View Source Phoenix.LiveView behaviour (Phoenix LiveView v0.20.14)
A LiveView is a process that receives events, updates its state, and renders updates to a page as diffs.
To get started, see the Welcome guide. This module provides advanced documentation and features about using LiveView.
Life-cycle
A LiveView begins as a regular HTTP request and HTML response, and then upgrades to a stateful view on client connect, guaranteeing a regular HTML page even if JavaScript is disabled. Any time a stateful view changes or updates its socket assigns, it is automatically re-rendered and the updates are pushed to the client.
Socket assigns are stateful values kept on the server side in
Phoenix.LiveView.Socket
. This is different from the common stateless
HTTP pattern of sending the connection state to the client in the form
of a token or cookie and rebuilding the state on the server to service
every request.
You begin by rendering a LiveView typically from your router.
When LiveView is first rendered, the mount/3
callback is invoked
with the current params, the current session and the LiveView socket.
As in a regular request, params
contains public data that can be
modified by the user. The session
always contains private data set
by the application itself. The mount/3
callback wires up socket
assigns necessary for rendering the view. After mounting, handle_params/3
is invoked so uri and query params are handled. Finally, render/1
is invoked and the HTML is sent as a regular HTML response to the
client.
After rendering the static page, LiveView connects from the client
to the server where stateful views are spawned to push rendered updates
to the browser, and receive client events via phx-
bindings. Just like
the first rendering, mount/3
, is invoked with params, session,
and socket state. However in the connected client case, a LiveView process
is spawned on the server, runs handle_params/3
again and then pushes
the result of render/1
to the client and continues on for the duration
of the connection. If at any point during the stateful life-cycle a crash
is encountered, or the client connection drops, the client gracefully
reconnects to the server, calling mount/3
and handle_params/3
again.
LiveView also allows attaching hooks to specific life-cycle stages with
attach_hook/4
.
Template collocation
There are two possible ways of rendering content in a LiveView. The first
one is by explicitly defining a render function, which receives assigns
and returns a HEEx
template defined with the ~H
sigil.
defmodule MyAppWeb.DemoLive do
use Phoenix.LiveView
def render(assigns) do
~H"""
Hello world!
"""
end
end
For larger templates, you can place them in a file in the same directory
and same name as the LiveView. For example, if the file above is placed
at lib/my_app_web/live/demo_live.ex
, you can also remove the
render/1
function altogether and put the template code at
lib/my_app_web/live/demo_live.html.heex
.
Async Operations
Performing asynchronous work is common in LiveViews and LiveComponents. It allows the user to get a working UI quickly while the system fetches some data in the background or talks to an external service, without blocking the render or event handling. For async work, you also typically need to handle the different states of the async operation, such as loading, error, and the successful result. You also want to catch any errors or exits and translate it to a meaningful update in the UI rather than crashing the user experience.
Async assigns
The assign_async/3
function takes a name, a list of keys which will be assigned
asynchronously, and a function. This function will be wrapped in a task
by
assign_async
, making it easy for you to return the result. This function must
return an {:ok, assigns}
or {:error, reason}
tuple, where assigns
is a map
of the keys passed to assign_async
.
If the function returns anything else, an error is raised.
The task is only started when the socket is connected.
For example, let's say we want to async fetch a user's organization from the database, as well as their profile and rank:
def mount(%{"slug" => slug}, _, socket) do
{:ok,
socket
|> assign(:foo, "bar")
|> assign_async(:org, fn -> {:ok, %{org: fetch_org!(slug)}} end)
|> assign_async([:profile, :rank], fn -> {:ok, %{profile: ..., rank: ...}} end)}
end
Warning
When using async operations it is important to not pass the socket into the function as it will copy the whole socket struct to the Task process, which can be very expensive.
Instead of:
assign_async(:org, fn -> {:ok, %{org: fetch_org(socket.assigns.slug)}} end)
We should do:
slug = socket.assigns.slug assign_async(:org, fn -> {:ok, %{org: fetch_org(slug)}} end)
See: https://hexdocs.pm/elixir/process-anti-patterns.html#sending-unnecessary-data
The state of the async operation is stored in the socket assigns within an
Phoenix.LiveView.AsyncResult
. It carries the loading and failed states, as
well as the result. For example, if we wanted to show the loading states in
the UI for the :org
, our template could conditionally render the states:
<div :if={@org.loading}>Loading organization...</div>
<div :if={org = @org.ok? && @org.result}><%= org.name %> loaded!</div>
The Phoenix.Component.async_result/1
function component can also be used to
declaratively render the different states using slots:
<.async_result :let={org} assign={@org}>
<:loading>Loading organization...</:loading>
<:failed :let={_failure}>there was an error loading the organization</:failed>
<%= org.name %>
</.async_result>
Arbitrary async operations
Sometimes you need lower level control of asynchronous operations, while
still receiving process isolation and error handling. For this, you can use
start_async/3
and the Phoenix.LiveView.AsyncResult
module directly:
def mount(%{"id" => id}, _, socket) do
{:ok,
socket
|> assign(:org, AsyncResult.loading())
|> start_async(:my_task, fn -> fetch_org!(id) end)}
end
def handle_async(:my_task, {:ok, fetched_org}, socket) do
%{org: org} = socket.assigns
{:noreply, assign(socket, :org, AsyncResult.ok(org, fetched_org))}
end
def handle_async(:my_task, {:exit, reason}, socket) do
%{org: org} = socket.assigns
{:noreply, assign(socket, :org, AsyncResult.failed(org, {:exit, reason}))}
end
start_async/3
is used to fetch the organization asynchronously. The
handle_async/3
callback is called when the task completes or exits,
with the results wrapped in either {:ok, result}
or {:exit, reason}
.
