

 poolex

 v0.7.0

 Table of contents

 	Contributing to Poolex

 	Poolex

 	Guides

 	Workers and callers implementations

 	Migration from poolboy

 	Example of use

 	Getting Started

 	Modules

 	Poolex

 	Poolex.Callers.Behaviour

 	Poolex.Callers.Impl.ErlangQueue

 	Poolex.DebugInfo

 	Poolex.State

 	Poolex.Workers.Behaviour

 	Poolex.Workers.Impl.ErlangQueue

 	Poolex.Workers.Impl.List

Contributing to Poolex

Poolex is written in Elixir.
For branching management, this project uses git-flow. The main branch is reserved for releases: the development process occurs on the develop and feature branches. Please never commit to main.
You can use asdf to set up the required Elixir and OTP. Current versions are listed in the .tool-versions file.
Setup
Local repository
	Fork the repository.

	Clone your fork to a local repository:
 git clone https://github.com/your-login/poolex.git
 cd poolex

	Checkout develop:
 git checkout develop

Development environment (using asdf)
	Install asdf by Getting Started guideline

	Add plugins for elixir and OTP
 asdf plugin-add elixir https://github.com/asdf-vm/asdf-elixir.git
 asdf plugin add erlang https://github.com/asdf-vm/asdf-erlang.git

	Install tools:
 cd poolex
 asdf install

Development environment (without asdf)
Please see installation instructions.
Git-flow
If you want to use the git-flow CLI, please check installation instructions.
Building the project
	Fetch the project dependencies:
 cd poolex
 mix deps.get

	Run the static analyzers:
 mix check

Workflow
To make a change, please use this workflow:
	Checkout develop and apply the last upstream changes (use rebase, not merge!):
 git checkout develop
 git fetch --all --prune
 git rebase upstream/develop

	For a tiny patch, create a new branch with an explicit name:
 git checkout -b <my_branch>

 Alternatively, if you are working on a feature that would need more work, you can create a feature branch with git-flow:
 git flow feature start <my_feature>

 Note: always open an issue and ask before starting a big feature, to avoid it not being merged and your time lost.

	When your feature is ready, feel free to use interactive rebase so your history looks clean and easy to follow. Then, apply the last upstream changes on develop to prepare integration:
 git checkout develop
 git fetch --all --prune
 git rebase upstream/develop

	If there were commits on develop since the beginning of your feature branch, integrate them by rebasing if your branch has few commits, or merging if you had a long-lived branch:
 git checkout <my_feature_branch>
 git rebase develop

 Note: the only case you should merge is when you are working on a big feature. If it is the case, we should have discussed this before as stated above.

	Run the tests and static analyzers to ensure there is no regression and all works as expected:
 mix check

	If it’s all good, open a pull request to merge your branch into the develop branch on the main repository.

Coding style
Please format your code with mix format or your editor and follow
this style guide.
All contributed code must be documented and functions must have typespecs. In general, take your inspiration from the existing code.

Poolex

[image: Build and tests workflow]
[image: hex.pm version]
[image: Hex Docs]
[image: License]
Poolex is a library for managing pools of workers. Inspired by poolboy.
Features
With poolex you can:
	Launch multiple pools of workers and then access the free ones from anywhere in the application.
	Configure the pool to run additional temporary workers if the load increases.
	Use your implementations to define worker and caller processes access logic.

 Why `poolex` instead of `poolboy`?

