

 LiveDashboard

 v0.8.3

 Table of contents

 	Configuring Ecto repository stats

 	Configuring metrics

 	Configuring metrics history

 	Configuring OS Data

 	Configuring request logger

 	Modules

 	Phoenix.LiveDashboard

 	Phoenix.LiveDashboard.PageBuilder

 	Phoenix.LiveDashboard.RequestLogger

 	Phoenix.LiveDashboard.Router

Configuring Ecto repository stats

This guide covers how to configure the LiveDashboard to show stats from your underlying database. At the moment, these stats can only be shown for Ecto repositories running on Ecto.Adapters.Postgres or Ecto.Adapters.MyXQL.

 Installing Ecto Stats

 PostgreSQL

To enable the "Ecto Stats" functionality for PostgreSQL in your dashboard, you will need to do the three steps below:
	Add the ecto_psql_extras dependency
	(optional) Configure the dashboard
	(optional) Install custom PostgreSQL extensions

Add the ecto_psql_extras dependency
In your mix.exs, add the following to your deps:
 {:ecto_psql_extras, "~> 0.6"},

 MySQL/MariaDB

To enable the "Ecto Stats" functionality for MySQL or MariaDB in your dashboard, you will need to do the three steps below:
	Add the ecto_mysql_extras dependency
	(optional) Configure the dashboard
	(optional) MySQL/MariaDB configuration

Add the ecto_mysql_extras dependency
In your mix.exs, add the following to your deps:
 {:ecto_mysql_extras, "~> 0.3"},

 SQLite

To enable the "Ecto Stats" functionality for SQLite in your dashboard, you will need to do the three steps below:
	Add the ecto_sqlite3_extras dependency
	(optional) Configure the dashboard

Add the ecto_sqlite3_extras dependency
In your mix.exs, add the following to your deps:
 {:ecto_sqlite3_extras, "~> 1.2.0"},

 Configure the dashboard

This step is only needed if you want to restrict the repositories listed in your dashboard, because
by default all repos are gonna be listed.
Go to the live_dashboard call in your router and list your repositories:
live_dashboard "/dashboard", ecto_repos: [MyApp.Repo]
You want to list all repositories that connect to distinct databases. For example, if you have both MyApp.Repo and MyApp.RepoAnother but they connect to the same database, there is no benefit in listing both. Remember only Ecto repositories running on Ecto.Adapters.Postgres or Ecto.Adapters.MyXQL are currently supported.
If you want to disable the "Ecto Stats" option altogether, set ecto_repos: [].
Some queries such as long_running_queries can be configured by passing an extra ecto_psql_extras_options for PostgreSQL or ecto_mysql_extras_options for MySQL/MariaDB,
which is a keyword where:
	each key is the name of the query
	each value is itself a keyword to be passed as args

For example, if you want to configure the threshold for long_running_queries:
PostgreSQL example
live_dashboard "/dashboard",
 ecto_repos: [MyApp.Repo],
 ecto_psql_extras_options: [long_running_queries: [threshold: "200 milliseconds"]]
See the ecto_psql_extras documentation for available options.
MySQL/MariaDB example
live_dashboard "/dashboard",
 ecto_repos: [MyApp.Repo],
 ecto_mysql_extras_options: [long_running_queries: [threshold: 200]]
See the ecto_mysql_extras documentation for available options.
SQLite example
live_dashboard "/dashboard",
 ecto_repos: [MyApp.Repo],
 ecto_sqlite3_extras_options: []
See the ecto_sqlite3_extras documentation for available options.

 Install custom PostgreSQL extensions

Once the repository page is enabled, some of the queries (Calls and Outliers) require the pg_stat_statements extension to be installed. If you wish to access said functionality, you must install the extension first, otherwise said functionality won't be shown.

 MySQL/MariaDB configuration

The user which is accessing the repo should have access to the certain system level databases. See the ecto_mysql_extras documentation for more details which schemas are being used.
For MariaDB the performance_schema isn't enabled by default. To enable this add performance_schema=ON to my.cnf. These changes take effect after a restart. See the ecto_mysql_extras documentation for more details.

Configuring metrics

This guide covers how to install and configure your LiveDashboard Metrics.

 Installing metrics

To enable the "Metrics" functionality in your dashboard, you will need to do the three steps below:
	Add the telemetry dependencies
	Define your telemetry module
	Configure the dashboard

 Add the telemetry dependencies

In your mix.exs, add the following to your deps:
 {:telemetry_poller, "~> 0.4"},
 {:telemetry_metrics, "~> 0.4"},
If you generated your Phoenix app in version v1.5+, these dependencies will already be installed. You can also skip the next section.

 Define your telemetry module

In your Phoenix application, we recommend that you create a module to act as your telemetry supervision tree. Within this supervisor you can define your application's metrics and start your reporters.
The example below contains the child spec for a LiveDashboard reporter, as well as some metrics definitions for telemetry events emitted by Phoenix, Ecto, and the VM (via the :telemetry_poller package).
Create your Telemetry module in lib/my_app_web/telemetry.ex:
defmodule MyAppWeb.Telemetry do
 use Supervisor
 import Telemetry.Metrics

 def start_link(arg) do
 Supervisor.start_link(__MODULE__, arg, name: __MODULE__)
 end

