

 PlaywrightEx

 v0.3.2

 Table of contents

 	Changelog

 	
 Modules

 	PlaywrightEx

 	PlaywrightEx.Selector

 	Channels

 	PlaywrightEx.Browser

 	PlaywrightEx.BrowserContext

 	PlaywrightEx.BrowserType

 	PlaywrightEx.Dialog

 	PlaywrightEx.Frame

 	PlaywrightEx.Page

 	PlaywrightEx.Tracing

 	Other

 	PlaywrightEx.JsLogger

 	PlaywrightEx.Supervisor

PlaywrightEx

Elixir client for the Playwright node.js driver.
Automate browsers like Chromium, Firefox, Safari and Edge.
Helpful for web scraping and agentic AI.
Experimental
This is an early stage, experimental, version.
The API is subject to change.
Getting started
	Add dependency
 # mix.exs
 {:playwright_ex, "~> 0.2"}

	Ensure playwright is installed (executable in $PATH or installed via npm)

	Start connection (or add to supervision tree)
 # if installed via npm or similar add `executable: "assets/node_modules/playwright/cli.js"`
 {:ok, _} = PlaywrightEx.Supervisor.start_link(timeout: 1000)

	Use it
 alias PlaywrightEx.{Browser, BrowserContext, Frame}

 {:ok, browser} = PlaywrightEx.launch_browser(:chromium, timeout: 1000)
 {:ok, context} = Browser.new_context(browser.guid, timeout: 1000)

 {:ok, %{main_frame: frame}} = BrowserContext.new_page(context.guid, timeout: 1000)
 {:ok, _} = Frame.goto(frame.guid, "https://elixir-lang.org/", timeout: 1000)
 {:ok, _} = Frame.click(frame.guid, Selector.link("Install"), timeout: 1000)

References:
	Code extracted from phoenix_test_playwright.
	Inspired by playwright-elixir.
	Official playwright node.js client docs.

Comparison to playwright-elixir
playwright-elixir built on the python client and tried to provide a comprehensive client from the start.
playwright_ex instead is a ground-up implementation. It is not intended to be comprehensive. Rather, it is intended to be simple and easy to extend.

 Summary

 Types

 guid()

 unknown_opt()

 Functions

 launch_browser(type, opts)

 Launches a new browser instance.

 send(msg, timeout)

 Send message to playwright.

 subscribe(pid \\ self(), guid)

 Subscribe to playwright responses concerning a resource, identified by its guid, or its descendants.
Messages in the format {:playwright_msg, %{} = msg} will be sent to pid.

 Types

 guid()

 @type guid() :: String.t()

 unknown_opt()

 @type unknown_opt() :: {Keyword.key(), Keyword.value()}

 Functions

 launch_browser(type, opts)

 @spec launch_browser(atom(), [PlaywrightEx.BrowserType.launch_opt() | unknown_opt()]) ::
 {:ok, %{guid: guid()}} | {:error, any()}

Launches a new browser instance.
Options
	:timeout (timeout/0) - Required. Maximum time for the operation (milliseconds).

	:channel (String.t/0) - Browser distribution channel.

	:executable_path (String.t/0) - Path to a browser executable to run instead of the bundled one.

	:headless (boolean/0) - Whether to run browser in headless mode.

	:slow_mo - Slows down Playwright operations by the specified amount of milliseconds.

 send(msg, timeout)

 @spec send(%{guid: guid(), method: atom()}, timeout()) ::
 %{result: map()} | %{error: map()}

Send message to playwright.
Don't use this! Prefer Channels functions.
If a function is missing, consider opening a PR to add it.

 subscribe(pid \\ self(), guid)

 @spec subscribe(pid(), guid()) :: :ok

Subscribe to playwright responses concerning a resource, identified by its guid, or its descendants.
Messages in the format {:playwright_msg, %{} = msg} will be sent to pid.

PlaywrightEx.Selector

Playright supports different types of locators: CSS, XPath, internal.
They can mixed and matched by chaining the together.
Also, you can register custom selector engines
that run right in the browser (Javascript).
There is no official documentation, since this is considered Playwright internal.
References:
	https://playwright.dev/docs/other-locators
	https://github.com/microsoft/playwright/blob/main/packages/playwright-core/src/client/locator.ts
	https://github.com/microsoft/playwright/blob/main/packages/playwright-core/src/utils/isomorphic/locatorUtils.ts

 Summary

 Types

 built()

 exact_opts()

 t()

 Functions

 left and right

 at(at)

 build(selector)

 button(text, opts \\ [])

 concat(left, right)

 css(selector)

 has(left, right)

 label(label, opts \\ [])

 link(text, opts \\ [])

 menuitem(text, opts \\ [])

 none()

 role(role, text, opts \\ [])

 text(text, opts \\ [])

 value(value)

 Types

 built()

 @type built() :: String.t()

 exact_opts()

 @type exact_opts() :: [{:exact, boolean()}]

 t()

 @type t() :: built() | :none

 Functions

 left and right

 @spec t() and t() :: t()

 at(at)

 @spec at(nil | integer()) :: t()

 build(selector)

 @spec build(t()) :: built()

 button(text, opts \\ [])

 @spec button(String.t(), exact_opts()) :: built()

 concat(left, right)

 @spec concat(t(), t()) :: t()

 css(selector)

 @spec css(nil | String.t() | [String.t()]) :: t()

 has(left, right)

 @spec has(t(), t()) :: t()

 label(label, opts \\ [])

 @spec label(nil | String.t(), exact_opts()) :: t()

 link(text, opts \\ [])

 @spec link(String.t(), exact_opts()) :: built()

 menuitem(text, opts \\ [])

 @spec menuitem(String.t(), exact_opts()) :: built()

 none()

 @spec none() :: t()

 role(role, text, opts \\ [])

 @spec role(String.t(), String.t(), exact_opts()) :: built()

 text(text, opts \\ [])

 @spec text(nil | String.t(), exact_opts()) :: t()

 value(value)

 @spec value(nil | any()) :: t()

PlaywrightEx.Browser

Interact with a Playwright Browser.
There is no official documentation, since this is considered Playwright internal.
References:
	https://github.com/microsoft/playwright/blob/main/packages/playwright-core/src/client/browser.ts

 Summary

 Types

 close_opt()

 new_context_opt()

 Functions

 close(browser_id, opts \\ [])

 Closes the browser and all of its contexts.

 new_context(browser_id, opts \\ [])

 Creates a new browser context. It won't share cookies/cache with other browser contexts.

