

 Phoenix.Sync

 v0.4.3

 Table of contents

 	Phoenix.Sync

 	LICENSE

 	
 Modules

 	Phoenix.Sync

 	Phoenix.Sync.Client

 	Phoenix.Sync.Controller

 	Phoenix.Sync.Electric

 	Phoenix.Sync.LiveView

 	Phoenix.Sync.Router

 	Phoenix.Sync.Writer

 	Phoenix.Sync.Writer.Context

 	Phoenix.Sync.Writer.Format

 	Phoenix.Sync.Writer.Format.TanstackDB

 	Phoenix.Sync.Writer.Operation

 	Phoenix.Sync.Writer.Transaction

Phoenix.Sync

Real-time sync for Postgres-backed Phoenix applications.

 [image: Phoenix sync illustration]

[image: Hex.pm]
[image: Documentation]
[image: License]
[image: Status]

 LICENSE - Phoenix.Sync v0.4.3

LICENSE

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

 END OF TERMS AND CONDITIONS

 Phoenix.Sync - Phoenix.Sync v0.4.3

Phoenix.Sync

Real-time sync for Postgres-backed Phoenix applications.
See the docs for more information.

 Summary

 Types

 param_override()

 param_overrides()

 shape_definition()

 shape_specification()

 Functions

 client!()

 See Phoenix.Sync.Client.new!/0.

 plug_opts()

 Returns the required adapter configuration for your Phoenix Endpoint or
Plug.Router.

 Types

 param_override()

 @type param_override() ::
 {:namespace, String.t()}
 | {:table, String.t()}
 | {:where, String.t()}
 | {:columns, String.t()}

 param_overrides()

 @type param_overrides() :: [param_override()]

 shape_definition()

 @type shape_definition() :: String.t() | Ecto.Queryable.t() | shape_specification()

 shape_specification()

 @type shape_specification() :: [
 table: binary(),
 query: atom() | struct(),
 namespace: binary(),
 where: binary(),
 columns: [binary()],
 replica: term(),
 storage: map() | nil
]

 Functions

 client!()

See Phoenix.Sync.Client.new!/0.

 plug_opts()

Returns the required adapter configuration for your Phoenix Endpoint or
Plug.Router.

 Phoenix

Configure your endpoint with the configuration at runtime by passing the
phoenix_sync configuration to your endpoint in the Application.start/2
callback:
def start(_type, _args) do
 children = [
 # ...
 {MyAppWeb.Endpoint, phoenix_sync: Phoenix.Sync.plug_opts()}
]
end

 Plug

Add the configuration to the Plug opts in your server configuration:
children = [
 {Bandit, plug: {MyApp.Router, phoenix_sync: Phoenix.Sync.plug_opts()}}
]
Your Plug.Router must be configured with
copy_opts_to_assign and you should use the rele
defmodule MyApp.Router do
 use Plug.Router, copy_opts_to_assign: :options

 use Phoenix.Sync.Controller
 use Phoenix.Sync.Router

 plug :match
 plug :dispatch

 sync "/shapes/todos", Todos.Todo

 get "/shapes/user-todos" do
 %{"user_id" => user_id} = conn.params
 sync_render(conn, from(t in Todos.Todo, where: t.owner_id == ^user_id)
 end
end

 Phoenix.Sync.Client - Phoenix.Sync v0.4.3

Phoenix.Sync.Client

Low level Elixir client. Converts an Ecto.Query into an Elixir Stream:
stream = Phoenix.Sync.Client.stream(Todos.Todo)

stream =
 Ecto.Query.from(t in Todos.Todo, where: t.completed == false)
 |> Phoenix.Sync.Client.stream()

 Summary

 Functions

 new()

 Create a new sync client based on the :phoenix_sync configuration.

 new(opts)

 Create a sync client using the given options.

 new!()

 Create a new sync client based on the application configuration or raise if
the config is invalid.

 new!(opts)

 Create a new sync client based on the given opts or raise if
the config is invalid.

 stream(shape, stream_opts \\ [])

 Return a sync stream for the given shape.

 Functions

 new()

Create a new sync client based on the :phoenix_sync configuration.

 new(opts)

Create a sync client using the given options.
If the integration mode is set to :embedded and Electric is installed
then this will configure the client to retrieve data using the internal
Elixir APIs.
For the :http mode, then you must also configure a URL specifying an
Electric API server:
config :phoenix_sync,
 mode: :http,
 url: "https://api.electric-sql.cloud"
This client can then generate streams for use in your Elixir applications:
{:ok, client} = Phoenix.Sync.Client.new()
stream = Electric.Client.stream(client, Todos.Todo)
for msg <- stream, do: IO.inspect(msg)
Alternatively use stream/1 which wraps this functionality.

 new!()

Create a new sync client based on the application configuration or raise if
the config is invalid.
client = Phoenix.Sync.Client.new!()
See new/0.

 new!(opts)

Create a new sync client based on the given opts or raise if
the config is invalid.
client = Phoenix.Sync.Client.new!(mode: :embedded)
See new/1.

 stream(shape, stream_opts \\ [])

 @spec stream(Phoenix.Sync.shape_definition(), Electric.Client.stream_options()) ::
 Enum.t()

Return a sync stream for the given shape.

 Examples

stream updates for the Todo schema
stream = Phoenix.Sync.Client.stream(MyApp.Todos.Todo)

stream the results of an ecto query
stream = Phoenix.Sync.Client.stream(from(t in MyApp.Todos.Todo, where: t.completed == true))

create a stream based on a shape definition
stream = Phoenix.Sync.Client.stream(
 table: "todos",
 where: "completed = false",
 columns: ["id", "title"]
)

once you have a stream, consume it as usual
Enum.each(stream, &IO.inspect/1)

 Ecto vs keyword shapes

Streams defined using an Ecto query or schema will return data wrapped in
the appropriate schema struct, with values cast to the appropriate
Elixir/Ecto types, rather than raw column data in the form %{"column_name" => "column_value"}.

 Phoenix.Sync.Controller - Phoenix.Sync v0.4.3

Phoenix.Sync.Controller

Provides controller-level integration with sync streams.
Unlike Phoenix.Sync.Router.sync/2, which only permits static shape
definitions, in a controller you can use request and session information to
filter your data.

 Phoenix Example

defmodule MyAppWeb.TodoController do
 use Phoenix.Controller, formats: [:html, :json]

 import Elixir.Phoenix.Sync.Controller

 alias MyApp.Todos

 def all(conn, %{"user_id" => user_id} = params) do
 sync_render(
 conn,
 params,
 from(t in Todos.Todo, where: t.owner_id == ^user_id)
)
 end
end

 Plug Example

You should use Elixir.Phoenix.Sync.Controller in your Plug.Router, then within your route
you can use the sync_render/2 function.
defmodule MyPlugApp.Router do
 use Plug.Router, copy_opts_to_assign: :options
 use Elixir.Phoenix.Sync.Controller

 plug :match
 plug :dispatch

 get "/todos" do
 sync_render(conn, MyPlugApp.Todos.Todo)
 end
end

 Summary

 Functions

 sync_render(conn, params, shape)

 Return the sync events for the given shape as a Plug.Conn response.

 Functions

 sync_render(conn, params, shape)

 @spec sync_render(Plug.Conn.t(), Plug.Conn.params(), Electric.Shapes.Api.shape_opts()) ::
 Plug.Conn.t()

Return the sync events for the given shape as a Plug.Conn response.

 Phoenix.Sync.Electric - Phoenix.Sync v0.4.3

Phoenix.Sync.Electric

A Plug.Router and Phoenix.Router compatible Plug handler that allows
you to mount the full Electric shape api into your application.
Unlike Phoenix.Sync.Router.sync/2 this allows your app to serve
shapes defined by table parameters, much like the Electric application.
The advantage is that you're free to put your own authentication and
authorization Plugs in front of this endpoint, integrating the auth for
your shapes API with the rest of your app.

 Configuration

Before configuring your router, you must install and configure the
:phoenix_sync application.
See the documentation for embedding electric for
details on embedding Electric into your Elixir application.