The AsyncResult
module is used to directly to update the state of the
async operation, but you can also assign any value directly to the socket
if you want to handle the state yourself.
Endpoint configuration
LiveView accepts the following configuration in your endpoint under
the :live_view
key:
:signing_salt
(required) - the salt used to sign data sent to the client:hibernate_after
(optional) - the idle time in milliseconds allowed in the LiveView before compressing its own memory and state. Defaults to 15000ms (15 seconds)
Summary
Callbacks
Invoked when the result of an start_async/3
operation is available.
Invoked to handle calls from other Elixir processes.
Invoked to handle casts from other Elixir processes.
Invoked to handle events sent by the client.
Invoked to handle messages from other Elixir processes.
Invoked after mount and whenever there is a live patch event.
The LiveView entry-point.
Renders a template.
Invoked when the LiveView is terminating.
Functions
Defines metadata for a LiveView.
Uses LiveView in the current module to mark it a LiveView.
Allows an upload for the provided name.
Assigns keys asynchronously.
Attaches the given fun
by name
for the lifecycle stage
into socket
.
Cancels an async operation if one exists.
Cancels an upload for the given entry.
Clears the flash.
Clears a key from the flash.
Returns true if the socket is connected.
Consumes the uploaded entries.
Consumes an individual uploaded entry.
Detaches a hook with the given name
from the lifecycle stage
.
Revokes a previously allowed upload from allow_upload/3
.
Accesses a given connect info key from the socket.
Accesses the connect params sent by the client for use on connected mount.
Declares a module callback to be invoked on the LiveView's mount.
Pushes an event to the client.
Annotates the socket for navigation to another LiveView.
Annotates the socket for navigation within the current LiveView.
Annotates the socket for navigation to another LiveView.
Adds a flash message to the socket to be displayed.
Puts a new private key and value in the socket.
Annotates the socket for redirect to a destination path.
Configures which function to use to render a LiveView/LiveComponent.
Asynchronously updates a Phoenix.LiveComponent
with new assigns.
Similar to send_update/3
but the update will be delayed according to the given time_in_milliseconds
.
Wraps your function in an asynchronous task and invokes a callback name
to
handle the result.
Returns true if the socket is connected and the tracked static assets have changed.
Assigns a new stream to the socket or inserts items into an existing stream.
Configures a stream.
Deletes an item from the stream.
Deletes an item from the stream given its computed DOM id.
Inserts a new item or updates an existing item in the stream.
Returns the transport pid of the socket.
Returns the completed and in progress entries for the upload.
Types
@type unsigned_params() :: map()
Callbacks
@callback handle_async( name :: term(), async_fun_result :: {:ok, term()} | {:exit, term()}, socket :: Phoenix.LiveView.Socket.t() ) :: {:noreply, Phoenix.LiveView.Socket.t()}
Invoked when the result of an start_async/3
operation is available.
For a deeper understanding of using this callback, refer to the "Arbitrary async operations" section.
@callback handle_call( msg :: term(), {pid(), reference()}, socket :: Phoenix.LiveView.Socket.t() ) :: {:noreply, Phoenix.LiveView.Socket.t()} | {:reply, term(), Phoenix.LiveView.Socket.t()}
Invoked to handle calls from other Elixir processes.
See GenServer.call/3
and GenServer.handle_call/3
for more information.
@callback handle_cast(msg :: term(), socket :: Phoenix.LiveView.Socket.t()) :: {:noreply, Phoenix.LiveView.Socket.t()}
Invoked to handle casts from other Elixir processes.
See GenServer.cast/2
and GenServer.handle_cast/2
for more information. It must always return {:noreply, socket}
,
where :noreply
means no additional information is sent
to the process which cast the message.
@callback handle_event( event :: binary(), unsigned_params(), socket :: Phoenix.LiveView.Socket.t() ) :: {:noreply, Phoenix.LiveView.Socket.t()} | {:reply, map(), Phoenix.LiveView.Socket.t()}
Invoked to handle events sent by the client.
It receives the event
name, the event payload as a map,
and the socket.
It must return {:noreply, socket}
, where :noreply
means
no additional information is sent to the client, or
{:reply, map(), socket}
, where the given map()
is encoded
and sent as a reply to the client.
@callback handle_info(msg :: term(), socket :: Phoenix.LiveView.Socket.t()) :: {:noreply, Phoenix.LiveView.Socket.t()}
Invoked to handle messages from other Elixir processes.
See Kernel.send/2
and GenServer.handle_info/2
for more information. It must always return {:noreply, socket}
,
where :noreply
means no additional information is sent
to the process which sent the message.
@callback handle_params( unsigned_params(), uri :: String.t(), socket :: Phoenix.LiveView.Socket.t() ) :: {:noreply, Phoenix.LiveView.Socket.t()}
Invoked after mount and whenever there is a live patch event.
It receives the current params
, including parameters from
the router, the current uri
from the client and the socket
.
It is invoked after mount or whenever there is a live navigation
event caused by push_patch/2
or <.link patch={...}>
.
It must always return {:noreply, socket}
, where :noreply
means no additional information is sent to the client.
@callback mount( params :: unsigned_params() | :not_mounted_at_router, session :: map(), socket :: Phoenix.LiveView.Socket.t() ) :: {:ok, Phoenix.LiveView.Socket.t()} | {:ok, Phoenix.LiveView.Socket.t(), keyword()}
The LiveView entry-point.
For each LiveView in the root of a template, mount/3
is invoked twice:
once to do the initial page load and again to establish the live socket.