 Types

 close_opt()

 @type close_opt() :: {:timeout, timeout()} | {:reason, binary()}

 new_context_opt()

 @type new_context_opt() ::
 {:timeout, timeout()}
 | {:accept_downloads, boolean()}
 | {:base_url, binary()}
 | {:bypass_csp, boolean()}
 | {:color_scheme, term()}
 | {:device_scale_factor, float()}
 | {:extra_http_headers, term()}
 | {:http_credentials, term()}
 | {:ignore_https_errors, boolean()}
 | {:is_mobile, boolean()}
 | {:java_script_enabled, boolean()}
 | {:locale, binary()}
 | {:user_agent, binary()}
 | {:viewport, term()}

 Functions

 close(browser_id, opts \\ [])

 @spec close(PlaywrightEx.guid(), [close_opt() | PlaywrightEx.unknown_opt()]) ::
 {:ok, any()} | {:error, any()}

Closes the browser and all of its contexts.
Reference: https://playwright.dev/docs/api/class-browser#browser-close
Options
	:timeout (timeout/0) - Required. Maximum time for the operation (milliseconds).

	:reason (String.t/0) - The reason to be reported to the operations interrupted by the browser closure.

 new_context(browser_id, opts \\ [])

 @spec new_context(PlaywrightEx.guid(), [
 new_context_opt() | PlaywrightEx.unknown_opt()
]) ::
 {:ok, %{guid: PlaywrightEx.guid(), tracing: %{guid: PlaywrightEx.guid()}}}
 | {:error, any()}

Creates a new browser context. It won't share cookies/cache with other browser contexts.
Reference: https://playwright.dev/docs/api/class-browser#browser-new-context
Options
	:timeout (timeout/0) - Required. Maximum time for the operation (milliseconds).

	:accept_downloads (boolean/0) - Whether to automatically download all the attachments. Defaults to true.

	:base_url (String.t/0) - When using Page.goto/3, Page.route/3, Page.wait_for_url/3, etc., it takes the base URL into consideration.

	:bypass_csp (boolean/0) - Toggles bypassing page's Content-Security-Policy. Defaults to false.

	:color_scheme - Emulates 'prefers-colors-scheme' media feature. Defaults to :light.

	:device_scale_factor (float/0) - Specify device scale factor (can be thought of as dpr). Defaults to 1.

	:extra_http_headers (term/0) - An object containing additional HTTP headers to be sent with every request.

	:http_credentials (term/0) - Credentials for HTTP authentication. Map with :username and :password.

	:ignore_https_errors (boolean/0) - Whether to ignore HTTPS errors when sending network requests. Defaults to false.

	:is_mobile (boolean/0) - Whether the meta viewport tag is taken into account and touch events are enabled. Defaults to false.

	:java_script_enabled (boolean/0) - Whether or not to enable JavaScript in the context. Defaults to true.

	:locale (String.t/0) - Specify user locale, for example en-GB, de-DE, etc.

	:user_agent (String.t/0) - Specific user agent to use in this context.

	:viewport (term/0) - Sets a consistent viewport for each page. Map with :width and :height, or nil to disable.

PlaywrightEx.BrowserContext

Interact with a Playwright BrowserContext.
There is no official documentation, since this is considered Playwright internal.
References:
	https://github.com/microsoft/playwright/blob/main/packages/playwright-core/src/client/browserContext.ts

 Summary

 Types

 add_cookies_opt()

 clear_cookies_opt()

 close_opt()

 cookies_opt()

 new_page_opt()

 register_selector_engine_opt()

 Functions

 add_cookies(context_id, opts \\ [])

 Adds cookies into this browser context.

 clear_cookies(context_id, opts \\ [])

 Removes cookies from this browser context.

 close(browser_id, opts \\ [])

 Closes the browser context.

 cookies(context_id, opts \\ [])

 Returns cookies from this browser context.

 new_page(context_id, opts \\ [])

 Creates a new page in the browser context.

 register_selector_engine(context_id, opts \\ [])

 Registers a custom selector engine.

 Types

 add_cookies_opt()

 @type add_cookies_opt() :: {:timeout, timeout()} | {:cookies, [term()]}

 clear_cookies_opt()

 @type clear_cookies_opt() ::
 {:timeout, timeout()} | {:domain, term()} | {:name, term()} | {:path, term()}

 close_opt()

 @type close_opt() :: {:timeout, timeout()} | {:reason, binary()}

 cookies_opt()

 @type cookies_opt() :: {:timeout, timeout()} | {:urls, [binary()]}

 new_page_opt()

 @type new_page_opt() :: {:timeout, timeout()}

 register_selector_engine_opt()

 @type register_selector_engine_opt() ::
 {:timeout, timeout()} | {:selector_engine, keyword()}

 Functions

 add_cookies(context_id, opts \\ [])

 @spec add_cookies(PlaywrightEx.guid(), [
 add_cookies_opt() | PlaywrightEx.unknown_opt()
]) ::
 {:ok, any()} | {:error, any()}

Adds cookies into this browser context.
Reference: https://playwright.dev/docs/api/class-browsercontext#browser-context-add-cookies
Options
	:timeout (timeout/0) - Required. Maximum time for the operation (milliseconds).

	:cookies (list of term/0) - Required. Adds cookies into this browser context. All pages within this context will have these cookies installed.

 clear_cookies(context_id, opts \\ [])

 @spec clear_cookies(PlaywrightEx.guid(), [
 clear_cookies_opt() | PlaywrightEx.unknown_opt()
]) ::
 {:ok, any()} | {:error, any()}

Removes cookies from this browser context.
Reference: https://playwright.dev/docs/api/class-browsercontext#browser-context-clear-cookies
Options
	:timeout (timeout/0) - Required. Maximum time for the operation (milliseconds).

	:domain (term/0) - Only removes cookies with the given domain.

	:name (term/0) - Only removes cookies with the given name.

	:path (term/0) - Only removes cookies with the given path.

 close(browser_id, opts \\ [])

 @spec close(PlaywrightEx.guid(), [close_opt() | PlaywrightEx.unknown_opt()]) ::
 {:ok, any()} | {:error, any()}

Closes the browser context.
Reference: https://playwright.dev/docs/api/class-browsercontext#browser-context-close
Options
	:timeout (timeout/0) - Required. Maximum time for the operation (milliseconds).

