

 PhoenixTest

 v0.4.0

 Table of contents

 	Changelog

 	Upgrade Guides

 	

 	Modules

 	PhoenixTest

Changelog

Noteworthy changes are included here. For a full version of changes, see git
history.
To see dates a version was published, see the hex package
page

 0.4.0

 Breaking

	Select options were previously matched inexactly (as a substring match). That
made it impossible to differentiate between two options where one was a subset
of the other.
For example, using select(session, "Email", from: "Contact") could not
differentiate between the Email and Email and SMS options. Select options
are now matched exactly. Commits dc7ba01 and e675561.
This is a technically a bug fix, but it's also a potentially breaking change
for existing tests that accidentally relied on that behavior. If you need
inexact matches on options, please open an issue describing your use case.

 Added

	Adds PhoenixTest.upload/3 to test file uploads. Commit d717970
	✨ Form helpers now take :exact option. Commits c4f9164 and cb19f86
	Form helpers now allow passing CSS selectors to target inputs. Commits
30b4eca, 12934b8, bd595f8, 250e25e, ef2999e

 Improvements

	Raise nice error if field is missing name attribute. Commit bb6950f
	Docs: Add syntax highlighting for heex and html. Commit e308f9f

 Fixes

	Ignore phx-* attrs when inferring selector. Commit b5d28c8
	Don't error on default form input without name attribute. Commit 3bd6d7a

 0.3.2

 Added

	Check/uncheck works with phx-click outside forms. Commit 82fa973
	Select works with phx-click outside forms. Commit 1493897
	Radio buttons work with phx-click outside forms. Commit 8745ee1

 Improvements

	Send _target event with phx-change events. Commit ce093f1
	Use [id=<id>] when querying by ID. Commits 5dd10f5 and b79e8a3
	Allow non-string data types as inputs to fields. Commit 5cc0936
	Support default values on textareas. Commit 41c70e0

 Fixes

	Fix refute_has/2 to handle :at option without text. Commit 33a02bf

 0.3.1

 Improvements

	Do not assume first option to be selected by default for multiple select. Commit f146186
	Handle multiple select in forms. Commit 6b6512d
	Support pre-filled number inputs. Commit 81f03aa

 Fixes

	Fix open_browser/1 doc example. Commit 8f39959
	Deep merge form data in nested/prefixed forms. Commit 34b73b0
	Fix uncheck/2 in nested forms. Commit e1a2408
	Fix: Preserve '?' in checkbox name. Commit 2e032ef
	Fix: Deep merge nested form button value (static). Commit 4303b4a

 0.3.0

 Added

	Adds PhoenixTest.unwrap/2 as an escape hatch. Commit 87be9c5.

 Improvements

	We now handle redirects on phx-change events. Commit cf1687c.
	Click button can submit forms when not nested in form. Commit e173f5b.

 Fixes

	Fix assert_path live navigation with query params. Commit 6c58f27.

 Removed

	Removes deprecated fill_form/3 and submit_form/3. Commit fef7e82.
	Removes deprecated assert_has/refute_has with text as positional argument.
Commit 82f4170.

 0.2.13

 Deprecations

	Deprecates fill_form/3 and submit_form/3. Commit 996458a. See upgrade
guides for more info.

 Additions

	Adds fill_in/3 helper. Commit 6c7a1d2.
	Adds select/3 helper. Commit 6efeadf.
	Adds choose/2 helper. Commit 5f58604.
	Adds within/3 helper. Commit 10b7269.
	Adds submit/1 helper. Commit fff82d1.
	Adds check/2 and uncheck/2 helpers. Commit 58110b4.

 0.2.12

 Fixes

	Fix checked checkbox being overridden by hidden input. Commit a621f34
	Handle multiple checkboxes inside a label. Commit a8fc877
	Fix assert_path/refute_path to handle live patching. Commit 48a29a3
	Fix assert_path/refute_path to handle Live Navigation. Commit 842ab36
	Fix assert_has/refute_has title matching exactly. Commit 7b2f243
	Update assert_has examples in README to new API. Commit cb7529b

 0.2.11

 Improvements

	Add assert_path and refute_path assertions helpers. Commit f2ab02c
	Include pre-selected text input values, selects, radio buttons, and checkboxes
in form submissions. Commits 32a8da5, d253eba, ebba679
	Include button's name and value if present. Commit e54c64f
	click_button submits form without having to fill_form before it does.
Commit 8d16b7e

 Fixes

	Follow multiple redirects in Live.click_link. Commit 28de102

 0.2.10

 Improvements

	Add count option in assertions. Commit 16fd0a4
	Add exact option in assertions. Commit da772f1
	Add at option in assertions. Commit 5da74ec

 Deprecations

	Deprecate assert_has/3 where text is the third argument (positional). Use
assert_has/3 with text: option instead. Commit 193c21a

 0.2.9

 Improvements

	Adds assert_has/2 and refute_has/2. Commits 3756a47 and 9709b7a.
	Follows redirect on visit/2. Commit b4f49be

 Fixes

	Do not always assume submit_button after fill_form is for submitting the
form. Commit e193a07

 0.2.8

 Added

	Adds WSL2 for open_browser/2. Commit b852014.
	Relax Elixir version requirement to 1.15. Commit 3cb9586
	Support visiting non-200 pages in Static implementation. Commit 4964ab2.