It expects three arguments:
params
- a map of string keys which contain public information that can be set by the user. The map contains the query params as well as any router path parameter. If the LiveView was not mounted at the router, this argument is the atom:not_mounted_at_router
session
- the connection sessionsocket
- the LiveView socket
It must return either {:ok, socket}
or {:ok, socket, options}
, where
options
is one of:
:temporary_assigns
- a keyword list of assigns that are temporary and must be reset to their value after every render. Note that once the value is reset, it won't be re-rendered again until it is explicitly assigned:layout
- the optional layout to be used by the LiveView. Setting this option will override any layout previously set viaPhoenix.LiveView.Router.live_session/2
or onuse Phoenix.LiveView
@callback render(assigns :: Phoenix.LiveView.Socket.assigns()) :: Phoenix.LiveView.Rendered.t()
Renders a template.
This callback is invoked whenever LiveView detects new content must be rendered and sent to the client.
If you define this function, it must return a template
defined via the Phoenix.Component.sigil_H/2
.
If you don't define this function, LiveView will attempt
to render a template in the same directory as your LiveView.
For example, if you have a LiveView named MyApp.MyCustomView
inside lib/my_app/live_views/my_custom_view.ex
, Phoenix
will look for a template at lib/my_app/live_views/my_custom_view.html.heex
.
@callback terminate(reason, socket :: Phoenix.LiveView.Socket.t()) :: term() when reason: :normal | :shutdown | {:shutdown, :left | :closed | term()}
Invoked when the LiveView is terminating.
In case of errors, this callback is only invoked if the LiveView
is trapping exits. See GenServer.terminate/2
for more info.
Functions
Defines metadata for a LiveView.
This must be returned from the __live__
callback.
It accepts:
:container
- an optional tuple for the HTML tag and DOM attributes to be used for the LiveView container. For example:{:li, style: "color: blue;"}
.:layout
- configures the layout theLiveView
will be rendered in. This layout can be overridden by onmount/3
or via the:layout
option inPhoenix.LiveView.Router.live_session/2
:log
- configures the log level for theLiveView
, either false or a log level:on_mount
- a list of tuples with module names and argument to be invoked ason_mount
hooks
Uses LiveView in the current module to mark it a LiveView.
use Phoenix.LiveView,
container: {:tr, class: "colorized"},
layout: {MyAppWeb.Layouts, :app},
log: :info
Options
:container
- an optional tuple for the HTML tag and DOM attributes to be used for the LiveView container. For example:{:li, style: "color: blue;"}
. SeePhoenix.Component.live_render/3
for more information and examples.:global_prefixes
- the global prefixes to use for components. SeeGlobal Attributes
inPhoenix.Component
for more information.:layout
- configures the layout theLiveView
will be rendered in. This layout can be overridden by onmount/3
or via the:layout
option inPhoenix.LiveView.Router.live_session/2
:log
- configures the log level for theLiveView
, either false or a Log level
Allows an upload for the provided name.
Options
:accept
- Required. A list of unique file extensions (such as ".jpeg") or mime type (such as "image/jpeg" or "image/*"). You may also pass the atom:any
instead of a list to support to allow any kind of file. For example,[".jpeg"]
,:any
, etc.:max_entries
- The maximum number of selected files to allow per file input. Defaults to 1.:max_file_size
- The maximum file size in bytes to allow to be uploaded. Defaults 8MB. For example,12_000_000
.:chunk_size
- The chunk size in bytes to send when uploading. Defaults64_000
.:chunk_timeout
- The time in milliseconds to wait before closing the upload channel when a new chunk has not been received. Defaults10_000
.:external
- The 2-arity function for generating metadata for external client uploaders. This function must return either{:ok, meta, socket}
or{:error, meta, socket}
where meta is a map. See the Uploads section for example usage.:progress
- The optional 3-arity function for receiving progress events:auto_upload
- Instructs the client to upload the file automatically on file selection instead of waiting for form submits. Default false.:writer
- ThePhoenix.LiveView.UploadWriter
module to use for writing the uploaded chunks. Defaults to writing to a temporary file for consumption. See thePhoenix.LiveView.UploadWriter
docs for custom usage.
Raises when a previously allowed upload under the same name is still active.
Examples
allow_upload(socket, :avatar, accept: ~w(.jpg .jpeg), max_entries: 2)
allow_upload(socket, :avatar, accept: :any)
For consuming files automatically as they are uploaded, you can pair auto_upload: true
with
a custom progress function to consume the entries as they are completed. For example:
allow_upload(socket, :avatar, accept: :any, progress: &handle_progress/3, auto_upload: true)
defp handle_progress(:avatar, entry, socket) do
if entry.done? do
uploaded_file =
consume_uploaded_entry(socket, entry, fn %{} = meta ->
{:ok, ...}
end)
{:noreply, put_flash(socket, :info, "file #{uploaded_file.name} uploaded")}
else
{:noreply, socket}
end
end
Assigns keys asynchronously.
Wraps your function in a task linked to the caller, errors are wrapped.
Each key passed to assign_async/3
will be assigned to
an %AsyncResult{}
struct holding the status of the operation
and the result when the function completes.
The task is only started when the socket is connected.
Options
:supervisor
- allows you to specify aTask.Supervisor
to supervise the task.:reset
- remove previous results during async operation when true. Defaults to false
Examples
def mount(%{"slug" => slug}, _, socket) do
{:ok,
socket
|> assign(:foo, "bar")
|> assign_async(:org, fn -> {:ok, %{org: fetch_org!(slug)}} end)
|> assign_async([:profile, :rank], fn -> {:ok, %{profile: ..., rank: ...}} end)}
end
See the moduledoc for more information.
assign_async/3
and send_update/3
Since the code inside assign_async/3
runs in a separate process,
send_update(Component, data)
does not work inside assign_async/3
,
since send_update/2
assumes it is running inside the LiveView process.
