

 Plug.Cowboy

 v2.7.1

 Table of contents

 	Changelog

 	

 	Modules

 	Plug.Cowboy

 	Plug.Cowboy.Drainer

Changelog

 v2.7.1

 Enhancements

	Support Cowboy 2.11

 v2.7.0

 Enhancements

	Do not allow Cowboy 2.11 due to backwards incompatible changes

 v2.6.2

 Enhancements

	Fix warnings on Elixir v1.15+

 v2.6.1

 Enhancements

	Allow for opt-out of conn metadata on exception logs
	Support :check_interval in drainer (in addition to :drain_check_interval)

 v2.6.0

 Enhancements

	Support websocket upgrades
	Require Plug v1.14+ and Elixir v1.10+

 v2.5.2

 Enhancements

	Fix warnings when running on telemetry 1.x

 v2.5.1

 Enhancements

	Allow to configure which errors should be logged
	Support telemetry 0.4.x or 1.x

 v2.5.0

 Enhancements

	Return :conn as Logger metadata on translator
	Support Ranch 2.0
	Support the :net option so developers can work with keyword lists
	Remove previously deprecated options

 v2.4.1 (2020-10-31)

 Bug fixes

	Properly format linked exits

 v2.4.0 (2020-10-11)

 Bug fixes

	Add cowboy_telemetry as a dependency and enable it by default

 v2.3.0 (2020-06-11)

Plug.Cowboy requires Elixir v1.7 or later.

 Bug fixes

	The telemetry events added in version v2.2.0 does not work as expected. The whole v2.2.x branch has been retired in favor of v2.3.0.

 v2.2.2 (2020-05-25)

 Enhancements

	Emit telemetry event for Cowboy early errors
	Improve error messages for Cowboy early errors

 v2.2.1 (2020-04-21)

 Enhancements

	Use proper telemetry metadata for exceptions

 v2.2.0 (2020-04-21)

 Enhancements

	Include telemetry support

 v2.1.3 (2020-04-14)

 Bug fixes

	Properly support the :options option before removal

 v2.1.2 (2020-01-28)

 Bug fixes

	Properly deprecate the :timeout option before removal

 v2.1.1 (2020-01-08)

 Enhancement

	Improve docs and simplify child spec API

 v2.1.0 (2019-06-27)

 Enhancement

	Add Plug.Cowboy.Drainer for connection draining

 v2.0.2 (2019-03-18)

 Enhancements

	Unwrap Plug.Conn.WrapperError on handler error
	Include crash_reason as logger metadata

 v2.0.1 (2018-12-13)

 Bug fixes

	Respect :read_length and :read_timeout in read_body with Cowboy 2

 v2.0.0 (2018-10-20)

Extract Plug.Adapters.Cowboy2 from Plug into Plug.Cowboy

Plug.Cowboy

Adapter interface to the Cowboy2 webserver.

 Options

	:net - If using :inet (IPv4 only - the default) or :inet6 (IPv6)

	:ip - the ip to bind the server to.
Must be either a tuple in the format {a, b, c, d} with each value in 0..255 for IPv4,
or a tuple in the format {a, b, c, d, e, f, g, h} with each value in 0..65535 for IPv6,
or a tuple in the format {:local, path} for a unix socket at the given path.
If you set an IPv6, the :net option will be automatically set to :inet6.
If both :net and :ip options are given, make sure they are compatible
(i.e. give a IPv4 for :inet and IPv6 for :inet6).
Also, see "Loopback vs Public IP Addresses".

	:port - the port to run the server.
Defaults to 4000 (http) and 4040 (https).
Must be 0 when :ip is a {:local, path} tuple.

	:dispatch - manually configure Cowboy's dispatch.
If this option is used, the given plug won't be initialized
nor dispatched to (and doing so becomes the user's responsibility).

	:ref - the reference name to be used.
Defaults to plug.HTTP (http) and plug.HTTPS (https).
Note, the default reference name does not contain the port so in order
to serve the same plug on multiple ports you need to set the :ref accordingly,
e.g.: ref: MyPlug_HTTP_4000, ref: MyPlug_HTTP_4001, etc.
This is the value that needs to be given on shutdown.

	:compress - Cowboy will attempt to compress the response body.
Defaults to false.

	:stream_handlers - List of Cowboy stream_handlers,
see Cowboy docs.

	:protocol_options - Specifies remaining protocol options,
see Cowboy docs.

	:transport_options - A keyword list specifying transport options,
see Ranch docs.
By default :num_acceptors will be set to 100 and :max_connections
to 16_384.

All other options given at the top level must configure the underlying
socket. For HTTP connections, those options are listed under
ranch_tcp.
For example, you can set :ipv6_v6only to true if you want to bind only
on IPv6 addresses.
For HTTPS (SSL) connections, those options are described in
ranch_ssl.
See https/3 for an example and read Plug.SSL.configure/1 to
understand about our SSL defaults.
When using a Unix socket, OTP 21+ is required for Plug.Static and
Plug.Conn.send_file/3 to behave correctly.

