

 Phoenix.PubSub

 v2.2.0

 Table of contents

 	
 Modules

 	Phoenix.PubSub

 	Phoenix.PubSub.Adapter

 	Phoenix.PubSub.PG2

 	Phoenix.Tracker

 	Exceptions

 	Phoenix.PubSub.BroadcastError

Phoenix.PubSub

Realtime Publisher/Subscriber service.
Getting started
You start Phoenix.PubSub directly in your supervision
tree:
{Phoenix.PubSub, name: :my_pubsub}
You can now use the functions in this module to subscribe
and broadcast messages:
iex> alias Phoenix.PubSub
iex> PubSub.subscribe(:my_pubsub, "user:123")
:ok
iex> Process.info(self(), :messages)
{:messages, []}
iex> PubSub.broadcast(:my_pubsub, "user:123", {:user_update, %{id: 123, name: "Shane"}})
:ok
iex> Process.info(self(), :messages)
{:messages, [{:user_update, %{id: 123, name: "Shane"}}]}
Adapters
Phoenix PubSub was designed to be flexible and support
multiple backends. There are two officially supported
backends:
	Phoenix.PubSub.PG2 - the default adapter that ships
as part of Phoenix.PubSub. It uses Distributed Elixir,
directly exchanging notifications between servers.
It supports a :pool_size option to be given alongside
the name, defaults to 1. Note the :pool_size must
be the same throughout the cluster, therefore don't
configure the pool size based on System.schedulers_online/0,
especially if you are using machines with different specs.

	Phoenix.PubSub.Redis - uses Redis to exchange data between
servers. It requires the :phoenix_pubsub_redis dependency.

See Phoenix.PubSub.Adapter to implement a custom adapter.
Custom dispatching
Phoenix.PubSub allows developers to perform custom dispatching
by passing a dispatcher module which is responsible for local
message deliveries.
The dispatcher must be available on all nodes running the PubSub
system. The dispatch/3 function of the given module will be
invoked with the subscriptions entries, the broadcaster identifier
(either a pid or :none), and the message to broadcast.
You may want to use the dispatcher to perform special delivery for
certain subscriptions. This can be done by passing the :metadata
option during subscriptions. For instance, Phoenix Channels use a
custom value to provide "fastlaning", allowing messages broadcast
to thousands or even millions of users to be encoded once and written
directly to sockets instead of being encoded per channel.
Safe pool size migration (when using Phoenix.PubSub.PG2 adapter)
When you need to change the pool size in a running cluster,
you can use the broadcast_pool_size option to ensure no
messages are lost during deployment. This is particularly
important when increasing the pool size.
Here's how to safely increase the pool size from 1 to 2:
	Initial state - Current configuration with pool_size: 1:{Phoenix.PubSub, name: :my_pubsub, pool_size: 1}

graph TD
 subgraph "Initial State"
 subgraph "Node 1"
 A1[Shard 1
Broadcast & Receive]
 end
 subgraph "Node 2"
 B1[Shard 1
Broadcast & Receive]
 end
 A1 <--> B1
 end
	First deployment - Set the new pool size but keep broadcasting on the old size:{Phoenix.PubSub, name: :my_pubsub, pool_size: 2, broadcast_pool_size: 1}

graph TD
 subgraph "First Deployment"
 subgraph "Node 1"
 A1[Shard 1
Broadcast & Receive]
 A2[Shard 2
Broadcast & Receive]
 end
 subgraph "Node 2"
 B1[Shard 1
Broadcast & Receive]
 B2[Shard 2
Receive Only]
 end
 A1 <--> B1
 A2 --> B2
 end
	Final deployment - All nodes running with new pool size:{Phoenix.PubSub, name: :my_pubsub, pool_size: 2}

graph TD
 subgraph "Final State"
 subgraph "Node 1"
 A1[Shard 1
Broadcast & Receive]
 A2[Shard 2
Broadcast & Receive]
 end
 subgraph "Node 2"
 B1[Shard 1
Broadcast & Receive]
 B2[Shard 2
Broadcast & Receive]
 end
 A1 <--> B1
 A2 <--> B2
 end
This two-step process ensures that:
	All nodes can receive messages from both old and new pool sizes
	No messages are lost during the transition
	The cluster remains fully functional throughout the deployment

To decrease the pool size, follow the same process in reverse order.