The solution is to explicitly send the update to the LiveView:
parent = self()
assign_async(socket, :org, fn ->
# ...
send_update(parent, Component, data)
end)
Attaches the given fun
by name
for the lifecycle stage
into socket
.
Note: This function is for server-side lifecycle callbacks. For client-side hooks, see the JS Interop guide.
Hooks provide a mechanism to tap into key stages of the LiveView
lifecycle in order to bind/update assigns, intercept events,
patches, and regular messages when necessary, and to inject
common functionality. Use attach_hook/1
on any of the following
lifecycle stages: :handle_params
, :handle_event
, :handle_info
, :handle_async
, and
:after_render
. To attach a hook to the :mount
stage, use on_mount/1
.
Note: only
:after_render
and:handle_event
hooks are currently supported in LiveComponents.
Return Values
Lifecycle hooks take place immediately before a given lifecycle
callback is invoked on the LiveView. With the exception of :after_render
,
a hook may return {:halt, socket}
to halt the reduction, otherwise
it must return {:cont, socket}
so the operation may continue until
all hooks have been invoked for the current stage.
For :after_render
hooks, the socket
itself must be returned.
Any updates to the socket assigns will not trigger a new render
or diff calculation to the client.
Halting the lifecycle
Note that halting from a hook will halt the entire lifecycle stage.
This means that when a hook returns {:halt, socket}
then the
LiveView callback will not be invoked. This has some
implications.
Implications for plugin authors
When defining a plugin that matches on specific callbacks, you must define a catch-all clause, as your hook will be invoked even for events you may not be interested on.
Implications for end-users
Allowing a hook to halt the invocation of the callback means that you can attach hooks to intercept specific events before detaching themselves, while allowing other events to continue normally.
Replying to events
Hooks attached to the :handle_event
stage are able to reply to client events
by returning {:halt, reply, socket}
. This is useful especially for JavaScript
interoperability because a client hook
can push an event and receive a reply.
Examples
Attaching and detaching a hook:
def mount(_params, _session, socket) do
socket =
attach_hook(socket, :my_hook, :handle_event, fn
"very-special-event", _params, socket ->
# Handle the very special event and then detach the hook
{:halt, detach_hook(socket, :my_hook, :handle_event)}
_event, _params, socket ->
{:cont, socket}
end)
{:ok, socket}
end
Replying to a client event:
# JavaScript:
# let Hooks = {}
# Hooks.ClientHook = {
# mounted() {
# this.pushEvent("ClientHook:mounted", {hello: "world"}, (reply) => {
# console.log("received reply:", reply)
# })
# }
# }
# let liveSocket = new LiveSocket("/live", Socket, {hooks: Hooks, ...})
def render(assigns) do
~H"""
<div id="my-client-hook" phx-hook="ClientHook"></div>
"""
end
def mount(_params, _session, socket) do
socket =
attach_hook(socket, :reply_on_client_hook_mounted, :handle_event, fn
"ClientHook:mounted", params, socket ->
{:halt, params, socket}
_, _, socket ->
{:cont, socket}
end)
{:ok, socket}
end
cancel_async(socket, async_or_keys, reason \\ {:shutdown, :cancel})
View SourceCancels an async operation if one exists.
Accepts either the %AsyncResult{}
when using assign_async/3
or
the key passed to start_async/3
.
The underlying process will be killed with the provided reason, or
{:shutdown, :cancel}
. if no reason is passed. For assign_async/3
operations, the :failed
field will be set to {:exit, reason}
.
For start_async/3
, the handle_async/3
callback will receive
{:exit, reason}
as the result.
Returns the %Phoenix.LiveView.Socket{}
.
Examples
cancel_async(socket, :preview)
cancel_async(socket, :preview, :my_reason)
cancel_async(socket, socket.assigns.preview)
Cancels an upload for the given entry.
Examples
<%= for entry <- @uploads.avatar.entries do %>
...
<button phx-click="cancel-upload" phx-value-ref={entry.ref}>cancel</button>
<% end %>
def handle_event("cancel-upload", %{"ref" => ref}, socket) do
{:noreply, cancel_upload(socket, :avatar, ref)}
end
Clears the flash.
Examples
iex> clear_flash(socket)
Clears a key from the flash.
Examples
iex> clear_flash(socket, :info)
Returns true if the socket is connected.
Useful for checking the connectivity status when mounting the view.
For example, on initial page render, the view is mounted statically,
rendered, and the HTML is sent to the client. Once the client
connects to the server, a LiveView is then spawned and mounted
statefully within a process. Use connected?/1
to conditionally
perform stateful work, such as subscribing to pubsub topics,
sending messages, etc.
Examples
defmodule DemoWeb.ClockLive do
use Phoenix.LiveView
...
def mount(_params, _session, socket) do
if connected?(socket), do: :timer.send_interval(1000, self(), :tick)
{:ok, assign(socket, date: :calendar.local_time())}
end
def handle_info(:tick, socket) do
{:noreply, assign(socket, date: :calendar.local_time())}
end
end
Consumes the uploaded entries.
Raises when there are still entries in progress. Typically called when submitting a form to handle the uploaded entries alongside the form data. For form submissions, it is guaranteed that all entries have completed before the submit event is invoked. Once entries are consumed, they are removed from the upload.
The function passed to consume may return a tagged tuple of the form
{:ok, my_result}
to collect results about the consumed entries, or
{:postpone, my_result}
to collect results, but postpone the file
consumption to be performed later.