 0.2.7

 Fixes

	Fixes open_browser/1 not existing. Commit 7407b19.

 0.2.6

 Added

	Adds open_browser/1 function to both Live and Static implementations.
Commit b9d8347.
	Handle forms that use data attributes and Phoenix.HTML.js to submit forms.
Commit d699792.

 Fixes

	Correctly handles forms that PUT/DELETE (through hidden inputs). Commit
3efa4c0.

 0.2.5

 Added

	Introduce ability to assert and refute on page title. Commit 8552ec7.
	Handle regular form submission from LiveView pages when using submit_form.
Commit fc4d3ef.

 Fixes

	Improve Live validation of form fields to properly handle nested fields in
forms. Commits 180dc0d and c275c0c.

 0.2.4

 Added

	Handle form redirects from static pages. Commit
4c39920
	Handle regular form submission from LiveView pages with fill_form +
click_button. Commit fe755de

 Fixes

	Use Html.raw/1 for more errors to handle nested buttons.
82e7415

 0.2.3

 Added

	Handle form redirects (to Live and static pages) from Live pages. Commit
531e5e9
	Expand documentation on nested forms. Commit
6809389

 Fixes

	Allow multiple matching elements in assert_has. Commit
ac0e167

 0.2.2

 Added

	Raise AssertionError instead of RuntimeError in assertions for more
consistent ExUnit error messages. Commit
117bc59
	Update fill_form to handle that aren't direct children of the form
element. Commit
46d6229

 0.2.1

 Added

	Improve printing of complex nested content in assertions. Commit
7151834
	Better error messages in forms when multiple submit buttons/inputs are found.
Commit 82492c6

 Fixes

	Allow using refute_has in pipes in the same way assert_has already works.
Commit 0484979

 0.2.0

 Breaking changes

	Update our static implementation to raise when we find many elements. That
brings it in line with how our LiveView implementation works. Commit
daa4dca

 Improved

	Improves error messages in assertions. Commit c995fc1

 0.1.1

 Added

	Adds click_link/3 and click_button/3 which allow for specifying a CSS
selector. Commit c7401b6.

 0.1.0

	Initial version of the library.

Upgrade Guides

 Upgrading to 0.2.13

Version 0.2.13 deprecates fill_form/3 and submit_form/3.
🥺 I know it's a pain. I'm sorry about that.
I don't take changing APIs lightly (even pre 1.0)... but I think you'll like
these changes.

 New form helpers

Let me introduce you to our new form helpers:
	fill_in/3
	select/3
	choose/3
	check/3
	uncheck/3

These new form helpers target elements by labels! 🥳
Instead of relying on the underlying data structures generated by Phoenix
forms and changesets, you can now specify which label you're targeting.
Change this: 👇
session
|> fill_form("form", user: %{
 name: "Aragorn",
 admin: true,
 country: "Arnor"
})
To this: 👇
session
|> fill_in("Name", with: "Aragorn")
|> check("Admin")
|> select("Arnor", from: "Countries")
The new format:
	encourages us (me included!) to use labels in forms,
	decouples the testing of our forms from the underlying shape of a changeset or
Phoenix form -- something that's a mere implementation detail, and
	allows us to express our tests closer to the language a user would use when
seeing a page.

But what if I don't want the label to show?
It's a good idea to have labels for accessibility -- even if they're not visible
on the page. In those cases, you should hide them with CSS.
For example, if you use Tailwind, you can add a sr-only class to your label.
That will mark it as "screen-reader only" and hide it.

 Targeting a form to fill out

Since fill_form/3 used to allow targeting a form by CSS selector, you may want
to target a form via CSS selector with the new format. To do that, you can scope
all of the form helpers using within/3:
session
|> within("#user-form", fn session ->
 session
 |> fill_in("Name", with: "Aragorn")
 |> check("Admin")
 |> select("Arnor", from: "Countries")
end)
NOTE: you may no longer need to target your form via CSS selector. The new
helpers are a lot smarter since they're looking for the labels and their
associated inputs or options.
But if you have multiple forms with the same labels (even when those labels
point to different inputs), then you might have to scope your form-filling. And
that's where within/3 can be handy.

 Submitting forms without clicking a button

Once we've filled out a form, we typically click a button with click_button/2
to submit the form. But sometimes you want to emulate what would happen by just
pressing <Enter> (or do what submit_form/3 used to do).
For that case, you can use submit/1 to submit the form you just filled out.
session
|> fill_in("Name", with: "Aragorn")
|> check("Admin")
|> select("Arnor", from: "Countries")
|> submit()

PhoenixTest

PhoenixTest provides a unified way of writing feature tests -- regardless of
whether you're testing LiveView pages or static pages.
It also handles navigation between LiveView and static pages seamlessly. So, you
don't have to worry about what type of page you're visiting. Just write the
tests from the user's perspective.
Thus, you can test a flow going from static to LiveView pages and back without
having to worry about the underlying implementation.
This is a sample flow:
test "admin can create a user", %{conn: conn} do
 conn
 |> visit("/")
 |> click_link("Users")
 |> fill_in("Name", with: "Aragorn")
 |> choose("Ranger")
 |> assert_has(".user", text: "Aragorn")
end
Note that PhoenixTest does not handle JavaScript. If you're looking for
something that supports JavaScript, take a look at
Wallaby.