 Summary

 Types

 dispatcher()

 message()

 node_name()

 t()

 topic()

 Functions

 broadcast(pubsub, topic, message, dispatcher \\ __MODULE__)

 Broadcasts message on given topic across the whole cluster.

 broadcast!(pubsub, topic, message, dispatcher \\ __MODULE__)

 Raising version of broadcast/4.

 broadcast_from(pubsub, from, topic, message, dispatcher \\ __MODULE__)

 Broadcasts message on given topic from the given process across the whole cluster.

 broadcast_from!(pubsub, from, topic, message, dispatcher \\ __MODULE__)

 Raising version of broadcast_from/5.

 child_spec(options)

 Returns a child specification for pubsub with the given options.

 direct_broadcast(node_name, pubsub, topic, message, dispatcher \\ __MODULE__)

 Broadcasts message on given topic to a given node.

 direct_broadcast!(node_name, pubsub, topic, message, dispatcher \\ __MODULE__)

 Raising version of direct_broadcast/5.

 local_broadcast(pubsub, topic, message, dispatcher \\ __MODULE__)

 Broadcasts message on given topic only for the current node.

 local_broadcast_from(pubsub, from, topic, message, dispatcher \\ __MODULE__)

 Broadcasts message on given topic from a given process only for the current node.

 node_name(pubsub)

 Returns the node name of the PubSub server.

 subscribe(pubsub, topic, opts \\ [])

 Subscribes the caller to the PubSub adapter's topic.

 unsubscribe(pubsub, topic)

 Unsubscribes the caller from the PubSub adapter's topic.

 Types

 dispatcher()

 @type dispatcher() :: module()

 message()

 @type message() :: term()

 node_name()

 @type node_name() :: atom() | binary()

 t()

 @type t() :: atom()

 topic()

 @type topic() :: binary()

 Functions

 broadcast(pubsub, topic, message, dispatcher \\ __MODULE__)

 @spec broadcast(t(), topic(), message(), dispatcher()) :: :ok | {:error, term()}

Broadcasts message on given topic across the whole cluster.
	pubsub - The name of the pubsub system
	topic - The topic to broadcast to, ie: "users:123"
	message - The payload of the broadcast

A custom dispatcher may also be given as a fourth, optional argument.
See the "Custom dispatching" section in the module documentation.

 broadcast!(pubsub, topic, message, dispatcher \\ __MODULE__)

 @spec broadcast!(t(), topic(), message(), dispatcher()) :: :ok

Raising version of broadcast/4.

 broadcast_from(pubsub, from, topic, message, dispatcher \\ __MODULE__)

 @spec broadcast_from(t(), pid(), topic(), message(), dispatcher()) ::
 :ok | {:error, term()}

Broadcasts message on given topic from the given process across the whole cluster.
	pubsub - The name of the pubsub system
	from - The pid that will send the message
	topic - The topic to broadcast to, ie: "users:123"
	message - The payload of the broadcast

The default dispatcher will broadcast the message to all subscribers except for the
process that initiated the broadcast.
A custom dispatcher may also be given as a fifth, optional argument.
See the "Custom dispatching" section in the module documentation.

 broadcast_from!(pubsub, from, topic, message, dispatcher \\ __MODULE__)

 @spec broadcast_from!(t(), pid(), topic(), message(), dispatcher()) :: :ok

Raising version of broadcast_from/5.

 child_spec(options)

 @spec child_spec(keyword()) :: Supervisor.child_spec()