 Safety limits

Cowboy sets different limits on URL size, header length, number of
headers and so on to protect your application from attacks. For example,
the request line length defaults to 10k, which means Cowboy will return
414 if a larger URL is given. You can change this under :protocol_options:
protocol_options: [max_request_line_length: 50_000]
Keep in mind though increasing those limits can pose a security risk.
Other times, browsers and proxies along the way may have equally strict
limits, which means the request will still fail or the URL will be
pruned. You can consult all limits here.

 Loopback vs Public IP Addresses

Should your application bind to a loopback address, such as ::1 (IPv6) or
127.0.0.1 (IPv4), or a public one, such as ::0 (IPv6) or 0.0.0.0
(IPv4)? It depends on how (and whether) you want it to be reachable from
other machines.
Loopback addresses are only reachable from the same host (localhost is
usually configured to resolve to a loopback address). You may wish to use one if:
	Your app is running in a development environment (such as your laptop) and
you don't want others on the same network to access it.
	Your app is running in production, but behind a reverse proxy. For example,
you might have Nginx bound to a public address and serving HTTPS, but
forwarding the traffic to your application running on the same host. In that
case, having your app bind to the loopback address means that Nginx can reach
it, but outside traffic can only reach it via Nginx.

Public addresses are reachable from other hosts. You may wish to use one if:
	Your app is running in a container. In this case, its loopback address is
reachable only from within the container; to be accessible from outside the
container, it needs to bind to a public IP address.
	Your app is running in production without a reverse proxy, using Cowboy's
SSL support.

 Logging

You can configure which exceptions are logged via :log_exceptions_with_status_code
application environment variable. If the status code returned by Plug.Exception.status/1
for the exception falls into any of the configured ranges, the exception is logged.
By default it's set to [500..599].
config :plug_cowboy,
 log_exceptions_with_status_code: [400..599]
By default, Plug.Cowboy includes the entire conn to the log metadata for exceptions.
However, this metadata may contain sensitive information such as security headers or
cookies, which may be logged in plain text by certain logging backends. To prevent this,
you can configure the :conn_in_exception_metadata option to not include the conn in the metadata.
config :plug_cowboy,
 conn_in_exception_metadata: false

 Instrumentation

Plug.Cowboy uses the :telemetry library for instrumentation. The following
span events are published during each request:
	[:cowboy, :request, :start] - dispatched at the beginning of the request
	[:cowboy, :request, :stop] - dispatched at the end of the request
	[:cowboy, :request, :exception] - dispatched at the end of a request that exits

A single event is published when the request ends with an early error:
	[:cowboy, :request, :early_error] - dispatched for requests terminated early by Cowboy

See cowboy_telemetry
for more details on the events.
To opt-out of this default instrumentation, you can manually configure
cowboy with the option stream_handlers: [:cowboy_stream_h].

 WebSocket support

Plug.Cowboy supports upgrading HTTP requests to WebSocket connections via
the use of the Plug.Conn.upgrade_adapter/3 function, called with :websocket as the second
argument. Applications should validate that the connection represents a valid WebSocket request
before calling this function (Cowboy will validate the connection as part of the upgrade
process, but does not provide any capacity for an application to be notified if the upgrade is
not successful). If an application wishes to negotiate WebSocket subprotocols or otherwise set
any response headers, it should do so before calling Plug.Conn.upgrade_adapter/3.
The third argument to Plug.Conn.upgrade_adapter/3 defines the details of how Plug.Cowboy
should handle the WebSocket connection, and must take the form {handler, handler_opts, connection_opts}, where values are as follows:
	handler is a module which implements the
:cowboy_websocket
behaviour. Note that this module will NOT have its c:cowboy_websocket.init/2 callback
called; only the 'later' parts of the :cowboy_websocket lifecycle are supported
	handler_opts is an arbitrary term which will be passed as the argument to
c:cowboy_websocket.websocket_init/1
	connection_opts is a map with any of Cowboy's websockets options

 Summary

 Functions

 child_spec(opts)

 A function for starting a Cowboy2 server under Elixir v1.5+ supervisors.

 http(plug, opts, cowboy_options \\ [])

 Runs cowboy under http.

 https(plug, opts, cowboy_options \\ [])

 Runs cowboy under https.

 shutdown(ref)

 Shutdowns the given reference.

 Functions

 Link to this function

 child_spec(opts)

 View Source

A function for starting a Cowboy2 server under Elixir v1.5+ supervisors.
It supports all options as specified in the module documentation plus it
requires the following two options:
	:scheme - either :http or :https
	:plug - such as MyPlug or {MyPlug, plug_opts}

 Examples

Assuming your Plug module is named MyApp you can add it to your
supervision tree by using this function:
children = [
 {Plug.Cowboy, scheme: :http, plug: MyApp, options: [port: 4040]}
]

Supervisor.start_link(children, strategy: :one_for_one)

 Link to this function

 http(plug, opts, cowboy_options \\ [])

 View Source

 @spec http(module(), Keyword.t(), Keyword.t()) ::
 {:ok, pid()} | {:error, :eaddrinuse} | {:error, term()}

Runs cowboy under http.