 @impl true
 def init(_arg) do
 children = [
 # Telemetry poller will execute the given period measurements
 # every 10_000ms. Learn more here: https://hexdocs.pm/telemetry_metrics
 {:telemetry_poller, measurements: periodic_measurements(), period: 10_000}
 # Add reporters as children of your supervision tree.
 # {Telemetry.Metrics.ConsoleReporter, metrics: metrics()}
]

 Supervisor.init(children, strategy: :one_for_one)
 end

 def metrics do
 [
 # Phoenix Metrics
 summary("phoenix.endpoint.stop.duration",
 unit: {:native, :millisecond}
),
 summary("phoenix.router_dispatch.stop.duration",
 tags: [:route],
 unit: {:native, :millisecond}
),

 # Database Time Metrics
 summary("my_app.repo.query.total_time", unit: {:native, :millisecond}),
 summary("my_app.repo.query.decode_time", unit: {:native, :millisecond}),
 summary("my_app.repo.query.query_time", unit: {:native, :millisecond}),
 summary("my_app.repo.query.queue_time", unit: {:native, :millisecond}),
 summary("my_app.repo.query.idle_time", unit: {:native, :millisecond}),

 # VM Metrics
 summary("vm.memory.total", unit: {:byte, :kilobyte}),
 summary("vm.total_run_queue_lengths.total"),
 summary("vm.total_run_queue_lengths.cpu"),
 summary("vm.total_run_queue_lengths.io")
]
 end

 defp periodic_measurements do
 []
 end
end
Make sure to replace MyApp and my_app by your actual application name.
Then add to your main application's supervision tree (usually in lib/my_app/application.ex):
children = [
 MyApp.Repo,
 MyAppWeb.Telemetry,
 MyAppWeb.Endpoint,
 ...
]

 Configure the dashboard

The last step now is to configure the dashboard. Go to the live_dashboard call in your router and add the following option:
live_dashboard "/dashboard", metrics: MyAppWeb.Telemetry
Now refresh the "/dashboard" page and the metrics functionality should be enabled. Each metric goes to a distinct group based on the metric name itself.

 More about telemetry

Now that you have metrics up and running, you can begin exploring the rest of the telemetry ecosystem! Here are a few links to get you started:
	The Telemetry.Metrics
module documentation contains more information on:
	Metric types
	Breaking down metrics by tags
	VM Metrics
	Custom periodic polling

	For a deeper dive into Phoenix and Ecto metrics, see our
Telemetry Walkthrough.

	For more Elixir libraries using :telemetry, see
Libraries using Telemetry.

 Configure Metrics

The LiveDashboard integrates with :telemetry converting each Telemetry.Metrics to a beautiful, real-time chart.
The following table shows how Telemetry.Metrics metrics map to LiveDashboard charts:
	Telemetry.Metrics	Y-Axis Value(s)
	last_value	Always set to an absolute value
	counter	Always increased by 1
	sum	Always increased/decreased by an absolute value
	summary	Value/Min/Max/Avg
	distribution	Total number of events in individual buckets

 Reporter options

Reporter options can be given to each metric as an option. For example:
counter("my_app.counter", reporter_options: [...])
The following reporter options are available to the dashboard:
	:nav - configures the group the metric belongs to. By default the group is the first part of the name. For example, counter("my_app.counter") defaults to group "my_app"

	:prune_threshold - the maximum number of data
points. When the threshold is reached, the chart data will
be pruned by half. Default is 1_000.

	:bucket_size - the unit width of each bucket. This option only
applies to distribution histograms. The default value is 20.

 Metrics history

Metrics history can also be enabled via a custom configuration.

Configuring metrics history

If you wish to populate metrics with history saved from telemetry or another data source,
modify the dashboard config (in "my_app_web/router.ex") to include a metrics_history key like so:
live_dashboard "/dashboard",
 metrics: MyAppWeb.Telemetry,
 metrics_history: {MyApp.MetricsStorage, :metrics_history, []}
where MetricsStorage is a module and :metrics_history is a function taking a single argument in this example, which will always be a metric.
The function must return a list, empty if there is no data, or a list of maps with :label, :measurement and :time keys in every map. The function Phoenix.LiveDashboard.extract_datapoint_for_metric/4 will return a map in exactly this format (with optional time argument if you want to override the default of System.system_time(:microsecond)), or it may return nil in which case the data point should not be saved.
You could store the data in an ETS table or in Redis or the database, or anywhere else, but for this example we'll use a GenServer, with a circular buffer to emit recent telemetry when each client connects.
In your mix.exs, add the following to your deps:
 {:circular_buffer, "~> 0.4.0"},
Then add the following module "lib/my_app_web/metrics_storage.ex":
 defmodule MyAppWeb.MetricsStorage do
 use GenServer

 @history_buffer_size 50

 def metrics_history(metric) do
 GenServer.call(__MODULE__, {:data, metric})
 end

 def start_link(args) do
 GenServer.start_link(__MODULE__, args, name: __MODULE__)
 end

 @impl true
 def init(metrics) do
 Process.flag(:trap_exit, true)

 metric_histories_map =
 metrics
 |> Enum.map(fn metric ->
 attach_handler(metric)
 {metric, CircularBuffer.new(@history_buffer_size)}
 end)
 |> Map.new()

 {:ok, metric_histories_map}
 end

 @impl true
 def terminate(_, metrics) do
 for metric <- metrics do
 :telemetry.detach({__MODULE__, metric, self()})
 end

