

 Plug.Crypto

 v2.0.0

 Table of contents

 	Changelog

 	Modules

 	Plug.Crypto

 	Plug.Crypto.KeyGenerator

 	Plug.Crypto.MessageEncryptor

 	Plug.Crypto.MessageVerifier

Changelog

 v2.0.0 (2023-10-06)

	Update Elixir requirement to v1.11+ and require Erlang/OTP 23.
	Encryption now uses XChaCha20-Poly1305, which is safer, faster, and generates smaller payloads. This means data encrypted with Plug.Crypto v2.0 cannot be decrypted on Plug.Crypto v1.x. However, Plug.Crypto v2.0 can still decrypt data from Plug.Crypto v1.0.
	Optimize secure_compare, masked_compare, and key generator algorithms by relying on :crypto code when using more recent Erlang/OTP versions.

 v1.2.5 (2023-03-10)

	Allow AAD to be given as iolist

 v1.2.4 (2023-03-10)

	Allow AAD to be given as argument on message encryptor

 v1.2.3 (2022-08-19)

	Remove warnings on Elixir v1.14

 v1.2.2 (2021-03-25)

	Remove warnings on Elixir v1.12

 v1.2.1 (2021-02-17)

	Add support for Erlang/OTP 24

 v1.2.0 (2020-10-07)

	Update Elixir requirement to Elixir 1.7+.
	Fixed a bug that allowed to sign and encrypt stuff with nil secret key base and salt.

 v1.1.2 (2020-02-16)

	Do not key derive empty salts (default to no salt instead).

 v1.1.1 (2020-02-14)

	Do not expose encryption with salt API.
	Allow default :max_age to be set when signing/encrypting.

 v1.1.0 (2020-02-11)

	Add high-level Plug.Crypto.sign/verify and Plug.Crypto.encrypt/decrypt.

 v1.0.0 (2018-10-03)

	Split up the plug_crypto project from Plug as per elixir-lang/plug#766.

Plug.Crypto

Namespace and module for crypto-related functionality.
For low-level functionality, see Plug.Crypto.KeyGenerator,
Plug.Crypto.MessageEncryptor, and Plug.Crypto.MessageVerifier.

 Summary

 Functions

 decrypt(key_base, secret, token, opts \\ [])

 Decrypts the original data from the token and verifies its integrity.

 encrypt(key_base, secret, data, opts \\ [])

 Encodes, encrypts, and signs data into a token you can send to clients.

 mask(left, right)

 Masks the token on the left with the token on the right.

 masked_compare(left, right, mask)

 Compares the two binaries (one being masked) in constant-time to avoid
timing attacks.

 non_executable_binary_to_term(binary, opts \\ [])

 A restricted version of :erlang.binary_to_term/2 that forbids
executable terms, such as anonymous functions.

 prune_args_from_stacktrace(stacktrace)

 Prunes the stacktrace to remove any argument trace.

 secure_compare(left, right)

 Compares the two binaries in constant-time to avoid timing attacks.

 sign(key_base, salt, data, opts \\ [])

 Encodes and signs data into a token you can send to clients.

 verify(key_base, salt, token, opts \\ [])

 Decodes the original data from the token and verifies its integrity.

Functions

 Link to this function

 decrypt(key_base, secret, token, opts \\ [])

 View Source

Decrypts the original data from the token and verifies its integrity.

 Options

	:max_age - verifies the token only if it has been generated
"max age" ago in seconds. A reasonable value is 1 day (86400
seconds)
	:key_iterations - option passed to Plug.Crypto.KeyGenerator
when generating the encryption and signing keys. Defaults to 1000
	:key_length - option passed to Plug.Crypto.KeyGenerator
when generating the encryption and signing keys. Defaults to 32
	:key_digest - option passed to Plug.Crypto.KeyGenerator
when generating the encryption and signing keys. Defaults to :sha256

 Link to this function

 encrypt(key_base, secret, data, opts \\ [])

 View Source

Encodes, encrypts, and signs data into a token you can send to clients.
Plug.Crypto.encrypt(conn.secret_key_base, "user-secret", {:elixir, :terms})
A key will be derived from the secret key base and the given user secret.
The key will also be cached for performance reasons on future calls.