 Plug Integration

Mount this Plug into your router using Plug.Router.forward/2.
defmodule MyRouter do
 use Plug.Router, copy_opts_to_assign: :config
 use Phoenix.Sync.Electric

 plug :match
 plug :dispatch

 forward "/shapes",
 to: Phoenix.Sync.Electric,
 init_opts: [opts_in_assign: :config]
end
You must configure your Plug.Router with copy_opts_to_assign and
pass the key you configure here (in this case :config) to the
Phoenix.Sync.Electric plug in it's init_opts.
In your application, build your Electric confguration using
Phoenix.Sync.plug_opts() and pass the result to your router as
phoenix_sync:
in application.ex
def start(_type, _args) do
 children = [
 {Bandit, plug: {MyRouter, phoenix_sync: Phoenix.Sync.plug_opts()}, port: 4000}
]

 Supervisor.start_link(children, strategy: :one_for_one, name: MyApp.Supervisor)
end

 Phoenix Integration

Use Phoenix.Router.forward/2 in your router:
defmodule MyAppWeb.Router do
 use Phoenix.Router

 pipeline :shapes do
 # your authz plugs
 end

 scope "/shapes" do
 pipe_through [:shapes]

 forward "/", Phoenix.Sync.Electric
 end
end
As for the Plug integration, include the configuration at runtime
within the Application.start/2 callback.
in application.ex
def start(_type, _args) do
 children = [
 # ...
 {MyAppWeb.Endpoint, phoenix_sync: Phoenix.Sync.plug_opts()}
]

 Supervisor.start_link(children, strategy: :one_for_one, name: MyApp.Supervisor)
end

 Phoenix.Sync.LiveView - Phoenix.Sync v0.4.3

Phoenix.Sync.LiveView

Swap out Phoenix.LiveView.stream/3 for Phoenix.Sync.LiveView.sync_stream/4 to
automatically keep a LiveView up-to-date with the state of your Postgres database:
defmodule MyWeb.MyLive do
 use Phoenix.LiveView
 import Phoenix.Sync.LiveView

 def mount(_params, _session, socket) do
 {:ok, sync_stream(socket, :todos, Todos.Todo)}
 end

 def handle_info({:sync, event}, socket) do
 {:noreply, sync_stream_update(socket, event)}
 end
end

 Summary

 Types

 component_event()

 event()

 replication_event()

 root_event()

 state_event()

 stream_option()

 stream_options()

 Functions

 sync_stream(socket, name, query, opts \\ [])

 Maintains a LiveView stream from the given Ecto query.

 sync_stream_update(socket, event, opts \\ [])

 Handle Electric events within a LiveView.

 Types

 component_event()

 @opaque component_event()

 event()

 @type event() :: replication_event() | state_event()

 replication_event()

 @opaque replication_event()

 root_event()

 @opaque root_event()

 state_event()

 @type state_event() :: {atom(), :loaded} | {atom(), :live}

 stream_option()

 @type stream_option() ::
 {:at, integer()}
 | {:limit, pos_integer()}
 | {:reset, boolean()}
 | {:client, struct()}

 stream_options()

 @type stream_options() :: [stream_option()]

 Functions

 sync_stream(socket, name, query, opts \\ [])

 @spec sync_stream(
 socket :: Phoenix.LiveView.Socket.t(),
 name :: atom() | String.t(),
 query :: Ecto.Queryable.t(),
 opts :: stream_options()
) :: Phoenix.LiveView.Socket.t()

Maintains a LiveView stream from the given Ecto query.
	name The name to use for the LiveView stream.
	query An Ecto query that represents the data to stream from the database.

For example:
def mount(_params, _session, socket) do
 socket =
 Phoenix.Sync.LiveView.sync_stream(
 socket,
 :admins,
 from(u in Users, where: u.admin == true)
)
 {:ok, socket}
end
This will subscribe to the configured Electric server and keep the list of
:admins in sync with the database via a Phoenix.LiveView stream.
Updates will be delivered to the view via messages to the LiveView process.
To handle these you need to add a handle_info/2 implementation that receives these:
def handle_info({:sync, event}, socket) do
 {:noreply, Phoenix.Sync.LiveView.sync_stream_update(socket, event)}
end
See the docs for Phoenix.LiveView.stream/4 for details on using LiveView streams.

 Lifecycle Events

Most {:sync, event} messages are opaque and should be passed directly
to the sync_stream_update/3 function, but there are two events that are
outside Electric's replication protocol and designed to be useful in the
LiveView component.
	{:sync, {stream_name, :loaded}} - sent when the Electric event stream has passed
from initial state to update mode.
This event is useful to show the stream component after
the initial sync. Because of the streaming nature of Electric Shapes, the
intitial sync can cause flickering as items are added, removed and updated.
E.g.:
in the LiveView component
def handle_info({:sync, {_name, :live}}, socket) do
 {:noreply, assign(socket, :show_stream, true)}
end

in the template
<div phx-update="stream" class={unless(@show_stream, do: "opacity-0")}>
 <div :for={{id, item} <- @streams.items} id={id}>
 <%= item.value %>
 </div>
</div>

	{:sync, {stream_name, :live}} - sent when the Electric stream is in
live mode, that is the initial state has loaded and the client is
up-to-date with the database and is long-polling for new events from the
Electric server.

If your app doesn't need this extra information, then you can ignore them and
just have a catch-all callback:
def handle_info({:sync, event}, socket) do
 {:noreply, Phoenix.Sync.LiveView.sync_stream_update(socket, event)}
end
Phoenix.Sync.LiveView.sync_stream_update will just ignore the
lifecycle events.

 Sub-components

If you register your Electric stream in a sub-component you will still
receive Electric messages in the LiveView's root/parent process.
Phoenix.Sync handles this for you by encapsulating component messages
so it can correctly forward on the event to the component.
So in the parent LiveView process you handle the :sync messages as
above:
defmodule MyLiveView do
 use Phoenix.LiveView

 def render(assigns) do
 ~H"""
 <div>
 <.live_component id="my_component" module={MyComponent} />
 </div>
 """
 end

 # We setup the Electric sync_stream in the component but update messages will
 # be sent to the parent process.
 def handle_info({:sync, event}, socket) do
 {:noreply, Phoenix.Sync.LiveView.sync_stream_update(socket, event)}
 end
end
In the component you must handle these events in the
Phoenix.LiveComponent.update/2 callback:
defmodule MyComponent do
 use Phoenix.LiveComponent

 def render(assigns) do
 ~H"""
 <div id="users" phx-update="stream">
 <div :for={{id, user} <- @streams.users} id={id}>
 <%= user.name %>
 </div>
 </div>
 """
 end

 # Equivalent to the `handle_info({:sync, {stream_name, :live}}, socket)` callback
 # in the parent LiveView.
 def update(%{sync: {_stream_name, :live}}, socket) do
 {:ok, socket}
 end

 # Equivalent to the `handle_info({:sync, event}, socket)` callback
 # in the parent LiveView.
 def update(%{sync: event}, socket) do
 {:ok, Phoenix.Sync.LiveView.sync_stream_update(socket, event)}
 end

 def update(assigns, socket) do
 {:ok, Phoenix.Sync.LiveView.sync_stream(socket, :users, User)}
 end
end

 sync_stream_update(socket, event, opts \\ [])

 @spec sync_stream_update(Phoenix.LiveView.Socket.t(), event(), Keyword.t()) ::
 Phoenix.LiveView.Socket.t()

Handle Electric events within a LiveView.
def handle_info({:sync, event}, socket) do
 {:noreply, Phoenix.Sync.LiveView.sync_stream_update(socket, event, at: 0)}
end
The opts are passed to the Phoenix.LiveView.stream_insert/4 call.

 Phoenix.Sync.Router - Phoenix.Sync v0.4.3

Phoenix.Sync.Router

Provides router macros to simplify the exposing of Electric shape streams
within your Phoenix or Plug application.

 Phoenix Integration

When using within a Phoenix application, you should just import the macros
defined here in your Phoenix.Router module:
defmodule MyAppWeb.Router do
 use Phoenix.Router

 import Elixir.Phoenix.Sync.Router

 scope "/shapes" do
 sync "/all-todos", MyApp.Todos.Todo

 sync "/pending-todos", MyApp.Todos.Todo,
 where: "completed = false"
 end
end

 Plug Integration

Within your Plug.Router module, use Elixir.Phoenix.Sync.Router and then
add your sync routes:
defmodule MyApp.Plug.Router do
 use Plug.Router, copy_opts_to_assign: :options
 use Elixir.Phoenix.Sync.Router

 plug :match
 plug :dispatch

 sync "/shapes/all-todos", MyApp.Todos.Todo

 sync "/shapes/pending-todos", MyApp.Todos.Todo,
 where: "completed = false"
end
You must use the copy_opts_to_assign option in Plug.Router in order
for the sync macro to get the configuration defined in your
application.ex start/2 callback.