	:reason (String.t/0) - The reason to be reported to the operations interrupted by the context closure.

 cookies(context_id, opts \\ [])

 @spec cookies(PlaywrightEx.guid(), [cookies_opt() | PlaywrightEx.unknown_opt()]) ::
 {:ok, [map()]} | {:error, any()}

Returns cookies from this browser context.
Reference: https://playwright.dev/docs/api/class-browsercontext#browser-context-cookies
Options
	:timeout (timeout/0) - Required. Maximum time for the operation (milliseconds).

	:urls (list of String.t/0) - If specified, returns cookies for the given URLs. The default value is [].

 new_page(context_id, opts \\ [])

 @spec new_page(PlaywrightEx.guid(), [new_page_opt() | PlaywrightEx.unknown_opt()]) ::
 {:ok, %{guid: PlaywrightEx.guid(), main_frame: %{guid: PlaywrightEx.guid()}}}
 | {:error, any()}

Creates a new page in the browser context.
Reference: https://playwright.dev/docs/api/class-browsercontext#browser-context-new-page
Options
	:timeout (timeout/0) - Required. Maximum time for the operation (milliseconds).

 register_selector_engine(context_id, opts \\ [])

 @spec register_selector_engine(PlaywrightEx.guid(), [
 register_selector_engine_opt() | PlaywrightEx.unknown_opt()
]) :: {:ok, any()} | {:error, any()}

Registers a custom selector engine.
Reference: https://playwright.dev/docs/api/class-selectors#selectors-register
Options
	:timeout (timeout/0) - Required. Maximum time for the operation (milliseconds).

	:selector_engine (non-empty keyword/0) - Required.
	:name (String.t/0) - Required. Name that is used in selectors as a prefix.

	:source (String.t/0) - Required. Script that evaluates to a selector engine instance.

PlaywrightEx.BrowserType

Interact with a Playwright BrowserType.
There is no official documentation, since this is considered Playwright internal.
References:
	https://github.com/microsoft/playwright/blob/main/packages/playwright-core/src/client/browserType.ts

 Summary

 Types

 guid()

 launch_opt()

 Functions

 launch(type_id, opts \\ [])

 Launches a new browser instance.

 Types

 guid()

 @type guid() :: String.t()

 launch_opt()

 @type launch_opt() ::
 {:timeout, timeout()}
 | {:channel, binary()}
 | {:executable_path, binary()}
 | {:headless, boolean()}
 | {:slow_mo, integer() | float()}

 Functions

 launch(type_id, opts \\ [])

 @spec launch(PlaywrightEx.guid(), [launch_opt() | PlaywrightEx.unknown_opt()]) ::
 {:ok, %{guid: PlaywrightEx.guid()}} | {:error, any()}

Launches a new browser instance.
Reference: https://playwright.dev/docs/api/class-browsertype#browser-type-launch
Options
	:timeout (timeout/0) - Required. Maximum time for the operation (milliseconds).

	:channel (String.t/0) - Browser distribution channel.

	:executable_path (String.t/0) - Path to a browser executable to run instead of the bundled one.

	:headless (boolean/0) - Whether to run browser in headless mode.

	:slow_mo - Slows down Playwright operations by the specified amount of milliseconds.

PlaywrightEx.Dialog

Interact with a Playwright Dialog.
There is no official documentation, since this is considered Playwright internal.
References:
	https://github.com/microsoft/playwright/blob/main/packages/playwright-core/src/client/dialog.ts

 Summary

 Types

 accept_opt()

 dismiss_opt()

 guid()

 Functions

 accept(dialog_id, opts \\ [])

 Returns when the dialog has been accepted.

 dismiss(dialog_id, opts \\ [])

 Returns when the dialog has been dismissed.

 Types

 accept_opt()

 @type accept_opt() :: {:timeout, timeout()} | {:prompt_text, binary()}

 dismiss_opt()

 @type dismiss_opt() :: {:timeout, timeout()}

 guid()

 @type guid() :: String.t()

 Functions

 accept(dialog_id, opts \\ [])

 @spec accept(PlaywrightEx.guid(), [accept_opt() | PlaywrightEx.unknown_opt()]) ::
 {:ok, any()} | {:error, any()}

Returns when the dialog has been accepted.
Reference: https://playwright.dev/docs/api/class-dialog#dialog-accept
Options
	:timeout (timeout/0) - Required. Maximum time for the operation (milliseconds).

	:prompt_text (String.t/0) - A text to enter in prompt. Does not cause any effects if the dialog's type is not prompt.

 dismiss(dialog_id, opts \\ [])

 @spec dismiss(PlaywrightEx.guid(), [dismiss_opt() | PlaywrightEx.unknown_opt()]) ::
 {:ok, any()} | {:error, any()}

Returns when the dialog has been dismissed.
Reference: https://playwright.dev/docs/api/class-dialog#dialog-dismiss
Options
	:timeout (timeout/0) - Required. Maximum time for the operation (milliseconds).

PlaywrightEx.Frame

Interact with a Playwright Frame (usually the "main" frame of a browser page).
There is no official documentation, since this is considered Playwright internal.
References:
	https://github.com/microsoft/playwright/blob/main/packages/playwright-core/src/client/frame.ts

 Summary

 Types

 blur_opt()

 check_opt()

 click_opt()

 content_opt()

 drag_and_drop_opt()

 evaluate_opt()

 expect_opt()

 fill_opt()

 goto_opt()

 hover_opt()

 inner_html_opt()

 press_opt()

 select_option_opt()

 set_input_files_opt()

 title_opt()

 type_opt()

 uncheck_opt()

 url_opt()

 wait_for_selector_opt()

 Functions

 blur(frame_id, opts \\ [])

 Calls the native blur function on the matching element, which removes focus from that element.

 check(frame_id, opts \\ [])

 Checks a checkbox or radio input element.

 click(frame_id, opts \\ [])

 Clicks an element matching selector by performing the following steps

 content(frame_id, opts \\ [])

 Gets the full HTML contents of the frame, including the doctype.

 drag_and_drop(frame_id, opts \\ [])

 Performs a drag-and-drop operation between two elements.

 evaluate(frame_id, opts \\ [])

 Executes JavaScript code within a frame's context and returns the result.

 expect(frame_id, opts \\ [])

 Internal method for setting up expectations on the frame.

 fill(frame_id, opts \\ [])

 Waits for an element matching selector, waits for actionability checks, focuses the element, fills it and triggers an input event after filling.

 goto(frame_id, opts \\ [])

 Navigates a frame to a specified URL and returns the main resource response. In cases of multiple redirects, it resolves with the final redirect's response.

 hover(frame_id, opts \\ [])

 Hovers over an element matching selector.

 inner_html(frame_id, opts \\ [])

 Returns the element.innerHTML property from a matching element.