 :ok
 end

 defp attach_handler(%{event_name: name_list} = metric) do
 :telemetry.attach(
 {__MODULE__, metric, self()},
 name_list,
 &__MODULE__.handle_event/4,
 metric
)
 end

 def handle_event(_event_name, data, metadata, metric) do
 if data = Phoenix.LiveDashboard.extract_datapoint_for_metric(metric, data, metadata) do
 GenServer.cast(__MODULE__, {:telemetry_metric, data, metric})
 end
 end

 @impl true
 def handle_cast({:telemetry_metric, data, metric}, state) do
 {:noreply, update_in(state[metric], &CircularBuffer.insert(&1, data))}
 end

 @impl true
 def handle_call({:data, metric}, _from, state) do
 if history = state[metric] do
 {:reply, CircularBuffer.to_list(history), state}
 else
 {:reply, [], state}
 end
 end
 end
Finally, add the new module to your Application children, and initialize it with some or all of your metrics, such as from MyAppWeb.Telemetry.metrics/0.
 # Start genserver to store transient metrics
 {MyAppWeb.MetricsStorage, MyAppWeb.Telemetry.metrics()},
Now, when you select a tab on the Metrics dashboard, LiveDashboard will call into your module to get the metrics history for that tab.

Configuring OS Data

This guide covers how to install and configure your LiveDashboard OS Data.

 Enabling os_mon

The OS Data comes from the os_mon application, which ships as part of your Erlang distribution. You can start it by adding it to the extra applications section in your mix.exs:
 def application do
 [
 ...,
 extra_applications: [:logger, :runtime_tools, :os_mon]
]
 end
Some operating systems break Erlang into multiple packages. In this case, you may need to install a package such as erlang-os-mon or similar.

 Configuring os_mon

See the Erlang docs for more information and os_mon configuration.

Configuring request logger

This guide covers how to install and configure your LiveDashboard request logger.

 Installing request logger

Installing the request logger is straight-forward. Just add the following plug to your "lib/my_app_web/endpoint.ex", right before Plug.RequestId:
plug Phoenix.LiveDashboard.RequestLogger,
 param_key: "request_logger",
 cookie_key: "request_logger"
If your application is an API only, then you most likely don't use cookies, which means you can remove the "cookie_key" option.
Now go to your dashboard and the Request Logger will be enabled. Once you click it, you will have the option to either pass a parameter to stream requests logs or to enable/disable a cookie that streams requests logs.

 Configuring request logger

There is no configuration for the request logger at the moment.

Phoenix.LiveDashboard

LiveDashboard provides real-time performance monitoring and debugging tools for Phoenix developers. It provides the following modules:
	Home - See general information about the system

	OS Data - See general information about OS, such as CPU, Memory and Disk usage

	Metrics - See how your application performs under different conditions by visualizing :telemetry events with real-time charts

	Request logging - See everything that was logged for certain requests

	Applications - See, filter, and search applications in the current node

	Processes - See, filter, and search processes in the current node

	Ports - See, filter, and search ports (responsible for I/O) in the current node

	Sockets - See, filter, and search sockets (responsible for tcp/udp) in the current node

	ETS - See, filter, and search ETS tables (in-memory storage) in the current node

	Ecto Stats - Shows index, table, and general usage about the underlying Ecto Repo storage

The dashboard also works across nodes. If your nodes are connected via Distributed Erlang, then you can access information from node B while accessing the dashboard on node A.
[image: screenshot]

 Installation

To start using LiveDashboard, you will need three steps:
	Add the phoenix_live_dashboard dependency
	Configure LiveView
	Add dashboard access

 1. Add the phoenix_live_dashboard dependency

Add the following to your mix.exs and run mix deps.get:
def deps do
 [
 {:phoenix_live_dashboard, "~> 0.7"}
]
end

 2. Configure LiveView

The LiveDashboard is built on top of LiveView. If LiveView is already installed in your app, feel free to skip this section.
If you plan to use LiveView in your application in the future, we recommend you to follow the official installation instructions.
This guide only covers the minimum steps necessary for the LiveDashboard itself to run.
First, update your endpoint's configuration to include a signing salt. You can generate a signing salt by running mix phx.gen.secret 32 (note Phoenix v1.5+ apps already have this configuration):
config/config.exs
config :my_app, MyAppWeb.Endpoint,
 live_view: [signing_salt: "SECRET_SALT"]
Then add the Phoenix.LiveView.Socket declaration to your endpoint:
socket "/live", Phoenix.LiveView.Socket
And you are good to go!

 3. Add dashboard access for development-only usage

Once installed, update your router's configuration to forward requests to a LiveDashboard with a unique name of your choosing:
lib/my_app_web/router.ex
use MyAppWeb, :router
import Phoenix.LiveDashboard.Router

...

if Mix.env() == :dev do
 scope "/" do
 pipe_through :browser
 live_dashboard "/dashboard"
 end
end
This is all. Run mix phx.server and access the "/dashboard" to configure the necessary modules.

 Extra: Add dashboard access on all environments (including production)

If you want to use the LiveDashboard in production, you should put it behind some authentication and allow only admins to access it. If your application does not have an admins-only section yet, you can use Plug.BasicAuth to set up some basic authentication as long as you are also using SSL (which you should anyway):
lib/my_app_web/router.ex
use MyAppWeb, :router
import Phoenix.LiveDashboard.Router

...

pipeline :admins_only do
 plug :admin_basic_auth
end

scope "/" do
 pipe_through [:browser, :admins_only]
 live_dashboard "/dashboard"
end

defp admin_basic_auth(conn, _opts) do
 username = System.fetch_env!("AUTH_USERNAME")
 password = System.fetch_env!("AUTH_PASSWORD")
 Plug.BasicAuth.basic_auth(conn, username: username, password: password)
end
If you are running your application behind a proxy or a webserver, you also have to make sure they are configured for allowing WebSocket upgrades. For example, here is an article on how to configure Nginx with Phoenix and WebSockets.
Finally, you will also want to configure your config/prod.exs and use your domain name under the check_origin configuration:
check_origin: ["//myapp.com"]
Then you should be good to go!