Examples
def handle_event("save", _params, socket) do
uploaded_files =
consume_uploaded_entries(socket, :avatar, fn %{path: path}, _entry ->
dest = Path.join("priv/static/uploads", Path.basename(path))
File.cp!(path, dest)
{:ok, Routes.static_path(socket, "/uploads/#{Path.basename(dest)}")}
end)
{:noreply, update(socket, :uploaded_files, &(&1 ++ uploaded_files))}
end
Consumes an individual uploaded entry.
Raises when the entry is still in progress. Typically called when submitting a form to handle the uploaded entries alongside the form data. Once entries are consumed, they are removed from the upload.
This is a lower-level feature than consume_uploaded_entries/3
and useful
for scenarios where you want to consume entries as they are individually completed.
Like consume_uploaded_entries/3
, the function passed to consume may return
a tagged tuple of the form {:ok, my_result}
to collect results about the
consumed entries, or {:postpone, my_result}
to collect results,
but postpone the file consumption to be performed later.
Examples
def handle_event("save", _params, socket) do
case uploaded_entries(socket, :avatar) do
{[_|_] = entries, []} ->
uploaded_files = for entry <- entries do
consume_uploaded_entry(socket, entry, fn %{path: path} ->
dest = Path.join("priv/static/uploads", Path.basename(path))
File.cp!(path, dest)
{:ok, Routes.static_path(socket, "/uploads/#{Path.basename(dest)}")}
end)
end
{:noreply, update(socket, :uploaded_files, &(&1 ++ uploaded_files))}
_ ->
{:noreply, socket}
end
end
Detaches a hook with the given name
from the lifecycle stage
.
Note: This function is for server-side lifecycle callbacks. For client-side hooks, see the JS Interop guide.
If no hook is found, this function is a no-op.
Examples
def handle_event(_, socket) do
{:noreply, detach_hook(socket, :hook_that_was_attached, :handle_event)}
end
Revokes a previously allowed upload from allow_upload/3
.
Examples
disallow_upload(socket, :avatar)
Accesses a given connect info key from the socket.
The following keys are supported: :peer_data
, :trace_context_headers
,
:x_headers
, :uri
, and :user_agent
.
The connect information is available only during mount. During disconnected
render, all keys are available. On connected render, only the keys explicitly
declared in your socket are available. See Phoenix.Endpoint.socket/3
for
a complete description of the keys.
Examples
The first step is to declare the connect_info
you want to receive.
Typically, it includes at least the session, but you must include all
other keys you want to access on connected mount, such as :peer_data
:
socket "/live", Phoenix.LiveView.Socket,
websocket: [connect_info: [:peer_data, session: @session_options]]
Those values can now be accessed on the connected mount as
get_connect_info/2
:
def mount(_params, _session, socket) do
peer_data = get_connect_info(socket, :peer_data)
{:ok, assign(socket, ip: peer_data.address)}
end
If the key is not available, usually because it was not specified
in connect_info
, it returns nil.
Accesses the connect params sent by the client for use on connected mount.
Connect params are only sent when the client connects to the server and
only remain available during mount. nil
is returned when called in a
disconnected state and a RuntimeError
is raised if called after mount.
Reserved params
The following params have special meaning in LiveView:
"_csrf_token"
- the CSRF Token which must be explicitly set by the user when connecting"_mounts"
- the number of times the current LiveView is mounted. It is 0 on first mount, then increases on each reconnect. It resets when navigating away from the current LiveView or on errors"_track_static"
- set automatically with a list of all href/src from tags with thephx-track-static
annotation in them. If there are no such tags, nothing is sent"_live_referer"
- sent by the client as the referer URL when a live navigation has occurred frompush_navigate
or client link navigate.
Examples
def mount(_params, _session, socket) do
{:ok, assign(socket, width: get_connect_params(socket)["width"] || @width)}
end
Declares a module callback to be invoked on the LiveView's mount.
The function within the given module, which must be named on_mount
,
will be invoked before both disconnected and connected mounts. The hook
has the option to either halt or continue the mounting process as usual.
If you wish to redirect the LiveView, you must halt, otherwise an error
will be raised.
Tip: if you need to define multiple on_mount
callbacks, avoid defining
multiple modules. Instead, pass a tuple and use pattern matching to handle
different cases:
def on_mount(:admin, _params, _session, socket) do
{:cont, socket}
end
def on_mount(:user, _params, _session, socket) do
{:cont, socket}
end
And then invoke it as:
on_mount {MyAppWeb.SomeHook, :admin}
on_mount {MyAppWeb.SomeHook, :user}
Registering on_mount
hooks can be useful to perform authentication
as well as add custom behaviour to other callbacks via attach_hook/4
.
The on_mount
callback can return a keyword list of options as a third
element in the return tuple. These options are identical to what can
optionally be returned in mount/3
.
Examples
The following is an example of attaching a hook via
Phoenix.LiveView.Router.live_session/3
:
# lib/my_app_web/live/init_assigns.ex
defmodule MyAppWeb.InitAssigns do
@moduledoc """
Ensures common `assigns` are applied to all LiveViews attaching this hook.
"""
import Phoenix.LiveView
import Phoenix.Component
def on_mount(:default, _params, _session, socket) do
{:cont, assign(socket, :page_title, "DemoWeb")}
end
def on_mount(:user, params, session, socket) do
# code
end
def on_mount(:admin, _params, _session, socket) do
{:cont, socket, layout: {DemoWeb.Layouts, :admin}}
end
end
# lib/my_app_web/router.ex
defmodule MyAppWeb.Router do
use MyAppWeb, :router
# pipelines, plugs, etc.
live_session :default, on_mount: MyAppWeb.InitAssigns do
scope "/", MyAppWeb do
pipe_through :browser
live "/", PageLive, :index
end
end
live_session :authenticated, on_mount: {MyAppWeb.InitAssigns, :user} do
scope "/", MyAppWeb do
pipe_through [:browser, :require_user]
live "/profile", UserLive.Profile, :index
end
end
live_session :admins, on_mount: {MyAppWeb.InitAssigns, :admin} do
scope "/admin", MyAppWeb.Admin do
pipe_through [:browser, :require_user, :require_admin]
live "/", AdminLive.Index, :index
end
end
end
Pushes an event to the client.
