

 phoenix_view

 v2.0.2

 Table of contents

 	CHANGELOG

 	Modules

 	Phoenix.View

 	Phoenix.Template.UndefinedError

CHANGELOG

2.0.2 (2022-11-07)
	Fix regression where directories were not being tracked for new files

2.0.1 (2022-10-29)
	Undeprecate Phoenix.View.render_layout/4

2.0.0 (2022-10-26)
	Extract Phoenix.Template to a separete dependency: phoenix_template
	Document replacing Phoenix.View with Phoenix.Component
	Deprecate Phoenix.View.render_layout/4 in favor of Phoenix.Component with slots instead

1.1.2 (2022-02-02)
	Fix dialyzer warnings on template_not_found

1.1.1 (2022-01-31)
	Add compile-time dependencies to template engines

1.1.0 (2022-01-06)
	Do not add compile time dependencies on arguments given to Phoenix.View and Phoenix.Template
	Soft-deprecate render_existing/3 in favor of function_exported?/3 checks

1.0.0 (2021-07-18)
	Initial release

Phoenix.View

A module for generating render/2 functions from templates on disk.
With design patterns introduced by Phoenix.LiveView, this module has fallen
out of fashion in favor of Phoenix.Component, even in non LiveView
applications. See the "Replaced by Phoenix.Component" section below.
Examples
In Phoenix v1.6 and earlier, new Phoenix apps defined a blueprint for views
at lib/your_app_web.ex. It generally looked like this:
defmodule YourAppWeb do
 # ...

 def view do
 quote do
 use Phoenix.View, root: "lib/your_app_web/templates", namespace: YourAppWeb

 # Import convenience functions from controllers
 import Phoenix.Controller,
 only: [get_flash: 1, get_flash: 2, view_module: 1, view_template: 1]

 # Use all HTML functionality (forms, tags, etc)
 use Phoenix.HTML

 import YourAppWeb.ErrorHelpers
 import YourAppWeb.Gettext
 end
 end

 # ...
end
Then you could use the definition above to define any view in your application:
defmodule YourAppWeb.UserView do
 use YourAppWeb, :view
end
Because we defined the template root to be "lib/your_app_web/templates",
Phoenix.View will automatically load all templates at "your_app_web/templates/user"
and include them in the YourApp.UserView. For example, imagine we have the
template:
your_app_web/templates/user/index.html.heex
Hello <%= @name %>
The .heex extension maps to a template engine which tells Phoenix how
to compile the code in the file into Elixir source code. After it is
compiled, the template can be rendered as:
Phoenix.View.render_to_string(YourApp.UserView, "index.html", name: "John Doe")
#=> "Hello John Doe"
Rendering and formats
Phoenix.View renders templates.
A template has a name, which also contains a format. For example,
in the previous section we have rendered the "index.html" template:
Phoenix.View.render_to_string(YourApp.UserView, "index.html", name: "John Doe")
#=> "Hello John Doe"
While we got a string at the end, that's not actually what our templates
render. Let's take a deeper look:
Phoenix.View.render(YourApp.UserView, "index.html", name: "John Doe")
#=> ...
This inner representation allows us to separate how templates render and
how they are encoded. For example, if you want to render JSON data, we
could do so by adding a "show.json" entry to render/2 in our view:
defmodule YourAppWeb.UserView do
 use YourAppWeb, :view

 def render("show.json", %{user: user}) do
 %{name: user.name, address: user.address}
 end
end
Notice that in order to render JSON data, we don't need to explicitly
return a JSON string! Instead, we just return data that is encodable to
JSON. Now, when we call:
Phoenix.View.render_to_string(YourApp.UserView, "user.json", user: %User{...})
Because the template has the .json extension, Phoenix knows how to
encode the map returned for the "user.json" template into an actual
JSON payload to be sent over the wire.
Phoenix ships with some template engines and format encoders, which
can be further configured in the Phoenix application. You can read
more about format encoders in Phoenix.Template documentation.
Replaced by Phoenix.Component
In Phoenix.LiveView, Phoenix.View was replaced by Phoenix.Component.
With Phoenix v1.7+ we can also use Phoenix.Component to render traditional
templates as functional components, using the embed_templates function.
For example, in Phoenix v1.7+, the YourAppWeb.UserView above would be
written as:
defmodule YourAppWeb.UserHTML do
 use YourAppWeb, :html