 Using from the command line with PLDS

It's possible to use the LiveDashboard without having to add it as a dependency of your
application, or when you don't have Phoenix installed. PLDS is a command
line tool that provides a standalone version of LiveDashboard with some batteries included.
You can install it with:
$ mix escript.install hex plds

And connect to a running node with:
$ plds server --connect mynode --open

For more details, please check the PLDS documentation.

 Summary

 Functions

 extract_datapoint_for_metric(metric, measurements, metadata, time \\ nil)

 Extracts a datapoint for the given metric.

 Functions

 Link to this function

 extract_datapoint_for_metric(metric, measurements, metadata, time \\ nil)

 View Source

 @spec extract_datapoint_for_metric(
 Telemetry.Metric.t(),
 map(),
 map(),
 pos_integer() | nil
) ::
 %{label: binary(), measurement: number(), time: pos_integer()} | nil

Extracts a datapoint for the given metric.
Receives a Telemetry.Metric as metric, alongside the measurements
and metadata from the Telemetry event, and an optional time and
returns an extracted datapoint or nil if the event is not part of
the metric.
Note that it is expected that the event name was already validated as
part of the metric.

Phoenix.LiveDashboard.PageBuilder behaviour

Page builder is the default mechanism for building custom dashboard pages.
Each dashboard page is a LiveView with additional callbacks for
customizing the menu appearance and the automatic refresh.
A simple and straight-forward example of a custom page is the
Phoenix.LiveDashboard.EtsPage that ships with the dashboard:
defmodule Phoenix.LiveDashboard.EtsPage do
 @moduledoc false
 use Phoenix.LiveDashboard.PageBuilder

 @impl true
 def menu_link(_, _) do
 {:ok, "ETS"}
 end

 @impl true
 def render(assigns) do
 ~H"""
 <.live_table
 id="ets-table"
 dom_id="ets-table"
 page={@page}
 title="ETS"
 row_fetcher={&fetch_ets/2}
 row_attrs={&row_attrs/1}
 rows_name="tables"
 >
 <:col field={:name} header="Name or module" />
 <:col field={:protection} />
 <:col field={:type} />
 <:col field={:size} text_align="right" sortable={:desc} />
 <:col field={:memory} text_align="right" sortable={:desc} :let={ets}>
 <%= format_words(ets[:memory]) %>
 </:col>
 <:col field={:owner} :let={ets} >
 <%= encode_pid(ets[:owner]) %>
 </:col>
 </.live_table>
 """
 end

 defp fetch_ets(params, node) do
 %{search: search, sort_by: sort_by, sort_dir: sort_dir, limit: limit} = params

 # Here goes the code that goes through all ETS tables, searches
 # (if not nil), sorts, and limits them.
 #
 # It must return a tuple where the first element is list with
 # the current entries (up to limit) and an integer with the
 # total amount of entries.
 # ...
 end

 defp row_attrs(table) do
 [
 {"phx-click", "show_info"},
 {"phx-value-info", encode_ets(table[:id])},
 {"phx-page-loading", true}
]
 end
end
Once a page is defined, it must be declared in your live_dashboard
route as follows:
live_dashboard "/dashboard",
 additional_pages: [
 route_name: MyAppWeb.MyCustomPage
]
Or alternatively:
live_dashboard "/dashboard",
 additional_pages: [
 route_name: {MyAppWeb.MyCustomPage, some_option: ...}
]
The second argument of the tuple will be given to the init/1
callback. If not tuple is given, init/1 will receive an empty
list.

 Options for the use macro

The following options can be given when using the PageBuilder module:
	refresher? - Boolean to enable or disable the automatic refresh in the page.

 Components

A page can return any valid HEEx template in the render/1 callback,
and it can use the components listed with this page too.
We currently support card/1, fields_card/1, row/1,
shared_usage_card/1, and usage_card/1;
and the live components live_layered_graph/1, live_nav_bar/1,
and live_table/1.

 Helpers

Some helpers are available for page building. The supported
helpers are: live_dashboard_path/2, live_dashboard_path/3,
encode_app/1, encode_ets/1, encode_pid/1, encode_port/1,
and encode_socket/1.

 Summary

 Types

 capabilities()

 requirements()

 session()

 unsigned_params()

 Components

 card(assigns)

 Card component.

 card_title(assigns)

 Card title component.

 fields_card(assigns)

 Fields card component.

 hint(assigns)

 Hint pop-up text component

 label_value_list(assigns)

 List of label value.

 live_layered_graph(assigns)

 A component for drawing layered graphs.

 live_nav_bar(assigns)

 Nav bar live component.

 live_table(assigns)

 Table live component.

 row(assigns)

 Row component.

 shared_usage_card(assigns)

 Shared usage card component.

 usage_card(assigns)

 Usage card component.

