Pipeline Organization and Categorization System
View SourceOverview
This document defines the organizational structure for the AI engineering pipeline library, establishing a systematic approach to pipeline discovery, reuse, and composition.
Directory Structure
pipeline_ex/
├── pipelines/ # Main pipeline library
│ ├── registry.yaml # Global pipeline registry
│ ├── data/ # Data processing pipelines
│ │ ├── cleaning/
│ │ ├── enrichment/
│ │ ├── transformation/
│ │ └── quality/
│ ├── model/ # Model development pipelines
│ │ ├── prompt_engineering/
│ │ ├── evaluation/
│ │ ├── comparison/
│ │ └── fine_tuning/
│ ├── code/ # Code generation pipelines
│ │ ├── api_generation/
│ │ ├── test_generation/
│ │ ├── documentation/
│ │ └── refactoring/
│ ├── analysis/ # Analysis pipelines
│ │ ├── codebase/
│ │ ├── security/
│ │ ├── performance/
│ │ └── dependencies/
│ ├── content/ # Content generation pipelines
│ │ ├── blog/
│ │ ├── tutorial/
│ │ ├── api_docs/
│ │ └── changelog/
│ ├── devops/ # DevOps pipelines
│ │ ├── ci_cd/
│ │ ├── deployment/
│ │ ├── monitoring/
│ │ └── infrastructure/
│ ├── components/ # Reusable components
│ │ ├── steps/ # Reusable step definitions
│ │ ├── prompts/ # Prompt templates
│ │ ├── functions/ # Gemini function definitions
│ │ ├── validators/ # Validation components
│ │ └── transformers/ # Data transformation components
│ └── templates/ # Pipeline templates
│ ├── basic/ # Simple pipeline patterns
│ ├── advanced/ # Complex pipeline patterns
│ └── enterprise/ # Production-grade patterns
├── examples/ # Example usage and demos
│ ├── tutorials/ # Step-by-step tutorials
│ └── case_studies/ # Real-world implementations
└── tests/ # Pipeline-specific tests
├── pipeline_tests/ # Integration tests for pipelines
└── component_tests/ # Unit tests for components
Pipeline Registry Schema
The registry.yaml
serves as the central catalog of all available pipelines:
version: "1.0"
last_updated: "2025-06-30"
pipelines:
- id: "data-cleaning-standard"
name: "Standard Data Cleaning Pipeline"
category: "data/cleaning"
description: "Multi-stage data cleaning with validation"
version: "1.0.0"
tags: ["data", "cleaning", "validation"]
dependencies:
- "components/steps/validation"
- "components/transformers/data"
complexity: "medium"
estimated_tokens: 5000
providers: ["claude", "gemini"]
- id: "api-rest-generator"
name: "REST API Generator"
category: "code/api_generation"
description: "Generate complete REST API with tests"
version: "2.1.0"
tags: ["api", "code-generation", "rest"]
dependencies:
- "components/steps/code"
- "components/prompts/api"
complexity: "high"
estimated_tokens: 15000
providers: ["claude"]
Categorization Taxonomy
1. Primary Categories
- Data: Pipelines focused on data manipulation and processing
- Model: AI/ML model development and optimization
- Code: Software development and code generation
- Analysis: System and code analysis workflows
- Content: Documentation and content creation
- DevOps: Infrastructure and deployment automation
2. Complexity Levels
- Basic: Single-step or simple multi-step pipelines
- Medium: Multi-step with conditional logic
- High: Complex workflows with parallel execution
- Enterprise: Production-grade with full error handling
3. Provider Requirements
- Claude-only: Requires Claude-specific features
- Gemini-only: Requires Gemini function calling
- Multi-provider: Can use either provider
- Hybrid: Requires both providers
Component Classification
Step Components
# components/steps/validation/input_validator.yaml
component:
type: "step"
id: "input-validator"
name: "Input Validation Step"
description: "Validates input data against schema"
parameters:
schema:
type: "object"
description: "JSON Schema for validation"
strict:
type: "boolean"
default: true
outputs:
valid:
type: "boolean"
errors:
type: "array"
items:
type: "string"
Prompt Templates
# components/prompts/analysis/code_review.yaml
component:
type: "prompt"
id: "code-review-prompt"
name: "Code Review Prompt Template"
variables:
- code_content
- review_focus
- severity_level
template: |
Review the following code with focus on {review_focus}:
```
{code_content}
```
Provide feedback at {severity_level} level.
## Naming Conventions
### Pipeline Files
- Format: {purpose}_{variant}_pipeline.yaml
- Examples:
- data_cleaning_standard_pipeline.yaml
- api_generation_rest_pipeline.yaml
- security_audit_comprehensive_pipeline.yaml
### Component Files
- Format: {function}_{type}.yaml
- Examples:
- input_validator.yaml
- json_transformer.yaml
- code_review_prompt.yaml
### Version Tags
- Semantic versioning: MAJOR.MINOR.PATCH
- Beta versions: X.Y.Z-beta.N
- Release candidates: X.Y.Z-rc.N
## Discovery Mechanisms
### 1. CLI Commands
# List all pipelines
mix pipeline.list
# Search by category
mix pipeline.list --category data/cleaning
# Search by tags
mix pipeline.list --tags "api,rest"
# Show pipeline details
mix pipeline.info api-rest-generator
### 2. Web Interface (Future) - Visual pipeline browser - Dependency graph visualization - Performance metrics dashboard - Usage analytics
### 3. API Access
# Pipeline discovery API
Pipeline.Registry.list_by_category("data/cleaning")
Pipeline.Registry.search(tags: ["api", "rest"])
Pipeline.Registry.get_details("api-rest-generator")
## Metadata Standards
Each pipeline must include: 1. Unique identifier 2. Descriptive name 3. Clear category placement 4. Version information 5. Dependency declarations 6. Performance estimates 7. Provider requirements 8. Comprehensive tags
## Migration Path
For existing pipelines: 1. Analyze current pipeline files 2. Categorize according to new taxonomy 3. Add required metadata 4. Update file locations 5. Register in central registry 6. Update references in code
## Governance
### Adding New Pipelines 1. Define clear purpose and category 2. Follow naming conventions 3. Include all required metadata 4. Add comprehensive tests 5. Document usage examples 6. Submit for review
### Deprecation Process 1. Mark as deprecated in registry 2. Add deprecation notice to file 3. Provide migration guide 4. Maintain for 2 major versions 5. Archive after removal
## Benefits
1. Discoverability: Easy to find relevant pipelines 2. Reusability: Clear component boundaries 3. Maintainability: Organized structure 4. Scalability: Supports growth 5. Consistency: Enforced standards 6. Quality: Review process