

 PlugDbSession

 v0.1.0

 Table of contents

 	PlugDbSession

 	Modules

 	PlugDbSession

 	PlugDbSession.Encoder

 	PlugDbSession.Store

 	PlugDbSession.UpdateActivity

PlugDbSession

Use your database as a session store with plug, allowing you to store more than the 4kb cookie limit.
How it works
The default cookie session store places all data directly into the cookie and then serializes it. There are limitations to that approach because you are restricted to a certain payload size, and you cannot revoke sessions on demand.
The PlugDbSession package still uses cookies, but it offloads all of the data storage to your database:
	We create a record in the database with a unique ID like { id: "some-uuid", data: <encrypted binary>, last_active_at: "2023-01-01T00:00Z" }
	We send the browser an encrypted cookie that looks like { "session_id": "some-uuid" }
	When you set session data in your app, instead of adding directly to that cookie we look up the row in the sessions table and update the data column (which is also encrypted)

Using this approach, you can:
	store much more data in the session
	store any elixir data type in the session (see "considerations" below)
	revoke sessions on demand
	see when they were last active

In the future we will allow arbitrary data to be added to the session schema, allowing you to collect metadata such as tying a session to a user_id, IP, user agent, etc. This can be useful if you e.g. show your logged in users which devices they are logged into and allow them to revoke access on their own.
Considerations
Under the hood we convert session data using :erlang.term_to_binary/1 and :erlang.binary_to_term/1. This allows you to store any data type in the session and successfully restore it on future loads, however you should make sure you trust the data being stored as there is risk involved, see the documentation for the methods linked above for more info.
If you wish to use a more basic serialization method like Jason, see "Customization" below.
Installation
The package can be installed by adding plug_db_session to your list of dependencies in mix.exs:
def deps do
 [
 {:plug_db_session, "~> 0.1.0"}
]
end
You will also need an encryption library, it is recommended to use cloak:
def deps do
 [
 {:cloak, "~> 1.1"}
]
end
You will need to follow the instructions to set up cloak properly before continuing:
https://hexdocs.pm/cloak/install.html
By now you should have configured your Vault module and set an encryption key.
We need to create a migration and a schema for the sessions table:
mix ecto.gen.migration create_sessions_table
defmodule MyApp.Repo.Migrations.CreateSessionsTable do
 use Ecto.Migration

 def up do
 create table("sessions", primary_key: false) do
 add :id, :uuid, null: false, primary_key: true
 add :data, :binary, null: false
 add :last_active_at, :utc_datetime, null: false, default: fragment("now()")
 add :created_at, :utc_datetime, null: false, default: fragment("now()")
 end
 end

 def down do
 drop table("sessions")
 end
end
We also need to create a schema for the sessions:
lib/my_app/sessions/session.ex
defmodule MyApp.Sessions.Session do
 use Ecto.Schema

 @primary_key {:id, :binary_id, autogenerate: true}

 schema "sessions" do
 field :data, :binary
 field :last_active_at, :utc_datetime
 field :created_at, :utc_datetime
 end
end
Configure PlugDbSession to use our dependencies:
config :my_app, PlugDbSession,
 repo: MyApp.Repo,
 schema: MyApp.Sessions.Session,
 vault: MyApp.Vault
Update our Endpoint @session_options to pass our otp_app and the new session store, note that we do not pass any encryption options here as it is taken care of by cloak:
defmodule MyAppWeb.Endpoint do
 use Phoenix.Endpoint, otp_app: :my_app

 @session_options [
 store: PlugDbSession.Store,
 key: "_my_app_key",
 otp_app: :my_app
]
And finally add this plug to the end of your router.ex browser pipeline to ensure that the last_active_at timestamp is set on each request:
pipeline :browser do
 plug :accepts, ["html"]
 plug :fetch_session
 plug :fetch_live_flash
 plug :put_root_layout, {PhxWeb.Layouts, :root}
 plug :protect_from_forgery
 plug :put_secure_browser_headers
 plug PlugDbSession.UpdateActivity # <-- add this line
end
That is it! You can now interact with the plug session as you normally would.
Pruning
There will come a time when unused sessions start to build up in your database. For the most part, if you are logging users out with configure_session(drop: true) then the session will be deleted from the database. As it happens though, you will likely have a lot of users visit your website once or twice then never again, thus leaving a useless inactive row in your database.
There is a plan to add automatic pruning to the database directly in the package, however until that is implemented you will likely want to run a job once every X days depending on the size of your app that does something like:
from (
 s in Session,
 where: s.last_active_at < datetime_add(^DateTime.utc_now(), -1, "month")
)
|> MyRepo.delete_all()
Customization
@session_options
You can optionally include more data directly in the cookie, though it is not recommended. By default we store an object like { session_id: 10, _csrf_token: "abcd" }.
If you want to customize this, do so in the endpoint:
defmodule MyAppWeb.Endpoint do
 use Phoenix.Endpoint, otp_app: :my_app

 @session_options [
 store: PlugDbSession.Store,
 key: "_my_app_key",
 otp_app: :my_app,
 cookie_keys: ["_csrf_token", "user_id"]
]
Values will be taken from the session data matching the provided keys and added directly to the cookie. If you overwrite this value you must pass _csrf_token manually again so that csrf protection continues to work. Likewise, if your app is not using csrf protection or you are using a different key, you can either omit it all together or enter your custom key here.
Encoder / Serialization
You can change how the session is serialized to the database by specifying an :encoder conifg. The module must have two methods: encode!/1 which takes a map and returns a binary/string, and decode!/1 which takes a binary/string and returns a map. For example, you could use Jason:
config :my_app, PlugDbSession, ecoder: Jason
Vault
You can swap the encryption module via the config. It must have methods encrypt!/1 that takes a binary returns a binary, and a decrypt!/1 method which takes a binary and returns a binary.
config :my_app, PlugDbSession, vault: MyApp.CustomEncryption
Schema
The session schema cannot be changed at this point in time, however there are plans to allow that in the future.
The data field type could technically be changed if you are not using cloak_ecto, however you must use a data type that allows passing a map when inserting to the database.

PlugDbSession

Provides a database session store for plug. See readme for more info.
https://hexdocs.pm/plug_db_session/

PlugDbSession.Encoder

Encodes and decodes session data for storing in the database

PlugDbSession.Store

A custom Plug session store that saves the session to the database.
Implements Plug.Session.Store behaviour.
Options
	:otp_app - (required) your otp app atom
	:cookie_keys - (optional) array of session data keys to include directly on the cookie

PlugDbSession.UpdateActivity

Plug that forces the session to update at the end of the request, causing the last_active_at timestamp to update.
Implements Plug behaviour

 OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