 Callbacks

 handle_event(event, unsigned_params, socket)

 Callback invoked when an event is called.

 handle_info(msg, socket)

 handle_params(unsigned_params, uri, socket)

 handle_refresh(socket)

 Callback invoked when the automatic refresh is enabled.

 init(term)

 Callback invoked when a page is declared in the router.

 menu_link(session, capabilities)

 Callback invoked when a page is declared in the router.

 mount(unsigned_params, session, socket)

 render(assigns)

 Functions

 encode_app(app)

 Encodes an application for URLs.

 encode_ets(ref)

 Encodes ETSs references for URLs.

 encode_pid(pid)

 Encodes PIDs for URLs.

 encode_port(port)

 Encodes Port for URLs.

 encode_socket(ref)

 Encodes Sockets for URLs.

 live_dashboard_path(socket, map)

 Computes a router path to the current page.

 live_dashboard_path(socket, map, extra)

 Computes a router path to the current page with merged params.

 Types

 Link to this type

 capabilities()

 View Source

 @type capabilities() :: %{
 applications: [atom()],
 modules: [atom()],
 processes: [atom()],
 dashboard_running?: boolean(),
 system_info: nil | binary()
}

 Link to this type

 requirements()

 View Source

 @type requirements() :: [{:application | :process | :module, atom()}]

 Link to this type

 session()

 View Source

 @type session() :: map()

 Link to this type

 unsigned_params()

 View Source

 @type unsigned_params() :: map()

 Components

 Link to this function

 card(assigns)

 View Source

 @spec card(assigns :: Socket.assigns()) :: Phoenix.LiveView.Rendered.t()

Card component.
You can see it in use the Home and OS Data pages.

 Attributes

	title (:string) - The title above the card. Defaults to nil.
	hint (:string) - A textual hint to show close to the title. Defaults to nil.
	inner_title (:string) - The title inside the card. Defaults to nil.
	inner_hint (:string) - A textual hint to show close to the inner title. Defaults to nil.
	dom_id (:string) - id attribute for the HTML the main tag. Defaults to nil.

 Slots

	inner_block (required) - The value that the card will show.

 Link to this function

 card_title(assigns)

 View Source

 @spec card_title(assigns :: Socket.assigns()) :: Phoenix.LiveView.Rendered.t()

Card title component.

 Attributes

	title (:string) - The title above the card. Defaults to nil.
	hint (:string) - A textual hint to show close to the title. Defaults to nil.

 Link to this function

 fields_card(assigns)

 View Source

Fields card component.
You can see it in use the Home page in the Environment section.

 Attributes

	fields (:list) (required) - A list of key-value elements that will be shown inside the card.
	title (:string) - The title above the card. Defaults to nil.
	hint (:string) - A textual hint to show close to the title. Defaults to nil.
	inner_title (:string) - The title inside the card. Defaults to nil.
	inner_hint (:string) - A textual hint to show close to the inner title. Defaults to nil.

 Link to this function

 hint(assigns)

 View Source

 @spec hint(assigns :: Socket.assigns()) :: Phoenix.LiveView.Rendered.t()

Hint pop-up text component

 Attributes

	text (:string) (required) - Text to show in the hint.

 Link to this function

 label_value_list(assigns)

 View Source

List of label value.
You can see it in use in the modal in Ports or Processes page.

 Slots

	elem (required) - Value for each element of the list. Accepts attributes:	label (:string) (required) - Label for the elem.

 Link to this function

 live_layered_graph(assigns)

 View Source

 @spec live_layered_graph(assigns :: Socket.assigns()) :: Phoenix.LiveView.Rendered.t()

A component for drawing layered graphs.
This is useful to represent pipelines like we have on
BroadwayDashboard where
each layer points to nodes of the layer below.
It draws the layers from top to bottom.
The calculation of layers and positions is done automatically
based on options.

 Attributes

	id (:any) (required) - Because is a stateful Phoenix.LiveComponent an unique id is needed.

	title (:string) - The title of the component. Defaults to nil.

	hint (:string) - A textual hint to show close to the title. Defaults to nil.

	layers (:list) (required) - A graph of layers with nodes. They represent
our graph structure (see example). Each layer is a list
of nodes, where each node has the following fields:
	:id - The ID of the given node.
	:children - The IDs of children nodes.
	:data - A string or a map. If it's a map, the required fields
are detail and label.

	show_grid? (:boolean) - Enable or disable the display of a grid. This is useful for development. Defaults to false.

	y_label_offset (:integer) - The "y" offset of label position relative to the center of its circle. Defaults to 5.

	y_detail_offset (:integer) - The "y" offset of detail position relative to the center of its circle. Defaults to 18.

	background (:any) - A function that calculates the background for a
node based on it's data. Default: fn _node_data -> "gray" end."

	format_label (:any) - A function that formats the label. Defaults
to a function that returns the label or data if data is binary.

	format_detail (:any) - A function that formats the detail field.
This is only going to be called if data is a map.
Default: fn node_data -> node_data.detail end.

 Examples

iex> layers = [
...> [
...> %{
...> id: "a1",
...> data: "a1",
...> children: ["b1"]
...> }
...>],
...> [
...> %{
...> id: "b1"
...> data: %{
...> detail: 0,
...> label: "b1"
...> },
...> children: []
...> }
...>]
...>]

 Link to this function

 live_nav_bar(assigns)

 View Source

 @spec live_nav_bar(assigns :: Socket.assigns()) :: Phoenix.LiveView.Rendered.t()

Nav bar live component.
You can see it in use the Metrics and Ecto info pages.