Events can be handled in two ways:
They can be handled on
window
viaaddEventListener
. A "phx:" prefix will be added to the event name.They can be handled inside a hook via
handleEvent
.
Events are dispatched to all active hooks on the client who are
handling the given event
. If you need to scope events, then
this must be done by namespacing them.
Events pushed during push_redirect
are currently discarded,
as the LiveView is immediately dismounted.
Hook example
If you push a "scores" event from your LiveView:
{:noreply, push_event(socket, "scores", %{points: 100, user: "josé"})}
A hook declared via phx-hook
can handle it via handleEvent
:
this.handleEvent("scores", data => ...)
window
example
All events are also dispatched on the window
. This means you can handle
them by adding listeners. For example, if you want to remove an element
from the page, you can do this:
{:noreply, push_event(socket, "remove-el", %{id: "foo-bar"})}
And now in your app.js you can register and handle it:
window.addEventListener(
"phx:remove-el",
e => document.getElementById(e.detail.id).remove()
)
Annotates the socket for navigation within the current LiveView.
When navigating to the current LiveView, handle_params/3
is
immediately invoked to handle the change of params and URL state.
Then the new state is pushed to the client, without reloading the
whole page while also maintaining the current scroll position.
For live navigation to another LiveView, use push_navigate/2
.
Options
:to
- the required path to link to. It must always be a local path:replace
- the flag to replace the current history or push a new state. Defaultsfalse
.
Examples
{:noreply, push_patch(socket, to: "/")}
{:noreply, push_patch(socket, to: "/", replace: true)}
Annotates the socket for navigation to another LiveView.
The current LiveView will be shutdown and a new one will be mounted
in its place, without reloading the whole page. This can
also be used to remount the same LiveView, in case you want to start
fresh. If you want to navigate to the same LiveView without remounting
it, use push_patch/2
instead.
Options
:to
- the required path to link to. It must always be a local path:replace
- the flag to replace the current history or push a new state. Defaultsfalse
.
Examples
{:noreply, push_redirect(socket, to: "/")}
{:noreply, push_redirect(socket, to: "/", replace: true)}
Adds a flash message to the socket to be displayed.
Note: While you can use put_flash/3
inside a Phoenix.LiveComponent
,
components have their own @flash
assigns. The @flash
assign
in a component is only copied to its parent LiveView if the component
calls push_navigate/2
or push_patch/2
.
Note: You must also place the Phoenix.LiveView.Router.fetch_live_flash/2
plug in your browser's pipeline in place of fetch_flash
for LiveView flash
messages be supported, for example:
import Phoenix.LiveView.Router
pipeline :browser do
...
plug :fetch_live_flash
end
Examples
iex> put_flash(socket, :info, "It worked!")
iex> put_flash(socket, :error, "You can't access that page")
Puts a new private key and value in the socket.
Privates are not change tracked. This storage is meant to be used by users and libraries to hold state that doesn't require change tracking. The keys should be prefixed with the app/library name.
Examples
Key values can be placed in private:
put_private(socket, :myapp_meta, %{foo: "bar"})
And then retrieved:
socket.private[:myapp_meta]
Annotates the socket for redirect to a destination path.
Note: LiveView redirects rely on instructing client
to perform a window.location
update on the provided
redirect location. The whole page will be reloaded and
all state will be discarded.
Options
:to
- the path to redirect to. It must always be a local path:external
- an external path to redirect to. Either a string or{scheme, url}
to redirect to a custom scheme
Examples
{:noreply, redirect(socket, to: "/")}
{:noreply, redirect(socket, external: "https://example.com")}
Configures which function to use to render a LiveView/LiveComponent.
By default, LiveView invokes the render/1
function in the same module
the LiveView/LiveComponent is defined, passing assigns
as its sole
argument. This function allows you to set a different rendering function.
One possible use case for this function is to set a different template on disconnected render. When the user first accesses a LiveView, we will perform a disconnected render to send to the browser. This is useful for several reasons, such as reducing the time to first paint and for search engine indexing.
However, when LiveView is gated behind an authentication page, it may be
useful to render a placeholder on disconnected render and perform the
full render once the WebSocket connects. This can be achieved with
render_with/2
and is particularly useful on complex pages (such as
dashboards and reports).
To do so, you must simply invoke render_with(socket, &some_function_component/1)
,
configuring your socket with a new rendering function.
Asynchronously updates a Phoenix.LiveComponent
with new assigns.
The pid
argument is optional and it defaults to the current process,
which means the update instruction will be sent to a component running
on the same LiveView. If the current process is not a LiveView or you
want to send updates to a live component running on another LiveView,
you should explicitly pass the LiveView's pid instead.
The second argument can be either the value of the @myself
or the module of
the live component. If you pass the module, then the :id
that identifies
the component must be passed as part of the assigns.
When the component receives the update,
update_many/1
will be invoked if
it is defined, otherwise update/2
is
invoked with the new assigns. If
update/2
is not defined all assigns
are simply merged into the socket. The assigns received as the first argument
of the update/2
callback will only
include the new assigns passed from this function. Pre-existing assigns may
be found in socket.assigns
.