 Summary

 Functions

 sync(path, opts)

 Defines a synchronization route for streaming Electric shapes.

 sync(path, queryable, opts)

 Create a synchronization route from an Ecto.Schema plus shape options.

 Functions

 sync(path, opts)

 (macro)

Defines a synchronization route for streaming Electric shapes.
The shape can be defined in several ways:

 Using Ecto Schemas

Defines a synchronization route for streaming Electric shapes using an Ecto schema.
sync "/all-todos", MyApp.Todo
Note: Only Ecto schema modules are supported as direct arguments. For Ecto queries,
use the query option in the third argument or use Phoenix.Sync.Controller.sync_render/3.

 Using Ecto Schema and where clause

sync "/incomplete-todos", MyApp.Todo, where: "completed = false"

 Using an explicit table

sync "/incomplete-todos", table: "todos", where: "completed = false"
See the section on Shape definitions for
more details on keyword-based shapes.

 sync(path, queryable, opts)

 (macro)

Create a synchronization route from an Ecto.Schema plus shape options.
sync "/my-shape", MyApp.Todos.Todo,
 where: "completed = false"
See sync/2.

 Phoenix.Sync.Writer - Phoenix.Sync v0.4.3

Phoenix.Sync.Writer

Provides write-path sync support for
Phoenix- or Plug-based apps.
Imagine you're building an application on sync. You've used the
read-path sync utilities to sync data into the
front-end. If the client then changes the data locally, these writes can be batched
up and sent back to the server.
Phoenix.Sync.Writer provides a principled way of ingesting these local writes
and applying them to Postgres. In a way that works-with and re-uses your existing
authorization logic and your existing Ecto.Schemas and Ecto.Changeset validation
functions.
This allows you to build instant, offline-capable applications that work with
local optimistic state.

 Controller example

For example, take a project management app that's using
@TanStack/db to batch up local
optimistic writes and POST them to the Phoenix.Controller below:
defmodule MutationController do
 use Phoenix.Controller, formats: [:json]

 alias Phoenix.Sync.Writer
 alias Phoenix.Sync.Writer.Format

 def mutate(conn, %{"transaction" => transaction} = _params) do
 user_id = conn.assigns.user_id

 {:ok, txid, _changes} =
 Phoenix.Sync.Writer.new()
 |> Phoenix.Sync.Writer.allow(
 Projects.Project,
 check: reject_invalid_params/2,
 load: &Projects.load_for_user(&1, user_id),
 validate: &Projects.Project.changeset/2
)
 |> Phoenix.Sync.Writer.allow(
 Projects.Issue,
 # Use the sensible defaults:
 # validate: Projects.Issue.changeset/2
 # etc.
)
 |> Phoenix.Sync.Writer.apply(
 transaction,
 Repo,
 format: Format.TanstackDB
)

 render(conn, :mutations, txid: txid)
 end
end
The controller constructs a Phoenix.Sync.Writer instance and pipes
it through a series of allow/3 calls, registering functions against
Ecto.Schemas (in this case Projects.Project and Projects.Issue) to
validate and authorize each of these mutation operations before applying
them as a single transaction.
This controller can become a single, unified entry point for ingesting writes
into your application. You can extend the pipeline with allow/3 calls for
every schema that you'd like to be able to ingest changes to.
The check, load, validate, etc. callbacks to the allow
function are designed to allow you to re-use your authorization and validation
logic from your existing Plug middleware and Ecto.Changeset functions.
Warning
The mutation operations received from clients MUST be considered as untrusted.
Though the HTTP operation that uploaded them will have been authenticated and
authorized by your existing Plug middleware as usual, the actual content of the
request that is turned into writes against your database needs to be validated
very carefully against the privileges of the current user.
That's what Phoenix.Sync.Writer is for: specifying which resources can be
updated and registering functions to authorize and validate the mutation payload.

 Usage levels (high, mid, low)

You don't need to use Phoenix.Sync.Writer to ingest write operations using Phoenix.
Phoenix already ships with primitives like Ecto.Multi and Ecto.Repo.transaction/2.
However, Phoenix.Sync.Writer provides:
	a number of convienience functions that simplify ingesting mutation operations
	a high-level pipeline that dries up a lot of common boilerplate and allows you to re-use
your existing Plug and Ecto.Changeset logic

 High-level usage

The controller example above uses a higher level pipeline that dries up common
boilerplate, whilst still allowing flexibility and extensibility. You create an
ingest pipeline by instantiating a Phoenix.Sync.Writer instance and piping into
allow/3 and apply/4 calls:
{:ok, txid, _changes} =
 Phoenix.Sync.Writer.new()
 |> Phoenix.Sync.Writer.allow(MyApp.Todo)
 |> Phoenix.Sync.Writer.allow(MyApp.OtherSchema)
 |> Phoenix.Sync.Writer.apply(transaction, Repo, format: MyApp.MutationFormat)
Or, instead of apply/4 you can use seperate calls to ingest/3 and then transaction/2.
This allows you to ingest multiple formats, for example:
{:ok, txid} =
 Phoenix.Sync.Writer.new()
 |> Phoenix.Sync.Writer.allow(MyApp.Todo)
 |> Phoenix.Sync.Writer.ingest(changes, format: MyApp.MutationFormat)
 |> Phoenix.Sync.Writer.ingest(other_changes, parser: &MyApp.MutationFormat.parse_other/1)
 |> Phoenix.Sync.Writer.ingest(more_changes, parser: {MyApp.MutationFormat, :parse_more, []})
 |> Phoenix.Sync.Writer.transaction(MyApp.Repo)
And at any point you can drop down / eject out to the underlying Ecto.Multi using
to_multi/1 or to_multi/3:
multi =
 Phoenix.Sync.Writer.new()
 |> Phoenix.Sync.Writer.allow(MyApp.Todo)
 |> Phoenix.Sync.Writer.to_multi(changes, format: MyApp.MutationFormat)

... do anything you like with the multi ...

{:ok, changes} = Repo.transaction(multi)
{:ok, txid} = Phoenix.Sync.Writer.txid(changes)

 Mid-level usage

The pattern above uses a lower-level transact/4 function.
This abstracts the mechanical details of transaction management whilst
still allowing you to handle and apply mutation operations yourself:
{:ok, txid} =
 Phoenix.Sync.Writer.transact(
 my_encoded_txn,
 MyApp.Repo,
 fn
 %{operation: :insert, relation: [_, "todos"], change: change} ->
 MyApp.Repo.insert(...)
 %{operation: :update, relation: [_, "todos"], data: data, change: change} ->
 MyApp.Repo.update(Ecto.Changeset.cast(...))
 %{operation: :delete, relation: [_, "todos"], data: data} ->
 # we don't allow deletes...
 {:error, "invalid delete"}
 end,
 format: Phoenix.Sync.Writer.Format.TanstackDB,
 timeout: 60_000
)
However, with larger applications, this flexibility can become tiresome as you end up
repeating boilerplate and defining your own pipeline to authorize, validate and apply
changes with the right error handling and return values.

 Low-level usage (DIY)

For the more advanced cases, if you're comfortable parsing, validating and persisting
changes yourself then the simplest way to use Phoenix.Sync.Writer is to use txid!/1
within Ecto.Repo.transaction/2:
{:ok, txid} =
 MyApp.Repo.transaction(fn ->
 # ... save your changes to the database ...

 # Return the transaction id.
 Phoenix.Sync.Writer.txid!(MyApp.Repo)
 end)
This returns the database transaction ID that the changes were applied within. This allows
you to return it to the client, which can then monitor the read-path sync stream to detect
when the transaction syncs through. At which point the client can discard its local
optimistic state.
A convinient way of doing this is to parse the request data into a list of
Phoenix.Sync.Writer.Operations using a Phoenix.Sync.Writer.Format.
You can then apply the changes yourself by matching on the operation data:
{:ok, %Transaction{operations: operations}} =
 Phoenix.Sync.Writer.parse_transaction(
 my_encoded_txn,
 format: Phoenix.Sync.Writer.Format.TanstackDB
)

{:ok, txid} =
 MyApp.Repo.transaction(fn ->
 Enum.each(txn.operations, fn
 %{operation: :insert, relation: [_, "todos"], change: change} ->
 # insert a Todo
 %{operation: :update, relation: [_, "todos"], data: data, change: change} ->
 # update a Todo
 %{operation: :delete, relation: [_, "todos"], data: data} ->
 # for example, if you don't want to allow deletes...
 raise "invalid delete"
 end)

 Phoenix.Sync.Writer.txid!(MyApp.Repo)
 end, timeout: 60_000)

 Transactions

The txid in the return value from apply/4 and txid/1 / txid!/1 allows the
Postgres transaction ID to be returned to the client in the response data.
This allows clients to monitor the read-path sync stream and match on the
arrival of the same transaction id. When the client receives this transaction id
back through its sync stream, it knows that it can discard the local optimistic
state for that transaction. (This is a more robust way of managing optimistic state
than just matching on instance IDs, as it allows for local changes to be rebased
on concurrent changes to the same date from other users).
Phoenix.Sync.Writer uses Ecto.Multi's transaction update mechanism
under the hood, which means that either all the operations in a client
transaction are accepted or none are. See to_multi/1 for how you can hook
into the Ecto.Multi after applying your change data.
Compatibility
Phoenix.Sync.Writer can only return transaction ids when connecting to
a Postgres database (a repo with adapter: Ecto.Adapters.Postgres). You can
use this module for other databases, but the returned txid will be nil.