 Attributes

	id (:any) (required) - Because is a stateful Phoenix.LiveComponent an unique id is needed.

	page (Phoenix.LiveDashboard.PageBuilder) (required) - Dashboard page.

	nav_param (:string) - An atom that configures the navigation parameter.
It is useful when two nav bars are present in the same page.
Defaults to "nav".

	extra_params (:list) - A list of strings representing the parameters
that should stay when a tab is clicked. By default the nav ignores
all params, except the current node if any.
Defaults to [].

	style (:atom) - Style for the nav bar.Must be one of :pills, or :bar.

 Slots

	item (required) - HTML to be rendered when the tab is selected. Accepts attributes:	name (:string) (required) - Value used in the URL when the tab is selected.
	label (:string) - Title of the tab. If it is not present, it will be calculated from name.
	method (:string) - Method used to update.Must be one of "patch", "navigate", "href", or "redirect".

 Link to this function

 live_table(assigns)

 View Source

 @spec live_table(assigns :: Socket.assigns()) :: Phoenix.LiveView.Rendered.t()

Table live component.
You can see it in use the applications, processes, sockets pages and many others.

 Attributes

	id (:any) (required) - Because is a stateful Phoenix.LiveComponent an unique id is needed.

	page (Phoenix.LiveDashboard.PageBuilder) (required) - Dashboard page.

	row_fetcher (:any) (required) - A function which receives the params and the node and
returns a tuple with the rows and the total number:
(params(), node() -> {list(), integer() | binary()}).
Optionally, if the function needs to keep a state, it can be defined as a tuple
where the first element is a function and the second is the initial state.
In this case, the function will receive the state as third argument and must return
a tuple with the rows, the total number, and the new state for the following call:
{(params(), node(), term() -> {list(), integer() | binary(), term()}), term()}

	rows_name (:string) - A string to name the representation of the rows. Default is calculated from the current page.

	row_attrs (:any) - A list with the HTML attributes for the table row.
It can be also a function that receive the row as argument
and returns a list of 2 element tuple with HTML attribute name
and value.
Defaults to nil.

	default_sort_by (:any) - The default column to sort by to. Defaults to the first sortable column. Defaults to nil.

	title (:string) (required) - The title of the table.

	limit (:any) - May be set to false to disable the limit. Defaults to [50, 100, 500, 1000, 5000].

	search (:boolean) - A boolean indicating if the search functionality is enabled. Defaults to true.

	hint (:string) - A textual hint to show close to the title. Defaults to nil.

	dom_id (:string) - id attribute for the HTML the main tag. Defaults to nil.

 Slots

	col (required) - Columns for the table. Accepts attributes:	field (:atom) (required) - Identifier for the column.
	sortable (:atom) - When set, the column header is clickable and it fetches again rows with the new order.
Required for at least one column.
Must be one of :asc, or :desc.
	header (:string) - Label to show in the current column. Default value is calculated from :field.
	text_align (:string) - Text align for text in the column. Default: nil.Must be one of "left", "center", "right", or "justify".

 Link to this function

 row(assigns)

 View Source

 @spec row(assigns :: Socket.assigns()) :: Phoenix.LiveView.Rendered.t()

Row component.
You can see it in use the Home page and OS Data pages.

 Slots

	col (required) - A list of components. It can receive up to 3 components. Each element will be one column.

 Link to this function

 shared_usage_card(assigns)

 View Source

 @spec shared_usage_card(assigns :: Socket.assigns()) :: Phoenix.LiveView.Rendered.t()

Shared usage card component.
You can see it in use the Home page and OS Data pages.

 Attributes

	usages (:list) (required) - A list of Map with the following keys:
	:data - A list of tuples with 4 elements with the following data: {usage_name, usage_percent, color, hint}
	:dom_id - Required. Usage identifier.
	:title- Bar title.

	total_data (:any) (required) - A list of tuples with 4 elements with following data: {usage_name, usage_value, color, hint}.

	total_legend (:string) (required) - The legent of the total usage.

	total_usage (:string) (required) - The value of the total usage.

	dom_id (:string) - id attribute for the HTML the main tag. Defaults to nil.

	csp_nonces (:any) (required) - A copy of CSP nonces (@csp_nonces) used to render the page safely.

	title (:string) - The title above the card. Defaults to nil.

	hint (:string) - A textual hint to show close to the title. Defaults to nil.

	inner_title (:string) - The title inside the card. Defaults to nil.

	inner_hint (:string) - A textual hint to show close to the inner title. Defaults to nil.

	total_formatter (:any) - A function that format the total_usage. Default: &("#{&1} %"). Defaults to nil.

 Link to this function

 usage_card(assigns)

 View Source

 @spec usage_card(assigns :: Socket.assigns()) :: Phoenix.LiveView.Rendered.t()

Usage card component.
You can see it in use the Home page and OS Data pages.

 Attributes

	title (:string) - The title above the card. Defaults to nil.
	hint (:string) - A textual hint to show close to the title. Defaults to nil.
	dom_id (:string) (required) - A unique identifier for all usages in this card.
	csp_nonces (:any) (required) - A copy of CSP nonces (@csp_nonces) used to render the page safely.

 Slots

	usage (required) - List of usages to show. Accepts attributes:	current (:integer) (required) - The current value of the usage.
	limit (:integer) (required) - The max value of usage.
	dom_id (:string) (required) - An unique identifier for the usage that will be concatenated to dom_id.
	percent (:string) - The used percent of the usage.
	title (:string) - The title of the usage.
	hint (:string) - A textual hint to show close to the usage title.