While a component may always be updated from the parent by updating some
parent assigns which will re-render the child, thus invoking
update/2
on the child component,
send_update/3
is useful for updating a component that entirely manages its
own state, as well as messaging between components mounted in the same
LiveView.
Examples
def handle_event("cancel-order", _, socket) do
...
send_update(Cart, id: "cart", status: "cancelled")
{:noreply, socket}
end
def handle_event("cancel-order-asynchronously", _, socket) do
...
pid = self()
Task.Supervisor.start_child(MyTaskSup, fn ->
# Do something asynchronously
send_update(pid, Cart, id: "cart", status: "cancelled")
end)
{:noreply, socket}
end
def render(assigns) do
~H"""
<.some_component on_complete={&send_update(@myself, completed: &1)} />
"""
end
send_update_after(pid \\ self(), module_or_cid, assigns, time_in_milliseconds)
View SourceSimilar to send_update/3
but the update will be delayed according to the given time_in_milliseconds
.
Examples
def handle_event("cancel-order", _, socket) do
...
send_update_after(Cart, [id: "cart", status: "cancelled"], 3000)
{:noreply, socket}
end
def handle_event("cancel-order-asynchronously", _, socket) do
...
pid = self()
Task.start(fn ->
# Do something asynchronously
send_update_after(pid, Cart, [id: "cart", status: "cancelled"], 3000)
end)
{:noreply, socket}
end
Wraps your function in an asynchronous task and invokes a callback name
to
handle the result.
The task is linked to the caller and errors/exits are wrapped.
The result of the task is sent to the handle_async/3
callback
of the caller LiveView or LiveComponent.
The task is only started when the socket is connected.
Options
:supervisor
- allows you to specify aTask.Supervisor
to supervise the task.
Examples
def mount(%{"id" => id}, _, socket) do
{:ok,
socket
|> assign(:org, AsyncResult.loading())
|> start_async(:my_task, fn -> fetch_org!(id) end)}
end
def handle_async(:my_task, {:ok, fetched_org}, socket) do
%{org: org} = socket.assigns
{:noreply, assign(socket, :org, AsyncResult.ok(org, fetched_org))}
end
def handle_async(:my_task, {:exit, reason}, socket) do
%{org: org} = socket.assigns
{:noreply, assign(socket, :org, AsyncResult.failed(org, {:exit, reason}))}
end
See the moduledoc for more information.
Returns true if the socket is connected and the tracked static assets have changed.
This function is useful to detect if the client is running on an outdated version of the marked static files. It works by comparing the static paths sent by the client with the one on the server.
Note: this functionality requires Phoenix v1.5.2 or later.
To use this functionality, the first step is to annotate which static files
you want to be tracked by LiveView, with the phx-track-static
. For example:
<link phx-track-static rel="stylesheet" href={Routes.static_path(@conn, "/css/app.css")} />
<script defer phx-track-static type="text/javascript" src={Routes.static_path(@conn, "/js/app.js")}></script>
Now, whenever LiveView connects to the server, it will send a copy src
or href
attributes of all tracked statics and compare those values with
the latest entries computed by mix phx.digest
in the server.
The tracked statics on the client will match the ones on the server the huge majority of times. However, if there is a new deployment, those values may differ. You can use this function to detect those cases and show a banner to the user, asking them to reload the page. To do so, first set the assign on mount:
def mount(params, session, socket) do
{:ok, assign(socket, static_changed?: static_changed?(socket))}
end
And then in your views:
<%= if @static_changed? do %>
<div id="reload-static">
The app has been updated. Click here to <a href="#" onclick="window.location.reload()">reload</a>.
</div>
<% end %>
If you prefer, you can also send a JavaScript script that immediately reloads the page.
Note: only set phx-track-static
on your own assets. For example, do
not set it in external JavaScript files:
<script defer phx-track-static type="text/javascript" src="https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js"></script>
Because you don't actually serve the file above, LiveView will interpret the static above as missing, and this function will return true.
Assigns a new stream to the socket or inserts items into an existing stream.
Streams are a mechanism for managing large collections on the client without keeping the resources on the server.
name
- The string or atom name of the key to place under the@streams
assign.items
- The enumerable of items to insert.
The following options are supported:
:at
- the index to insert or update the items in the collection on the client. By default-1
is used, which appends the items to the parent DOM container. A value of0
prepends the items.Note that this operation is equal to inserting the items one by one, each at the given index. Therefore, when inserting multiple items at an index other than
-1
, the UI will display the items in reverse order:stream(socket, :songs, [song1, song2, song3], at: 0)
In this case the UI will prepend
song1
, thensong2
and thensong3
, so it will showsong3
,song2
,song1
and then any previously inserted items.To insert in the order of the list, use
Enum.reverse/1
:stream(socket, :songs, Enum.reverse([song1, song2, song3]), at: 0)
:reset
- the boolean to reset the stream on the client or not. Defaults tofalse
.:limit
- the optional positive or negative number of results to limit on the UI on the client. As new items are streamed, the UI will remove existing items to maintain the limit. For example, to limit the stream to the last 10 items in the UI while appending new items, pass a negative value:stream(socket, :songs, songs, at: -1, limit: -10)
Likewise, to limit the stream to the first 10 items, while prepending new items, pass a positive value:
stream(socket, :songs, songs, at: 0, limit: 10)
Once a stream is defined, a new @streams
assign is available containing
the name of the defined streams. For example, in the above definition, the
stream may be referenced as @streams.songs
in your template. Stream items
are temporary and freed from socket state immediately after the render/1
function is invoked (or a template is rendered from disk).
By default, calling stream/4
on an existing stream will bulk insert the new items
on the client while leaving the existing items in place. Streams may also be reset
when calling stream/4
, which we discuss below.