 press(frame_id, opts \\ [])

 Focuses a matching element and activates a combination of keys.

 select_option(frame_id, opts \\ [])

 Selects one or more options from a <select> element matching the provided selector.

 set_input_files(frame_id, opts \\ [])

 Sets the value of the file input to these file paths or files.

 title(frame_id, opts \\ [])

 Returns the page title.

 type(frame_id, opts \\ [])

 deprecated

 Sends keydown, keypress/input, and keyup events for each character in the text.

 uncheck(frame_id, opts \\ [])

 Unchecks an element matching a selector by performing several steps: locating an element that matches the given selector, ensuring it's a checkbox or radio input, waiting for actionability checks (unless force is set), scrolling into view if needed, using the mouse to click the center of the element, and verifying the element is now unchecked. The method throws a TimeoutError if all steps don't complete within the specified timeout period.

 url(frame_id, opts \\ [])

 Returns the frame's URL.

 wait_for_selector(frame_id, opts \\ [])

 Returns when element specified by selector satisfies state option. Returns nil if waiting for hidden or detached.

 Types

 blur_opt()

 @type blur_opt() :: {:timeout, timeout()} | {:selector, binary()}

 check_opt()

 @type check_opt() ::
 {:timeout, timeout()} | {:selector, binary()} | {:strict, boolean()}

 click_opt()

 @type click_opt() ::
 {:timeout, timeout()} | {:selector, binary()} | {:strict, boolean()}

 content_opt()

 @type content_opt() :: {:timeout, timeout()}

 drag_and_drop_opt()

 @type drag_and_drop_opt() ::
 {:timeout, timeout()}
 | {:source, binary()}
 | {:target, binary()}
 | {:strict, boolean()}

 evaluate_opt()

 @type evaluate_opt() ::
 {:timeout, timeout()}
 | {:expression, binary()}
 | {:is_function, boolean()}
 | {:arg, term()}

 expect_opt()

 @type expect_opt() ::
 {:timeout, timeout()}
 | {:is_not, boolean()}
 | {:expression, binary()}
 | {:selector, binary()}
 | {:expected_text, term()}
 | {:expected_number, term()}
 | {:expression_arg, term()}

 fill_opt()

 @type fill_opt() ::
 {:timeout, timeout()}
 | {:selector, binary()}
 | {:value, binary()}
 | {:strict, boolean()}

 goto_opt()

 @type goto_opt() :: {:timeout, timeout()} | {:url, binary()}

 hover_opt()

 @type hover_opt() ::
 {:timeout, timeout()} | {:selector, binary()} | {:strict, boolean()}

 inner_html_opt()

 @type inner_html_opt() :: {:timeout, timeout()} | {:selector, binary()}

 press_opt()

 @type press_opt() ::
 {:timeout, timeout()}
 | {:selector, binary()}
 | {:key, binary()}
 | {:delay, non_neg_integer()}

 select_option_opt()

 @type select_option_opt() ::
 {:timeout, timeout()}
 | {:selector, binary()}
 | {:options, term()}
 | {:strict, boolean()}

 set_input_files_opt()

 @type set_input_files_opt() ::
 {:timeout, timeout()}
 | {:selector, binary()}
 | {:local_paths, term()}
 | {:strict, boolean()}

 title_opt()

 @type title_opt() :: {:timeout, timeout()}

 type_opt()

 @type type_opt() ::
 {:timeout, timeout()}
 | {:selector, binary()}
 | {:text, binary()}
 | {:delay, non_neg_integer()}

 uncheck_opt()

 @type uncheck_opt() ::
 {:timeout, timeout()} | {:selector, binary()} | {:strict, boolean()}

 url_opt()

 @type url_opt() :: {:timeout, timeout()}

 wait_for_selector_opt()

 @type wait_for_selector_opt() :: {:timeout, timeout()} | {:selector, binary()}

 Functions

 blur(frame_id, opts \\ [])

 @spec blur(PlaywrightEx.guid(), [blur_opt() | PlaywrightEx.unknown_opt()]) ::
 {:ok, any()} | {:error, any()}

Calls the native blur function on the matching element, which removes focus from that element.
Reference: https://playwright.dev/docs/api/class-frame#frame-blur
Options
	:timeout (timeout/0) - Required. Maximum time for the operation (milliseconds).

	:selector (String.t/0) - Required. A selector to search for an element.

 check(frame_id, opts \\ [])

 @spec check(PlaywrightEx.guid(), [check_opt() | PlaywrightEx.unknown_opt()]) ::
 {:ok, any()} | {:error, any()}

Checks a checkbox or radio input element.
This method locates an element matching the given selector and performs a series of automated steps:
finding the element, verifying it's a checkbox or radio input, performing actionability checks,
scrolling into view if necessary, and using mouse interaction to click the center of the element.
The method ensures the element becomes checked after the click.
If the element is already checked, the method returns immediately without further action.
Developers can bypass actionability checks using the force option. The method throws an error
if the matched element is not a checkbox or radio input. A TimeoutError is thrown if operations
don't complete within the specified timeout period. Zero timeout disables timeout restrictions.
This method is discouraged in favor of using the locator-based locator.check() approach, which
aligns with modern Playwright testing practices focusing on locators rather than direct selector-based actions.
Reference: https://playwright.dev/docs/api/class-frame#frame-check
Options
	:timeout (timeout/0) - Required. Maximum time for the operation (milliseconds).

	:selector (String.t/0) - Required. A selector to search for an element.

	:strict (boolean/0) - When true, the call requires selector to resolve to a single element. The default value is true.

 click(frame_id, opts \\ [])

 @spec click(PlaywrightEx.guid(), [click_opt() | PlaywrightEx.unknown_opt()]) ::
 {:ok, any()} | {:error, any()}

Clicks an element matching selector by performing the following steps:
	Locates an element matching the provided selector, waiting if necessary for it to appear in the DOM
	Performs actionability checks unless the force option is enabled; retries if the element detaches during checks
	Scrolls the element into view as needed
	Uses the mouse to click at the element's center or a specified position
	Waits for any initiated navigations to complete, unless noWaitAfter is set

The method throws a TimeoutError if all steps don't complete within the specified timeout period. This deprecated method is discouraged in favor of using locator-based locator.click() instead.
Reference: https://playwright.dev/docs/api/class-frame#frame-click
Options
	:timeout (timeout/0) - Required. Maximum time for the operation (milliseconds).

	:selector (String.t/0) - Required. A selector to search for an element.