- `poolex` is written in Elixir. This library is much more convenient to use in Elixir projects.
- `poolboy` is a great library, but not actively maintained at the moment :crying_cat_face:![Last poolboy commit](https://img.shields.io/github/last-commit/devinus/poolboy?style=flat)
 Requirements
	Requirement	Version
	Erlang/OTP	>= 22
	Elixir	>= 1.7

Table of Contents
	Installation
	Getting Started	Starting pool of workers
	Poolex configuration options
	Working with the pool

	Migration from :poolboy
	Example of use	Defining the worker
	Configuring Poolex
	Using Poolex

	Workers and callers implementations	Callers
	Workers
	Writing custom implementations

	Contributions

Installation
Add :poolex to your list of dependencies in mix.exs:
def deps do
 [
 {:poolex, "~> 0.7.0"}
]
end
Usage
In the most typical use of Poolex, you only need to start a pool of workers as a child of your application.
children = [
 {Poolex,
 pool_id: :worker_pool,
 worker_module: SomeWorker,
 workers_count: 5}
]

Supervisor.start_link(children, strategy: :one_for_one)
Then you can execute any code on the workers with run/3:
iex> Poolex.run(:worker_pool, &(is_pid?(&1)), timeout: 1_000)
{:ok, true}
A detailed description of the available configuration or examples of use can be found in documentation.
Contributions
If you feel something can be improved, or have any questions about certain behaviors or pieces of implementation, please feel free to file an issue. Proposed changes should be taken to issues before any PRs to avoid wasting time on code that might not be merged upstream.
If you are ready to make changes to the project, then please read the Contributing guide first.

Workers and callers implementations

Poolex operates with two concepts: callers and workers. In both cases, we are talking about processes.
Callers
Callers are processes that have requested to get a worker (used run/3 or run!/3). Each pool keeps the information about callers to distribute workers to them when they are free.
Caller's typespec
Caller's typespec is GenServer.from() not a pid().

The implementation of the caller storage structure should be conceptually similar to a queue since by default we want to give workers in the order they are requested. But this logic can be easily changed by writing your implementation.
Behaviour of callers collection described here.
Behaviour callbacks
	Callback	Description
	init/0	Returns state (any data structure) which will be passed as the first argument to all other functions.
	add/2	Adds caller to state and returns a new state.
	empty?/1	Returns true if the state is empty, false otherwise.
	pop/1	Removes one of the callers from state and returns it as {caller, state}. Returns :empty if the state is empty.
	remove_by_pid/2	Removes given caller by caller's pid from state and returns a new state.
	to_list/1	Returns list of callers.

Callers implementations out of the box
	Module	Description	Source	Default?
	Poolex.Callers.Impl.ErlangQueue	FIFO implementation based on :erlang.queue	link	✅

Workers
Workers are processes launched in a pool. Poolex works with two collections of workers:
	IdleWorkers -- Free processes that can be given to callers upon request.
	BusyWorkers -- Processes that are currently processing the caller's request.

For both cases, the default implementation is based on lists. But it is possible to set different implementations for them.
Behaviour of workers collection described here.
Behaviour callbacks
	Callback	Description
	init/0	Returns state (any data structure) which will be passed as the first argument to all other functions.
	init/1	Same as init/0 but returns state initialized with a passed list of workers.
	add/2	Adds worker's pid to state and returns a new state.
	member?/2	Returns true if given worker contained in the state, false otherwise.
	remove/2	Removes given worker from state and returns new state.
	count/1	Returns the number of workers in the state.
	to_list/1	Returns list of workers pids.
	empty?/1	Returns true if the state is empty, false otherwise.
	pop/1	Removes one of workers from state and returns it as {caller, state}. Returns :empty if the state is empty.

Workers implementations out of the box
	Module	Description	Source	Default?
	Poolex.Workers.Impl.List	LIFO implementation based on Elixir's List	link	✅
	Poolex.Workers.Impl.ErlangQueue	FIFO implementation based on :erlang.queue	link	❌

Writing custom implementations
It's quite simple when using the Behaviours mechanism in Elixir.
For example, you want to define a new implementation for callers. To do this, you need to create a module that inherits the Poolex.Callers.Behaviour and implement all its functions.
defmodule MyApp.MyAmazingCallersImpl do
 @behaviour Poolex.Callers.Behaviour

 def init, do: {}
 def add(state, caller), do: #...
end
If you have any ideas about what implementations can be added to the library or how to improve existing ones, then please create an issue!
Configuring custom implementations
After that, you need to provide your module names to Poolex initialization:
Poolex.child_spec(
 pool_id: :some_pool,
 worker_module: SomeWorker,
 workers_count: 10,
 waiting_callers_impl: MyApp.MyAmazingCallersImpl
)
That's it! Your implementation will be used in launched pool.
The configuration for workers might look like this:
Poolex.child_spec(
 pool_id: :some_pool,
 worker_module: SomeWorker,
 workers_count: 10,
 busy_workers_impl: MyApp.PerfectBusyWorkersImpl,
 idle_workers_impl: MyApp.FancyIdleWorkersImpl
)