 Client Libraries

Phoenix.Sync.Writer is not coupled to any particular client-side implementation.
See Electric's write pattern guides and example code
for implementation strategies and examples.
Instead, Phoenix.Sync.Writer provides an adapter pattern where you can register
a format adapter or parser function to parse the expected payload format from a client side library
into the struct that Phoenix.Sync.Writer expects.
The currently supported format adapters are:
	TanStack/db "A reactive client store for
building super fast apps on sync"
Integration:
Phoenix.Sync.Writer.new()
|> Phoenix.Sync.Writer.ingest(mutation_data, format: Phoenix.Sync.Writer.Format.TanstackDB)
|> Phoenix.Sync.Writer.transaction(Repo)

 Usage

Much as every controller action must be authenticated, authorized and validated
to prevent users writing invalid data or data that they do not have permission
to modify, mutations MUST be validated for both correctness (are the given
values valid?) and permissions (is the current user allowed to apply the given
mutation?).
This dual verification -- of data and permissions -- is performed by a pipeline
of application-defined callbacks for every model that you allow writes to:
	check - a function that performs a "pre-flight"
sanity check of the user-provided data in the mutation; this should just
validate the data and not usually hit the database; checks are performed on
all operations in a transaction before proceeding to the next steps in the
pipeline; this allows for fast rejection of invalid data before performing
more expensive operations
	load - a function that takes the original data
and returns the existing model from the database, if it exists, for an update
or delete operation
	validate - create and validate an Ecto.Changeset
from the source data and mutation changes; this is intended to be compatible with
using existing schema changeset functions; note that, as per any changeset function,
the validate function can perform both authorization and validation
	pre_apply and post_apply - add
arbitrary Ecto.Multi operations to the transaction based on the current operation

See apply/4 and the Callbacks for how the transaction is
processed internally and how best to use these callback functions to express your
app's authorization and validation requirements.
Calling new/0 creates an empty writer configuration with the given mutation
parser. But this alone does not permit any mutations. In order to allow writes
from clients you must call allow/3 with a schema module and some callback functions.
create an empty writer configuration
writer = Phoenix.Sync.Writer.new()

allow writes to the `Todos.Todo` table
using `Todos.check_mutation/1` to validate mutation data before
touching the database
writer = Phoenix.Sync.Writer.allow(writer, Todos.Todo, check: &Todos.check_mutation/1)
If the table name on the client differs from the Postgres table, then you can
add a table option that specifies the client table name that this allow/3
call applies to:
`client_todos` is the name of the `todos` table on the clients
writer =
 Phoenix.Sync.Writer.allow(
 writer,
 Todos.Todo,
 validate: &Todos.validate_mutation/2,
 table: "client_todos"
)

 Callbacks

 Check

The check option should be a 1-arity function whose purpose is to test
the mutation data against the authorization rules for the application and
model before attempting any database access.
If the changes are valid then it should return :ok or {:error, reason} if
they're invalid.
If any of the changes fail the auth test, then the entire transaction will be
rejected.
This is the first line of defence against malicious writes as it provides a
quick check of the data from the clients before any reads or writes to the
database.
Note that the writer pipeline checks all the operations before proceeding to
load, validate and apply each operation in turn.
def check(%Phoenix.Sync.Writer.Operation{} = operation) do
 # :ok or {:error, "..."}
end

 Load

The load callback takes the data in update or delete mutations (i.e.:
the original data before changes), and uses it to retrieve the original
Ecto.Struct model from the database.
It can be a 1- or 2-arity function. The 1-arity version receives just the
data parameters. The 2-arity version receives the Ecto.Repo that the
transaction is being applied to and the data parameters.
1-arity version
def load(%{"column" => "value"} = data) do
 # Repo.get(...)
end

2-arity version
def load(repo, %{"column" => "value"} = data) do
 # repo.get(...)
end
If not provided defaults to using Ecto.Repo.get_by/3 using the primary
key(s) defined on the model.
For insert operations this load function is not used. Instead, the original
struct is created by calling the __struct__/0 function on the Ecto.Schema
module.

 Validate

The validate callback performs the usual role of a changeset function: to
validate the changes against the model's data constraints using the functions
in Ecto.Changeset.
It should return an Ecto.Changeset instance (or possibly the original
schema struct in the case of deletes). If any of the transaction's
changeset's are marked as invalid, then the entire transaction is aborted.
If not specified, the validate function is defaulted to the schema model's
standard changeset/2 function if available.
The callback can be either a 2- or 3-arity function.
The 2-arity version will receive the Ecto.Schema struct returned from the
load function and the mutation changes. The 3-arity version will receive
the loaded struct, the changes and the operation.
2-arity version
def changeset(%Todo{} = data, %{} = changes) do
 data
 |> Ecto.Changeset.cast(changes, [:title, :completed])
 |> Ecto.Changeset.validate_required(changes, [:title])
end

3-arity version
def changeset(%Todo{} = data, %{} = changes, operation)
 when operation in [:insert, :update, :delete] do
 # ...
end
Primary keys
Whether the params for insert operations contains a value for the new primary
key is application specific. It's certainly not required if you have declared your
Ecto.Schema model with a primary key set to autogenerate: true.
It's worth noting that if you are accepting primary key values as part of
your insert changes, then you should use UUID primary keys for your models
to prevent conflicts.

 pre_apply and post_apply

These callbacks, run before or after the actual insert, update or
delete operation allow for the addition of side effects to the transaction.
They are passed an empty Ecto.Multi struct and which is then
merged into the writer's transaction.
They also allow for more validation/authorization steps as any operation
within the callback that returns an "invalid" operation will abort the entire
transaction.
def pre_or_post_apply(%Ecto.Multi{} = multi, %Ecto.Changeset{} = change, %Phoenix.Sync.Writer.Context{} = context) do
 multi
 # add some side-effects
 # |> Ecto.Multi.run(Phoenix.Sync.Writer.operation_name(context, :image), fn _changes ->
 # with :ok <- File.write(image.name, image.contents) do
 # {:ok, nil}
 # end
 # end)
 #
 # validate the current transaction and abort using an {:error, value} tuple
 # |> Ecto.Multi.run(Phoenix.Sync.Writer.operation_name(context, :my_validation), fn _changes ->
 # {:error, "reject entire transaction"}
 # end)
end
Note the use of operation_name/2 when adding operations. Every name in the
final Ecto.Multi struct must be unique, operation_name/2 generates names
that are guaranteed to be unique to the current operation and callback.

