

 PhoenixTestPlaywright

 v0.10.0-rc.0

 Table of contents

 	Changelog

 	
 Modules

 	PhoenixTest.Playwright

 	PhoenixTest.Playwright.Case

 	PhoenixTest.Playwright.Config

 	PhoenixTest.Playwright.JsLogger

 Changelog

All notable changes to this project will be documented in this file.
The format is based on Keep a Changelog.
[0.10.0-rc.0] 2025-11-19
Breaking changes
	Use browser pool by default, instead of starting new browser per test suite. Commit 095e216 # test_helper.exs
+ {:ok, _} = PhoenixTest.Playwright.Supervisor.start_link()
 Application.put_env(:phoenix_test, :base_url, MyAppWeb.Endpoint.url())

	Changes required if internals (beyond PhoenixTest and PhoenixTest.Playwright modules) were used. Phoenix-agnostic modules moved to PlaywrightEx, with slight API changes. Example:- |> unwrap(& {:ok, _} = PhoenixTest.Playwright.Frame.click(&1.frame_id, selector))
+ |> unwrap(& {:ok, _} = PlaywrightEx.Frame.click(&1.frame_id, selector: selector, timeout: @timeout))

Changed
	Ecto sandbox ownership: Use a separate sandbox owner process instead of the test process. This reduces ownership errors when LiveViews continue to use database connections after the test terminates. Commit 3b54699

Added
	Config option ecto_sandbox_stop_owner_delay: Delay in milliseconds before shutting down the Ecto sandbox owner. Use when LiveViews or other processes need time to stop using the connections. Commit 2f4a8cf

[0.9.1] 2025-10-29
Added
	Browser pooling (opt-in): Reduced memory, higher speed.. Commit 00e75c6

[0.9.0] 2025-10-26
Fixed
	assert_has/refute_has: don't raise if multiple nodes found when using value option (playwright strict mode). Commit 73ebf10

Changed
	Return result tuples from all playwright channel functions for consistency and to surface errors early. Commit ae63989	Most notably may affect callers of Frame.evaluate/3

Added
	Register custom selector engines via new config option selector_engines. Commit 73ebf10
	Import click/2 in Playwright.Case. Commit 968d5cd
	Add drag and drop: drag(source, to: target). Commit f4161bd

[0.8.0] 2025-09-17
Removed
	Config option cli. Use assets_dir instead. Commit 9e95e54

Added
	Support bunx JS runner. Added config options runner and assets_dir. Commit 9e95e54
	Support missing assert_has/refute_has options: label and value. Commit 2e92cbe
	Support phoenix_test 0.8 (lazy_html). Commit 1074cde

Changed
	Include source location when logging javascript errors and browser console logs. Commit 6b148f
	Only consider visible inputs for fill_in etc. Commit 86c2e3d
	Speed up refute_has: Use playwright browser internal retry. Commit aac0497

[0.7.1] 2025-07-01
Added
	Config option executable_path: allow using existing browser executable instead of bundled browser (e.g. on NixOS). Commit 15df46

Fixed
	refute_has/3 add retry, don't fail if element initially found. Commit 7bd49b

[0.7.0] 2025-06-16
Added
	Dialog handling. Commit 4eadea	Config option accept_dialogs (default: true)
	PhoenixTest.Playwright.with_dialog/3 for conditional handling

Removed
	Connection.received/1. Commit 4eadea	Use EventRecorder instead

[0.6.3] 2025-05-05
Added
	Add locale to avoid console warnings. Commit [becf5e6] @peaceful-james

Fixed
	Trigger phx-change event for input with phx-debounce="blur". Commit 72edd9

[0.6.2] 2025-04-24
Changed
	Frame.evaluate/3: Don't transform map keys in return value. Example: js {camelCase: {a: 1}} -> ex %{"camelCase": %{"a": 1}}. Previously attempted to underscore and atom-ize keys, which led to issue #24. Commit 5ff530

[0.6.1] 2025-04-02
Added
	Support relevant phoenix_test 0.6 features	✅ Deprecate select with :from in favor of :option (handled by PhoenixTest)
	✅ Allow nesting of within/3
	✅ Allow calling visit/2 sequentially (was already supported)
	❌ Raise error when visiting a defined route: In a feature test, we assert on the rendered page, not the status code.