 Callbacks

 Link to this callback

 handle_event(event, unsigned_params, socket)

 View Source

 (optional)

 @callback handle_event(event :: binary(), unsigned_params(), socket :: Socket.t()) ::
 {:noreply, Socket.t()} | {:reply, map(), Socket.t()}

Callback invoked when an event is called.
Note that show_info event is handled automatically by
Phoenix.LiveDashboard.PageBuilder,
but the info parameter (phx-value-info) needs to be encoded with
one of the encode_* helper functions.
For more details, see Phoenix.LiveView bindings

 Link to this callback

 handle_info(msg, socket)

 View Source

 (optional)

 @callback handle_info(msg :: term(), socket :: Socket.t()) :: {:noreply, Socket.t()}

 Link to this callback

 handle_params(unsigned_params, uri, socket)

 View Source

 (optional)

 @callback handle_params(unsigned_params(), uri :: String.t(), socket :: Socket.t()) ::
 {:noreply, Socket.t()}

 Link to this callback

 handle_refresh(socket)

 View Source

 (optional)

 @callback handle_refresh(socket :: Socket.t()) :: {:noreply, Socket.t()}

Callback invoked when the automatic refresh is enabled.

 Link to this callback

 init(term)

 View Source

 @callback init(term()) :: {:ok, session()} | {:ok, session(), requirements()}

Callback invoked when a page is declared in the router.
It receives the router options and it must return the
tuple {:ok, session, requirements}.
The page session will be serialized to the client and
received on mount.
The requirements is an optional keyword to detect the
state of the node.
The result of this detection will be passed as second
argument in the menu_link/2 callback.
The possible values are:
	:applications list of applications that are running or not.
	:modules list of modules that are loaded or not.
	:pids list of processes that alive or not.

 Link to this callback

 menu_link(session, capabilities)

 View Source

 @callback menu_link(session(), capabilities()) ::
 {:ok, String.t()}
 | {:disabled, String.t()}
 | {:disabled, String.t(), String.t()}
 | :skip

Callback invoked when a page is declared in the router.
It receives the session returned by the init/1 callback
and the capabilities of the current node.
The possible return values are:
	{:ok, text} when the link should be enable and text to be shown.

	{:disabled, text} when the link should be disable and text to be shown.

	{:disabled, text, more_info_url} similar to the previous one but
it also includes a link to provide more information to the user.

	:skip when the link should not be shown at all.

 Link to this callback

 mount(unsigned_params, session, socket)

 View Source

 (optional)

 @callback mount(unsigned_params(), session(), socket :: Socket.t()) ::
 {:ok, Socket.t()} | {:ok, Socket.t(), keyword()}

 Link to this callback

 render(assigns)

 View Source

 @callback render(assigns :: Socket.assigns()) :: Phoenix.LiveView.Rendered.t()

 Functions

 Link to this function

 encode_app(app)

 View Source

 @spec encode_app(atom()) :: binary()

Encodes an application for URLs.

 Example

This function can be used to encode an application for an event value:
<button phx-click="show-info" phx-value-info=<%= encode_app(@my_app) %>/>

 Link to this function

 encode_ets(ref)

 View Source

 @spec encode_ets(reference()) :: binary()

Encodes ETSs references for URLs.

 Example

This function can be used to encode an ETS reference for an event value:
<button phx-click="show-info" phx-value-info=<%= encode_ets(@reference) %>/>

 Link to this function

 encode_pid(pid)

 View Source

 @spec encode_pid(pid()) :: binary()

Encodes PIDs for URLs.

 Example

This function can be used to encode a PID for an event value:
<button phx-click="show-info" phx-value-info=<%= encode_pid(@pid) %>/>

 Link to this function

 encode_port(port)

 View Source

 @spec encode_port(port()) :: binary()

Encodes Port for URLs.

 Example

This function can be used to encode a Port for an event value:
<button phx-click="show-info" phx-value-info=<%= encode_port(@port) %>/>

 Link to this function

 encode_socket(ref)

 View Source

 @spec encode_socket(port() | binary()) :: binary()

Encodes Sockets for URLs.

 Example

This function can be used to encode @socket for an event value:
<button phx-click="show-info" phx-value-info=<%= encode_socket(@socket) %>/>

 Link to this function

 live_dashboard_path(socket, map)

 View Source

 @spec live_dashboard_path(
 Socket.t(),
 page :: %Phoenix.LiveDashboard.PageBuilder{
 allow_destructive_actions: term(),
 info: term(),
 module: term(),
 node: term(),
 params: term(),
 route: term(),
 tick: term()
 }
) :: binary()

Computes a router path to the current page.

 Link to this function

 live_dashboard_path(socket, map, extra)

 View Source

 @spec live_dashboard_path(
 Socket.t(),
 page :: %Phoenix.LiveDashboard.PageBuilder{
 allow_destructive_actions: term(),
 info: term(),
 module: term(),
 node: term(),
 params: term(),
 route: term(),
 tick: term()
 },
 map() | Keyword.t()
) :: binary()

Computes a router path to the current page with merged params.

Phoenix.LiveDashboard.RequestLogger

A plug that enables request logging.
See our Request Logger guides for more information.

Phoenix.LiveDashboard.Router

Provides LiveView routing for LiveDashboard.

 Summary

 Functions

 live_dashboard(path, opts \\ [])

 Defines a LiveDashboard route.