 Per-operation callbacks

If you want to re-use an existing function on a per-operation basis, then in
your write configuration you can define both top-level and per operation
callbacks:
Phoenix.Sync.Writer.allow(
 Todos.Todo,
 load: &Todos.fetch_for_user(&1, user_id),
 check: &Todos.check_mutation(&1, &2, user_id),
 validate: &Todos.Todo.changeset/2,
 update: [
 # for inserts and deletes, use &Todos.Todo.changeset/2 but for updates
 # use this function
 validate: &Todos.Todo.update_changeset/2,
 pre_apply: &Todos.pre_apply_update_todo/3
],
 insert: [
 # optional validate, pre_apply and post_apply
 # overrides for insert operations
],
 delete: [
 # optional validate, pre_apply and post_apply
 # overrides for delete operations
],
)

 End-to-end usage

The combination of the check, load, validate, pre_apply and
post_apply functions can be composed to provide strong guarantees of
validity.
The aim is to provide an interface as similar to that used in controller
functions as possible.
Here we show an example controller module that allows updating of Todos via
a standard HTTP PUT update handler and also via HTTP POSTs to the
mutation handler which applies optimistic writes via this module.
We use the load function to validate the ownership of the original Todo
by looking up the data using both the id and the user_id. This makes it
impossible for user a to update todos belonging to user b.
defmodule MyController do
 use Phoenix.Controller, formats: [:html, :json]

 alias Phoenix.Sync.Writer

 # The standard HTTP PUT update handler
 def update(conn, %{"todo" => todo_params}) do
 user_id = conn.assigns.user_id

 with {:ok, todo} <- fetch_for_user(params, user_id),
 {:ok, params} <- validate_params(todo, todo_params, user_id),
 {:ok, updated_todo} <- Todos.update(todo, params) do
 redirect(conn, to: ~p"/todos/#{updated_todo.id}")
 end
 end

 # The HTTP POST mutations handler which receives JSON data
 def mutations(conn, %{"transaction" => transaction} = _params) do
 user_id = conn.assigns.user_id

 {:ok, txid, _changes} =
 Writer.new()
 |> Writer.allow(
 Todos.Todo,
 check: &validate_mutation(&1, user_id),
 load: &fetch_for_user(&1, user_id),
)
 |> Writer.apply(transaction, Repo, format: Writer.Format.TanstackDB)

 render(conn, :mutations, txid: txid)
 end

 # Included here for completeness but in a real app would be a
 # public function in the Todos context.
 # Because we're validating the ownership of the Todo here we add an
 # extra layer of auth checks, preventing one user from modifying
 # the Todos of another.
 defp fetch_for_user(%{"id" => id}, user_id) do
 from(t in Todos.Todo, where: t.id == ^id and t.user_id == ^user_id)
 |> Repo.one()
 end

 defp validate_mutation(%Writer.Operation{} = op, user_id) do
 with :ok <- validate_params(op.data, user_id) do
 validate_params(op.changes, user_id)
 end
 end

 defp validate_params(%{"user_id" => user_id}, user_id), do: :ok
 defp validate_params(%{} = _params, _user_id), do: {:error, "invalid user_id"}
end
Because Phoenix.Sync.Write leverages Ecto.Multi to do the work of
applying changes and managing errors, you're also free to extend the actions
that are performed with every transaction using pre_apply and post_apply
callbacks configured per-table or per-table per-action (insert, update,
delete). See allow/3 for more information on the configuration options
for each table.
The result of to_multi/1 or to_multi/3 is an Ecto.Multi instance so you can also just
append operations using the normal Ecto.Multi functions:
{:ok, txid, _changes} =
 Writer.new()
 |> Writer.allow(Todo, ...)
 |> Writer.to_multi(transaction, parser: &my_transaction_parser/1)
 |> Ecto.Multi.insert(:my_action, %Event{})
 |> Writer.transaction(Repo)

 Summary

 Types

 allow_opts()

 context()

 data()

 ingest_change()

 mutation()

 operation()

 operation_opts()

 parse_opts()

 pre_post_func()

 repo_transaction_opts()

 schema_config()

 t()

 transact_opts()

 txid()

 Functions

 allow(writer, schema, opts \\ [])

 Allow writes to the given Ecto.Schema.

 apply(writer, changes, repo, opts)

 Ingest and write changes to the given repo in a single call.

 ingest(writer, changes, opts)

 Add the given changes to the operations that will be applied within a transaction/3.

 new()

 Create a new empty writer.

 operation_name(ctx)

 Return a unique operation name for use in pre_apply or post_apply callbacks.

 operation_name(ctx, label)

 Like operation_name/1 but allows for a custom label.

 parse_transaction(changes, opts)

 Use the parser configured in the given Writer
instance to decode the given transaction data.

 to_multi(writer)

 Given a writer configuration created using allow/3 translate the list of
mutations into an Ecto.Multi operation.

 to_multi(writer, changes, opts)

 Ingest changes and map them into an Ecto.Multi instance ready to apply
using Phoenix.Sync.Writer.transaction/3 or Ecto.Repo.transaction/2.

 transact(changes, repo, operation_fun, opts)

 Apply operations from a mutation directly via a transaction.

 transaction(writer_or_multi, repo, opts \\ [])

 Runs the mutation inside a transaction.

 txid(changes)

 Extract the transaction id from changes or from a Ecto.Repo within a
transaction.

 txid!(changes)

 Returns the a transaction id or raises on an error.

 Types

 allow_opts()

 @type allow_opts() :: [
 table: String.t() | [String.t(), ...],
 accept: [operation(), ...],
 check: (Phoenix.Sync.Writer.Operation.t() -> :ok | {:error, term()}),
 before_all: (Ecto.Multi.t() -> Ecto.Multi.t()),
 load:
 (Ecto.Repo.t(), data() ->
 Ecto.Schema.t() | {:ok, Ecto.Schema.t()} | nil | {:error, String.t()})
 | (data() ->
 Ecto.Schema.t() | {:ok, Ecto.Schema.t()} | nil | {:error, String.t()}),
 validate:
 (Ecto.Schema.t(), data() -> Ecto.Changeset.t())
 | (Ecto.Schema.t(), data(), operation() -> Ecto.Changeset.t()),
 pre_apply: pre_post_func(),
 post_apply: pre_post_func(),
 insert: operation_opts(),
 update: operation_opts(),
 delete: operation_opts()
]

 context()

 @type context() :: %Phoenix.Sync.Writer.Context{
 action: term(),
 callback: :load | :validate | :pre_apply | :post_apply,
 changes: Ecto.Mult.changes(),
 index: non_neg_integer(),
 operation: :insert | :update | :delete,
 pk: term(),
 schema: Ecto.Schema.t(),
 writer: term()
}

 data()

 @type data() :: %{required(binary()) => any()}

 ingest_change()

 @type ingest_change() ::
 {Phoenix.Sync.Writer.Format.t(), Phoenix.Sync.Writer.Format.parser_fun(),
 Phoenix.Sync.Writer.Format.transaction_data()}

 mutation()

 @type mutation() :: %{required(binary()) => any()}

 operation()

 @type operation() :: :insert | :update | :delete

 operation_opts()

 @type operation_opts() :: [
 validate: (Ecto.Schema.t(), data() -> Ecto.Changeset.t()),
 pre_apply: pre_post_func(),
 post_apply: pre_post_func()
]

 parse_opts()

 @type parse_opts() :: [
 format: Phoenix.Sync.Writer.Format.t(),
 parser: Phoenix.Sync.Writer.Format.parser_fun()
]

 pre_post_func()

 @type pre_post_func() :: (Ecto.Multi.t(), Ecto.Changeset.t(), context() ->
 Ecto.Multi.t())

 repo_transaction_opts()

 @type repo_transaction_opts() :: keyword()

 schema_config()

 @type schema_config() :: %{required(atom()) => term()}

 t()

 @type t() :: %Phoenix.Sync.Writer{
 ingest: [ingest_change()],
 mappings: %{required(binary() | [binary(), ...]) => schema_config()}
}

 transact_opts()

 @type transact_opts() :: [parse_opts() | repo_transaction_opts()]

 txid()

 @type txid() :: Phoenix.Sync.Writer.Transaction.id()

 Functions

 allow(writer, schema, opts \\ [])

 @spec allow(t(), module(), allow_opts()) :: t()

Allow writes to the given Ecto.Schema.
Only tables specified in calls to allow/3 will be accepted by later calls
to transaction/3. Any changes to tables not explicitly defined by allow/3 calls
will be rejected and cause the entire transaction to be rejected.

 Examples

allow writes to the Todo table using
`MyApp.Todos.Todo.check_mutation/1` to validate operations
Phoenix.Sync.Writer.new()
|> Phoenix.Sync.Writer.allow(
 MyApp.Todos.Todo,
 check: &MyApp.Todos.check_mutation/1
)

A more complex configuration adding an `post_apply` callback to inserts
and using a custom query to load the original database value.
Phoenix.Sync.Writer.new()
|> Phoenix.Sync.Writer.allow(
 MyApp.Todos..Todo,
 load: &MyApp.Todos.get_for_mutation/1,
 check: &MyApp.Todos.check_mutation/1,
 insert: [
 post_apply: &MyApp.Todos.post_apply_insert_mutation/3
]
)

 Supported options

	:table (String.t() | [String.t(), ...]) - Override the table name of the Ecto.Schema struct to
allow for mapping between table names on the client and within Postgres.
If you pass just a table name, then any schema prefix in the client tables is ignored, so
Writer.allow(Todos, table: "todos")
will match client operations for ["public", "todos"] and ["application", "todos"] etc.
If you provide a 2-element list then the mapping will be exact and only
client relations matching the full [schema, table] pair will match the
given schema.
Writer.allow(Todos, table: ["public", "todos"])
Will match client operations for ["public", "todos"] but
not ["application", "todos"] etc.
Defaults to Model.__schema__(:source), or if the Ecto schema
module has specified a namespace [Model.__schema__(:prefix), Model.__schema__(:source)].