 Setup

PhoenixTest requires Phoenix 1.7+ and LiveView 0.20+. It may work with
earlier versions, but I have not tested that.

 Installation

Add phoenix_test to your list of dependencies in mix.exs:
def deps do
 [
 {:phoenix_test, "~> 0.4.0", only: :test, runtime: false}
]
end

 Configuration

In config/test.exs specify the endpoint to be used for routing requests:
config :phoenix_test, :endpoint, MyAppWeb.Endpoint

 Getting PhoenixTest helpers

PhoenixTest helpers can be included via import PhoenixTest.
But since each test needs a conn struct to get started, you'll likely want
to set up a few things before that.
There are two ways to do that.

 With ConnCase

If you plan to use ConnCase solely for PhoenixTest, then you can import
the helpers there:
using do
 quote do
 # importing other things for ConnCase

 import PhoenixTest

 # doing other setup for ConnCase
 end
end

 Adding a FeatureCase

If you want to create your own FeatureCase helper module like ConnCase,
you can copy the code below which can be used from your tests (replace
MyApp with your app's name):
defmodule MyAppWeb.FeatureCase do
 use ExUnit.CaseTemplate

 using do
 quote do
 use MyAppWeb, :verified_routes

 import MyAppWeb.FeatureCase

 import PhoenixTest
 end
 end

 setup tags do
 pid = Ecto.Adapters.SQL.Sandbox.start_owner!(MyApp.Repo, shared: not tags[:async])
 on_exit(fn -> Ecto.Adapters.SQL.Sandbox.stop_owner(pid) end)

 {:ok, conn: Phoenix.ConnTest.build_conn()}
 end
end
Note that we assume your Phoenix project is using Ecto and its phenomenal
SQL.Sandbox. If it doesn't, feel free to remove the SQL.Sandbox code
above.

 Usage

Now that we have all the setup out of the way, we can create tests like
this:
test/my_app_web/features/admin_can_create_user_test.exs

defmodule MyAppWeb.AdminCanCreateUserTest do
 use MyAppWeb.FeatureCase, async: true

 test "admin can create user", %{conn: conn} do
 conn
 |> visit("/")
 |> click_link("Users")
 |> fill_in("Name", with: "Aragorn")
 |> fill_in("Email", with: "aragorn@dunedain.com")
 |> click_button("Create")
 |> assert_has(".user", text: "Aragorn")
 end
end

 Filling out forms

We can fill out forms by targetting their inputs, selects, etc. by label:
test "admin can create user", %{conn: conn} do
 conn
 |> visit("/")
 |> click_link("Users")
 |> fill_in("Name", with: "Aragorn")
 |> select("Elessar", from: "Aliases")
 |> choose("Human") # <- choose a radio option
 |> check("Ranger") # <- check a checkbox
 |> click_button("Create")
 |> assert_has(".user", text: "Aragorn")
end
For more info, see fill_in/3, select/3, choose/3, check/2,
uncheck/2.

 Submitting forms without clicking a button

Once we've filled out a form, you can click a button with
click_button/2 to submit the form. But sometimes you want to emulate what
would happen by just pressing <Enter>.
For that case, you can use submit/1 to submit the form you just filled
out.
session
|> fill_in("Name", with: "Aragorn")
|> check("Ranger")
|> submit()
For more info, see submit/1.

 Targeting which form to fill out

If you find yourself in a situation where you have multiple forms with the
same labels (even when those labels point to different inputs), then you
might have to scope your form-filling.
To do that, you can scope all of the form helpers using within/3:
session
|> within("#user-form", fn session ->
 session
 |> fill_in("Name", with: "Aragorn")
 |> check("Ranger")
 |> click_button("Create")
end)
For more info, see within/3.

 Summary

 Functions

 assert_has(session, selector)

 Assert helper to ensure an element with given CSS selector is present.

 assert_has(session, selector, opts)

 Assert helper to ensure an element with given CSS selector and options.

 assert_path(session, path)

 Assert helper to verify current request path. Takes an optional query_params
map.

 assert_path(session, path, opts)

 Same as assert_path/2 but takes an optional query_params map.

 check(session, label, opts \\ [exact: true])

 Check a checkbox.

 check(session, checkbox_selector, label, opts)

 Like check/3 but allows you to specify the checkbox's CSS selector.

 choose(session, label, opts \\ [exact: true])

 Choose a radio button option.

 choose(session, radio_selector, label, opts)

 Like choose/3 but you can specify an input's selector (in addition to the
label).

 click_button(session, text)

 Perfoms action defined by button (and based on attributes present).

 click_button(session, selector, text)

 Performs action defined by button with CSS selector and text.

 click_link(session, text)

 Clicks a link with given text and performs the action.

 click_link(session, selector, text)

 Clicks a link with given CSS selector and text and performs the action.
selector to target the link.

 fill_in(session, label, attrs)

 Fills text inputs and textareas, targetting the elements by their labels.

 fill_in(session, input_selector, label, attrs)