	:strict (boolean/0) - When true, the call requires selector to resolve to a single element. The default value is true.

 content(frame_id, opts \\ [])

 @spec content(PlaywrightEx.guid(), [content_opt() | PlaywrightEx.unknown_opt()]) ::
 {:ok, String.t()} | {:error, any()}

Gets the full HTML contents of the frame, including the doctype.
Reference: https://playwright.dev/docs/api/class-frame#frame-content
Options
	:timeout (timeout/0) - Required. Maximum time for the operation (milliseconds).

 drag_and_drop(frame_id, opts \\ [])

 @spec drag_and_drop(PlaywrightEx.guid(), [
 drag_and_drop_opt() | PlaywrightEx.unknown_opt()
]) ::
 {:ok, any()} | {:error, any()}

Performs a drag-and-drop operation between two elements.
This method takes a source selector (the element to drag) and a target selector (the element to drop onto),
then simulates dragging from the source element to the target element.
The method supports customization through optional parameters including:
	Position specification: Define custom drag start and drop end points relative to element padding boxes
	Actionability control: Bypass standard actionability checks if needed
	Strict mode: Ensure selectors resolve to exactly one element
	Timeout configuration: Set maximum operation duration
	Trial mode: Perform actionability checks without executing the actual drag-and-drop action

Reference: https://playwright.dev/docs/api/class-frame#frame-drag-and-drop
Options
	:timeout (timeout/0) - Required. Maximum time for the operation (milliseconds).

	:source (String.t/0) - Required. A selector to search for the source element to drag.

	:target (String.t/0) - Required. A selector to search for the target element to drop onto.

	:strict (boolean/0) - When true, the call requires selector to resolve to a single element. The default value is true.

 evaluate(frame_id, opts \\ [])

 @spec evaluate(PlaywrightEx.guid(), [evaluate_opt() | PlaywrightEx.unknown_opt()]) ::
 {:ok, any()} | {:error, any()}

Executes JavaScript code within a frame's context and returns the result.
Returns the return value of the expression. If the function passed to evaluate/2 returns a Promise,
then evaluate/2 would wait for the promise to resolve and return its value.
If the function passed to evaluate/2 returns a non-Serializable value, then evaluate/2 returns
undefined. Playwright also supports transferring some additional values that are not serializable
by JSON: -0, NaN, Infinity, -Infinity.
Reference: https://playwright.dev/docs/api/class-frame#frame-evaluate
Options
	:timeout (timeout/0) - Required. Maximum time for the operation (milliseconds).

	:expression (String.t/0) - Required. The JavaScript code to execute.

	:is_function (boolean/0) - Whether the expression is a function. The default value is false.

	:arg (term/0) - Optional argument to pass to the function. The default value is nil.

 expect(frame_id, opts \\ [])

 @spec expect(PlaywrightEx.guid(), [expect_opt() | PlaywrightEx.unknown_opt()]) ::
 {:ok, any()} | {:error, any()}

Internal method for setting up expectations on the frame.
This is an internal Playwright method used for implementing expectations and assertions on frame state.
Reference: https://github.com/microsoft/playwright/blob/main/packages/playwright-core/src/client/frame.ts
Options
	:timeout (timeout/0) - Required. Maximum time for the operation (milliseconds).

	:is_not (boolean/0) - Whether to negate the expectation. The default value is false.

	:expression (String.t/0) - Required.

	:selector (String.t/0)

	:expected_text (term/0)

	:expected_number (term/0)

	:expression_arg (term/0)

 fill(frame_id, opts \\ [])

 @spec fill(PlaywrightEx.guid(), [fill_opt() | PlaywrightEx.unknown_opt()]) ::
 {:ok, any()} | {:error, any()}

Waits for an element matching selector, waits for actionability checks, focuses the element, fills it and triggers an input event after filling.
You can pass an empty string to clear an input field. The method works with <input>, <textarea>, or [contenteditable] elements. If the target element is inside a <label> with an associated control, that control will be filled instead. The method throws an error if the element doesn't match the supported input types.
For more granular keyboard control, the documentation recommends using locator.pressSequentially() as an alternative.
Reference: https://playwright.dev/docs/api/class-frame#frame-fill
Options
	:timeout (timeout/0) - Required. Maximum time for the operation (milliseconds).

	:selector (String.t/0) - Required. A selector to search for an element.

	:value (String.t/0) - Required. Value to fill for the <input>, <textarea>, or [contenteditable] element.

	:strict (boolean/0) - When true, the call requires selector to resolve to a single element. The default value is true.

 goto(frame_id, opts \\ [])

 @spec goto(PlaywrightEx.guid(), [goto_opt() | PlaywrightEx.unknown_opt()]) ::
 {:ok, any()} | {:error, any()}

Navigates a frame to a specified URL and returns the main resource response. In cases of multiple redirects, it resolves with the final redirect's response.
The method throws an error in these scenarios:
	SSL errors occur (e.g., self-signed certificates)
	The target URL is invalid
	Navigation timeout is exceeded
	Remote server is unresponsive or unreachable
	Main resource fails to load

However, it does not throw for valid HTTP status codes, including 404 or 500 responses—these can be retrieved via response.status().
Navigation to about:blank or same-URL hash changes return null rather than throwing. Headless mode cannot navigate to PDF documents.
Reference: https://playwright.dev/docs/api/class-frame#frame-goto
Options
	:timeout (timeout/0) - Required. Maximum time for the operation (milliseconds).

	:url (String.t/0) - Required. The destination URL, including scheme (e.g., https://) or a relative path (base_url was passed to PlaywrightEx.Browser.new_context/2).

 hover(frame_id, opts \\ [])

 @spec hover(PlaywrightEx.guid(), [hover_opt() | PlaywrightEx.unknown_opt()]) ::
 {:ok, any()} | {:error, any()}

Hovers over an element matching selector.
This method is discouraged in favor of using locator-based locator.hover() instead.
Reference: https://playwright.dev/docs/api/class-frame#frame-hover
Example
Hover before manual drag (see https://playwright.dev/docs/input#dragging-manually)
{:ok, _} = Frame.hover(frame_id, selector: "#item-to-be-dragged", timeout: 5000)

Get element position
{:ok, box} = Frame.evaluate(frame_id,
 expression: "() => {
 const el = document.querySelector('#item-to-be-dragged');
 const box = el.getBoundingClientRect();
 return { x: box.x, y: box.y };
 }",
 is_function: true,
 timeout: 5000
)

Drag 200px to the right
{:ok, _} = Page.mouse_down(page_id, timeout: 5000)
{:ok, _} = Page.mouse_move(page_id, x: box["x"] + 200, y: box["y"], timeout: 5000)
{:ok, _} = Page.mouse_up(page_id, timeout: 5000)
Options
	:timeout (timeout/0) - Required. Maximum time for the operation (milliseconds).

