

 phx_gen_solid

 v0.3.0

 Table of contents

 	Overview

 	Modules

 	PhxGenSolid.Generator

 	Mix Tasks

 	mix phx.gen.solid.service

 	mix phx.gen.solid.value

Overview

Still early in development & subject to change

mix phx.gen.solid exists to generate the boilerplate usually required when
utilizing the SOLID principles, outlined below, in a larger phoenix project.
By default it provides fairly general templates for each of the handlers,
services, finders, and values. However, all of the templates are completely
overrideable.
Currently Supported Generators
	Mix.Tasks.Phx.Gen.Solid.Value - used to generate a value
	Mix.Tasks.Phx.Gen.Solid.Handler - TODO
	Mix.Tasks.Phx.Gen.Solid.Service - used to generate CRUD services
	Mix.Tasks.Phx.Gen.Solid.Finder - TODO

SOLID Principles
The best way to contain cyclomatic complexity is by employing SOLID principles whenever applicable:
Single-responsibility principle - A class/module should only have a single responsibility

Open-closed principle - Software entities should be open to extension but closed to modification

Liskov Substitution principle - Objects in a program should be replaceable with instances of their subtypes without altering the correctness of that program.

Interface Segregation principle - Many client-specific interfaces are better than one general-purpose interface.

Dependency inversion principle - Abstractions over concretions

4 Patterns
A way to enforce the SOLID principles is by implementing a combination of 4
design patterns and their interactions to guide codebase scalability.
	Handlers
	Services
	Finders
	Values

[image: Pattern Interaction Map]
Handlers
Handlers are orchestators. They exist only to dispatch and compose. It orders
execution of tasks and/or fetches data to put a response back together.
Do
	Organize by business logic, domain, or sub-domain
	Orchestrate high level operations
	Command services, finders, values or other handlers
	Multiple public functions
	Keep controllers thin
	Make it easy to read
	Flow control (if, case, pattern match, etc.)

Don't
	Directly create/modify data structures
	Execute any read/write operations

Below is an example of a handler that creates a user, sends a notification, and
fetches some data.
defmodule Remoteoss.Handler.Registration do
 alias Remoteoss.Accounts.Service.{CreateUser, SendNotification}
 alias Remoteoss.Accounts.Finder.SuperHeroName

 def setup_user(name) do
 with {:ok, user} <- CreateUser.call(name),
 :ok <- SendNotification.call(user),
 super_hero_details <- SuperHeroName.find(name) do
 {user, super_hero_details}
 else
 error ->
 error
 end
 end
end
Services
Services are the execution arm. Services execute actions, write data, invoke
third party services, etc.
Do
	Organize by Application Logic
	Reusable across Handlers and other Services
	Commands services, finders and values
	Focuses on achieving one single goal
	Exposes a single public function: call
	Create/modify data structures
	Execute and take actions

Don't
	Use a service to achieve multiple goals
	Call Handlers
	If too big you need to break it into smaller services or your service is
actually a handler

Below is an example of a service that creates a user.
defmodule Remoteoss.Accounts.Service.CreateUser do
 alias Remoteoss.Accounts
 alias Remoteoss.Service.ActivityLog
 require Logger

 def call(name) do
 with {:ok, user} <- Accounts.create_user(%{name: name}),
 :ok <- ActivityLog.call(:create_user) do
 {:ok, user}
 else
 {:error, %Ecto.Changeset{} = changeset} ->
 {:error, {:invalid_params, changeset.errors}}

 error ->
 error
 end
 end
end
Finders
Finders fetch data, they don't mutate nor write, only read and present.
Non-complex database queries may also exist in Phoenix Contexts. A query can be
considered complex when their are several conditions for filtering, ordering,
and/or pagination. Rule of thumb is when passing a params or opts Map variable
to the function, a Finder is more appropriate.
Do
	Organized by Application Logic
	Reusable across Handlers and Services
	Focuses on achieving one single goal
	Exposes a single public function: find
	Read data structure
	Uses Values to return complex data
	Finders only read and look up data