 Like fill_in/3 but you can specify an input's selector (in addition to the
label).

 open_browser(session)

 Open the default browser to display current HTML of session.

 refute_has(session, selector)

 Opposite of assert_has/2 helper. Verifies that element with
given CSS selector is not present.

 refute_has(session, selector, opts)

 Opposite of assert_has/3 helper. Verifies that element with
given CSS selector and text is not present.

 refute_path(session, path)

 Verifies current request path is NOT the one provided. Takes an optional
query_params map for more specificity.

 refute_path(session, path, opts)

 Same as refute_path/2 but takes an optional query_params for more specific
refutation.

 select(session, option, attrs)

 Selects an option from a select dropdown.

 select(session, select_selector, option, attrs)

 Like select/3 but you can specify a select's CSS selector (in addition to
the label).

 submit(session)

 Helper to submit a pre-filled form without clicking a button (see fill_in/3,
select/3, choose/3, etc. for how to fill a form.)

 uncheck(session, label, opts \\ [exact: true])

 Uncheck a checkbox.

 uncheck(session, checkbox_selector, label, opts)

 Like uncheck/3 but allows you to specify the checkbox's CSS selector.

 unwrap(session, fun)

 Escape hatch to give users access to underlying "native" data structure.

 upload(session, label, path, opts \\ [exact: true])

 Upload a file.

 upload(session, input_selector, label, path, opts)

 Like upload/4 but you can specify an input's selector (in addition to the
label).

 visit(conn, path)

 Entrypoint to create a session.

 within(session, selector, fun)

 Helpers to scope filling out form within a given selector. Use this if you
have more than one form on a page with similar labels.

 Functions

 Link to this function

 assert_has(session, selector)

 View Source

Assert helper to ensure an element with given CSS selector is present.
It'll raise an error if no elements are found, but it will not raise if more
than one matching element is found.
If you want to specify the content of the element, use assert_has/3.

 Examples

assert there's an h1
assert_has(session, "h1")

assert there's an element with ID "user"
assert_has(session, "#user")

 Link to this function

 assert_has(session, selector, opts)

 View Source

Assert helper to ensure an element with given CSS selector and options.
It'll raise an error if no elements are found, but it will not raise if more
than one matching element is found.

 Options

	text: the text filter to look for.

	exact: by default assert_has/3 will perform a substring match (e.g. a =~ b). That makes it easier to assert text within HTML elements that also
contain other HTML elements. But sometimes we want to assert the exact text is
present. For that, use exact: true. (defaults to false)

	count: the number of items you expect to match CSS selector (and text if
provided)

	at: the element to be asserted against

 Examples

assert there's an element with ID "user" and text "Aragorn"
assert_has(session, "#user", text: "Aragorn")
 # ^ succeeds if text found is "Aragorn" or "Aragorn, Son of Arathorn"

assert there's an element with ID "user" and text "Aragorn"
assert_has(session, "#user", text: "Aragorn", exact: true)
 # ^ succeeds only if text found is "Aragorn". Fails if finds "Aragorn, Son of Arathorn"

assert there are two elements with class "posts"
assert_has(session, ".posts", count: 2)

assert there are two elements with class "posts" and text "Hello"
assert_has(session, ".posts", text: "Hello", count: 2)

assert the second element in the list of ".posts" has text "Hello"
assert_has(session, ".posts", at: 2, text: "Hello")

 Link to this function

 assert_path(session, path)

 View Source

Assert helper to verify current request path. Takes an optional query_params
map.

 Note on Live Patch Implementation

Capturing the current path in live patches relies on message passing and
could, therefore, be subject to intermittent failures. Please open an issue if
you see intermittent failures when using assert_path with live patches so we
can improve the implementation.

 Examples

assert we're at /users
conn
|> visit("/users")
|> assert_path("/users")

assert we're at /users?name=frodo
conn
|> visit("/users")
|> assert_path("/users", query_params: %{name: "frodo"})

 Link to this function

 assert_path(session, path, opts)

 View Source

Same as assert_path/2 but takes an optional query_params map.

 Link to this function

 check(session, label, opts \\ [exact: true])

 View Source

Check a checkbox.
To uncheck a checkbox, see uncheck/3.

 Options

	exact: whether to match label text exactly. (Defaults to true)

 Inside a form

If the form is a LiveView form, and if the form has a phx-change attribute
defined, check/3 will trigger the phx-change event.
This can be followed by a click_button/3 or submit/1 to submit the form.

 Example

Given we have a form that contains this:
<label for="admin">Admin</label>
<input type="hidden" name="admin" value="off" />
<input id="admin" type="checkbox" name="admin" value="on" />
We can check the "Admin" option:
session
|> check("Admin")

 Outside of a form

If the checkbox exists outside of a form, check/3 will trigger the
phx-click event.

 Example

<label for="admin">Admin</label>
<input phx-click="toggle-admin" id="admin" type="checkbox" name="admin" value="on" />
We can check the "Admin" option:
session
|> check("Admin")
And that will send a "toggle-admin" event with the input's value as the
payload.

 Complex labels

If we have a complex label, you can use exact: false to target part of the
label.