[0.6.0] 2025-03-18
Added
	Add and remove cookies: add_cookies/2, add_session_cookie/3, clear_cookies/{1,2} @peaceful-james
	Add option browser_launch_timeout for more fine-grained control (is typically a lot slower than other actions) @s3cur3

[0.5.0] 2025-02-14
Added
	Docs: Document and validate global and per-test configuration
	Docs: Document non-standard driver functions (click/4, click_button/4 etc.). Also, exclude standard driver functions from docs.
	Config: Override config via Case opts, e.g. use PhoenixTest.Playwright.Case, headless: false
	Keyboard simulation: type/{3,4} and press/{3,4}

Changed
	Renamed: PheonixTest.Case to PhoenixTest.Playwright.Case defmodule MyTest do
- use PhoenixTest.Case, async: true
+ use PhoenixTest.Playwright.Case, async: true
- @moduletag :playwright

[0.4.0] 2025-02-03
Added
	Screenshots: screenshot/{2,3} function and screenshot: true config for auto-capture @s3cur3

Changed
	Config: flattened list (remove nested browser config), override via top-level ExUnit @tag ...s (remove nested @tag playwright: [...]) # config/test.exs
 config :phoenix_test,
 playwright: [
- browser: [browser: :chromium, headless: false, slow_mo: 0]
+ browser: :chromium,
+ headless: false,
+ slow_mo: 0

[0.3.0] 2025-01-26
Changed
	Auto-convert case of playwright messages keys (snake_case to camelCase)

[0.2.1] 2025-01-17
Added
	Add more config options (browser, JS console) @s3cur3

Changed
	Improve error messages @s3cur3
	Improve setup and docs for contributors @s3cur3

[0.2.0] 2025-01-09
Added
	support phoenix_test@0.5, elixir@1.18, phoenix_live_view@1.0

[0.1.5] 2024-12-15
Added
	@tag trace: :open to auto open recorded Playwright trace in viewer

PhoenixTest.Playwright

Run feature tests in an actual browser, using PhoenixTest and Playwright.
defmodule Features.RegisterTest do
 use PhoenixTest.Playwright.Case,
 async: true, # async with Ecto sandbox
 parameterize: [# run in multiple browsers in parallel
 %{browser_pool: :chromium},
 %{browser_pool: :firefox}
]

 @tag trace: :open # replay in interactive viewer
 test "register", %{conn: conn} do
 conn
 |> visit(~p"/")
 |> click_link("Register")
 |> fill_in("Email", with: "f@ftes.de")
 |> click_button("Create an account")
 |> assert_has(".error", text: "required")
 |> screenshot("error.png", full_page: true)
 end
end
Please get in touch with feedback of any shape and size.
Enjoy! Freddy.
P.S. Looking for a standalone Playwright client? See PlaywrightEx.
Getting started
	Add dependency
 # mix.exs
 {:phoenix_test_playwright, "~> 0.9", only: :test, runtime: false}

	Install playwright and browser
 npm --prefix assets i -D playwright
 npm --prefix assets exec -- playwright install chromium --with-deps

	Config
 # config/test.exs
 config :phoenix_test, otp_app: :your_app
 config :your_app, YourAppWeb.Endpoint, server: true

	Runtime config
 # test/test_helpers.exs
 {:ok, _} = PhoenixTest.Playwright.Supervisor.start_link()
 Application.put_env(:phoenix_test, :base_url, YourAppWeb.Endpoint.url()

