML validations that would apply to
the given field.

 input_value(form, field)

 Returns a value of a corresponding form field.

 normalize_value(type, value)

 Normalizes an input value according to its input type.

 options_for_select(options, selected_values, extra \\ [])

 Returns options to be used inside a select element.

 Types

 field()

 @type field() :: atom() | String.t()

 t()

 @type t() :: %Phoenix.HTML.Form{
 action: atom(),
 data: %{required(field()) => term()},
 errors: [{field(), term()}],
 hidden: Keyword.t(),
 id: String.t(),
 impl: module(),
 index: nil | non_neg_integer(),
 name: String.t(),
 options: Keyword.t(),
 params: %{required(binary()) => term()},
 source: Phoenix.HTML.FormData.t()
}

 Functions

 %Phoenix.HTML.Form{}

 (struct)

Defines the Phoenix.HTML.Form struct.
Its fields are:
	:source - the data structure that implements the form data protocol

	:action - The action that was taken against the form. This value can be
used to distinguish between different operations such as the user typing
into a form for validation, or submitting a form for a database insert.

	:impl - the module with the form data protocol implementation.
This is used to avoid multiple protocol dispatches.

	:id - the id to be used when generating input fields

	:index - the index of the struct in the form

	:name - the name to be used when generating input fields

	:data - the field used to store lookup data

	:params - the parameters associated with this form

	:hidden - a keyword list of fields that are required to
submit the form behind the scenes as hidden inputs

	:options - a copy of the options given when creating the
form without any form data specific key

	:errors - a keyword list of errors that are associated with
the form

 input_changed?(form1, form2, field)

 @spec input_changed?(t(), t(), field()) :: boolean()

Receives two forms structs and checks if the given field changed.
The field will have changed if either its associated value, errors,
action, or implementation changed. This is mostly used for optimization
engines as an extension of the Access behaviour.

 input_id(name, field)

 @spec input_id(t() | atom(), field()) :: String.t()

Returns an id of a corresponding form field.
The form should either be a Phoenix.HTML.Form or an atom.

 input_id(name, field, value)

 @spec input_id(t() | atom(), field(), Phoenix.HTML.Safe.t()) :: String.t()

Returns an id of a corresponding form field and value attached to it.
Useful for radio buttons and inputs like multiselect checkboxes.

 input_name(form_or_name, field)

 @spec input_name(t() | atom(), field()) :: String.t()

Returns a name of a corresponding form field.
The first argument should either be a Phoenix.HTML.Form or an atom.
Examples
iex> Phoenix.HTML.Form.input_name(:user, :first_name)
"user[first_name]"

 input_validations(form, field)

 @spec input_validations(t(), field()) :: Keyword.t()

Returns the HTML validations that would apply to
the given field.

 input_value(form, field)

 @spec input_value(t() | atom(), field()) :: term()

Returns a value of a corresponding form field.
The form should either be a Phoenix.HTML.Form or an atom.
The field is either a string or an atom. If the field is given
as an atom, it will attempt to look data with atom keys. If
a string, it will look data with string keys.
When a form is given, it will look for changes, then
fallback to parameters, and finally fallback to the default
struct/map value.
Since the function looks up parameter values too, there is
no guarantee that the value will have a certain type. For
example, a boolean field will be sent as "false" as a
parameter, and this function will return it as is. If you
need to normalize the result of input_value, see
normalize_value/2.

 normalize_value(type, value)

Normalizes an input value according to its input type.
Certain HTML input values must be cast, or they will have idiosyncracies
when they are rendered. The goal of this function is to encapsulate
this logic. In particular:
	For "datetime-local" types, it converts DateTime and
NaiveDateTime to strings without the second precision

	For "checkbox" types, it returns a boolean depending on
whether the input is "true" or not

	For "textarea", it prefixes a newline to ensure newlines
won't be ignored on submission. This requires however
that the textarea is rendered with no spaces after its
content

 options_for_select(options, selected_values, extra \\ [])

Returns options to be used inside a select element.
options is expected to be an enumerable which will be used to
generate each option element. The function supports different data
for the individual elements:
	keyword lists - each keyword list is expected to have the keys
:key and :value. Additional keys such as :disabled may
be given to customize the option.
	two-item tuples - where the first element is an atom, string or
integer to be used as the option label and the second element is
an atom, string or integer to be used as the option value
	simple atom, string or integer - which will be used as both label and value
for the generated select