 Example

Given we have a form that contains this:
<label for="admin">Admin *</label>
<input type="hidden" name="admin" value="off" />
<input id="admin" type="checkbox" name="admin" value="on" />
We can check the "Admin" option:
session
|> check("Admin", exact: false)

 Link to this function

 check(session, checkbox_selector, label, opts)

 View Source

Like check/3 but allows you to specify the checkbox's CSS selector.
Helpful in cases when you have multiple checkboxes with the same label on the
same form.
For more on checking boxes, see check/3. To uncheck a checkbox, see
uncheck/3 and uncheck/4.

 Link to this function

 choose(session, label, opts \\ [exact: true])

 View Source

Choose a radio button option.

 Options

	exact: whether to match label text exactly. (Defaults to true)

 Inside a form

If the form is a LiveView form, and if the form has a phx-change attribute
defined, choose/3 will trigger the phx-change event.
This can be followed by a click_button/3 or submit/1 to submit the form.
If the radio button exists outside of a form, choose/3 will trigger the
phx-click event.

 Example

Given we have a form that contains this:
<input type="radio" id="email" name="contact" value="email" />
<label for="email">Email</label>

<input type="radio" id="phone" name="contact" value="phone" />
<label for="phone">Phone</label>
We can choose to be contacted by email:
session
|> choose("Email")

 Outside of a form

If the checkbox exists outside of a form, choose/3 will trigger the
phx-click event.

 Example

<input phx-click="select-contact" type="radio" id="email" name="contact" value="email" />
<label for="email">Email</label>
We can choose to be contacted by email:
session
|> choose("Email")
And we'll get a "select-contact" event with the input's value in the payload.

 Complex labels

If we have a complex label, you can use exact: false to target part of the
label.

 Example

Given we have a form that contains this:
<input type="radio" id="email" name="contact" value="email" />
<label for="email">Email *</label>
We can choose to be contacted by email:
session
|> choose("Email", exact: false)

 Link to this function

 choose(session, radio_selector, label, opts)

 View Source

Like choose/3 but you can specify an input's selector (in addition to the
label).
Helpful for cases when you have multiple radio buttons with the same label.

 Example

Consider a form containig the following:
<fieldset>
 <legend>Do you like Elixir:</legend>

 <div>
 <input name="elixir-yes" type="radio" id="elixir-yes" value="yes" />
 <label for="elixir-yes">Yes</label>
 </div>
 <div>
 <input name="elixir-no" type="radio" id="elixir-no" value="no" />
 <label for="elixir-no">No</label>
 </div>
</fieldset>

<fieldset>
 <legend>Do you like Erlang:</legend>

 <div>
 <input name="erlang-yes" type="radio" id="erlang-yes" value="yes" />
 <label for="erlang-yes">Yes</label>
 </div>
 <div>
 <input name="erlang-yes" type="radio" id="erlang-no" value="no" />
 <label for="erlang-no">No</label>
 </div>
</fieldset>
Since all radio buttons have the labels "Yes" or "No", you can target a
specific radio button like so:
session
|> choose("#elixir-yes", "Yes")

 Link to this function

 click_button(session, text)

 View Source

Perfoms action defined by button (and based on attributes present).
This can be used in a number of ways.

 Button with phx-click

If the button has a phx-click on it, it'll send the event to the LiveView.

 Example

<button phx-click="save">Save</button>
session
|> click_button("Save") # <- will send "save" event to LiveView

 Button relying on Phoenix.HTML.js

If the button acts as a form via Phoenix.HTML's data-method, data-to, and
data-csrf, this will emulate Phoenix.HTML.js and submit the form via data
attributes.
But note that this doesn't guarantee the JavaScript that handles form
submissions via data attributes is loaded. The test emulates the behavior
but you must make sure the JavaScript is loaded.
For more on that, see https://hexdocs.pm/phoenix_html/Phoenix.HTML.html#module-javascript-library

 Example

<button data-method="delete" data-to="/users/2" data-csrf="token">Delete</button>
session
|> click_button("Delete") # <- will submit form like Phoenix.HTML.js does

 Combined with fill_in/3, select/3, etc.

This function can be preceded by filling out a form.

 Example

session
|> fill_in("Name", name: "Aragorn")
|> check("Human")
|> click_button("Create")

 Submitting default data

By default, using click_button/2 will submit the form it's part of (so long
as it has a phx-click, data-* attrs, or an action).
It will also include any hidden inputs and default data (e.g. inputs with a
value set and the button's name and value if present).

 Example

<form method="post" action="/users/2">
 <input type="hidden" name="admin" value="true"/>
 <button name="complete" value="true">Complete</button>
</form>
session
|> click_button("Complete")
^ includes `%{"admin" => "true", "complete" => "true"}` in payload

 Single-button forms

click_button/2 is smart enough to use a hidden input's value with
name=_method as the method to send (e.g. when we want to send delete,
put, or patch)
That means, it is helpful to submit single-button forms.

 Example

<form method="post" action="/users/2">
 <input type="hidden" name="_method" value="delete" />
 <button>Delete</button>
</form>
session
|> click_button("Delete") # <- Triggers full form delete.

 Link to this function

 click_button(session, selector, text)

 View Source

Performs action defined by button with CSS selector and text.
See click_button/2 for more details.