	:selector (String.t/0) - Required. A selector to search for an element.

	:strict (boolean/0) - When true, the call requires selector to resolve to a single element. The default value is true.

 inner_html(frame_id, opts \\ [])

 @spec inner_html(PlaywrightEx.guid(), [inner_html_opt() | PlaywrightEx.unknown_opt()]) ::
 {:ok, String.t()} | {:error, any()}

Returns the element.innerHTML property from a matching element.
This method returns the HTML content nested within the element, including all child elements and their markup.
Reference: https://playwright.dev/docs/api/class-frame#frame-inner-html
Options
	:timeout (timeout/0) - Required. Maximum time for the operation (milliseconds).

	:selector (String.t/0) - Required. A selector to search for an element.

 press(frame_id, opts \\ [])

 @spec press(PlaywrightEx.guid(), [press_opt() | PlaywrightEx.unknown_opt()]) ::
 {:ok, any()} | {:error, any()}

Focuses a matching element and activates a combination of keys.
Reference: https://playwright.dev/docs/api/class-frame#frame-press
This method waits for actionability checks, focuses the element, presses the specified key combination, and triggers keyboard events. If the element is detached during the action or exceeds the timeout, an error is thrown.
Options
	:timeout (timeout/0) - Required. Maximum time for the operation (milliseconds).

	:selector (String.t/0) - Required. A selector to search for an element.

	:key (String.t/0) - Required. Name of the key to press or a character to generate, such as ArrowLeft or a.

	:delay (non_neg_integer/0) - Time in milliseconds to wait between keydown and keyup. Defaults to 0. The default value is 0.

 select_option(frame_id, opts \\ [])

 @spec select_option(PlaywrightEx.guid(), [
 select_option_opt() | PlaywrightEx.unknown_opt()
]) ::
 {:ok, any()} | {:error, any()}

Selects one or more options from a <select> element matching the provided selector.
This method waits for an element matching the selector, waits for actionability checks,
waits until all specified options are present in the <select> element and selects these options.
It triggers change and input events once all the provided options have been selected.
The method accepts options via value, label, index, or element reference and returns an array
of the option values that were successfully selected. It throws an error if the target element
is not a <select> element. However, if the element is inside a <label> element that has
an associated control, the control will be used instead.
Reference: https://playwright.dev/docs/api/class-frame#frame-select-option
Options
	:timeout (timeout/0) - Required. Maximum time for the operation (milliseconds).

	:selector (String.t/0) - Required. A selector to search for an element.

	:options (term/0) - Required. Option to select. Can be a single value, label, index, or element reference, or an array of these.

	:strict (boolean/0) - When true, the call requires selector to resolve to a single element. The default value is true.

 set_input_files(frame_id, opts \\ [])

 @spec set_input_files(PlaywrightEx.guid(), [
 set_input_files_opt() | PlaywrightEx.unknown_opt()
]) ::
 {:ok, any()} | {:error, any()}

Sets the value of the file input to these file paths or files.
This method expects selector to point to an input element. However, if the element is inside
the <label> element that has an associated control, targets the control instead. If some of
the file paths are relative paths, then they are resolved relative to the current working directory.
For empty array, clears the selected files.
Note: This method is discouraged. Use locator-based locator.setInputFiles() instead.
Reference: https://playwright.dev/docs/api/class-frame#frame-set-input-files
Options
	:timeout (timeout/0) - Required. Maximum time for the operation (milliseconds).

	:selector (String.t/0) - Required. A selector to search for an element.

	:local_paths (term/0) - Required. File path(s) to set. Can be a string or a list of strings. Relative paths are resolved relative to the current working directory.

	:strict (boolean/0) - When true, the call requires selector to resolve to a single element. The default value is true.

 title(frame_id, opts \\ [])

 @spec title(PlaywrightEx.guid(), [title_opt() | PlaywrightEx.unknown_opt()]) ::
 {:ok, String.t()} | {:error, any()}

Returns the page title.
Reference: https://playwright.dev/docs/api/class-frame#frame-title
Options
	:timeout (timeout/0) - Required. Maximum time for the operation (milliseconds).

 type(frame_id, opts \\ [])

 This function is deprecated. Use `fill/2` or `press/2` instead.

 @spec type(PlaywrightEx.guid(), [type_opt() | PlaywrightEx.unknown_opt()]) ::
 {:ok, any()} | {:error, any()}

Sends keydown, keypress/input, and keyup events for each character in the text.
Reference: https://playwright.dev/docs/api/class-frame#frame-type
Options
	:timeout (timeout/0) - Required. Maximum time for the operation (milliseconds).

	:selector (String.t/0) - Required. A selector to search for an element.

	:text (String.t/0) - Required. Text to type into the element.

	:delay (non_neg_integer/0) - Time to wait between key presses in milliseconds. Defaults to 0. The default value is 0.

 uncheck(frame_id, opts \\ [])

 @spec uncheck(PlaywrightEx.guid(), [uncheck_opt() | PlaywrightEx.unknown_opt()]) ::
 {:ok, any()} | {:error, any()}

Unchecks an element matching a selector by performing several steps: locating an element that matches the given selector, ensuring it's a checkbox or radio input, waiting for actionability checks (unless force is set), scrolling into view if needed, using the mouse to click the center of the element, and verifying the element is now unchecked. The method throws a TimeoutError if all steps don't complete within the specified timeout period.
Reference: https://playwright.dev/docs/api/class-frame#frame-uncheck
Options
	:timeout (timeout/0) - Required. Maximum time for the operation (milliseconds).

	:selector (String.t/0) - Required. A selector to search for an element.

	:strict (boolean/0) - When true, the call requires selector to resolve to a single element. The default value is true.

 url(frame_id, opts \\ [])

 @spec url(PlaywrightEx.guid(), [url_opt() | PlaywrightEx.unknown_opt()]) ::
 {:ok, String.t()} | {:error, any()}

Returns the frame's URL.
Reference: https://playwright.dev/docs/api/class-frame#frame-url
Options
	:timeout (timeout/0) - Required. Maximum time for the operation (milliseconds).

 wait_for_selector(frame_id, opts \\ [])

 @spec wait_for_selector(PlaywrightEx.guid(), [
 wait_for_selector_opt() | PlaywrightEx.unknown_opt()
]) ::
 {:ok, any()} | {:error, any()}

Returns when element specified by selector satisfies state option. Returns nil if waiting for hidden or detached.
This method waits for an element matching the selector to appear in the DOM, become visible, become hidden, or be detached, depending on the state option provided. If the selector already satisfies the condition at the time of calling, the method returns immediately. If the selector doesn't satisfy the condition within the timeout period, the function will throw an error.
The method works across navigations and will continue waiting for the element even if the page navigates to a different URL.
Reference: https://playwright.dev/docs/api/class-frame#frame-wait-for-selector
Options
	:timeout (timeout/0) - Required. Maximum time for the operation (milliseconds).