 Functions

 Link to this macro

 live_dashboard(path, opts \\ [])

 View Source

 (macro)

Defines a LiveDashboard route.
It expects the path the dashboard will be mounted at
and a set of options. You can then link to the route directly:
Dashboard

 Options

	:live_socket_path - Configures the socket path. it must match
the socket "/live", Phoenix.LiveView.Socket in your endpoint.

	:csp_nonce_assign_key - an assign key to find the CSP nonce
value used for assets. Supports either atom() or a map of
type %{optional(:img) => atom(), optional(:script) => atom(), optional(:style) => atom()}

	:ecto_repos - the repositories to show database information.
Currently only PostgreSQL, MySQL, and SQLite databases are supported.
If you don't specify but your app is running Ecto, we will try to
auto-discover the available repositories. You can disable this behavior
by setting [] to this option.

	:env_keys - Configures environment variables to display.
It is defined as a list of string keys. If not set, the environment
information will not be displayed

	:home_app - A tuple with the app name and version to show on
the home page. Defaults to {"Dashboard", :phoenix_live_dashboard}

	:metrics - Configures the module to retrieve metrics from.
It can be a module or a {module, function}. If nothing is
given, the metrics functionality will be disabled. If false is
passed, then the menu item won't be visible.

	:metrics_history - Configures a callback for retrieving metric history.
It must be an "MFA" tuple of {Module, :function, arguments} such as
 metrics_history: {MyStorage, :metrics_history, []}
If not set, metrics will start out empty/blank and only display
data that occurs while the browser page is open.

	:request_logger - By default the Request Logger page is enabled. Passing
 false will disable this page.

	:request_logger_cookie_domain - Configures the domain the request_logger
cookie will be written to. It can be a string or :parent atom.
When a string is given, it will directly set cookie domain to the given
value. When :parent is given, it will take the parent domain from current
endpoint host (if host is "www.acme.com" the cookie will be scoped on
"acme.com"). When not set, the cookie will be scoped to current domain.

	:allow_destructive_actions - When true, allow destructive actions directly
from the UI. Defaults to false. The following destructive actions are
available in the dashboard:
	"Kill process" - a "Kill process" button on the process modal

Note that custom pages given to "Additional pages" may support their own
destructive actions.

	:additional_pages - A keyword list of additional pages

 Examples

defmodule MyAppWeb.Router do
 use Phoenix.Router
 import Phoenix.LiveDashboard.Router

 scope "/", MyAppWeb do
 pipe_through [:browser]
 live_dashboard "/dashboard",
 metrics: {MyAppWeb.Telemetry, :metrics},
 env_keys: ["APP_USER", "VERSION"],
 metrics_history: {MyStorage, :metrics_history, []},
 request_logger_cookie_domain: ".acme.com"
 end
end

 OEBPS/dist/epub-TCI3LGHF.js
(()=>{var d=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var c="ex_doc:settings",h={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=h,this._loadSettings()}get(){return this._settings}update(t){let e=this._settings;this._settings={...this._settings,...t},this._subscribers.forEach(n=>n(this._settings,e)),this._storeSettings()}getAndSubscribe(t){this._subscribers.push(t),t(this._settings)}_loadSettings(){try{let t=localStorage.getItem(c);if(t){let e=JSON.parse(t);this._settings={...this._settings,...e}}this._loadSettingsLegacy()}catch(t){console.error(`Failed to load settings: ${t}`)}}_storeSettings(){try{this._storeSettingsLegacy(),localStorage.setItem(c,JSON.stringify(this._settings))}catch(t){console.error(`Failed to persist settings: ${t}`)}}_loadSettingsLegacy(){localStorage.getItem("tooltipsDisabled")!==null&&(this._settings={...this._settings,tooltips:!1}),localStorage.getItem("night-mode")==="true"&&(this._settings={...this._settings,nightMode:!0}),this._settings.nightMode===!0&&(this._settings={...this._settings,theme:"dark"})}_storeSettingsLegacy(){this._settings.tooltips?localStorage.removeItem("tooltipsDisabled"):localStorage.setItem("tooltipsDisabled","true"),this._settings.nightMode!==null?localStorage.setItem("night-mode",this._settings.nightMode===!0?"true":"false"):localStorage.removeItem("night-mode"),this._settings.theme!==null?(localStorage.setItem("night-mode",this._settings.theme==="dark"?"true":"false"),this._settings.nightMode=this._settings.theme==="dark"):(delete this._settings.nightMode,localStorage.removeItem("night-mode"))}},f=new s;function l(){["warning","info","error","neutral","tip"].forEach(t=>{i(`blockquote h3.${t}, blockquote h4.${t}`).forEach(e=>{e.closest("blockquote").classList.add(t)})})}document.addEventListener("click",function(o){if(window.innerWidth<=768){let t=o.target.closest('a[href^="#"]');if(t){o.preventDefault();let e=t.getAttribute("href").substring(1),n=document.getElementById(e);if(n){let u=n.getBoundingClientRect().top+window.scrollY-45;window.scrollTo({top:u,behavior:"smooth"})}}}});var m="hll";function g(){p()}function p(){i("[data-group-id]").forEach(t=>{let e=t.getAttribute("data-group-id");t.addEventListener("mouseenter",n=>{a(e,!0)}),t.addEventListener("mouseleave",n=>{a(e,!1)})})}function a(o,t){i(`[data-group-id="${o}"]`).forEach(n=>{n.classList.toggle(m,t)})}r(()=>{g(),l()});})();

