

 plug_loopback

 v0.1.0

 Table of contents

 	PlugLoopback

 	CHANGELOG

 	
 Modules

 	PlugLoopback

 	Exceptions

 	PlugLoopback.EndpointNotConfiguredError

 	PlugLoopback.RequestBodyNotFetchedError

 PlugLoopback

A set of utils to programmatically call your own endpoints
It happens that sometimes you need to programmatically call your own endpoint (for instance Phoenix
endpoint). One could use an HTTP client locally calling your own deployed instance, but it's
cumbersome, hard to test and comes with an overhead.
This library intends to provide with a set of function to directly call your endpoint. It is very
similar to Phoenix.Conntest.
You can form a new request from a Phoenix endpoint:
MyAppWeb.Endpoint
|> PlugLoopback.from_phoenix_endpoint()
|> PlugLoopback.get("/some/path", [{"some", "header"}])
|> Plug.Conn.put_req_header("another", "header")
|> PlugLoopback.run()
or replay any Plug.Conn{}:
conn
|> PlugLoopback.replay()
|> PlugLoopback.run() # Here is a very good opportunity to create an infinite loop!
Installation
def deps do
 [
 {:plug_loopback, "~> 0.1.0"}
]
end
Support
Requires Elixir 1.18+
Replay request body
The tricky part when copying a conn is to reset the initial body. Check the support in the following
list:
	[x] JSON
	[x] URL-encoded
	[] multipart
	[] custom body

 CHANGELOG

All notable changes to this project will be documented in this file.
The format is based on Keep a Changelog and this project adheres to Semantic Versioning.
[0.1.0] - 2025-05-17
Initial release

PlugLoopback

A set of utils to programmatically call your own endpoints
It happens that sometimes you need to programmatically call your own endpoint (for instance Phoenix
endpoint). One could use an HTTP client locally calling your own deployed instance, but it's
cumbersome, hard to test and comes with an overhead.
This library intends to provide with a set of function to directly call your endpoint. It is very
similar to Phoenix.ConnTest and reimplements a Plug adapter for this purpose.
You can form a new request from a Phoenix endpoint:
MyAppWeb.Endpoint
|> PlugLoopback.from_phoenix_endpoint()
|> PlugLoopback.get("/some/path", [{"some", "header"}])
|> Plug.Conn.put_req_header("another", "header")
|> PlugLoopback.run()
or replay any Plug.Conn{}:
conn
|> PlugLoopback.replay()
|> PlugLoopback.run() # Here is a very good opportunity to create an infinite loop!
Warning
For some very good reasons, you must run these commands in their own process. Do not run
it in a process that already processed a %Plug.Conn{}.

 Summary

 Functions

 delete(conn, path, headers \\ [], body \\ nil)

 Shortcut for request/1 with "DELETE" method

 from_phoenix_endpoint(endpoint)

 Creates a new fresh conn from a Phoenix endpoint

 get(conn, path, headers \\ [], body \\ nil)

 Shortcut for request/1 with "GET" method

 head(conn, path, headers \\ [], body \\ nil)

 Shortcut for request/1 with "HEAD" method

 patch(conn, path, headers \\ [], body \\ nil)

 Shortcut for request/1 with "PATCH" method

 post(conn, path, headers \\ [], body \\ nil)

 Shortcut for request/1 with "POST" method

 put(conn, path, headers \\ [], body \\ nil)

 Shortcut for request/1 with "PUT" method

 replay(conn)

 Creates a new fresh conn ready to request from another conn

 request(conn, method, path, req_headers \\ [], body \\ nil)

 Readies a conn for requesting

 run(conn)

 Runs a request created by functions of this module

 Functions

 delete(conn, path, headers \\ [], body \\ nil)

 @spec delete(Plug.Conn.t(), binary(), Plug.Conn.headers(), binary() | nil) ::
 Plug.Conn.t()

Shortcut for request/1 with "DELETE" method

 from_phoenix_endpoint(endpoint)

 @spec from_phoenix_endpoint(module()) :: Plug.Conn.t()

Creates a new fresh conn from a Phoenix endpoint
Peer data IP address is set to 127.0.0.1.
After calling this function, you need to form a request with get/4, post/4, put/4, patch/4
head/4, delete/4 or the generic request/5.

 get(conn, path, headers \\ [], body \\ nil)

 @spec get(Plug.Conn.t(), binary(), Plug.Conn.headers(), binary() | nil) ::
 Plug.Conn.t()

Shortcut for request/1 with "GET" method

 head(conn, path, headers \\ [], body \\ nil)

 @spec head(Plug.Conn.t(), binary(), Plug.Conn.headers(), binary() | nil) ::
 Plug.Conn.t()

Shortcut for request/1 with "HEAD" method

 patch(conn, path, headers \\ [], body \\ nil)

 @spec patch(Plug.Conn.t(), binary(), Plug.Conn.headers(), binary() | nil) ::
 Plug.Conn.t()

Shortcut for request/1 with "PATCH" method

 post(conn, path, headers \\ [], body \\ nil)

 @spec post(Plug.Conn.t(), binary(), Plug.Conn.headers(), binary() | nil) ::
 Plug.Conn.t()

Shortcut for request/1 with "POST" method

 put(conn, path, headers \\ [], body \\ nil)

 @spec put(Plug.Conn.t(), binary(), Plug.Conn.headers(), binary() | nil) ::
 Plug.Conn.t()

Shortcut for request/1 with "PUT" method

 replay(conn)

 @spec replay(Plug.Conn.t()) :: Plug.Conn.t()

Creates a new fresh conn ready to request from another conn
State is reinitialized so that the returned conn is cleaned to be requested again.
If a Phoenix endpoint was used, then it is recognized and the result conn can be run
with run/1. Otherwise you need to call the next plug yourself, like:
conn
|> PlugLoopback.replay()
|> MyOtherPlugModule.call(opts)
or if the conn is from a phoenix endpoint:
conn
|> PlugLoopback.replay()
|> # modify the conn, for instance by setting new request headers
|> PlugLoopback.run()
Peer data is copied from the original conn.

 request(conn, method, path, req_headers \\ [], body \\ nil)

 @spec request(
 Plug.Conn.t(),
 Plug.Conn.method() | atom(),
 binary(),
 Plug.Conn.headers(),
 binary() | nil
) :: Plug.Conn.t()

Readies a conn for requesting
This function sets the necessary information to make a request: method, path, headers and body.
When setting a body, make sure to encode it to a binary and to set the correct
content-type header. This library doesn't do it for you.
Example
MyAppWeb.Endpoint
|> PlugLoopback.from_phoenix_endpoint()
|> PlugLoopback.post("/api/user", [{"content-type", "application/json"}, JSON.encode!(data)])
|> PlugLoopback.run()

 run(conn)

 @spec run(Plug.Conn.t()) :: Plug.Conn.t()

Runs a request created by functions of this module

PlugLoopback.EndpointNotConfiguredError exception

Error raised when the endpoint is not configured and the operation cannot succeed
An endpoint is configured when PlugLoopback.replay/1 is called on a conn that has been through
a Phoenix endpoint, or when PlugLoopback.from_phoenix_endpoint/1 was used.

PlugLoopback.RequestBodyNotFetchedError exception

Error raised when the request body is not fetched for POST, PUT or PATCH requests
Body can be fetched using Plug.Parsers. Make sure to call this function after
fetching the request body.

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