Migration from poolboy

If you are using :poolboy and want to use Poolex instead, then you need to follow three simple steps.
I. Install the Poolex dependency
mix.exs
defp deps do
 [
- {:poolboy, "~> 1.5.0"}
+ {:poolex, "~> 0.7.0"}
]
end
Install it.
mix deps.get

Well, you can also clean up installed dependencies locally and remove them from the lock file.
mix deps.clean --unlock --unused

II. Update child specs
Your Application or Supervisor file
def init(_args) do
 children = [
- :poolboy.child_spec(:some_pool,
- name: {:local, :some_pool},
- worker_module: MyApp.SomeWorker,
- size: 100,
- max_overflow: 50
-)
+ Poolex.child_spec(
+ pool_id: :some_pool,
+ worker_module: MyApp.SomeWorker,
+ workers_count: 100,
+ max_overflow: 50
+)
]

 Supervisor.init(children, strategy: :one_for_one)
end
III. Update call site
Use run!/3 to leave the same behavior.
If you want a safe interface with error handling, then use run/3.
- :poolboy.transaction(
- :some_pool,
- fn pid -> some_function(pid) end,
- :timer.seconds(10)
-)
+ Poolex.run!(
+ :some_pool,
+ fn pid -> some_function(pid) end,
+ timeout: :timer.seconds(10)
+)

Example of use

This example is based on the Elixir School's poolboy guide.
You can find the source of the below example here: poolex_example.
Defining the worker
We describe an actor that can easily become a bottleneck in our application since it has a rather long execution time on a blocking call.
defmodule PoolexExample.Worker do
 use GenServer

 def start_link do
 GenServer.start_link(__MODULE__, nil)
 end

 def init(_args) do
 {:ok, nil}
 end

 def handle_call({:square_root, x}, _from, state) do
 IO.puts("process #{inspect(self())} calculating square root of #{x}")
 Process.sleep(1_000)
 {:reply, :math.sqrt(x), state}
 end
end
Configuring Poolex
defmodule PoolexExample.Application do
 @moduledoc false

 use Application

 def start(_type, _args) do
 children = [
 {Poolex,
 pool_id: :worker_pool,
 worker_module: PoolexExample.Worker,
 workers_count: 5,
 max_overflow: 2}
]

 Supervisor.start_link(children, strategy: :one_for_one)
 end
end
Using Poolex
Poolex.run/3 is the function that you can use to interface with the worker pool.
defmodule PoolexExample.Test do
 @timeout 60_000

 def start do
 1..20
 |> Enum.map(fn i -> async_call_square_root(i) end)
 |> Enum.each(fn task -> await_and_inspect(task) end)
 end

 defp async_call_square_root(i) do
 Task.async(fn ->
 Poolex.run!(
 :worker_pool,
 fn pid ->
 # Let's wrap the genserver call in a try-catch block. This allows us to trap any exceptions
 # that might be thrown and return the worker to Poolex in a clean manner. It also allows
 # the programmer to retrieve the error and potentially fix it.
 try do
 GenServer.call(pid, {:square_root, i})
 catch
 e, r ->
 IO.inspect("Poolex transaction caught error: #{inspect(e)}, #{inspect(r)}")
 :ok
 end
 end,
 timeout: @timeout
)
 end)
 end