 Link to this function

 click_link(session, text)

 View Source

Clicks a link with given text and performs the action.
Here's how it handles different types of a tags:
	With href: follows it to the next page
	With phx-click: it'll send the event to the appropriate LiveView
	With live redirect: it'll follow the live navigation to the next LiveView
	With live patch: it'll patch the current LiveView

 Examples

<.link href="/page/2">Page 2</.link>
<.link phx-click="next-page">Next Page</.link>
<.link navigate="next-liveview">Next LiveView</.link>
<.link patch="page/details">Page Details</.link>
session
|> click_link("Page 2") # <- follows to next page

session
|> click_link("Next Page") # <- sends "next-page" event to LiveView

session
|> click_link("Next LiveView") # <- follows to next LiveView

session
|> click_link("Page Details") # <- applies live patch

 Submitting forms

Phoenix allows for submitting forms on links via Phoenix.HTML's data-method,
data-to, and data-csrf.
We can use click_link to emulate Phoenix.HTML.js and submit the
form via data attributes.
But note that this doesn't guarantee the JavaScript that handles form
submissions via data attributes is loaded. The test emulates the behavior
but you must make sure the JavaScript is loaded.
For more on that, see https://hexdocs.pm/phoenix_html/Phoenix.HTML.html#module-javascript-library

 Example

 Delete

session
|> click_link("Delete") # <- will submit form like Phoenix.HTML.js does

 Link to this function

 click_link(session, selector, text)

 View Source

Clicks a link with given CSS selector and text and performs the action.
selector to target the link.
See click_link/2 for more details.

 Link to this function

 fill_in(session, label, attrs)

 View Source

Fills text inputs and textareas, targetting the elements by their labels.
This can be followed by a click_button/3 or submit/1 to submit the form.
If the form is a LiveView form, and if the form has a phx-change attribute
defined, fill_in/3 will trigger the phx-change event.

 Options

	with (required): the text to fill in.

	exact: whether to match label text exactly. (Defaults to true)

 Examples

Given we have a form that contains this:
<label for="name">Name</label>
<input id="name" name="name"/>
or this:
<label>
 Name
 <input name="name"/>
</label>
We can fill in the name field:
session
|> fill_in("Name", with: "Aragorn")

 Complex labels

If we have a complex label, you can use exact: false to target part of the
label.

 Example

Given the following:
<label for="name">Name *</label>
<input id="name" name="name"/>
We can fill in the name field:
session
|> fill_in("Name", with: "Aragorn", exact: false)

 Link to this function

 fill_in(session, input_selector, label, attrs)

 View Source

Like fill_in/3 but you can specify an input's selector (in addition to the
label).
Helpful for cases when you have multiple fields with the same label.

 Example

Consider a form containig the following:
<div>
 <div>
 <label for="contact_0_first_name">First Name</label>
 <input type="text" name="contact[0][first_name]" id="contact_0_first_name" />
 </div>
</div>

<div>
 <div>
 <label for="contact_1_first_name">First Name</label>
 <input type="text" name="contact[1][first_name]" id="contact_1_first_name" value="">
 </div>
</div>
Since each new contact gets the same "First Name" label, you can target a
specific input like so:
session
|> fill_in("#contact_1_first_name", with: "First Name")

 Link to this function

 open_browser(session)

 View Source

Open the default browser to display current HTML of session.

 Examples

session
|> visit("/")
|> fill_in("Name", with: "Aragorn")
|> open_browser()
|> submit()

 Link to this function

 refute_has(session, selector)

 View Source

Opposite of assert_has/2 helper. Verifies that element with
given CSS selector is not present.
It'll raise an error if any elements that match selector are found.
If you want to specify the content of the element, use refute_has/3.

 Example

refute there's an h1
refute_has(session, "h1")

refute there's an element with ID "user"
refute_has(session, "#user")

 Link to this function

 refute_has(session, selector, opts)

 View Source

Opposite of assert_has/3 helper. Verifies that element with
given CSS selector and text is not present.
It'll raise an error if any elements that match selector and options.

 Options

	text: the text filter to look for.

	exact: by default refute_has/3 will perform a substring match (e.g. a =~ b). That makes it easier to refute text within HTML elements that also
contain other HTML elements. But sometimes we want to refute the exact text is
absent. For that, use exact: true.

	count: the number of items you're expecting should not match the CSS
selector (and text if provided)

	at: the element to be refuted against

 Examples

refute there's an element with ID "user" and text "Aragorn"
refute_has(session, "#user", text: "Aragorn")

refute there's an element with ID "user" and exact text "Aragorn"
refute_has(session, "#user", text: "Aragorn", exact: true)

refute there are two elements with class "posts" (less or more will not raise)
refute_has(session, ".posts", count: 2)

refute there are two elements with class "posts" and text "Hello"
refute_has(session, ".posts", text: "Hello", count: 2)

refute the second element with class "posts" has text "Hello"
refute_has(session, ".posts", at: 2, text: "Hello")

 Link to this function

 refute_path(session, path)

 View Source

Verifies current request path is NOT the one provided. Takes an optional
query_params map for more specificity.

 Note on Live Patch Implementation

Capturing the current path in live patches relies on message passing and
could, therefore, be subject to intermittent failures. Please open an issue if
you see intermittent failures when using refute_path with live patches so we
can improve the implementation.