	Use in test
 defmodule MyTest do
 use PhoenixTest.Playwright.Case, async: true

 # `conn` isn't a `Plug.Conn` but a Playwright session.
 # We use the name `conn` anyway so you can easily switch `PhoenixTest` drivers.
 test "in browser", %{conn: conn} do
 conn
 |> visit(~p"/")
 |> unwrap(&Frame.evaluate(&1.frame_id, "console.log('Hey')"))

Reference project
github.com/ftes/phoenix_test_playwright_example
The last commit adds a feature test for the phx gen.auth registration page
and runs it in CI (Github Actions).
Configuration
config/test.ex
config :phoenix_test,
 otp_app: :your_app,
 playwright: [
 browser_pool: :chromium_pool,
 browser_pools: [
 [id: :chromium_pool, browser: :chromium],
 [id: :firefox_pool, browser: :firefox]
],
 js_logger: false,
 browser_launch_timeout: 10_000
]
See PhoenixTest.Playwright.Config for more details.
You can override some options in your test:
defmodule DebuggingFeatureTest do
 use PhoenixTest.Playwright.Case,
 async: true,
 # Launch new browser for this test suite with custom options below
 browser_pool: :nil,
 # Show browser and pause 1 second between every interaction
 headless: false,
 slow_mo: :timer.seconds(1)
Traces
Playwright traces record a full browser history, including 'user' interaction, browser console, network transfers etc.
Traces can be explored in an interactive viewer for debugging purposes.
Manually
@tag trace: :open
test "record a trace and open it automatically in the viewer" do
Automatically for failed tests in CI
config/test.exs
config :phoenix_test, playwright: [trace: System.get_env("PW_TRACE", "false") in ~w(t true)]
.github/workflows/elixir.yml
run: "mix test || if [[$? = 2]]; then PW_TRACE=true mix test --failed; else false; fi"
Screenshots
Manually
|> visit(~p"/")
|> screenshot("home.png") # captures entire page by default, not just viewport
Automatically for failed tests in CI
config/test.exs
config :phoenix_test, playwright: [screenshot: System.get_env("PW_SCREENSHOT", "false") in ~w(t true)]
.github/workflows/elixir.yml
run: "mix test || if [[$? = 2]]; then PW_SCREENSHOT=true mix test --failed; else false; fi"
Emails
If you want to verify the HTML of sent emails in your feature tests,
consider using Plug.Swoosh.MailboxPreview.
The iframe used to render the email HTML body makes this slightly tricky:
|> visit(~p"/dev/mailbox")
|> click_link("Confirmation instructions")
|> within("iframe >> internal:control=enter-frame", fn conn ->
 conn
 |> click_link("Confirm account")
 |> click_button("Confirm my account")
 |> assert_has("#flash-info", text: "User confirmed")
For a full example see ftes/phoenix_test_playwright_example/tree/phoenix-1.8.
Common problems
Test failure in CI (timeout)
	Limit concurrency: config :phoenix_test, playwright: [browser_pools: [[size: 1]]] or mix test --max-cases 1 for GitHub CI shared runners
	Increase timemout: config :phoenix_test, playwright: [timeout: :timer.seconds(4)]
	More compute power: e.g. x64 8-core GitHub runner