 Options

	:key_iterations - option passed to Plug.Crypto.KeyGenerator
when generating the encryption and signing keys. Defaults to 1000
	:key_length - option passed to Plug.Crypto.KeyGenerator
when generating the encryption and signing keys. Defaults to 32
	:key_digest - option passed to Plug.Crypto.KeyGenerator
when generating the encryption and signing keys. Defaults to :sha256
	:signed_at - set the timestamp of the token in seconds.
Defaults to System.system_time(:second)
	:max_age - the default maximum age of the token. Defaults to
86400 seconds (1 day) and it may be overridden on decrypt/4.

 Link to this function

 mask(left, right)

 View Source

 @spec mask(binary(), binary()) :: binary()

Masks the token on the left with the token on the right.
Both tokens are required to have the same size.

 Link to this function

 masked_compare(left, right, mask)

 View Source

 @spec masked_compare(binary(), binary(), binary()) :: boolean()

Compares the two binaries (one being masked) in constant-time to avoid
timing attacks.
It is assumed the right token is masked according to the given mask.

 Link to this function

 non_executable_binary_to_term(binary, opts \\ [])

 View Source

 @spec non_executable_binary_to_term(binary(), [atom()]) :: term()

A restricted version of :erlang.binary_to_term/2 that forbids
executable terms, such as anonymous functions.
The opts are given to the underlying :erlang.binary_to_term/2
call, with an empty list as a default.
By default this function does not restrict atoms, as an atom
interned in one node may not yet have been interned on another
(except for releases, which preload all code).
If you want to avoid atoms from being created, then you can pass
[:safe] as options, as that will also enable the safety mechanisms
from :erlang.binary_to_term/2 itself.

 Link to this function

 prune_args_from_stacktrace(stacktrace)

 View Source

 @spec prune_args_from_stacktrace(Exception.stacktrace()) :: Exception.stacktrace()

Prunes the stacktrace to remove any argument trace.
This is useful when working with functions that receives secrets
and we want to make sure those secrets do not leak on error messages.

 Link to this function

 secure_compare(left, right)

 View Source

 @spec secure_compare(binary(), binary()) :: boolean()

Compares the two binaries in constant-time to avoid timing attacks.
See: http://codahale.com/a-lesson-in-timing-attacks/

 Link to this function

 sign(key_base, salt, data, opts \\ [])

 View Source

Encodes and signs data into a token you can send to clients.
Plug.Crypto.sign(conn.secret_key_base, "user-secret", {:elixir, :terms})
A key will be derived from the secret key base and the given user secret.
The key will also be cached for performance reasons on future calls.

 Options

	:key_iterations - option passed to Plug.Crypto.KeyGenerator
when generating the encryption and signing keys. Defaults to 1000
	:key_length - option passed to Plug.Crypto.KeyGenerator
when generating the encryption and signing keys. Defaults to 32
	:key_digest - option passed to Plug.Crypto.KeyGenerator
when generating the encryption and signing keys. Defaults to :sha256
	:signed_at - set the timestamp of the token in seconds.
Defaults to System.system_time(:second)
	:max_age - the default maximum age of the token. Defaults to
86400 seconds (1 day) and it may be overridden on verify/4.

 Link to this function

 verify(key_base, salt, token, opts \\ [])

 View Source

Decodes the original data from the token and verifies its integrity.

 Examples

In this scenario we will create a token, sign it, then provide it to a client
application. The client will then use this token to authenticate requests for
resources from the server. See Plug.Crypto summary for more info about
creating tokens.
iex> user_id = 99
iex> secret = "kjoy3o1zeidquwy1398juxzldjlksahdk3"
iex> user_salt = "user salt"
iex> token = Plug.Crypto.sign(secret, user_salt, user_id)
The mechanism for passing the token to the client is typically through a
cookie, a JSON response body, or HTTP header. For now, assume the client has
received a token it can use to validate requests for protected resources.
When the server receives a request, it can use verify/4 to determine if it
should provide the requested resources to the client:
iex> Plug.Crypto.verify(secret, user_salt, token, max_age: 86400)
{:ok, 99}
In this example, we know the client sent a valid token because verify/4
returned a tuple of type {:ok, user_id}. The server can now proceed with
the request.
However, if the client had sent an expired or otherwise invalid token
verify/4 would have returned an error instead:
iex> Plug.Crypto.verify(secret, user_salt, expired, max_age: 86400)
{:error, :expired}

iex> Plug.Crypto.verify(secret, user_salt, invalid, max_age: 86400)
{:error, :invalid}