 Examples

refute we're at /posts
conn
|> visit("/users")
|> refute_path("/posts")

refute we're at /users?name=frodo
conn
|> visit("/users?name=aragorn")
|> refute_path("/users", query_params: %{name: "frodo"})

 Link to this function

 refute_path(session, path, opts)

 View Source

Same as refute_path/2 but takes an optional query_params for more specific
refutation.

 Link to this function

 select(session, option, attrs)

 View Source

Selects an option from a select dropdown.

 Options

	from (required): the label of the select dropdown.

	exact: whether to match label text exactly. (Defaults to true)

 Inside a form

If the form is a LiveView form, and if the form has a phx-change attribute
defined, select/3 will trigger the phx-change event.
This can be followed by a click_button/3 or submit/1 to submit the form.

 Example

Given we have a form that contains this:
<form>
 <label for="race">Race</label>
 <select id="race" name="race">
 <option value="human">Human</option>
 <option value="elf">Elf</option>
 <option value="dwarf">Dwarf</option>
 <option value="orc">Orc</option>
 </select>
</form>
We can select an option:
session
|> select("Human", from: "Race")

 Outside a form

If the select dropdown exists outside of a form, select/3 will trigger the
phx-click event associated to the option being selected (note that all
options must have a phx-click in that case).

 Examples

Given we have a form that contains this:
<label for="race">Race</label>
<select id="race" name="race">
 <option phx-click="select-race" value="human">Human</option>
 <option phx-click="select-race" value="elf">Elf</option>
 <option phx-click="select-race" value="dwarf">Dwarf</option>
 <option phx-click="select-race" value="orc">Orc</option>
</select>
We can select an option:
session
|> select("Human", from: "Race")
And we'll get an event "select-race" with the payload %{"value" => "human"}.

 Complex labels

If we have a complex label, you can use exact: false to target part of the
label.

 Example

Given we have a form that contains this:
<label for="race">Race *</label>
<select id="race" name="race">
 <option value="human">Human</option>
 <option value="elf">Elf</option>
 <option value="dwarf">Dwarf</option>
 <option value="orc">Orc</option>
</select>
We can select an option:
session
|> select("Human", from: "Race", exact: false)

 Link to this function

 select(session, select_selector, option, attrs)

 View Source

Like select/3 but you can specify a select's CSS selector (in addition to
the label).
Helpful when you have multiple selects with the same label.
For more on selecting options, see select/3.

 Link to this function

 submit(session)

 View Source

Helper to submit a pre-filled form without clicking a button (see fill_in/3,
select/3, choose/3, etc. for how to fill a form.)
Forms are typically submitted by clicking buttons. But sometimes we want to
emulate what happens when we submit a form hitting <Enter>. That's what this
helper does.
If the form is a LiveView form, and if the form has a phx-submit attribute
defined, submit/1 will trigger the phx-submit event. Otherwise, it'll
submit the form regularly.
If the form has a submit button with a name and value, submit/1 will
also include that data in the payload.

 Example

session
|> fill_in("Name", with: "Aragorn")
|> select("Human", from: "Race")
|> choose("Email")
|> submit()

 Link to this function

 uncheck(session, label, opts \\ [exact: true])

 View Source

Uncheck a checkbox.
To check a checkbox, see check/3.

 Options

	exact: whether to match label text exactly. (Defaults to true)

 Inside a form

If the form is a LiveView form, and if the form has a phx-change attribute
defined, uncheck/3 will trigger the phx-change event.
This can be followed by a click_button/3 or submit/1 to submit the form.

 Example

Given we have a form that contains this:
<label for="admin">Admin</label>
<input type="hidden" name="admin" value="off" />
<input id="admin" type="checkbox" name="admin" value="on" />
We can uncheck the "Admin" option:
session
|> uncheck("Admin")
Note that unchecking a checkbox in HTML doesn't actually send any data to the
server. That's why we have to have a hidden input with the default value (in
the example above: admin="off").

 Outside of a form

If the checkbox exists outside of a form, uncheck/3 will trigger the
phx-click event and send an empty (%{}) payload.

 Example

<label for="admin">Admin</label>
<input phx-click="toggle-admin" id="admin" type="checkbox" name="admin" value="on" />
We can uncheck the "Admin" option:
session
|> uncheck("Admin")
And that will send a "toggle-admin" event with an empty map %{} as a
payload.

 Complex labels

If we have a complex label, you can use exact: false to target part of the
label.

 Example

Given we have a form that contains this:
<label for="admin">Admin *</label>
<input type="hidden" name="admin" value="off" />
<input id="admin" type="checkbox" name="admin" value="on" />
We can uncheck the "Admin" option:
session
|> uncheck("Admin", exact: false)

 Link to this function

 uncheck(session, checkbox_selector, label, opts)

 View Source

Like uncheck/3 but allows you to specify the checkbox's CSS selector.
Helpful when you have multiple checkboxes with the same label. In those cases,
you might need to specify the selector of the labeled element.
Note that in those cases, the selector should point to the checkbox that is
visible, not to the hidden input. For more, see uncheck/2.
For more on unchecking boxes, see uncheck/3. To check a checkbox, see
check/3 and check/4.