LiveView not connected
|> visit(~p"/")
|> assert_has("body .phx-connected")
now continue, playwright has waited for LiveView to connect
LiveComponent not connected
<div id="my-component" data-connected={connected?(@socket)}`>
|> visit(~p"/")
|> assert_has("#my-component[data-connected]")
now continue, playwright has waited for LiveComponent to connect
Ecto SQL.Sandbox
defmodule MyTest do
 use PhoenixTest.Playwright.Case, async: true
PhoenixTest.Playwright.Case automatically takes care of this. It starts the
sandbox under a separate process than your test and uses
ExUnit.Callbacks.on_exit/1 to ensure the sandbox is shut down afterward. It
also sends a User-Agent header with the
Phoenix.Ecto.SQL.Sandbox.html.metadata_for/3 your Ecto repos. This allows
the sandbox to be shared with the LiveView and other processes which need to
use the database inside the same transaction as the test. It also allows for
concurrent browser
tests.
Ownership errors with LiveViews
Unlike Phoenix.LiveViewTest, which controls the lifecycle of LiveView
processes being tested, Playwright tests may end while such processes are
still using the sandbox.
In that case, you may encounter ownership errors like:
** (DBConnection.OwnershipError) cannot find owner for ...
To prevent this, the ecto_sandbox_stop_owner_delay option allows you to delay the
sandbox owner's shutdown, giving LiveViews and other processes time to close
their database connections. The delay happens during
ExUnit.Callbacks.on_exit/1, which blocks the running of the next test, so
it affects test runtime as if it were a Process.sleep/1 at the end of your
test.
So you probably want to use as small a delay as you can, and only for the
tests that need it, using @tag (or @describetag or @moduletag) like:
@tag ecto_sandbox_stop_owner_delay: 100 # 100ms
test "does something" do
 # ...
end
If you want to set a global default, you can:
config/test.exs
config :phoenix_test, playwright: [
 ecto_sandbox_stop_owner_delay: 50 # 50ms
]
For more details on LiveView and Ecto integration, see the advanced set up instructions:
	with LiveViews
	with Channels

Missing Playwright features
This module includes functions that are not part of the PhoenixTest protocol, e.g. screenshot/3 and click_link/4.
But it does not wrap the entire Playwright API, which is quite large.
You should be able to add any missing functionality yourself
using PhoenixTest.unwrap/2, Frame, Selector,
and the Playwright code.
If you think others might benefit, please open a PR.
Here is some inspiration:
def choose_styled_radio_with_hidden_input_button(conn, label, opts \\ []) do
 opts = Keyword.validate!(opts, exact: true)
 PhoenixTest.Playwright.click(conn, PlaywrightEx.Selector.text(label, opts))
end

defp assert_a11y(conn) do
 PlaywrightEx.Frame.evaluate(conn.frame_id, expression: A11yAudit.JS.axe_core(), timeout: @timeout)
 {:ok, json} = PlaywrightEx.Frame.evaluate(conn.frame_id, expression: "axe.run()", timeout: @timeout)
 results = A11yAudit.Results.from_json(json)
 A11yAudit.Assertions.assert_no_violations(results)

 conn
end

defp within_iframe(conn, selector \\ "iframe", fun) when is_function(fun, 1) do
 within(conn, "#{selector} >> internal:control=enter-frame", fun)
end

 Summary

 Types

 css_selector()

 playwright_selector()

 selector()

 t()

 Functions

 add_cookies(conn, cookies)

 Add cookies to the browser context, using Plug.Conn.put_resp_cookie/3

 add_session_cookie(conn, cookie, session_options)

 Add a Plug.Session cookie to the browser context.

 clear_cookies(conn, opts \\ [])

 Removes all cookies from the context

 click(conn, selector)

 See click/4.

 click(conn, selector, text, opts \\ [])

 Click an element that is not a link or button.
Otherwise, use click_link/4 and click_button/4.

 click_button(conn, selector \\ nil, text, opts \\ [])

 Like PhoenixTest.click_button/3, but allows exact text match.

 click_link(conn, selector \\ nil, text, opts \\ [])

 Like PhoenixTest.click_link/3, but allows exact text match.

 drag(conn, source_selector, list)

 Drag and drop a source element to a target element.

 press(conn, selector, key, opts \\ [])

 Focuses the matching element and presses a combination of the keyboard keys.

 screenshot(conn, file_path, opts \\ [])

 Takes a screenshot of the current page and saves it to the given file path.

 type(conn, selector, text, opts \\ [])

 Focuses the matching element and simulates user typing.

 unwrap(conn, fun)

 See PhoenixTest.unwrap/2.

 with_dialog(session, callback, fun)

 Handle browser dialogs (alert(), confirm(), prompt()) while executing the inner function.