Returns a child specification for pubsub with the given options.
The :name is required as part of options. The remaining options
are described below.
Options
	:name - the name of the pubsub to be started
	:adapter - the adapter to use (defaults to Phoenix.PubSub.PG2)
	:pool_size - number of pubsub partitions to launch
(defaults to one partition for every 4 cores)
	:registry_size - number of Registry partitions to launch
(defaults to :pool_size). This controls the number of Registry partitions
used for storing subscriptions and can be tuned independently from :pool_size
for better performance characteristics.
	:broadcast_pool_size - number of pubsub partitions used for broadcasting messages
(defaults to :pool_size). This option is used during pool size migrations to ensure
no messages are lost. See the "Safe Pool Size Migration" section in the module documentation.

 direct_broadcast(node_name, pubsub, topic, message, dispatcher \\ __MODULE__)

 @spec direct_broadcast(node_name(), t(), topic(), message(), dispatcher()) ::
 :ok | {:error, term()}

Broadcasts message on given topic to a given node.
	node_name - The target node name
	pubsub - The name of the pubsub system
	topic - The topic to broadcast to, ie: "users:123"
	message - The payload of the broadcast

DO NOT use this function if you wish to broadcast to the current
node, as it is always serialized, use local_broadcast/4 instead.
A custom dispatcher may also be given as a fifth, optional argument.
See the "Custom dispatching" section in the module documentation.

 direct_broadcast!(node_name, pubsub, topic, message, dispatcher \\ __MODULE__)

 @spec direct_broadcast!(node_name(), t(), topic(), message(), dispatcher()) :: :ok

Raising version of direct_broadcast/5.

 local_broadcast(pubsub, topic, message, dispatcher \\ __MODULE__)

 @spec local_broadcast(t(), topic(), message(), dispatcher()) :: :ok

Broadcasts message on given topic only for the current node.
	pubsub - The name of the pubsub system
	topic - The topic to broadcast to, ie: "users:123"
	message - The payload of the broadcast

A custom dispatcher may also be given as a fourth, optional argument.
See the "Custom dispatching" section in the module documentation.

 local_broadcast_from(pubsub, from, topic, message, dispatcher \\ __MODULE__)

 @spec local_broadcast_from(t(), pid(), topic(), message(), dispatcher()) :: :ok

Broadcasts message on given topic from a given process only for the current node.
	pubsub - The name of the pubsub system
	from - The pid that will send the message
	topic - The topic to broadcast to, ie: "users:123"
	message - The payload of the broadcast

The default dispatcher will broadcast the message to all subscribers except for the
process that initiated the broadcast.
A custom dispatcher may also be given as a fifth, optional argument.
See the "Custom dispatching" section in the module documentation.

 node_name(pubsub)

 @spec node_name(t()) :: node_name()

Returns the node name of the PubSub server.

 subscribe(pubsub, topic, opts \\ [])

 @spec subscribe(t(), topic(), keyword()) :: :ok | {:error, term()}

Subscribes the caller to the PubSub adapter's topic.
	pubsub - The name of the pubsub system
	topic - The topic to subscribe to, for example: "users:123"
	opts - The optional list of options. See below.

Duplicate Subscriptions
Callers should only subscribe to a given topic a single time.
Duplicate subscriptions for a Pid/topic pair are allowed and
will cause duplicate events to be sent; however, when using
Phoenix.PubSub.unsubscribe/2, all duplicate subscriptions
will be dropped.
Options
	:metadata - provides metadata to be attached to this
subscription. The metadata can be used by custom
dispatching mechanisms. See the "Custom dispatching"
section in the module documentation

 unsubscribe(pubsub, topic)

 @spec unsubscribe(t(), topic()) :: :ok

Unsubscribes the caller from the PubSub adapter's topic.

Phoenix.PubSub.Adapter behaviour

Specification to implement a custom PubSub adapter.

 Summary

 Types

 adapter_name()

 Callbacks

 broadcast(adapter_name, topic, message, dispatcher)

 Broadcasts the given topic, message, and dispatcher to
all nodes in the cluster (except the current node itself).

 child_spec(keyword)

 Returns a child specification that mounts the processes
required for the adapter.

 direct_broadcast(adapter_name, node_name, topic, message, dispatcher)

 Broadcasts the given topic, message, and dispatcher to
given node in the cluster (it may point to itself).

 node_name(adapter_name)

 Returns the node name as an atom or a binary.