 defp await_and_inspect(task), do: task |> Task.await(@timeout) |> IO.inspect()
end
Run the test function PoolexExample.Test.start() and see the result.
Note that 7 workers started at once. 5 of them were launched at initialization and 2 workers were started over the limit based on the max_overflow setting.
All supported configuration options are presented in Getting Started guide.
process #PID<0.351.0> calculating square root of 3
process #PID<0.350.0> calculating square root of 2
process #PID<0.349.0> calculating square root of 1
process #PID<0.352.0> calculating square root of 4
process #PID<0.353.0> calculating square root of 5
process #PID<0.349.0> calculating square root of 9
process #PID<0.353.0> calculating square root of 7
{:ok, 1.0}
process #PID<0.351.0> calculating square root of 8
process #PID<0.352.0> calculating square root of 6
process #PID<0.350.0> calculating square root of 10
{:ok, 1.4142135623730951}
{:ok, 1.7320508075688772}
...

Getting Started

Starting pool of workers
To start a pool you can use either start/1 or start_link/1.
Poolex.start_link(pool_id: :my_pool, worker_module: SomeWorker, workers_count: 10)
In general, you should place it into your Supervision tree for fault tolerance.
children = [
 {Poolex,
 pool_id: :my_pool,
 worker_module: SomeWorker,
 workers_count: 10,
 max_overflow: 10}
]

Supervisor.start_link(children, strategy: :one_for_one)
The second argument should contain a set of options for starting the pool.
Poolex configuration options
	Option	Description	Example	Default value
	pool_id	Identifier by which you will access the pool	:my_pool	option is required
	worker_module	Name of module that implements our worker	MyApp.Worker	option is required
	workers_count	How many workers should be running in the pool	5	option is required
	max_overflow	How many workers can be created over the limit	2	0
	worker_args	List of arguments passed to the start function	[:gg, "wp"]	[]
	worker_start_fun	Name of the function that starts the worker	:run	:start_link
	busy_workers_impl	Module that describes how to work with busy workers	SomeBusyWorkersImpl	Poolex.Workers.Impl.List
	idle_workers_impl	Module that describes how to work with idle workers	SomeIdleWorkersImpl	Poolex.Workers.Impl.List
	waiting_callers_impl	Module that describes how to work with callers queue	WaitingCallersImpl	Poolex.Callers.Impl.ErlangQueue

Working with the pool
After the pool is initialized, you can get a free worker and perform any operations on it. This is done through the main interfaces run/3 and run!/3. The functions work the same and the only difference between them is that run/3 takes care of the runtime error handling.
The first argument is the name of the pool mentioned above.
The second argument is the function that takes the pid of the worker as the only parameter and performs the necessary actions.
The third argument contains run options. Currently, there is only one timeout option that tells Poolex how long we can wait for a worker on the call site.
iex> Poolex.start_link(pool_id: :agent_pool, worker_module: Agent, worker_args: [fn -> 5 end], workers_count: 1)
iex> Poolex.run(:agent_pool, fn pid -> Agent.get(pid, &(&1)) end)
{:ok, 5}
iex> Poolex.run!(:agent_pool, fn pid -> Agent.get(pid, &(&1)) end)
5
If you would like to see examples of using Poolex, then check out Example of Use.

Poolex

Usage
In the most typical use of Poolex, you only need to start pool of workers as a child of your application.
children = [
 Poolex.child_spec(
 pool_id: :worker_pool,
 worker_module: SomeWorker,
 workers_count: 5
)
]

Supervisor.start_link(children, strategy: :one_for_one)
Then you can execute any code on the workers with run/3:
Poolex.run(:worker_pool, &(is_pid?(&1)), timeout: 1_000)
{:ok, true}
Fore more information see Getting Started

 Anchor for this section

 Summary

 Types

 caller()

 Tuple describing the caller.

 pool_id()

 Any atom naming your pool, e.g. :my_pool.

 poolex_option()