 Types

 css_selector()

 @type css_selector() :: String.t()

 playwright_selector()

 @type playwright_selector() :: String.t()

 selector()

 @type selector() :: playwright_selector() | css_selector()

 t()

 @opaque t()

 Functions

 add_cookies(conn, cookies)

Add cookies to the browser context, using Plug.Conn.put_resp_cookie/3
Note that for signed cookies the signing salt is not configurable.
As such, this function is not appropriate for signed Plug.Session cookies.
For signed session cookies, use add_session_cookie/3
 A cookie's value must be a binary unless the cookie is signed/encrypted
Cookie fields
	key	type	description
	:name	binary()	
	:value	binary()	
	:url	binary()	(optional) either url or domain / path are required
	:domain	binary()	(optional) either url or domain / path are required
	:path	binary()	(optional) either url or domain / path are required
	:max_age	float()	(optional) The cookie max age, in seconds.
	:http_only	boolean()	(optional)
	:secure	boolean()	(optional)
	:encrypt	boolean()	(optional)
	:sign	boolean()	(optional)
	:same_site	binary()	(optional) one of "Strict", "Lax", "None"

Two of the cookie fields mean nothing to Playwright. These are:
	:encrypt
	:sign

The :max_age cookie field means the same thing as documented in Plug.Conn.put_resp_cookie/4.
The :max_age value is used to infer the correct expires value that Playwright requires.
See https://playwright.dev/docs/api/class-browsercontext#browser-context-add-cookies

 add_session_cookie(conn, cookie, session_options)

Add a Plug.Session cookie to the browser context.
This is useful for emulating a logged-in user.
Note that that the cookie :value must be a map, since we are using
Plug.Conn.put_session/3 to write each of value's key-value pairs
to the cookie.
The session_options are exactly the same as the opts used when
writing plug Plug.Session in your router/endpoint module.
Examples
|> add_session_cookie(
 [value: %{user_token: Accounts.generate_user_session_token(user)}],
 MyAppWeb.Endpoint.session_options()
)

 clear_cookies(conn, opts \\ [])

Removes all cookies from the context

 click(conn, selector)

 @spec click(t(), selector()) :: t()

See click/4.

 click(conn, selector, text, opts \\ [])

 @spec click(t(), selector(), String.t(), [{:exact, boolean()}]) :: t()

Click an element that is not a link or button.
Otherwise, use click_link/4 and click_button/4.
Options
	:exact (boolean/0) - Exact or substring text match. The default value is false.

Examples
|> click(Selector.menuitem("Edit"))
|> click("summary", "(expand)", exact: false)

 click_button(conn, selector \\ nil, text, opts \\ [])

Like PhoenixTest.click_button/3, but allows exact text match.
Options
	:exact (boolean/0) - Exact or substring text match. The default value is false.

 click_link(conn, selector \\ nil, text, opts \\ [])

Like PhoenixTest.click_link/3, but allows exact text match.
Options
	:exact (boolean/0) - Exact or substring text match. The default value is false.

 drag(conn, source_selector, list)

 @spec drag(t(), selector(), [{:to, selector()}]) :: t()

Drag and drop a source element to a target element.
Options
	:to (selector/0) - Required. The target selector.

Examples
|> drag("#source", to: "#target")
|> drag(Selector.text("Draggable"), to: Selector.text("Target"))

 press(conn, selector, key, opts \\ [])

 @spec press(t(), selector(), String.t(), [{:delay, non_neg_integer()}]) :: t()

Focuses the matching element and presses a combination of the keyboard keys.
Use type/4 if you don't need to press special keys.
Examples of supported keys:
F1 - F12, Digit0- Digit9, KeyA- KeyZ, Backquote, Minus, Equal, Backslash, Backspace, Tab, Delete, Escape, ArrowDown, End, Enter, Home, Insert, PageDown, PageUp, ArrowRight, ArrowUp
Modifiers are also supported:
Shift, Control, Alt, Meta, ShiftLeft, ControlOrMeta
Combinations are also supported:
Control+o, Control++, Control+Shift+T
Options
	:delay (non_neg_integer/0) - Time to wait between keydown and keyup in milliseconds. The default value is 0.