 Types

 adapter_name()

 @type adapter_name() :: atom()

 Callbacks

 broadcast(adapter_name, topic, message, dispatcher)

 @callback broadcast(
 adapter_name(),
 topic :: Phoenix.PubSub.topic(),
 message :: Phoenix.PubSub.message(),
 dispatcher :: Phoenix.PubSub.dispatcher()
) :: :ok | {:error, term()}

Broadcasts the given topic, message, and dispatcher to
all nodes in the cluster (except the current node itself).

 child_spec(keyword)

 @callback child_spec(keyword()) :: Supervisor.child_spec()

Returns a child specification that mounts the processes
required for the adapter.
child_spec will receive all options given Phoenix.PubSub.
Note, however, that the :name under options is the name
of the complete PubSub system. The reserved key space to
be used by the adapter is under the :adapter_name key.

 direct_broadcast(adapter_name, node_name, topic, message, dispatcher)

 @callback direct_broadcast(
 adapter_name(),
 node_name :: Phoenix.PubSub.node_name(),
 topic :: Phoenix.PubSub.topic(),
 message :: Phoenix.PubSub.message(),
 dispatcher :: Phoenix.PubSub.dispatcher()
) :: :ok | {:error, term()}

Broadcasts the given topic, message, and dispatcher to
given node in the cluster (it may point to itself).

 node_name(adapter_name)

 @callback node_name(adapter_name()) :: Phoenix.PubSub.node_name()

Returns the node name as an atom or a binary.

Phoenix.PubSub.PG2

Phoenix PubSub adapter based on :pg/:pg2.
It runs on Distributed Erlang and is the default adapter.

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

Phoenix.Tracker behaviour

Provides distributed presence tracking to processes.
Tracker shards use a heartbeat protocol and CRDT to replicate presence
information across a cluster in an eventually consistent, conflict-free
manner. Under this design, there is no single source of truth or global
process. Each node runs a pool of trackers and node-local changes are
replicated across the cluster and handled locally as a diff of changes.
Implementing a Tracker
To start a tracker, first add the tracker to your supervision tree:
children = [
 # ...
 {MyTracker, [name: MyTracker, pubsub_server: MyApp.PubSub]}
]
Next, implement MyTracker with support for the Phoenix.Tracker
behaviour callbacks. An example of a minimal tracker could include:
defmodule MyTracker do
 use Phoenix.Tracker

 def start_link(opts) do
 opts = Keyword.merge([name: __MODULE__], opts)
 Phoenix.Tracker.start_link(__MODULE__, opts, opts)
 end

 def init(opts) do
 server = Keyword.fetch!(opts, :pubsub_server)
 {:ok, %{pubsub_server: server, node_name: Phoenix.PubSub.node_name(server)}}
 end

 def handle_diff(diff, state) do
 for {topic, {joins, leaves}} <- diff do
 for {key, meta} <- joins do
 IO.puts "presence join: key \"#{key}\" with meta #{inspect meta}"
 msg = {:join, key, meta}
 Phoenix.PubSub.direct_broadcast!(state.node_name, state.pubsub_server, topic, msg)
 end
 for {key, meta} <- leaves do
 IO.puts "presence leave: key \"#{key}\" with meta #{inspect meta}"
 msg = {:leave, key, meta}
 Phoenix.PubSub.direct_broadcast!(state.node_name, state.pubsub_server, topic, msg)
 end
 end
 {:ok, state}
 end
end
Trackers must implement start_link/1, init/1, and handle_diff/2.
The init/1 callback allows the tracker to manage its own state when
running within the Phoenix.Tracker server. The handle_diff callback
is invoked with a diff of presence join and leave events, grouped by
topic. As replicas heartbeat and replicate data, the local tracker state is
merged with the remote data, and the diff is sent to the callback. The
handler can use this information to notify subscribers of events, as
done above.
An optional handle_info/2 callback may also be invoked to handle
application specific messages within your tracker.
Stability and Performance Considerations
Operations within handle_diff/2 happen in the tracker server's context.
Therefore, blocking operations should be avoided when possible, and offloaded
to a supervised task when required. Also, a crash in the handle_diff/2 will
crash the tracker server, so operations that may crash the server should be
offloaded with a Task.Supervisor spawned process.
Application Shutdown
When a tracker shuts down, the other nodes do not assume it is gone
for good. After all, in a distributed system, it is impossible to know if something
is just temporarily unavailable or if it has crashed.
For this reason, when you call System.stop() or the Erlang VM receives a
SIGTERM, any presences that the local tracker instance has will continue to
be seen as present by other trackers in the cluster until the :down_period
for the instance has passed.
If you want a normal shutdown to immediately cause other nodes to see that
tracker's presences as leaving, pass permdown_on_shutdown: true. On the
other hand, if you are using Phoenix.Presence for clients which will
immediately attempt to connect to a new node, it may be preferable to use
permdown_on_shutdown: false, allowing the disconnected clients time to
reconnect before removing their old presences, to avoid overwhelming clients
with notifications that many users left and immediately rejoined.
If the application crashes or is halted non-gracefully (for instance, with a
SIGKILL or a Ctrl+C in iex), other nodes will still have to wait the
:down_period to notice that the tracker's presences are gone.