	:accept - A list of actions to accept.
A transaction containing an operation not in the accept list will be rejected.
Defaults to accepting all operations, [:insert, :update, :delete].

	:check (function of arity 1) - A function that validates every %Phoenix.Sync.Writer.Operation{} in the transaction for correctness.
This is run before any database access is performed and so provides an
efficient way to prevent malicious writes without hitting your database.
Defaults to a function that allows all operations: fn _ -> :ok end.

	:before_all (function of arity 1) - Run only once (per transaction) after the parsing and check callback have
completed and before load and validate functions run.
Useful for pre-loading data from the database that can be shared across
all operation callbacks for all the mutations.
Arguments:
	multi an Ecto.Multi struct

Return value:
	Ecto.Multi struct with associated data

Defaults to no callback.

	:load - A 1- or 2-arity function that accepts either the mutation
operation's data or an Ecto.Repo instance and the mutation data and
returns the original row from the database.
Arguments:
	repo the Ecto.Repo instance passed to apply/4 or transaction/3
	data the original operation data

Valid return values are:
	struct() - an Ecto.Schema struct, that must match the
module passed to allow/3
	{:ok, struct()} - as above but wrapped in an :ok tuple
	nil - if no row matches the search criteria, or
	{:error, String.t()} - as nil but with a custom error string

A return value of nil or {:error, reason} will abort the transaction.
This function is only used for updates or deletes. For
inserts, the __struct__/0 function defined by Ecto.Schema is used to
create an empty schema struct.

 Examples

load from a known Repo
load: fn %{"id" => id} -> MyApp.Repo.get(Todos.Todo, id)

load from the repo passed to `Elixir.Phoenix.Sync.Writer.transaction/2`
load: fn repo, %{"id" => id} -> repo.get(Todos.Todo, id)
If not provided defaults to Ecto.Repo.get_by/3 using the
table's schema module and its primary keys.

	:validate - a 2- or 3-arity function that returns an Ecto.Changeset for a given mutation.

 Callback params

	data an Ecto.Schema struct matching the one used when
calling allow/2 returned from the load function.
	changes a map of changes to apply to the data.
	operation (for 3-arity callbacks only) the operation
action, one of :insert, :update or :delete

At absolute minimum, this should call
Ecto.Changeset.cast/3 to validate the proposed data:
def my_changeset(data, changes, _operation) do
 Ecto.Changeset.cast(data, changes, @permitted_columns)
end
Defaults to the given model's changeset/2 function if
defined, raises if no changeset function can be found.

	:pre_apply (pre_post_func/0) - an optional callback that allows for the pre-pending of
operations to the Ecto.Multi representing a mutation transaction.
If should be a 3-arity function.

 Arguments

	multi - an empty %Ecto.Multi{} instance that you should apply
your actions to
	changeset - the changeset representing the individual mutation operation
	context - the current change context

The result should be the Ecto.Multi instance which will be
merged with the one representing the mutation
operation.
Because every action in an Ecto.Multi must have a unique
key, we advise using the operation_name/2 function to generate a unique
operation name based on the context.
def pre_apply(multi, changeset, context) do
 name = Phoenix.Sync.Writer.operation_name(context, :event_insert)
 Ecto.Multi.insert(multi, name, %Event{todo_id: id})
end
Defaults to no nil.

	:post_apply (pre_post_func/0) - an optional callback function that allows for the
appending of operations to the Ecto.Multi representing a mutation
transaction.
See the docs for :pre_apply for the function signature and arguments.
Defaults to no nil.

	:insert (operation_opts/0) - Callbacks for validating and modifying insert operations.
Accepts definitions for the validate, pre_apply and
post_apply functions for insert operations that will override the
top-level equivalents.
See the documentation for allow/3.
The only difference with these callback functions is that
the action parameter is redundant and therefore not passed.
Defaults to [], using the top-level functions for all operations.
	:validate (function of arity 2) - A 2-arity function that returns a changeset for the given mutation data.
Arguments:
	schema the original Ecto.Schema model returned from the load function
	changes a map of changes from the mutation operation

Return value:
	an Ecto.Changeset

	:pre_apply (pre_post_func/0) - An optional callback that allows for the pre-pending of operations to the Ecto.Multi.
Arguments and return value as per the global pre_apply callback.

	:post_apply (pre_post_func/0) - An optional callback that allows for the appending of operations to the Ecto.Multi.
Arguments and return value as per the global post_apply callback.

	:update (operation_opts/0) - Callbacks for validating and modifying update operations.
See the documentation for insert.
	:validate (function of arity 2) - A 2-arity function that returns a changeset for the given mutation data.
Arguments:
	schema the original Ecto.Schema model returned from the load function
	changes a map of changes from the mutation operation

Return value:
	an Ecto.Changeset

	:pre_apply (pre_post_func/0) - An optional callback that allows for the pre-pending of operations to the Ecto.Multi.
Arguments and return value as per the global pre_apply callback.

	:post_apply (pre_post_func/0) - An optional callback that allows for the appending of operations to the Ecto.Multi.
Arguments and return value as per the global post_apply callback.

	:delete (operation_opts/0) - Callbacks for validating and modifying delete operations.
See the documentation for insert.
	:validate

	:pre_apply (pre_post_func/0) - An optional callback that allows for the pre-pending of operations to the Ecto.Multi.
Arguments and return value as per the global pre_apply callback.

	:post_apply (pre_post_func/0) - An optional callback that allows for the appending of operations to the Ecto.Multi.
Arguments and return value as per the global post_apply callback.

 apply(writer, changes, repo, opts)

 @spec apply(
 t(),
 Phoenix.Sync.Writer.Format.transaction_data(),
 Ecto.Repo.t(),
 transact_opts()
) ::
 {:ok, txid(), Ecto.Multi.changes()} | Ecto.Multi.failure()

Ingest and write changes to the given repo in a single call.
Phoenix.Sync.Writer.new()
|> Phoenix.Sync.Writer.apply(changes, Repo, parser: &MyFormat.parse/1)
is equivalent to:
Phoenix.Sync.Writer.new()
|> Phoenix.Sync.Writer.ingest(changes, parser: &MyFormat.parse/1)
|> Phoenix.Sync.Writer.transaction(Repo)

 ingest(writer, changes, opts)

 @spec ingest(t(), Phoenix.Sync.Writer.Format.transaction_data(), parse_opts()) :: t()

Add the given changes to the operations that will be applied within a transaction/3.
Examples:
{:ok, txid} =
 Phoenix.Sync.Writer.new()
 |> Phoenix.Sync.Writer.allow(MyApp.Todo)
 |> Phoenix.Sync.Writer.ingest(changes, format: MyApp.MutationFormat)
 |> Phoenix.Sync.Writer.ingest(other_changes, parser: &MyApp.MutationFormat.parse_other/1)
 |> Phoenix.Sync.Writer.ingest(more_changes, parser: {MyApp.MutationFormat, :parse_more, []})
 |> Phoenix.Sync.Writer.transaction(MyApp.Repo)
Supported options:
	:format (Format.t()) - A module implementing the Phoenix.Sync.Writer.Format
behaviour.
See Phoenix.Sync.Writer.Format.