	:selector (String.t/0) - Required.

PlaywrightEx.Page

Interact with a Playwright Page.
There is no official documentation, since this is considered Playwright internal.
References:
	https://github.com/microsoft/playwright/blob/main/packages/playwright-core/src/client/page.ts

 Summary

 Types

 mouse_down_opt()

 mouse_move_opt()

 mouse_up_opt()

 screenshot_opt()

 update_subscription_opt()

 Functions

 mouse_down(page_id, opts \\ [])

 Dispatches a mousedown event at the current mouse position.

 mouse_move(page_id, opts \\ [])

 Moves the mouse to the specified coordinates.

 mouse_up(page_id, opts \\ [])

 Dispatches a mouseup event at the current mouse position.

 screenshot(page_id, opts \\ [])

 Returns a screenshot of the page as binary data.

 update_subscription(page_id, opts \\ [])

 Updates the subscription for page events.

 Types

 mouse_down_opt()

 @type mouse_down_opt() :: {:timeout, timeout()} | {:button, term()}

 mouse_move_opt()

 @type mouse_move_opt() ::
 {:timeout, timeout()} | {:x, integer() | float()} | {:y, integer() | float()}

 mouse_up_opt()

 @type mouse_up_opt() :: {:timeout, timeout()} | {:button, term()}

 screenshot_opt()

 @type screenshot_opt() ::
 {:timeout, timeout()}
 | {:full_page, boolean()}
 | {:omit_background, boolean()}

 update_subscription_opt()

 @type update_subscription_opt() ::
 {:timeout, timeout()} | {:event, atom()} | {:enabled, boolean()}

 Functions

 mouse_down(page_id, opts \\ [])

 @spec mouse_down(PlaywrightEx.guid(), [mouse_down_opt() | PlaywrightEx.unknown_opt()]) ::
 {:ok, any()} | {:error, any()}

Dispatches a mousedown event at the current mouse position.
Reference: https://playwright.dev/docs/api/class-mouse#mouse-down
Example
Perform a manual drag operation
{:ok, _} = Page.mouse_move(page_id, x: 100, y: 100, timeout: 5000)
{:ok, _} = Page.mouse_down(page_id, timeout: 5000)
{:ok, _} = Page.mouse_move(page_id, x: 200, y: 100, timeout: 5000)
{:ok, _} = Page.mouse_up(page_id, timeout: 5000)
Options
	:timeout (timeout/0) - Required. Maximum time for the operation (milliseconds).

	:button - Defaults to :left. The default value is :left.

 mouse_move(page_id, opts \\ [])

 @spec mouse_move(PlaywrightEx.guid(), [mouse_move_opt() | PlaywrightEx.unknown_opt()]) ::
 {:ok, any()} | {:error, any()}

Moves the mouse to the specified coordinates.
This method dispatches a mousemove event. Supports fractional coordinates for precise positioning.
Reference: https://playwright.dev/docs/api/class-mouse#mouse-move
Example
Get element position
{:ok, result} = Frame.evaluate(frame_id,
 expression: "() => {
 const el = document.querySelector('.slider-handle');
 const box = el.getBoundingClientRect();
 return { x: box.x + box.width / 2, y: box.y + box.height / 2 };
 }",
 is_function: true,
 timeout: 5000
)

Move to element
{:ok, _} = Page.mouse_move(page_id, x: result["x"], y: result["y"], timeout: 5000)
Options
	:timeout (timeout/0) - Required. Maximum time for the operation (milliseconds).

	:x - Required. x coordinate relative to the main frame's viewport in CSS pixels.

	:y - Required. y coordinate relative to the main frame's viewport in CSS pixels.

 mouse_up(page_id, opts \\ [])

 @spec mouse_up(PlaywrightEx.guid(), [mouse_up_opt() | PlaywrightEx.unknown_opt()]) ::
 {:ok, any()} | {:error, any()}

Dispatches a mouseup event at the current mouse position.
Reference: https://playwright.dev/docs/api/class-mouse#mouse-up
Example
Right-click at current position
{:ok, _} = Page.mouse_down(page_id, button: :right, timeout: 5000)
{:ok, _} = Page.mouse_up(page_id, button: :right, timeout: 5000)
Options
	:timeout (timeout/0) - Required. Maximum time for the operation (milliseconds).

	:button - Defaults to :left. The default value is :left.

 screenshot(page_id, opts \\ [])

 @spec screenshot(PlaywrightEx.guid(), [screenshot_opt() | PlaywrightEx.unknown_opt()]) ::
 {:ok, binary()} | {:error, any()}

Returns a screenshot of the page as binary data.
Reference: https://playwright.dev/docs/api/class-page#page-screenshot
Options
	:timeout (timeout/0) - Required. Maximum time for the operation (milliseconds).

	:full_page (boolean/0) - When true, takes a screenshot of the full scrollable page, instead of the currently visible viewport. Defaults to false.

	:omit_background (boolean/0) - Hides default white background and allows capturing screenshots with transparency. Defaults to false. Not applicable to jpeg images.

 update_subscription(page_id, opts \\ [])

 @spec update_subscription(PlaywrightEx.guid(), [
 update_subscription_opt() | PlaywrightEx.unknown_opt()
]) ::
 {:ok, any()} | {:error, any()}

Updates the subscription for page events.
Reference: https://github.com/microsoft/playwright/blob/main/packages/playwright-core/src/client/page.ts
Options
	:timeout (timeout/0) - Required. Maximum time for the operation (milliseconds).

	:event (atom/0) - Required.

	:enabled (boolean/0) - The default value is true.