 Summary

 Types

 presence()

 topic()

 Callbacks

 handle_diff(map, state)

 handle_info(message, state)

 init(t)

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 get_by_key(tracker_name, topic, key)

 Gets presences tracked under a given topic and key pair.

 graceful_permdown(tracker_name)

 Gracefully shuts down by broadcasting permdown to all replicas.

 list(tracker_name, topic)

 Lists all presences tracked under a given topic.

 start_link(tracker, tracker_arg, pool_opts)

 Starts a tracker pool.

 track(tracker_name, pid, topic, key, meta)

 Tracks a presence.

 untrack(tracker_name, pid)

 untrack(tracker_name, pid, topic, key)

 Untracks a presence.

 update(tracker_name, pid, topic, key, meta)

 Updates a presence's metadata.

 Types

 presence()

 @type presence() :: {key :: String.t(), meta :: map()}

 topic()

 @type topic() :: String.t()

 Callbacks

 handle_diff(map, state)

 @callback handle_diff(
 %{required(topic()) => {joins :: [presence()], leaves :: [presence()]}},
 state :: term()
) :: {:ok, state :: term()}

 handle_info(message, state)

 (optional)

 @callback handle_info(message :: term(), state :: term()) :: {:noreply, state :: term()}

 init(t)

 @callback init(Keyword.t()) :: {:ok, state :: term()} | {:error, reason :: term()}

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 get_by_key(tracker_name, topic, key)

 @spec get_by_key(atom(), topic(), term()) :: [{pid(), map()}]

Gets presences tracked under a given topic and key pair.
	tracker_name - The registered name of the tracker server
	topic - The Phoenix.PubSub topic
	key - The key of the presence

Returns a list of presence metadata.
Examples
iex> Phoenix.Tracker.get_by_key(MyTracker, "lobby", "user1")
[{#PID<0.88.0>, %{name: "User 1"}}, {#PID<0.89.0>, %{name: "User 1"}}]

 graceful_permdown(tracker_name)

 @spec graceful_permdown(atom()) :: :ok

Gracefully shuts down by broadcasting permdown to all replicas.
Examples
iex> Phoenix.Tracker.graceful_permdown(MyTracker)
:ok

 list(tracker_name, topic)

 @spec list(atom(), topic()) :: [presence()]

Lists all presences tracked under a given topic.
	tracker_name - The registered name of the tracker server
	topic - The Phoenix.PubSub topic

Returns a list of presences in key/metadata tuple pairs.
Examples
iex> Phoenix.Tracker.list(MyTracker, "lobby")
[{123, %{name: "user 123"}}, {456, %{name: "user 456"}}]

 start_link(tracker, tracker_arg, pool_opts)

Starts a tracker pool.
	tracker - The tracker module implementing the Phoenix.Tracker behaviour
	tracker_arg - The argument to pass to the tracker handler init/1
	pool_opts - The list of options used to construct the shard pool