Examples
|> press("#id", "Control+Shift+T")
|> press(Selector.button("Submit"), "Enter")

 screenshot(conn, file_path, opts \\ [])

 @spec screenshot(t(), String.t(), full_page: boolean(), omit_background: boolean()) ::
 t()

Takes a screenshot of the current page and saves it to the given file path.
The file type will be inferred from the file extension on the path you provide.
The file is saved in :screenshot_dir, see PhoenixTest.Playwright.Config.
Options
	:full_page (boolean/0) - The default value is true.

	:omit_background (boolean/0) - Only applicable to .png images. The default value is false.

Examples
|> screenshot("my-screenshot.png")
|> screenshot("my-test/my-screenshot.jpg")

 type(conn, selector, text, opts \\ [])

 @spec type(t(), selector(), String.t(), [{:delay, non_neg_integer()}]) :: t()

Focuses the matching element and simulates user typing.
In most cases, you should use PhoenixTest.fill_in/4 instead.
Options
	:delay (non_neg_integer/0) - Time to wait between key presses in milliseconds. The default value is 0.

Examples
|> type("#id", "some text")
|> type(Selector.role("heading", "Untitled"), "New title")

 unwrap(conn, fun)

 @spec unwrap(t(), (%{context_id: any(), page_id: any(), frame_id: any()} -> any())) ::
 t()

See PhoenixTest.unwrap/2.
Invokes fun with various Playwright IDs.
These can be used to interact with the Playwright
BrowserContext,
Page and
Frame.
Examples
|> unwrap(&Frame.evaluate(&1.frame_id, "console.log('Hey')"))

 with_dialog(session, callback, fun)

Handle browser dialogs (alert(), confirm(), prompt()) while executing the inner function.
Note: Add @tag accept_dialogs: false before tests that call this function.
Otherwise, all dialogs are accepted by default.
Callback return values
The callback may return one of these values:
	:accept -> accepts confirmation dialog
	{:accept, prompt_text} -> accepts prompt dialog with text
	:dismiss -> dismisses dialog
	Any other value will ignore the dialog

Examples
@tag accept_dialogs: false
test "conditionally handle dialog", %{conn: conn} do
conn
 |> visit("/")
 |> with_dialog(
 fn
 %{message: "Are you sure?"} -> :accept
 %{message: "Enter the magic number"} -> {:accept, "42"}
 %{message: "Self destruct?"} -> :dismiss
 end,
 fn conn ->
 conn
 |> click_button("Delete")
 |> assert_has(".flash", text: "Deleted")
 end
 end)
end

PhoenixTest.Playwright.Case

ExUnit case module to assist with browser based tests.
PhoenixTest.Playwright and PhoenixTest.Playwright.Config explain
how to use and configure this module.
If the default setup behaviour and order does not suit you, consider
	using config opt browser_context_opts, which are passed to PlaywrightEx.Browser.new_context/2
	using config opt browser_page_opts, which are passed to PlaywrightEx.BrowserContext.new_page/2
	implementing your own Case (the setup functions in this module are public for your convenience)

 Summary

 Functions

 do_setup(context)

 Merges the ExUnit context with PhoenixTest.Playwright.Config opts.
Uses the result to create a new browser context and page.
Adds :conn to the context.

 do_setup_all(context)

 Merges the ExUnit context with PhoenixTest.Playwright.Config opts.
Uses the result to launch the browser.
Adds :browser_id to the context.

 new_session(config, context)

 Functions

 do_setup(context)

Merges the ExUnit context with PhoenixTest.Playwright.Config opts.
Uses the result to create a new browser context and page.
Adds :conn to the context.

 do_setup_all(context)

Merges the ExUnit context with PhoenixTest.Playwright.Config opts.
Uses the result to launch the browser.
Adds :browser_id to the context.

 new_session(config, context)

PhoenixTest.Playwright.Config

Configuration options for the Playwright driver.
Most should be set globally in config/tests.exs.
Some can be overridden per test.
All options:
	:accept_dialogs (boolean/0) - Accept browser dialogs (alert(), confirm(), prompt()). The default value is true.