PlaywrightEx.Tracing

Interact with a Playwright Tracing.
There is no official documentation, since this is considered Playwright internal.
References:
	https://github.com/microsoft/playwright/blob/main/packages/playwright-core/src/client/tracing.ts

 Summary

 Types

 group_opt()

 start_chunk_opt()

 start_opt()

 stop_chunk_opt()

 stop_opt()

 Functions

 group(tracing_id, opts, fun)

 Wraps a function call in a named trace group.

 tracing_start(tracing_id, opts \\ [])

 Starts tracing.

 tracing_start_chunk(tracing_id, opts \\ [])

 Starts a new chunk in the tracing.

 tracing_stop(tracing_id, opts \\ [])

 Stops tracing.

 tracing_stop_chunk(tracing_id, opts \\ [])

 Stops a chunk of tracing.

 Types

 group_opt()

 @type group_opt() ::
 {:timeout, timeout()} | {:name, binary()} | {:location, keyword()}

 start_chunk_opt()

 @type start_chunk_opt() :: {:timeout, timeout()} | {:title, binary()}

 start_opt()

 @type start_opt() ::
 {:timeout, timeout()}
 | {:title, binary()}
 | {:screenshots, boolean()}
 | {:snapshots, boolean()}
 | {:sources, boolean()}

 stop_chunk_opt()

 @type stop_chunk_opt() :: {:timeout, timeout()} | {:mode, atom()}

 stop_opt()

 @type stop_opt() :: {:timeout, timeout()}

 Functions

 group(tracing_id, opts, fun)

 @spec group(
 PlaywrightEx.guid(),
 [group_opt() | PlaywrightEx.unknown_opt()],
 (-> result)
) :: result
when result: any()

Wraps a function call in a named trace group.
Reference: https://playwright.dev/docs/api/class-tracing#tracing-group
Automatically starts a trace group before executing the function and ends it after,
ensuring proper cleanup even if the function raises an exception.
Options
	:timeout (timeout/0) - Required. Maximum time for the operation (milliseconds).

	:name (String.t/0) - Required. Name of the group to appear in trace viewer

	:location (non-empty keyword/0) - Source location metadata for the trace group
	:file (String.t/0) - Required. File path for the source location

	:line (integer/0) - Required. Line number in the source file

	:column (integer/0) - Column number in the source file

Examples
Tracing.group(browser_context.tracing.guid, [name: "Login Flow"], fn ->
 Page.fill(page_id, "#email", "user@example.com")
 Page.fill(page_id, "#password", "secret")
 Page.click(page_id, "button[type=submit]")
end)

Custom location for trace viewer navigation
Tracing.group(browser_context.tracing.guid,
 [name: "Login Flow", location: [file: "/absolute/path/to/test.exs", line: 42]],
 fn ->
 # assertion logic
 end)

Groups can be nested
Tracing.group(browser_context.tracing.guid, [name: "User Workflow"], fn ->
 Tracing.group(browser_context.tracing.guid, [name: "Login"], fn ->
 # login actions
 end)

 Tracing.group(browser_context.tracing.guid, [name: "Dashboard"], fn ->
 # dashboard actions
 end)
end)

 tracing_start(tracing_id, opts \\ [])

 @spec tracing_start(PlaywrightEx.guid(), [start_opt() | PlaywrightEx.unknown_opt()]) ::
 {:ok, any()} | {:error, any()}

Starts tracing.
Reference: https://playwright.dev/docs/api/class-tracing#tracing-start
Options
	:timeout (timeout/0) - Required. Maximum time for the operation (milliseconds).

	:title (String.t/0) - Trace name to be shown in the Trace Viewer.

	:screenshots (boolean/0) - Whether to capture screenshots during tracing

	:snapshots (boolean/0) - Captures DOM snapshots and records network activity

	:sources (boolean/0) - Whether to include source files for trace actions

 tracing_start_chunk(tracing_id, opts \\ [])

 @spec tracing_start_chunk(PlaywrightEx.guid(), [
 start_chunk_opt() | PlaywrightEx.unknown_opt()
]) ::
 {:ok, any()} | {:error, any()}

Starts a new chunk in the tracing.
Reference: https://playwright.dev/docs/api/class-tracing#tracing-start-chunk
Options
	:timeout (timeout/0) - Required. Maximum time for the operation (milliseconds).

	:title (String.t/0) - Trace name to be shown in the Trace Viewer.

 tracing_stop(tracing_id, opts \\ [])

 @spec tracing_stop(PlaywrightEx.guid(), [stop_opt() | PlaywrightEx.unknown_opt()]) ::
 {:ok, any()} | {:error, any()}

Stops tracing.
Reference: https://playwright.dev/docs/api/class-tracing#tracing-stop
Options
	:timeout (timeout/0) - Required. Maximum time for the operation (milliseconds).

 tracing_stop_chunk(tracing_id, opts \\ [])

 @spec tracing_stop_chunk(PlaywrightEx.guid(), [
 stop_chunk_opt() | PlaywrightEx.unknown_opt()
]) ::
 {:ok, %{guid: PlaywrightEx.guid(), absolute_path: Path.t()}} | {:error, any()}

Stops a chunk of tracing.
Reference: https://playwright.dev/docs/api/class-tracing#tracing-stop-chunk
Options
	:timeout (timeout/0) - Required. Maximum time for the operation (milliseconds).

	:mode (atom/0) - Mode for stopping the chunk The default value is :archive.

PlaywrightEx.JsLogger behaviour

Behaviour for custom Javascript loggers.

 Summary

 Types

 level()

 playwright_message()

 text()

 Callbacks

 log(level, text, playwright_message)

 Types

 level()

 @type level() :: Logger.level()

 playwright_message()

 @type playwright_message() :: %{params: map()}

 text()

 @type text() :: binary()

 Callbacks

 log(level, text, playwright_message)

 @callback log(level(), text(), playwright_message()) :: any()

PlaywrightEx.Supervisor

Playwright connection supervision tree.

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 start_link(opts \\ [])

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 start_link(opts \\ [])

 OEBPS/dist/epub-7LKEGYS5.js
(() => {
 // js/helpers.js
 var s = document.querySelector.bind(document), o = document.querySelectorAll.bind(document);
 function r(e) {
 document.readyState !== "loading" ? e() : document.addEventListener("DOMContentLoaded", e);
 }

 // js/makeup.js
 var l = "hll";
 window.addEventListener("exdoc:loaded", t);
 function t() {
 o("[data-group-id]").forEach((e) => {
 e.addEventListener("mouseenter", i), e.addEventListener("mouseleave", i);
 });
 }
 function i(e) {
 let n = e.currentTarget, a = e.type === "mouseenter", c = n.getAttribute("data-group-id");
 n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach((u) => {
 u.classList.toggle(l, a);
 });
 }

 // js/entry/epub.js
 r(() => {
 t();
 });
})();