 embed_templates "users/*"
end
The benefit of Phoenix.Component is that it unifies the rendering of
traditional request/response life cycles with the composable component
model provided by LiveView.
The table below summarizes how the defaults changed from Phoenix v1.6 to v1.7:
	Feature	Phoenix v1.6	Phoenix v1.7
	MyController.action/2 renders	MyView.render("action.html", assigns)	MyHTML.action(assigns)
	Define views at	lib/my_app/views/my_view.ex	lib/my_app/controllers/my_html.ex
	At the top of your views	use MyAppWeb, :view	use MyAppWeb, :html
	Default template language	EEx (.eex extension)	HEEx (.heex extension)
	To embed templates from disk	use Phoenix.View	use Phoenix.Component (+ embed_templates)
	HTML helpers (forms, links, etc)	use Phoenix.HTML	use Phoenix.Component

However, note Phoenix v1.7 is backwards compatible with v1.6 if you want to
keep with the old style. The functionality in this module will be maintained
in the long term though for those who cannot or prefer not to migrate.
Migrating to Phoenix.Component
Migrating your current views to components be done in a few steps. You should
also be able to migrate one view at a time.
It may be helpful to generate a new project using Phoenix v1.7+ to compare
code samples during this process.

The first step is to define def html in your lib/my_app_web.ex module.
This function is similar to def view, but it replaces use Phoenix.View
by use Phoenix.Component (requires LiveView 0.18.3 or later). We also
recomend to add import Phoenix.View inside def html while migrating.
Then, for each view, you must follow these steps (we will assume the
current view is called MyAppWeb.MyView):
	Replace render_existing/3 calls by function_exported?/3 checks,
according to the render_existing documentation.

	Replace use MyApp, :view by use MyApp, :html and invoke
embed_templates "../templates/my/*". Alternatively, you can move
both the HTML file and its templates to the controllers directory,
to align with Phoenix v1.7 conventions.

	Your templates may now break if they are calling render/2.
You can address this by replacing render/2 with a function
component. For instance, render("_form.html", changeset: @changeset, user: @user)
must now be called as <.form changeset={@changeset} user={@user} />.
If passing all assigns, render("_form.html", assigns) becomes
<%= _form(assigns) %>

	Your templates may now break if they are calling render_layout/4.
You can address this by converting the layout into a function component
that receives its contents as a slot. See render_layout/4 docs

Now you are using components! Once you convert all views, you should
be able to remove Phoenix.View as a dependency from your project.
Remove def view and also remove the import Phoenix.View from
def html in your lib/my_app_web.ex module. When doing so,
compilation may fail if you are using certain functions:
	Replace render/3 with a function component. For instance,
render(OtherView, "_form.html", changeset: @changeset, user: @user)
can now be called as <OtherView.form changeset={@changeset} user={@user} />.
If passing all assigns, render(OtherView, "_form.html", assigns)
becomes <%= OtherView._form(assigns) %>.

	If you are using Phoenix.View for APIs, you can remove Phoenix.View
altogether. Instead of def render("index.html", assigns), use def users(assigns).
Instead of def render("show.html", assigns), do def user(assigns).
Instead render_one/render_many, call the users/1 and user/1 functions
directly.

 Anchor for this section

 Summary

 Functions

 __using__(opts)

 When used, defines the current module as a main view module.

 module_to_template_root(module, base, suffix)

 Converts a module, without the suffix, to a template root.

 render(module, template, assigns)

 Renders a template.

 render_existing(module, template, assigns \\ [])

 Renders a template only if it exists.

 render_layout(module, template, assigns, list)

 Renders the given layout passing the given do/end block
as @inner_content.

 render_many(collection, view, template, assigns \\ %{})

 Renders a collection.

 render_one(resource, view, template, assigns \\ %{})

 Renders a single item if not nil.

 render_to_iodata(module, template, assign)

 Renders the template and returns iodata.

 render_to_string(module, template, assign)

 Renders the template and returns a string.

 template_path_to_name(path, root)

 Converts the template path into the template name.