 Example

Starts a new interface
Plug.Cowboy.http MyPlug, [], port: 80

The interface above can be shutdown with
Plug.Cowboy.shutdown MyPlug.HTTP

 Link to this function

 https(plug, opts, cowboy_options \\ [])

 View Source

 @spec https(module(), Keyword.t(), Keyword.t()) ::
 {:ok, pid()} | {:error, :eaddrinuse} | {:error, term()}

Runs cowboy under https.
Besides the options described in the module documentation,
this function sets defaults and accepts all options defined
in Plug.SSL.configure/1.

 Example

Starts a new interface
Plug.Cowboy.https MyPlug, [],
 port: 443,
 password: "SECRET",
 otp_app: :my_app,
 keyfile: "priv/ssl/key.pem",
 certfile: "priv/ssl/cert.pem",
 dhfile: "priv/ssl/dhparam.pem"

The interface above can be shutdown with
Plug.Cowboy.shutdown MyPlug.HTTPS

 Link to this function

 shutdown(ref)

 View Source

Shutdowns the given reference.

Plug.Cowboy.Drainer

Process to drain cowboy connections at shutdown.
When starting Plug.Cowboy in a supervision tree, it will create a listener that receives
requests and creates a connection process to handle that request. During shutdown, a
Plug.Cowboy process will immediately exit, closing the listener and any open connections
that are still being served. However, in most cases, it is desirable to allow connections
to complete before shutting down.
This module provides a process that during shutdown will close listeners and wait
for connections to complete. It should be placed after other supervised processes that
handle cowboy connections.

 Options

The following options can be given to the child spec:
	:refs - A list of refs to drain. :all is also supported and will drain all cowboy
listeners, including those started by means other than Plug.Cowboy.

	:id - The ID for the process.
Defaults to Plug.Cowboy.Drainer.

	:shutdown - How long to wait for connections to drain.
Defaults to 5000ms.

	:check_interval - How frequently to check if a listener's
connections have been drained. Defaults to 1000ms.

 Examples

In your application
def start(_type, _args) do
 children = [
 {Plug.Cowboy, scheme: :http, plug: MyApp, options: [port: 4040]},
 {Plug.Cowboy, scheme: :https, plug: MyApp, options: [port: 4041]},
 {Plug.Cowboy.Drainer, refs: [MyApp.HTTP, MyApp.HTTPS]}
]

 opts = [strategy: :one_for_one, name: MyApp.Supervisor]
 Supervisor.start_link(children, opts)
end

 (()=>{var u=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var c="ex_doc:settings",d={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=d,this._loadSettings()}get(){return this._settings}update(t){let e=this._settings;this._settings={...this._settings,...t},this._subscribers.forEach(n=>n(this._settings,e)),this._storeSettings()}getAndSubscribe(t){this._subscribers.push(t),t(this._settings)}_loadSettings(){try{let t=localStorage.getItem(c);if(t){let e=JSON.parse(t);this._settings={...this._settings,...e}}this._loadSettingsLegacy()}catch(t){console.error(`Failed to load settings: ${t}`)}}_storeSettings(){try{this._storeSettingsLegacy(),localStorage.setItem(c,JSON.stringify(this._settings))}catch(t){console.error(`Failed to persist settings: ${t}`)}}_loadSettingsLegacy(){localStorage.getItem("tooltipsDisabled")!==null&&(this._settings={...this._settings,tooltips:!1}),localStorage.getItem("night-mode")==="true"&&(this._settings={...this._settings,nightMode:!0}),this._settings.nightMode===!0&&(this._settings={...this._settings,theme:"dark"})}_storeSettingsLegacy(){this._settings.tooltips?localStorage.removeItem("tooltipsDisabled"):localStorage.setItem("tooltipsDisabled","true"),this._settings.nightMode!==null?localStorage.setItem("night-mode",this._settings.nightMode===!0?"true":"false"):localStorage.removeItem("night-mode"),this._settings.theme!==null?(localStorage.setItem("night-mode",this._settings.theme==="dark"?"true":"false"),this._settings.nightMode=this._settings.theme==="dark"):(delete this._settings.nightMode,localStorage.removeItem("night-mode"))}},h=new s;function a(){["warning","info","error","neutral","tip"].forEach(t=>{i(`blockquote h3.${t}, blockquote h4.${t}`).forEach(e=>{e.closest("blockquote").classList.add(t)})})}var m="hll";function g(){p()}function p(){i("[data-group-id]").forEach(t=>{let e=t.getAttribute("data-group-id");t.addEventListener("mouseenter",n=>{l(e,!0)}),t.addEventListener("mouseleave",n=>{l(e,!1)})})}function l(o,t){i(`[data-group-id="${o}"]`).forEach(n=>{n.classList.toggle(m,t)})}r(()=>{g(),a()});})();