Don't
	Call any services
	Create/modify data structures

Below is an example of a finder that finds a user.
defmodule Remoteoss.Accounts.Finder.UserWithName do
 alias Remoteoss.Accounts

 def find(name) when is_binary(name) do
 case Accounts.get_user_by_name(name) do
 nil -> {:error, :not_found}
 user -> {:ok, user}
 end
 end

 def find(_), do: {:error, :invalid_name}
end
Values
Values allow us to compose data structures such as responses,
intermediate objects, etc.
Do
	Organize by Application Logic
	Reusable across Handlers, Services, and Finders
	Focuses on composing a data structure
	Exposes a single public function: build
	Use composition to build through simple logic
	Only returns a List or a Map

Don't
	Call any Services, Handlers or Finders

Below is an example of a value that builds a user object to be used in a JSON
response. Note this utilizes the helper functions generated with
Mix.Tasks.Phx.Gen.Solid.Value.
defmodule Remoteoss.Accounts.Value.User do
 alias Remoteoss.Value

 @valid_fields [:id, :name]

 def build(user, valid_fields \\ @valid_fields)

 def build(nil, _), do: nil

 def build(user, valid_fields) do
 user
 |> Value.init()
 |> Value.only(valid_fields)
 end
end

PhxGenSolid.Generator

 Anchor for this section

 Summary

 Functions

 copy_new_files(context, binding, paths, files_fn)

 copy_new_files(context, binding, paths, files_fn, opts)

 paths()

 prompt_for_conflicts(context, files_fn)

 prompt_for_conflicts(context, files_fn, opts)

 raise_with_help(msg)

 web_app_name(context)

 Anchor for this section

Functions

 Link to this function

 copy_new_files(context, binding, paths, files_fn)

 View Source

 Link to this function

 copy_new_files(context, binding, paths, files_fn, opts)

 View Source

 Link to this function

 paths()

 View Source

 Link to this function

 prompt_for_conflicts(context, files_fn)

 View Source

 Link to this function

 prompt_for_conflicts(context, files_fn, opts)

 View Source

 Link to this function

 raise_with_help(msg)

 View Source

 Link to this function

 web_app_name(context)

 View Source

mix phx.gen.solid.service

Generates CRUD Services for a resource.
mix phx.gen.solid.service Accounts User users
The first argument is the context module followed by the schema module and its
plural name.
This creates the following services:
	MyApp.Accounts.Service.CreateUser
	MyApp.Accounts.Service.UpdateUser
	MyApp.Accounts.Service.DeleteUser

For more information about the generated Services, see the Overview.

 Anchor for this section

 Summary

 Functions

 raise_with_help(msg)

 Anchor for this section

Functions

 Link to this function

 raise_with_help(msg)

 View Source

mix phx.gen.solid.value

Generates Value logic for a resource.
mix phx.gen.solid.value Accounts User users id name age
The first argument is the context module followed by the schema module and its
plural name.
This creates a new Value in MyApp.Accounts.Value.User. By default the
allowed fields for this value will be the arguments you passed into the
generator, in this case, @valid_fields [:id, :slug, :name].
Options
	--helpers - This will generate the Value helpers context in MyApp.Value.
 Module name can be overridden by --value-context.
	--value-context MODULE - This will be the name used for the helpers alias
 and/or helper modue name when generated. Defaults to MyApp.Value.

The generated Value relies on a few helper functions also generated by this
task. By default it will be placed in your projects context folder.
For more information about the generated Value, see the Overview.

 Anchor for this section

 Summary

 Functions

 raise_with_help(msg)

 Anchor for this section

Functions

 Link to this function

 raise_with_help(msg)

 View Source

 OEBPS/assets/patterns.png
Handlers

A 1 ()
. Services || Finders | Values |
¥

OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