	:assets_dir (binary/0) - The directory where the JS assets are located and the Playwright CLI is installed.
Playwright version 1.55.0 or newer is recommended. The default value is "./assets".

	:browser (:android | :chromium | :electron | :firefox | :webkit) - The default value is :chromium.

	:browser_context_opts - Additional arguments passed to Playwright Browser.newContext.
E.g. [http_credentials: %{username: "a", password: "b"}]. The default value is [].

	:browser_launch_timeout (non_neg_integer/0) - The default value is 4000.

	:browser_page_opts - Additional arguments passed to Playwright Browser.newPage.
(E.g. [accept_downloads: false]. The default value is [].

	:browser_pool (atom/0) - Reuse a browser from this pool instead of launching a new browser per test suite. The default value is :default_pool.

	:browser_pool_checkout_timeout (non_neg_integer/0) - The default value is 60000.

	:browser_pools (list of non-empty keyword/0) - Supported keys:
	:id (atom/0) - Required.

	:size (integer/0) - The default value is System.schedulers_online() / 2.

	:browser (:android | :chromium | :electron | :firefox | :webkit) - The default value is :chromium.

	:browser_launch_timeout (non_neg_integer/0) - The default value is 4000.

	:executable_path (String.t/0) - Path to a browser executable to run instead of the bundled one.
Use at your own risk.

	:headless (boolean/0) - The default value is true.

	:slow_mo (non_neg_integer/0) - The default value is 0.

The default value is [[id: :default_pool]].

	:cli - This option is deprecated. Use assets_dir instead.

	:ecto_sandbox_stop_owner_delay (non_neg_integer/0) - Delay in milliseconds before shutting down the Ecto sandbox owner after a
test ends. Use this to allow LiveViews and other processes in your app
time to stop using database connections before the sandbox owner is
terminated. The default value is 0.

	:executable_path (String.t/0) - Path to a browser executable to run instead of the bundled one.
Use at your own risk.

	:headless (boolean/0) - The default value is true.

	:js_logger (module | false) - false to disable, or a module that implements the PlaywrightEx.JsLogger behaviour. The default value is PhoenixTest.Playwright.JsLogger.

	:runner (binary/0) - The JS package runner to use to run the Playwright CLI.
Accepts either a binary executable exposed in PATH or the absolute path to it. The default value is "npx".

	:screenshot (boolean/0 | Keyword.t/0) - Either a boolean or a keyword list:
	:full_page (boolean/0) - The default value is true.

	:omit_background (boolean/0) - The default value is false.

The default value is false.

	:screenshot_dir (String.t/0) - The default value is "screenshots".

	:selector_engines - Define custom Playwright selector engines. The default value is [].

	:slow_mo (non_neg_integer/0) - The default value is 0.

	:timeout (non_neg_integer/0) - The default value is 2000.

	:trace (boolean/0 | :open) - The default value is false.

	:trace_dir (String.t/0) - The default value is "traces".

Options that be overridden per test module via the use PhoenixTest.Playwright.Case opts:
	:browser_pool
	:browser
	:browser_launch_timeout
	:executable_path
	:headless
	:slow_mo

Options that be overridden per test via ExUnit @tag:
	:accept_dialogs
	:ecto_sandbox_stop_owner_delay
	:screenshot
	:trace
	:browser_context_opts
	:browser_page_opts

PhoenixTest.Playwright.JsLogger

Default javascript logger.

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