 Link to this function

 unwrap(session, fun)

 View Source

Escape hatch to give users access to underlying "native" data structure.
Once the unwrapped actions are performed, PhoenixTest will handle redirects
(if any).
	In LiveView tests, unwrap/2 will pass the view that comes from
Phoenix.LiveViewTest live/2. Your action must return the result of a
render_* LiveViewTest action.

	In non-LiveView tests, unwrap/2 will pass the conn struct. And your
action must return a conn struct.

 Examples

in a LiveView
session
|> unwrap(fn view ->
 view
 |> LiveViewTest.element("#hook")
 |> LiveViewTest.render_hook(:hook_event, %{name: "Legolas"})
end)
in a non-LiveView
session
|> unwrap(fn conn ->
 conn
 |> Phoenix.ConnTest.recycle()
end)

 Link to this function

 upload(session, label, path, opts \\ [exact: true])

 View Source

Upload a file.
If the form is a LiveView form, this will perform a live file upload.
This can be followed by a click_button/3 or submit/1 to submit the form.

 Options

	exact: whether to match the entire label. (Defaults to true)

 Examples

Given we have a form that contains this:
<label for="avatar">Avatar</label>
<input type="file" id="avatar" name="avatar" />
We can upload a file:
session
|> upload("Avatar", "/path/to/file")

 Complex labels

If we have a complex label, you can use exact: false to target part of the
label.

 Example

Given the following:
<label for="avatar">Avatar *</label>
<input type="file" id="avatar" name="avatar" />
We can upload a file:
session
|> upload("Avatar", "/path/to/file", exact: false)

 Link to this function

 upload(session, input_selector, label, path, opts)

 View Source

Like upload/4 but you can specify an input's selector (in addition to the
label).
Helpful in cases when you have uploads with the same label on the same form.
For more, see upload/4.

 Link to this function

 visit(conn, path)

 View Source

Entrypoint to create a session.
visit/2 takes a Plug.Conn struct and the path to visit.
It returns a session which the rest of the PhoenixTest functions can use.
Note that visit/2 is smart enough to know if the page you're visiting is a
LiveView or a static view. You don't need to worry about which type of page
you're visiting.

 Link to this function

 within(session, selector, fun)

 View Source

Helpers to scope filling out form within a given selector. Use this if you
have more than one form on a page with similar labels.

 Examples

Given we have some HTML like this:
<form id="user-form" action="/users" method="post">
 <label for="name">Name</label>
 <input id="name" name="name"/>

 <input type="hidden" name="admin" value="off" />
 <label for="admin">Admin</label>
 <input id="admin" type="checkbox" name="admin" value="on" />
</form>

and assume another form with "Name" and "Admin" labels
We can fill the form like this:
session
|> within("#user-form", fn session ->
 session
 |> fill_in("Name", with: "Aragorn")
 |> check("Admin")
end)

 OEBPS/dist/epub-N2MDDSYJ.js
(()=>{var g=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var l="ex_doc:settings",d={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=d,this._loadSettings()}get(){return this._settings}update(t){let e=this._settings;this._settings={...this._settings,...t},this._subscribers.forEach(n=>n(this._settings,e)),this._storeSettings()}getAndSubscribe(t){this._subscribers.push(t),t(this._settings)}_loadSettings(){try{let t=localStorage.getItem(l);if(t){let e=JSON.parse(t);this._settings={...this._settings,...e}}this._loadSettingsLegacy()}catch(t){console.error(`Failed to load settings: ${t}`)}}_storeSettings(){try{this._storeSettingsLegacy(),localStorage.setItem(l,JSON.stringify(this._settings))}catch(t){console.error(`Failed to persist settings: ${t}`)}}_loadSettingsLegacy(){localStorage.getItem("tooltipsDisabled")!==null&&(this._settings={...this._settings,tooltips:!1}),localStorage.getItem("night-mode")==="true"&&(this._settings={...this._settings,nightMode:!0}),this._settings.nightMode===!0&&(this._settings={...this._settings,theme:"dark"})}_storeSettingsLegacy(){this._settings.tooltips?localStorage.removeItem("tooltipsDisabled"):localStorage.setItem("tooltipsDisabled","true"),this._settings.nightMode!==null?localStorage.setItem("night-mode",this._settings.nightMode===!0?"true":"false"):localStorage.removeItem("night-mode"),this._settings.theme!==null?(localStorage.setItem("night-mode",this._settings.theme==="dark"?"true":"false"),this._settings.nightMode=this._settings.theme==="dark"):(delete this._settings.nightMode,localStorage.removeItem("night-mode"))}},h=new s;function a(){["warning","info","error","neutral","tip"].forEach(t=>{i(`blockquote h3.${t}, blockquote h4.${t}`).forEach(e=>{e.closest("blockquote").classList.add(t)})})}var m="hll";function u(){f()}function f(){i("[data-group-id]").forEach(t=>{let e=t.getAttribute("data-group-id");t.addEventListener("mouseenter",n=>{c(e,!0)}),t.addEventListener("mouseleave",n=>{c(e,!1)})})}function c(o,t){i(`[data-group-id="${o}"]`).forEach(n=>{n.classList.toggle(m,t)})}r(()=>{u(),a()});})();