	:parser (Phoenix.Sync.Writer.Format.parser_fun() | mfa()) - A function that parses some input data and returns a
%Transaction{} struct or an error.
See Phoenix.Sync.Writer.Format.parse_transaction/1.

 new()

 @spec new() :: t()

Create a new empty writer.
Empty writers will reject writes to any tables. You should configure writes
to the permitted tables by calling allow/3.

 operation_name(ctx)

Return a unique operation name for use in pre_apply or post_apply callbacks.
Ecto.Multi requires that all operation names be unique within a
transaction. This function gives you a simple way to generate a name for your
own operations that is guarateed not to conflict with any other.
Example:
Phoenix.Sync.Writer.new()
|> Phoenix.Sync.Writer.allow(
 MyModel,
 pre_apply: fn multi, changeset, context ->
 name = Phoenix.Sync.Writer.operation_name(context)
 Ecto.Multi.insert(multi, name, AuditEvent.for_changeset(changeset))
 end
)

 operation_name(ctx, label)

 @spec operation_name(context(), term()) :: term()

Like operation_name/1 but allows for a custom label.

 parse_transaction(changes, opts)

 @spec parse_transaction(Phoenix.Sync.Writer.Format.transaction_data(), parse_opts()) ::
 {:ok, Phoenix.Sync.Writer.Transaction.t()} | {:error, term()}

Use the parser configured in the given Writer
instance to decode the given transaction data.
This can be used to handle mutation operations explicitly:
{:ok, txn} = Phoenix.Sync.Writer.parse_transaction(my_json_tx_data, format: Phoenix.Sync.Writer.Format.TanstackDB)

{:ok, txid} =
 Repo.transaction(fn ->
 Enum.each(txn.operations, fn operation ->
 # do something wih the given operation
 # raise if something is wrong...
 end)
 # return the transaction id
 Phoenix.Sync.Writer.txid!(Repo)
 end)

 to_multi(writer)

 @spec to_multi(t()) :: Ecto.Multi.t()

Given a writer configuration created using allow/3 translate the list of
mutations into an Ecto.Multi operation.
Example:
%Ecto.Multi{} = multi =
 Phoenix.Sync.Writer.new()
 |> Phoenix.Sync.Writer.allow(MyApp.Todos.Todo, check: &my_check_function/1)
 |> Phoenix.Sync.Writer.allow(MyApp.Options.Option, check: &my_check_function/1)
 |> Phoenix.Sync.Writer.ingest(changes, format: Phoenix.Sync.Writer.Format.TanstackDB)
 |> Phoenix.Sync.Writer.to_multi()
If you want to add extra operations to the mutation transaction, beyond those
applied by any pre_apply or post_apply callbacks in your mutation config then use
the functions in Ecto.Multi to do those as normal.
Use transaction/3 to apply the changes to the database and return the
transaction id.
to_multi/1 builds an Ecto.Multi struct containing the operations required to
write the mutation operations to the database.
The order of operation is:

 1. Parse

The transaction data is parsed, using either the format or the parser function
supplied in ingest/3.

 2. Check

The user input data in each operation in the transaction is tested for validity
via the check function.
At this point no database operations have taken place. Errors at the parse or
check stage result in an early exit. The purpose of the check callback is
sanity check the incoming mutation data against basic sanitization rules, much
as you would do with Plug middleware and controller params pattern matching.
Now that we have a list of validated mutation operations, the next step is:

 3. Before-all

Perform any actions defined in the before_all callback.
This only happens once per transaction, the first time the model owning the
callback is included in the operation list.
The following actions happen once per operation in the transaction:

 4. Load

The load function is called to retrieve the source row from the database
(for update and delete operations), or the schema's __struct__/0
function is called to instantiate an empty struct (insert).

 5. Validate

The validate function is called with the result of the load function
and the operation's changes.

 6. Pre-apply

The pre_apply callback is called with a multi instance, the result of the
validate function and the current Context. The result is
merged into the transaction's ongoing Ecto.Multi.

 7. Apply

The actual operation is applied to the database using one of
Ecto.Multi.insert/4, Ecto.Multi.update/4 or Ecto.Multi.delete/4, and

 8. Post-apply

Finally the post_apply callback is called.
Any error in any of these stages will abort the entire transaction and leave
your database untouched.

 to_multi(writer, changes, opts)

 @spec to_multi(t(), Phoenix.Sync.Writer.Format.transaction_data(), parse_opts()) ::
 Ecto.Multi.t()

Ingest changes and map them into an Ecto.Multi instance ready to apply
using Phoenix.Sync.Writer.transaction/3 or Ecto.Repo.transaction/2.
This is a wrapper around ingest/3 and to_multi/1.
Example:
%Ecto.Multi{} = multi =
 Phoenix.Sync.Writer.new()
 |> Phoenix.Sync.Writer.allow(MyApp.Todos.Todo, check: &my_check_function/1)
 |> Phoenix.Sync.Writer.allow(MyApp.Options.Option, check: &my_check_function/1)
 |> Phoenix.Sync.Writer.to_multi(changes, format: Phoenix.Sync.Writer.Format.TanstackDB)

 transact(changes, repo, operation_fun, opts)

 @spec transact(
 Phoenix.Sync.Writer.Format.transaction_data(),
 Ecto.Repo.t(),
 operation_fun :: (Phoenix.Sync.Writer.Operation.t() ->
 :ok | {:ok, any()} | {:error, any()}),
 transact_opts()
) :: {:ok, txid()} | {:error, any()}

Apply operations from a mutation directly via a transaction.
operation_fun is a 1-arity function that receives each of the
%Phoenix.Sync.Writer.Operation{} structs within the mutation data and
should apply them appropriately. It should return :ok or {:ok, result} if
successful or {:error, reason} if the operation is invalid or failed to
apply. If any operation returns {:error, _} or raises then the entire
transaction is aborted.
This function will return {:error, reason} if the transaction data fails to parse.
{:ok, txid} =
 Phoenix.Sync.Writer.transact(
 my_encoded_txn,
 MyApp.Repo,
 fn
 %{operation: :insert, relation: [_, "todos"], change: change} ->
 MyApp.Repo.insert(...)
 %{operation: :update, relation: [_, "todos"], data: data, change: change} ->
 MyApp.Repo.update(Ecto.Changeset.cast(...))
 %{operation: :delete, relation: [_, "todos"], data: data} ->
 # we don't allow deletes...
 {:error, "invalid delete"}
 end,
 format: Phoenix.Sync.Writer.Format.TanstackDB,
 timeout: 60_000
)
Any of the opts not used by this module are passed onto the
Ecto.Repo.transaction/2 call.
This is equivalent to the below:
{:ok, txn} =
 Phoenix.Sync.Writer.parse_transaction(
 my_encoded_txn,
 format: Phoenix.Sync.Writer.Format.TanstackDB
)

{:ok, txid} =
 MyApp.Repo.transaction(fn ->
 Enum.each(txn.operations, fn
 %{operation: :insert, relation: [_, "todos"], change: change} ->
 # insert a Todo
 %{operation: :update, relation: [_, "todos"], data: data, change: change} ->
 # update a Todo
 %{operation: :delete, relation: [_, "todos"], data: data} ->
 # we don't allow deletes...
 raise "invalid delete"
 end)
 Phoenix.Sync.Writer.txid!(MyApp.Repo)
 end, timeout: 60_000)

 transaction(writer_or_multi, repo, opts \\ [])

 @spec transaction(t() | Ecto.Multi.t(), Ecto.Repo.t(), keyword()) ::
 {:ok, txid(), Ecto.Multi.changes()} | Ecto.Multi.failure()

Runs the mutation inside a transaction.
Since the mutation operation is expressed as an Ecto.Multi operation, see
the Ecto.Repo docs
for the result if any of your mutations returns an error.
Phoenix.Sync.Writer.new()
|> Phoenix.Sync.Writer.allow(MyApp.Todos.Todo)
|> Phoenix.Sync.Writer.allow(MyApp.Options.Option)
|> Phoenix.Sync.Writer.ingest(
 changes,
 format: Phoenix.Sync.Writer.Format.TanstackDB
)
|> Phoenix.Sync.Writer.transaction(MyApp.Repo)
|> case do
 {:ok, txid, _changes} ->
 # return the txid to the client
 Plug.Conn.send_resp(conn, 200, Jason.encode!(%{txid: txid}))
 {:error, _failed_operation, failed_value, _changes_so_far} ->
 # extract the error message from the changeset returned as `failed_value`
 error =
 Ecto.Changeset.traverse_errors(failed_value, fn {msg, opts} ->
 Regex.replace(~r"%{(w+)}", msg, fn _, key ->
 opts |> Keyword.get(String.to_existing_atom(key), key) |> to_string()
 end)
 end)
 Plug.Conn.send_resp(conn, 400, Jason.encode!(error))
 end
Also supports normal fun/0 or fun/1 style transactions much like
Ecto.Repo.transaction/2, returning the txid of the operation:
{:ok, txid, todo} =
 Phoenix.Sync.Writer.transaction(fn ->
 Repo.insert!(changeset)
 end, Repo)

 txid(changes)

 @spec txid(Ecto.Multi.changes()) :: {:ok, txid()} | :error

Extract the transaction id from changes or from a Ecto.Repo within a
transaction.
This allows you to use a standard Ecto.Repo.transaction/2 call to apply
mutations defined using apply/2 and extract the transaction id afterwards.
Example
{:ok, changes} =
 Phoenix.Sync.Writer.new()
 |> Phoenix.Sync.Writer.allow(MyApp.Todos.Todo)
 |> Phoenix.Sync.Writer.allow(MyApp.Options.Option)
 |> Phoenix.Sync.Writer.to_multi(changes, format: Phoenix.Sync.Writer.Format.TanstackDB)
 |> MyApp.Repo.transaction()

{:ok, txid} = Phoenix.Sync.Writer.txid(changes)
It also allows you to get a transaction id from any active transaction:
MyApp.Repo.transaction(fn ->
 {:ok, txid} = Phoenix.Sync.Writer.txid(MyApp.Repo)
end)
Attempting to run txid/1 on a repo outside a transaction will return an
error.

 txid!(changes)

 @spec txid!(Ecto.Multi.changes()) :: txid()

Returns the a transaction id or raises on an error.
See txid/1.