Resetting a stream
To empty a stream container on the client, you can pass :reset
with an empty list:
stream(socket, :songs, [], reset: true)
Or you can replace the entire stream on the client with a new collection:
stream(socket, :songs, new_songs, reset: true)
Limiting a stream
It is often useful to limit the number of items in the UI while allowing the server to stream new items in a fire-and-forget fashion. This prevents the server from overwhelming the client with new results while also opening up powerful features like virtualized infinite scrolling. See a complete bidirectional infinite scrolling example with stream limits in the scroll events guide
When a stream exceeds the limit on the client, the existing items will be pruned based on the number of items in the stream container and the limit direction. A positive limit will prune items from the end of the container, while a negative limit will prune items from the beginning of the container.
Note that the limit is not enforced on the first mount/3
render (when no websocket
connection was established yet), as it means more data than necessary has been
loaded. In such cases, you should only load and pass the desired amount of items
to the stream.
Required DOM attributes
For stream items to be trackable on the client, the following requirements must be met:
- The parent DOM container must include a
phx-update="stream"
attribute, along with a unique DOM id. - Each stream item must include its DOM id on the item's element.
Note: Failing to place
phx-update="stream"
on the immediate parent for each stream will result in broken behavior.
When consuming a stream in a template, the DOM id and item is passed as a tuple, allowing convenient inclusion of the DOM id for each item. For example:
<table>
<tbody id="songs" phx-update="stream">
<tr
:for={{dom_id, song} <- @streams.songs}
id={dom_id}
>
<td><%= song.title %></td>
<td><%= song.duration %></td>
</tr>
</tbody>
</table>
We consume the stream in a for comprehension by referencing the
@streams.songs
assign. We used the computed DOM id to populate
the <tr>
id, then we render the table row as usual.
Now stream_insert/3
and stream_delete/3
may be issued and new rows will
be inserted or deleted from the client.
Configures a stream.
The following options are supported:
:dom_id
- The optional function to generate each stream item's DOM id. The function accepts each stream item and converts the item to a string id. By default, the:id
field of a map or struct will be used if the item has such a field, and will be prefixed by thename
hyphenated with the id. For example, the following examples are equivalent:stream(socket, :songs, songs) socket |> stream_configure(:songs, dom_id: &("songs-#{&1.id}")) |> stream(:songs, songs)
A stream must be configured before items are inserted, and once configured,
a stream may not be re-configured. To ensure a stream is only configured a
single time in a LiveComponent, use the mount/1
callback. For example:
def mount(socket) do
{:ok, stream_configure(socket, :songs, dom_id: &("songs-#{&1.id}"))}
end
def update(assigns, socket) do
{:ok, stream(socket, :songs, ...)}
end
Deletes an item from the stream.
The item's DOM is computed from the :dom_id
provided in the stream/3
definition.
Delete information for this DOM id is sent to the client and the item's element
is removed from the DOM, following the same behavior of element removal, such as
invoking phx-remove
commands and executing client hook destroyed()
callbacks.
Examples
def handle_event("delete", %{"id" => id}, socket) do
song = get_song!(id)
{:noreply, stream_delete(socket, :songs, song)}
end
See stream_delete_by_dom_id/3
to remove an item without requiring the
original datastructure.
Deletes an item from the stream given its computed DOM id.
Behaves just like stream_delete/3
, but accept the precomputed DOM id,
which allows deleting from a stream without fetching or building the original
stream datastructure.
Examples
def render(assigns) do
~H"""
<table>
<tbody id="songs" phx-update="stream">
<tr
:for={{dom_id, song} <- @streams.songs}
id={dom_id}
>
<td><%= song.title %></td>
<td><button phx-click={JS.push("delete", value: %{id: dom_id})}>delete</button></td>
</tr>
</tbody>
</table>
"""
end
def handle_event("delete", %{"id" => dom_id}, socket) do
{:noreply, stream_delete_by_dom_id(socket, :songs, dom_id)}
end
Inserts a new item or updates an existing item in the stream.
By default, the item is appended to the parent DOM container.
The :at
option may be provided to insert or update an item
to a particular index in the collection on the client.
See stream/4
for inserting multiple items at once.
Examples
Imagine you define a stream on mount with a single item:
stream(socket, :songs, [%Song{id: 1, title: "Song 1"}])
Then, in a callback such as handle_info
or handle_event
, you
can append a new song:
stream_insert(socket, :songs, %Song{id: 2, title: "Song 2"})
Or prepend a new song with at: 0
:
stream_insert(socket, :songs, %Song{id: 2, title: "Song 2"}, at: 0)
Or updating an existing song, while also moving it to the top of the collection:
stream_insert(socket, :songs, %Song{id: 1, title: "Song 1 updated"}, at: 0)
Updating Items
As shown, an existing item on the client can be updated by issuing a stream_insert
for the existing item. When the client updates an existing item, the item will remain
in the same location as it was previously, and will not be moved to the end of the
parent children. To both update an existing item and move it to another position,
issue a stream_delete
, followed by a stream_insert
. For example:
song = get_song!(id)
socket
|> stream_delete(:songs, song)
|> stream_insert(:songs, song, at: -1)
See stream_delete/3
for more information on deleting items.
Returns the transport pid of the socket.
Raises ArgumentError
if the socket is not connected.
Examples
iex> transport_pid(socket)
#PID<0.107.0>
Returns the completed and in progress entries for the upload.
Examples
case uploaded_entries(socket, :photos) do
{[_ | _] = completed, []} ->
# all entries are completed
{[], [_ | _] = in_progress} ->
# all entries are still in progress
end