 	Option	Description	Example	Default value
	pool_id	Identifier by which you will access the pool	:my_pool	option is required
	worker_module	Name of module that implements our worker	MyApp.Worker	option is required
	workers_count	How many workers should be running in the pool	5	option is required
	max_overflow	How many workers can be created over the limit	2	0
	worker_args	List of arguments passed to the start function	[:gg, "wp"]	[]
	worker_start_fun	Name of the function that starts the worker	:run	:start_link
	busy_workers_impl	Module that describes how to work with busy workers	SomeBusyWorkersImpl	Poolex.Workers.Impl.List
	idle_workers_impl	Module that describes how to work with idle workers	SomeIdleWorkersImpl	Poolex.Workers.Impl.List
	waiting_callers_impl	Module that describes how to work with callers queue	WaitingCallersImpl	Poolex.Callers.Impl.ErlangQueue

 run_option()

 	Option	Description	Example	Default value
	timeout	How long we can wait for a worker on the call site	60_000	5000

 worker()

 Process id of worker.

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 get_debug_info(pool_id)

 Returns detailed information about started pool.

 get_state(pool_id)

 Returns current state of started pool.

 run(pool_id, fun, options \\ [])

 Same as run!/3 but handles runtime_errors.

 run!(pool_id, fun, options \\ [])

 The main function for working with the pool.

 start(opts)

 Starts a Poolex process without links (outside of a supervision tree).

 start_link(opts)

 Starts a Poolex process linked to the current process.

 Anchor for this section

Types

 Link to this type

 caller()

 View Source

 @type caller() :: GenServer.from()

Tuple describing the caller.
Callers are processes that have requested to get a worker.

 Link to this type

 pool_id()

 View Source

 @type pool_id() :: atom()

Any atom naming your pool, e.g. :my_pool.

 Link to this type

 poolex_option()

 View Source

 @type poolex_option() ::
 {:pool_id, pool_id()}
 | {:worker_module, module()}
 | {:workers_count, pos_integer()}
 | {:max_overflow, non_neg_integer()}
 | {:worker_args, [any()]}
 | {:worker_start_fun, atom()}
 | {:busy_workers_impl, module()}
 | {:idle_workers_impl, module()}
 | {:waiting_callers_impl, module()}

	Option	Description	Example	Default value
	pool_id	Identifier by which you will access the pool	:my_pool	option is required
	worker_module	Name of module that implements our worker	MyApp.Worker	option is required
	workers_count	How many workers should be running in the pool	5	option is required
	max_overflow	How many workers can be created over the limit	2	0
	worker_args	List of arguments passed to the start function	[:gg, "wp"]	[]
	worker_start_fun	Name of the function that starts the worker	:run	:start_link
	busy_workers_impl	Module that describes how to work with busy workers	SomeBusyWorkersImpl	Poolex.Workers.Impl.List
	idle_workers_impl	Module that describes how to work with idle workers	SomeIdleWorkersImpl	Poolex.Workers.Impl.List
	waiting_callers_impl	Module that describes how to work with callers queue	WaitingCallersImpl	Poolex.Callers.Impl.ErlangQueue

 Link to this type

 run_option()

 View Source

 @type run_option() :: {:timeout, timeout()}

	Option	Description	Example	Default value
	timeout	How long we can wait for a worker on the call site	60_000	5000

 Link to this type

 worker()

 View Source

 @type worker() :: pid()

Process id of worker.
Workers are processes launched in a pool.

 Anchor for this section

Functions

 Link to this function

 child_spec(init_arg)

 View Source

 @spec child_spec([poolex_option()]) :: Supervisor.child_spec()

Returns a specification to start this module under a supervisor.