Option groups
If options is map or keyword list where the first element is a string,
atom or integer and the second element is a list or a map, it is assumed
the key will be wrapped in an <optgroup> and the value will be used to
generate <options> nested under the group.
Examples
options_for_select(["Admin": "admin", "User": "user"], "admin")
#=> <option value="admin" selected>Admin</option>
#=> <option value="user">User</option>
Multiple selected values:
options_for_select(["Admin": "admin", "User": "user", "Moderator": "moderator"],
 ["admin", "moderator"])
#=> <option value="admin" selected>Admin</option>
#=> <option value="user">User</option>
#=> <option value="moderator" selected>Moderator</option>
Groups:
options_for_select(["Europe": ["UK", "Sweden", "France"], ...], nil)
#=> <optgroup label="Europe">
#=> <option>UK</option>
#=> <option>Sweden</option>
#=> <option>France</option>
#=> </optgroup>
Custom option tags:
options_for_select(["Admin": "admin", "User": "user"], nil, tag: "opt")
#=> <opt value="admin">Admin</opt>
#=> <opt value="user">User</opt>
Horizontal separators can be added:
options_for_select(["Admin", "User", :hr, "New"], nil)
#=> <option>Admin</option>
#=> <option>User</option>
#=> <hr/>
#=> <option>New</option>

options_for_select(["Admin": "admin", "User": "user", hr: nil, "New": "new"], nil)
#=> <option value="admin" selected>Admin</option>
#=> <option value="user">User</option>
#=> <hr/>
#=> <option value="new">New</option>

Phoenix.HTML.FormData protocol

A protocol for converting data structure into a Phoenix.HTML.Form struct.
The functions here are rarely invoked directly by application developers.
Rather, this is low-level entrypoint used by libraries. For working
with forms in your Phoenix application, you likely want to use
Phoenix.Component.to_form/2
instead.

 Summary

 Types

 t()

 All the types that implement this protocol.

 Functions

 input_validations(data, form, field)

 Returns the HTML5 validations that would apply to
the given field.

 input_value(data, form, field)

 Returns the value for the given field.

 to_form(data, options)

 Converts a data structure into a Phoenix.HTML.Form struct.

 to_form(data, form, field, options)

 Converts the field in the given form based on the data structure
into a list of Phoenix.HTML.Form structs.

 Types

 t()

 @type t() :: term()

All the types that implement this protocol.

 Functions

 input_validations(data, form, field)

 @spec input_validations(t(), Phoenix.HTML.Form.t(), Phoenix.HTML.Form.field()) ::
 Keyword.t()

Returns the HTML5 validations that would apply to
the given field.

 input_value(data, form, field)

 @spec input_value(t(), Phoenix.HTML.Form.t(), Phoenix.HTML.Form.field()) :: term()

Returns the value for the given field.

 to_form(data, options)

 @spec to_form(t(), Keyword.t()) :: Phoenix.HTML.Form.t()

Converts a data structure into a Phoenix.HTML.Form struct.
The options have their meaning defined by the underlying
implementation but all shared options below are expected to
be implemented. All remaining options must be stored in the
returned struct.
Shared options
	:as - the value to be used as the form name

	:id - the ID of the form attribute. All form inputs will
be prefixed by the given ID

 to_form(data, form, field, options)

 @spec to_form(t(), Phoenix.HTML.Form.t(), Phoenix.HTML.Form.field(), Keyword.t()) :: [
 Phoenix.HTML.Form.t()
]

Converts the field in the given form based on the data structure
into a list of Phoenix.HTML.Form structs.
The options have their meaning defined by the underlying
implementation but all shared options below are expected to
be implemented. All remaining options must be stored in the
returned struct.
Shared Options
	:id - the id to be used in the form, defaults to the
concatenation of the given field to the parent form id

	:as - the name to be used in the form, defaults to the
concatenation of the given field to the parent form name

	:default - the value to use if none is available

	:prepend - the values to prepend when rendering. This only
applies if the field value is a list and no parameters were
sent through the form.

	:append - the values to append when rendering. This only
applies if the field value is a list and no parameters were
sent through the form.

	:action - The user defined action being taken by the form, such
as :validate, :save, etc.

Phoenix.HTML.FormField

The struct returned by form[field].
It has the following fields:
	:errors - a list of errors belonging to the field
	:field - the field name as an atom or a string
	:form - the parent form struct
	:id - the id to be used as form input as a string
	:name - the name to be used as form input as a string
	:value - the value for the input

This struct also implements the Access behaviour,
but raises if you try to access a field that is not defined.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Phoenix.HTML.FormField{
 errors: [term()],
 field: Phoenix.HTML.Form.field(),
 form: Phoenix.HTML.Form.t(),
 id: String.t(),
 name: String.t(),
 value: term()
}

Phoenix.HTML.Safe protocol

Defines the HTML safe protocol.
In order to promote HTML safety, Phoenix templates
do not use Kernel.to_string/1 to convert data types to
strings in templates. Instead, Phoenix uses this
protocol which must be implemented by data structures
and guarantee that a HTML safe representation is returned.
Furthermore, this protocol relies on iodata, which provides
better performance when sending or streaming data to the client.

 Summary

 Types

 t()

 All the types that implement this protocol.

 Functions

 to_iodata(data)

 Types

 t()

 @type t() :: term()

All the types that implement this protocol.

 Functions

 to_iodata(data)

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