Required pool_opts:
	:name - The name of the server, such as: MyApp.Tracker
This will also form the common prefix for all shard names
	:pubsub_server - The name of the PubSub server, such as: MyApp.PubSub

Optional pool_opts:
	:broadcast_period - The interval in milliseconds to send delta broadcasts
across the cluster. Default 1500
	:max_silent_periods - The max integer of broadcast periods for which no
delta broadcasts have been sent. Default 10 (15s heartbeat)
	:down_period - The interval in milliseconds to flag a replica
as temporarily down. Default broadcast_period * max_silent_periods * 2
(30s down detection). Note: This must be at least 2x the broadcast_period.
	permdown_on_shutdown - boolean; whether to immediately call
graceful_permdown/1 on the tracker during a graceful shutdown. See
'Application Shutdown' section. You can only safely set this if Phoenix.Tracker
is mounted at the root of your supervision tree and the strategy is :one_for_one.
Default false.
	:permdown_period - The interval in milliseconds to flag a replica
as permanently down, and discard its state.
Note: This must be at least greater than the down_period.
Default 1_200_000 (20 minutes)
	:clock_sample_periods - The numbers of heartbeat windows to sample
remote clocks before collapsing and requesting transfer. Default 2
	:max_delta_sizes - The list of delta generation sizes to keep before
falling back to sending entire state. Defaults [100, 1000, 10_000].
	:log_level - The log level to log events, defaults :debug and can be
disabled with false
	:pool_size - The number of tracker shards to launch. Default 1

 track(tracker_name, pid, topic, key, meta)

 @spec track(atom(), pid(), topic(), term(), map()) ::
 {:ok, ref :: binary()} | {:error, reason :: term()}

Tracks a presence.
	tracker_name - The registered name of the tracker server
	pid - The Pid to track
	topic - The Phoenix.PubSub topic for this presence
	key - The key identifying this presence
	meta - The map of metadata to attach to this presence

A process may be tracked multiple times, provided the topic and key pair
are unique for any prior calls for the given process.
Examples
iex> Phoenix.Tracker.track(MyTracker, self(), "lobby", u.id, %{stat: "away"})
{:ok, "1WpAofWYIAA="}

iex> Phoenix.Tracker.track(MyTracker, self(), "lobby", u.id, %{stat: "away"})
{:error, {:already_tracked, #PID<0.56.0>, "lobby", "123"}}

 untrack(tracker_name, pid)

 untrack(tracker_name, pid, topic, key)

 @spec untrack(atom(), pid(), topic(), term()) :: :ok

Untracks a presence.
	tracker_name - The registered name of the tracker server
	pid - The Pid to untrack
	topic - The Phoenix.PubSub topic to untrack for this presence
	key - The key identifying this presence

All presences for a given Pid can be untracked by calling the
Phoenix.Tracker.untrack/2 signature of this function.
Examples
iex> Phoenix.Tracker.untrack(MyTracker, self(), "lobby", u.id)
:ok
iex> Phoenix.Tracker.untrack(MyTracker, self())
:ok

 update(tracker_name, pid, topic, key, meta)

 @spec update(atom(), pid(), topic(), term(), map() | (map() -> map())) ::
 {:ok, ref :: binary()} | {:error, reason :: term()}

Updates a presence's metadata.
	tracker_name - The registered name of the tracker server
	pid - The Pid being tracked
	topic - The Phoenix.PubSub topic to update for this presence
	key - The key identifying this presence
	meta - Either a new map of metadata to attach to this presence,
or a function. The function will receive the current metadata as
input and the return value will be used as the new metadata

Examples
iex> Phoenix.Tracker.update(MyTracker, self(), "lobby", u.id, %{stat: "zzz"})
{:ok, "1WpAofWYIAA="}

iex> Phoenix.Tracker.update(MyTracker, self(), "lobby", u.id, fn meta -> Map.put(meta, :away, true) end)
{:ok, "1WpAofWYIAA="}

Phoenix.PubSub.BroadcastError exception

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