 options

 Options

	Option	Description	Example	Default value
	pool_id	Identifier by which you will access the pool	:my_pool	option is required
	worker_module	Name of module that implements our worker	MyApp.Worker	option is required
	workers_count	How many workers should be running in the pool	5	option is required
	max_overflow	How many workers can be created over the limit	2	0
	worker_args	List of arguments passed to the start function	[:gg, "wp"]	[]
	worker_start_fun	Name of the function that starts the worker	:run	:start_link
	busy_workers_impl	Module that describes how to work with busy workers	SomeBusyWorkersImpl	Poolex.Workers.Impl.List
	idle_workers_impl	Module that describes how to work with idle workers	SomeIdleWorkersImpl	Poolex.Workers.Impl.List
	waiting_callers_impl	Module that describes how to work with callers queue	WaitingCallersImpl	Poolex.Callers.Impl.ErlangQueue

 examples

 Examples

children = [
 Poolex.child_spec(pool_id: :worker_pool_1, worker_module: SomeWorker, workers_count: 5),
 # or in another way
 {Poolex, [pool_id: :worker_pool_2, worker_module: SomeOtherWorker, workers_count: 5]}
]

Supervisor.start_link(children, strategy: :one_for_one)

 Link to this function

 get_debug_info(pool_id)

 View Source

 @spec get_debug_info(pool_id()) :: Poolex.DebugInfo.t()

Returns detailed information about started pool.
Primarily needed to help with debugging. Avoid using this function in production.

 fields

 Fields

* `busy_workers_count` - how many workers are busy right now.
* `busy_workers_pids` - list of busy workers.
* `idle_workers_count` - how many workers are ready to work.
* `idle_workers_pids` - list of idle workers.
* `max_overflow` - how many workers can be created over the limit.
* `overflow` - current count of workers launched over limit.
* `waiting_caller_pids` - list of callers processes.
* `worker_args` - what parameters are used to start the worker.
* `worker_module` - name of a module that describes a worker.
* `worker_start_fun` - what function is used to start the worker.

 examples

 Examples

iex> Poolex.start(pool_id: :my_pool, worker_module: Agent, worker_args: [fn -> 0 end], workers_count: 5)
iex> debug_info = %Poolex.DebugInfo{} = Poolex.get_debug_info(:my_pool)
iex> debug_info.busy_workers_count
0
iex> debug_info.idle_workers_count
5

 Link to this function

 get_state(pool_id)

 View Source

 @spec get_state(pool_id()) :: Poolex.State.t()

Returns current state of started pool.
Primarily needed to help with debugging. Avoid using this function in production.

 examples

 Examples

iex> Poolex.start(pool_id: :my_pool, worker_module: Agent, worker_args: [fn -> 0 end], workers_count: 5)
iex> state = %Poolex.State{} = Poolex.get_state(:my_pool)
iex> state.worker_module
Agent
iex> is_pid(state.supervisor)
true

 Link to this function

 run(pool_id, fun, options \\ [])

 View Source

 @spec run(pool_id(), (worker :: pid() -> any()), [run_option()]) ::
 {:ok, any()} | :all_workers_are_busy | {:runtime_error, any()}

Same as run!/3 but handles runtime_errors.
Returns:
	{:runtime_error, reason} on errors.
	:all_workers_are_busy if no free worker was found before the timeout.

See run!/3 for more information.

 examples

 Examples

iex> Poolex.start_link(pool_id: :some_pool, worker_module: Agent, worker_args: [fn -> 5 end], workers_count: 1)
iex> Poolex.run(:some_pool, fn _pid -> raise RuntimeError end)
{:runtime_error, %RuntimeError{message: "runtime error"}}
iex> Poolex.run(:some_pool, fn pid -> Agent.get(pid, &(&1)) end)
{:ok, 5}

 Link to this function

 run!(pool_id, fun, options \\ [])

 View Source

 @spec run!(pool_id(), (worker :: pid() -> any()), [run_option()]) :: any()

The main function for working with the pool.
When executed, an attempt is made to obtain a worker with the specified timeout (5 seconds by default).
In case of successful execution of the passed function, the result will be returned, otherwise an error will be raised.

 examples

 Examples

iex> Poolex.start_link(pool_id: :some_pool, worker_module: Agent, worker_args: [fn -> 5 end], workers_count: 1)
iex> Poolex.run!(:some_pool, fn pid -> Agent.get(pid, &(&1)) end)
5

 Link to this function

 start(opts)

 View Source

 @spec start([poolex_option()]) :: GenServer.on_start()