 Phoenix.Sync.Writer.Context - Phoenix.Sync v0.4.3

Phoenix.Sync.Writer.Context

Provides context within callback functions.

 Fields

	index - the 0-indexed position of the current operation within the transaction
	changes - the current Ecto.Multi changes so far
	operation - the current Phoenix.Sync.Writer.Context.Operation
	callback - the name of the current callback, :pre_apply or :post_apply
	schema - the Ecto.Schema module associated with the current operation

 Phoenix.Sync.Writer.Format - Phoenix.Sync v0.4.3

Phoenix.Sync.Writer.Format behaviour

Defines a behaviour that applications can implement in order to handle custom
data formats within a Phoenix.Sync.Writer
The exact format of the change messages coming from the client is
unimportant, however Phoenix.Sync.Writer requires certain essential
information that needs to be included.
	operation - one of insert, update or delete
	relation - the table name that the operation applies to.
	data - the original data before the mutation was applied. Required for
update or delete operations
	changes - the changes to apply. Required for insert and update operations

However you choose to encode this information on the client, you simply need
to set the format of your write configuration using to a module that
implements this behaviour.
Implementation guide
Once you have parsed the data coming from the client, over HTTP or even raw
TCP, use Phoenix.Sync.Writer.Operation.new/4 (or
Phoenix.Sync.Writer.Transaction.operation/4) to validate the values and
create a %Phoenix.Sync.Writer.Operation{} struct.
Phoenix.Sync.Writer.Transaction.parse_operations/2 is a helper function for
error handling when mapping a list of encoded operation data using
Phoenix.Sync.Writer.Transaction.operation/4.

 Example:

We use Protocol buffers to encode the incoming information using :protox
and implement this module's parse_transaction/1 callback using the Protox decode functions:
defmodule MyApp.Protocol do
 use Protox,
 namespace: __MODULE__,
 schema: ~S[
 syntax: "proto2";
 message Operation {
 enum Op {
 INSERT = 0;
 UPDATE = 1;
 DELETE = 2;
 }
 required Op op = 1;
 string table = 2;
 map<string, string> original = 3;
 map<string, string> modified = 4;
 }
 message Transaction {
 repeated Operation operations = 1;
 }
]

 alias Phoenix.Sync.Writer

 @behaviour Phoenix.Sync.Writer.Format

 @impl Phoenix.Sync.Writer.Format
 def parse_transaction(proto) when is_binary(proto) do
 with {:ok, %{operations: ops}} <- MyApp.Protocol.Transaction.decode(proto),
 {:ok, operations} <- Writer.Transaction.parse_operations(ops, &convert_operation/1) do
 {:ok, %Writer.Transaction{operations: operations}
 end
 end

 defp convert_operation(%MyApp.Protocol.Operation{} = operation) do
 Writer.Transaction.operation(
 operation.op,
 operation.table,
 operation.original,
 operation.modified
)
 end
end
We use our protocol module as the format when we apply/4 our transaction
data and we can just pass our serialized protobuf message as the mutation data:
{:ok, txid, _changes} =
 Phoenix.Sync.Writer.new()
 |> Phoenix.Sync.Writer.apply(protobuf_data, MyApp.Repo, format: MyApp.Protocol)

 Summary

 Types

 parse_transaction_result()

 parser_fun()

 t()

 transaction_data()

 Raw data from a client that will be parsed to a Phoenix.Sync.Writer.Format.Transaction by the Writer's format parser

 Callbacks

 parse_transaction(term)

 Translate some data format into a Phoenix.Sync.Writer.Transaction with a
list of operations to apply.

 Types

 parse_transaction_result()

 @type parse_transaction_result() ::
 {:ok, Phoenix.Sync.Writer.Transaction.t()} | {:error, term()}

 parser_fun()

 @type parser_fun() :: (transaction_data() -> parse_transaction_result()) | mfa()

 t()

 @type t() :: module()

 transaction_data()

 @type transaction_data() :: term()

Raw data from a client that will be parsed to a Phoenix.Sync.Writer.Format.Transaction by the Writer's format parser

 Callbacks

 parse_transaction(term)

 @callback parse_transaction(term()) :: parse_transaction_result()

Translate some data format into a Phoenix.Sync.Writer.Transaction with a
list of operations to apply.

 Phoenix.Sync.Writer.Format.TanstackDB - Phoenix.Sync v0.4.3

Phoenix.Sync.Writer.Format.TanstackDB

Implements the Phoenix.Sync.Writer.Format behaviour for the data format used by
TanStack/db.

 Summary

 Functions

 parse_operation(m)

 Functions

 parse_operation(m)

 Phoenix.Sync.Writer.Operation - Phoenix.Sync v0.4.3

Phoenix.Sync.Writer.Operation

Represents a mutation operation received from a client.
To handle custom formats, translate incoming changes into a Operation
struct using new/4.

 Summary

 Types

 new_result()

 t()

 Functions

 new(operation, table, data, changes)

 Takes data from a mutation and validates it before returning a struct.

 new!(operation, table, data, changes)

 Types

 new_result()

 @type new_result() :: {:ok, t()} | {:error, String.t()}

 t()

 @type t() :: %Phoenix.Sync.Writer.Operation{
 changes: map(),
 data: map(),
 index: term(),
 operation: :insert | :update | :delete,
 relation: binary() | [binary(), ...]
}

 Functions

 new(operation, table, data, changes)

 @spec new(binary() | atom(), binary() | [binary(), ...], map() | nil, map() | nil) ::
 new_result()

Takes data from a mutation and validates it before returning a struct.

 Parameters

	operation one of "insert","INSERT",:insert,:INSERT,"update","UPDATE",:update,:UPDATE,"delete","DELETE",:delete,:DELETE
	table the client table name for the write. Can either be a plain string
name "table" or a list with ["schema", "table"].
	data the original values (see Updates vs Inserts vs Deletes)
	changes any updates to apply (see Updates vs Inserts vs Deletes)

 Updates vs Inserts vs Deletes

The Phoenix.Sync.Writer.Operation struct has two value fields, data and changes.
data represents what's already in the database, and changes what's
going to be written over the top of this.
For insert operations, data is ignored so the new values for the
inserted row should be in changes.
For deletes, changes is ignored and data should contain the row
specification to delete. This needn't be the full row, but must contain
values for all the primary keys for the table.
For updates, data should contain the original row values and changes
the changed fields.
These fields map to the arguments Ecto.Changeset.change/2 and
Ecto.Changeset.cast/4 functions, data is used to populate the first
argument of these functions and changes the second.

 new!(operation, table, data, changes)

 @spec new!(binary() | atom(), binary() | [binary(), ...], map() | nil, map() | nil) ::
 t()

 Phoenix.Sync.Writer.Transaction - Phoenix.Sync v0.4.3

Phoenix.Sync.Writer.Transaction

Represents a transaction containing a list of Phoenix.Sync.Writer.Operations
that should be applied atomically.
{:ok, operations} <- Transaction.parse_operations(operations, &parse_operation/1)

%Transaction{} = Transaction.new(operations)

 Summary

 Types

 id()

 t()

 Functions

 empty()

 Return a new, empty, Transaction struct.

 new(operations)

 operation(operation, table, data, changes)

 See Phoenix.Sync.Writer.Operation.new/4.

 operation!(operation, table, data, changes)

 See Phoenix.Sync.Writer.Operation.new!/4.

 parse_operations(raw_operations, parse_function)

 Helper function to parse a list of encoded Operations.

 Types

 id()

 @type id() :: integer()

 t()

 @type t() :: %Phoenix.Sync.Writer.Transaction{
 operations: [Phoenix.Sync.Writer.Operation.t(), ...],
 txid: nil | id()
}

 Functions

 empty()

 @spec empty() :: t()

Return a new, empty, Transaction struct.

 new(ope