 Anchor for this section

Functions

 Link to this macro

 __using__(opts)

 View Source

 (macro)

When used, defines the current module as a main view module.

 options

 Options

	:root - the template root to find templates
	:path - the optional path to search for templates within the :root.
Defaults to the underscored view module name. A blank string may
be provided to use the :root path directly as the template lookup path
	:namespace - the namespace to consider when calculating view paths
	:pattern - the wildcard pattern to apply to the root
when finding templates. Default "*"

The :root option is required while the :namespace defaults to the
first nesting in the module name. For instance, both MyApp.UserView
and MyApp.Admin.UserView have namespace MyApp.
The :namespace and :path options are used to calculate template
lookup paths. For example, if you are in MyApp.UserView and the
namespace is MyApp, templates are expected at Path.join(root, "user").
On the other hand, if the view is MyApp.Admin.UserView,
the path will be Path.join(root, "admin/user") and so on. For
explicit root path locations, the :path option can be provided instead.
The :root and :path are joined to form the final lookup path.
A blank string may be provided to use the :root path directly as the
template lookup path.
Setting the namespace to MyApp.Admin in the second example will force
the template to also be looked up at Path.join(root, "user").

 Link to this function

 module_to_template_root(module, base, suffix)

 View Source

Converts a module, without the suffix, to a template root.

 examples

 Examples

iex> Phoenix.View.module_to_template_root(MyApp.UserView, MyApp, "View")
"user"

iex> Phoenix.View.module_to_template_root(MyApp.Admin.User, MyApp, "View")
"admin/user"

iex> Phoenix.View.module_to_template_root(MyApp.Admin.User, MyApp.Admin, "View")
"user"

iex> Phoenix.View.module_to_template_root(MyApp.View, MyApp, "View")
""

iex> Phoenix.View.module_to_template_root(MyApp.View, MyApp.View, "View")
""

 Link to this function

 render(module, template, assigns)

 View Source

Renders a template.
It expects the view module, the template as a string, and a
set of assigns.
Notice that this function returns the inner representation of a
template. If you want the encoded template as a result, use
render_to_iodata/3 instead.

 examples

 Examples

Phoenix.View.render(YourApp.UserView, "index.html", name: "John Doe")
#=> {:safe, "Hello John Doe"}

 assigns

 Assigns

Assigns are meant to be user data that will be available in templates.
However, there are keys under assigns that are specially handled by
Phoenix, they are:
	:layout - tells Phoenix to wrap the rendered result in the
given layout. See next section

 layouts

 Layouts

Templates can be rendered within other templates using the :layout
option. :layout accepts a tuple of the form
{LayoutModule, "template.extension"}.
To template that goes inside the layout will be placed in the @inner_content
assign:
<%= @inner_content %>

 Link to this function

 render_existing(module, template, assigns \\ [])

 View Source

Renders a template only if it exists.
Note: Using this functionality has been discouraged in
recent Phoenix versions, see the "Alternatives" section
below.

This function works the same as render/3, but returns
nil instead of raising. This is often used with
Phoenix.Controller.view_module/1 and Phoenix.Controller.view_template/1,
which must be imported into your views. See the "Examples"
section below.

 alternatives

 Alternatives

This function is discouraged. If you need to render something
conditionally, the simplest way is to check for an optional
function in your views.
Consider the case where the application has a sidebar in its
layout and it wants certain views to render additional buttons
in the sidebar. Inside your sidebar, you could do:
<div class="sidebar">
 <%= if function_exported?(view_module(@conn), :sidebar_additions, 1) do %>
 <%= view_module(@conn).sidebar_additions(assigns) %>
 <% end %>
</div>
If you are using Phoenix.LiveView, you could do similar by
accessing the view under @socket:
<div class="sidebar">
 <%= if function_exported?(@socket.view, :sidebar_additions, 1) do %>
 <%= @socket.view.sidebar_additions(assigns) %>
 <% end %>
</div>
Then, in your view or live view, you do:
def sidebar_additions(assigns) do
 ~H\"""
 ...my additional buttons...
 \"""

 using-render_existing

 Using render_existing

Consider the case where the application wants to allow entries
to be added to a sidebar. This feature could be achieved with:
<%= render_existing view_module(@conn), "sidebar_additions.html", assigns %>
Then the module under view_module(@conn) can decide to provide
scripts with either a precompiled template, or by implementing the
function directly, ie:
def render("sidebar_additions.html", _assigns) do
 ~H"""
 ...my additional buttons...
 """
end
To use a precompiled template, create a scripts.html.eex file in
the templates directory for the corresponding view you want it to
render for. For example, for the UserView, create the scripts.html.eex
file at your_app_web/templates/user/.