 Options

	:max_age - verifies the token only if it has been generated
"max age" ago in seconds. Defaults to the max age signed in the
token (86400)
	:key_iterations - option passed to Plug.Crypto.KeyGenerator
when generating the encryption and signing keys. Defaults to 1000
	:key_length - option passed to Plug.Crypto.KeyGenerator
when generating the encryption and signing keys. Defaults to 32
	:key_digest - option passed to Plug.Crypto.KeyGenerator
when generating the encryption and signing keys. Defaults to :sha256

Plug.Crypto.KeyGenerator

KeyGenerator implements PBKDF2 (Password-Based Key Derivation Function 2),
part of PKCS #5 v2.0 (Password-Based Cryptography Specification).
It can be used to derive a number of keys for various purposes from a given
secret. This lets applications have a single secure secret, but avoid reusing
that key in multiple incompatible contexts.
The returned key is a binary. You may invoke functions in the Base module,
such as Base.url_encode64/2, to convert this binary into a textual
representation.
See http://tools.ietf.org/html/rfc2898#section-5.2

 Summary

 Functions

 generate(secret, salt, opts \\ [])

 Returns a derived key suitable for use.

Functions

 Link to this function

 generate(secret, salt, opts \\ [])

 View Source

Returns a derived key suitable for use.

 Options

	:iterations - defaults to 1000 (increase to at least 2^16 if used for passwords);
	:length - a length in octets for the derived key. Defaults to 32;
	:digest - an hmac function to use as the pseudo-random function. Defaults to :sha256;
	:cache - an ETS table name to be used as cache.
Only use an ETS table as cache if the secret and salt is a bound set of values.
For example: :ets.new(:your_name, [:named_table, :public, read_concurrency: true])

Plug.Crypto.MessageEncryptor

MessageEncryptor is a simple way to encrypt values which get stored
somewhere you don't trust.
The encrypted key, initialization vector, cipher text, and cipher tag
are base64url encoded and returned to you.
This can be used in situations similar to the Plug.Crypto.MessageVerifier,
but where you don't want users to be able to determine the value of the payload.
The current algorithm used is XChaCha20-Poly1305.

 Example

iex> secret_key_base = "072d1e0157c008193fe48a670cce031faa4e..."
...> encrypted_cookie_salt = "encrypted cookie"
...> secret = KeyGenerator.generate(secret_key_base, encrypted_cookie_salt)
...>
...> data = "José"
...> encrypted = MessageEncryptor.encrypt(data, secret, "UNUSED")
...> MessageEncryptor.decrypt(encrypted, secret, "UNUSED")
{:ok, "José"}

 Summary

 Functions

 decrypt(encrypted, aad \\ "A128GCM", secret, sign_secret)

 Decrypts a message using authenticated encryption.

 encrypt(message, aad \\ "A128GCM", secret, sign_secret)

 Encrypts a message using authenticated encryption.

Functions

 Link to this function

 decrypt(encrypted, aad \\ "A128GCM", secret, sign_secret)

 View Source

Decrypts a message using authenticated encryption.

 Link to this function

 encrypt(message, aad \\ "A128GCM", secret, sign_secret)

 View Source

Encrypts a message using authenticated encryption.
The sign_secret is currently only used on decryption
for backwards compatibility.
A custom authentication message can be provided.
It defaults to "A128GCM" for backwards compatibility.

Plug.Crypto.MessageVerifier

MessageVerifier makes it easy to generate and verify messages
which are signed to prevent tampering.
For example, the cookie store uses this verifier to send data
to the client. The data can be read by the client, but cannot be
tampered with.
The message and its verification are base64url encoded and returned
to you.
The current algorithm used is HMAC-SHA, with SHA256, SHA384, and
SHA512 as supported digest types.

 Summary

 Functions

 sign(message, secret, digest_type \\ :sha256)

 Signs a message according to the given secret.

 verify(signed, secret)

 Decodes and verifies the encoded binary was not tampered with.

Functions

 Link to this function

 sign(message, secret, digest_type \\ :sha256)

 View Source

Signs a message according to the given secret.

 Link to this function

 verify(signed, secret)

 View Source

Decodes and verifies the encoded binary was not tampered with.

 OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