 Link to this function

 render_layout(module, template, assigns, list)

 View Source

Renders the given layout passing the given do/end block
as @inner_content.
This can be useful to implement nested layouts. For example,
imagine you have an application layout like this:
layout/app.html.heex
<html>
<head>
 <title>Title</title>
</head>
<body>
 <div class="menu">...</div>
 <%= @inner_content %>
</body>
This layout is used by many parts of your application. However,
there is a subsection of your application that wants to also add
a sidebar. Let's call it "blog.html". You can build on top of the
existing layout in two steps. First, define the blog layout:
layout/blog.html.heex
<%= render_layout LayoutView, "app.html", assigns do %>
 <div class="sidebar">...</div>
 <%= @inner_content %>
<% end %>
And now you can simply use it from your controller:
plug :put_layout, "blog.html"

 alternatives

 Alternatives

render_layout/4 is discouraged in favor of components.
If you need to share functionality, you can create components
with bits of functionality you want to reuse. For example,
the code above could be rewritten with a layout component:
def layout(assigns) do
 ~H"""
 <div ...>
 <%= render_slot(@sidebar) %>
 <%= render_slot(@inner_block) %>
 </div>
 """
end
Which can be used as:
<.layout>
 Main content
</.layout>
Or:
<.layout>
 <:sidebar>Additional sidebar content</:sidebar>
 Main content
</.layout>
The advantage of using components is that you can handle all
of the sidebar markup inside the parent layout component,
instead of spreading it across multiple files.

 Link to this function

 render_many(collection, view, template, assigns \\ %{})

 View Source

Renders a collection.
It receives a collection as an enumerable of structs and returns
the rendered collection in a list. This is typically used to render
a collection as structured data. For example, to render a list of
users to json:
render_many(users, UserView, "show.json")
which is roughly equivalent to:
Enum.map(users, fn user ->
 render(UserView, "show.json", user: user)
end)
The underlying user is passed to the view and template as :user,
which is inferred from the view name. The name of the key
in assigns can be customized with the :as option:
render_many(users, UserView, "show.json", as: :data)
is roughly equivalent to:
Enum.map(users, fn user ->
 render(UserView, "show.json", data: user)
end)

 Link to this function

 render_one(resource, view, template, assigns \\ %{})

 View Source

Renders a single item if not nil.
The following:
render_one(user, UserView, "show.json")
is roughly equivalent to:
if user != nil do
 render(UserView, "show.json", user: user)
end
The underlying user is passed to the view and template as
:user, which is inflected from the view name. The name
of the key in assigns can be customized with the :as option:
render_one(user, UserView, "show.json", as: :data)
is roughly equivalent to:
if user != nil do
 render(UserView, "show.json", data: user)
end

 Link to this function

 render_to_iodata(module, template, assign)

 View Source

Renders the template and returns iodata.

 Link to this function

 render_to_string(module, template, assign)

 View Source

Renders the template and returns a string.

 Link to this function

 template_path_to_name(path, root)

 View Source

 @spec template_path_to_name(Path.t(), Path.t()) :: Path.t()

Converts the template path into the template name.

 examples

 Examples

iex> Phoenix.View.template_path_to_name(
...> "lib/templates/admin/users/show.html.eex",
...> "lib/templates"
...>)
"admin/users/show.html"

Phoenix.Template.UndefinedError exception

Exception raised when a template cannot be found.

 Anchor for this section

 Summary

 Functions

 message(exception)

 Callback implementation for Exception.message/1.

 Anchor for this section

Functions

 Link to this function

 message(exception)

 View Source

Callback implementation for Exception.message/1.

 OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