Starts a Poolex process without links (outside of a supervision tree).
See start_link/1 for more information.

 examples

 Examples

iex> Poolex.start(pool_id: :my_pool, worker_module: Agent, worker_args: [fn -> 0 end], workers_count: 5)
iex> %Poolex.State{worker_module: worker_module} = Poolex.get_state(:my_pool)
iex> worker_module
Agent

 Link to this function

 start_link(opts)

 View Source

 @spec start_link([poolex_option()]) :: GenServer.on_start()

Starts a Poolex process linked to the current process.
This is often used to start the Poolex as part of a supervision tree.
After the process is started, you can access it using the previously specified pool_id.

 options

 Options

	Option	Description	Example	Default value
	pool_id	Identifier by which you will access the pool	:my_pool	option is required
	worker_module	Name of module that implements our worker	MyApp.Worker	option is required
	workers_count	How many workers should be running in the pool	5	option is required
	max_overflow	How many workers can be created over the limit	2	0
	worker_args	List of arguments passed to the start function	[:gg, "wp"]	[]
	worker_start_fun	Name of the function that starts the worker	:run	:start_link
	busy_workers_impl	Module that describes how to work with busy workers	SomeBusyWorkersImpl	Poolex.Workers.Impl.List
	idle_workers_impl	Module that describes how to work with idle workers	SomeIdleWorkersImpl	Poolex.Workers.Impl.List
	waiting_callers_impl	Module that describes how to work with callers queue	WaitingCallersImpl	Poolex.Callers.Impl.ErlangQueue

 examples

 Examples

iex> Poolex.start_link(pool_id: :other_pool, worker_module: Agent, worker_args: [fn -> 0 end], workers_count: 5)
iex> %Poolex.State{worker_module: worker_module} = Poolex.get_state(:other_pool)
iex> worker_module
Agent

Poolex.Callers.Behaviour behaviour

Behaviour for callers collection implementations.
caller is a process that uses the Poolex.run/3 function and waits for the execution result.
Note that the caller's typespec matches GenServer.from()

 Anchor for this section

 Summary

 Types

 state()

 Callbacks

 add(state, caller)

 Adds caller to state and returns new state.

 empty?(state)

 Returns true if the state is empty, false otherwise.

 init()

 Returns state (any data structure) which will be passed as the first argument to all other functions.

 pop(state)

 Removes one of callers from state and returns it as {caller, state}. Returns :empty if state is empty.

 remove_by_pid(state, caller_pid)

 Removes given caller by caller's pid from state and returns new state.

 to_list(state)

 Returns list of callers.

 Anchor for this section

Types

 Link to this type

 state()

 View Source

 @type state() :: any()

 Anchor for this section

Callbacks

 Link to this callback

 add(state, caller)

 View Source

 @callback add(state(), Poolex.caller()) :: state()

Adds caller to state and returns new state.

 Link to this callback

 empty?(state)

 View Source

 @callback empty?(state()) :: boolean()

Returns true if the state is empty, false otherwise.

 Link to this callback

 init()

 View Source

 @callback init() :: state()

Returns state (any data structure) which will be passed as the first argument to all other functions.

 Link to this callback

 pop(state)

 View Source

 @callback pop(state()) :: {Poolex.caller(), state()} | :empty

Removes one of callers from state and returns it as {caller, state}. Returns :empty if state is empty.

 Link to this callback

 remove_by_pid(state, caller_pid)

 View Source

 @callback remove_by_pid(state(), caller_pid :: pid()) :: state()

Removes given caller by caller's pid from state and returns new state.

 Link to this callback

 to_list(state)

 View Source

 @callback to_list(state()) :: [Poolex.caller()]

Returns list of callers.

Poolex.Callers.Impl.ErlangQueue

Callers queue (FIFO) implementation based on :erlang.queue.

Poolex.DebugInfo

Information with the current state of the pool.
Can be used for debugging.

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Poolex.DebugInfo{
 busy_workers_count: non_neg_integer(),
 busy_workers_impl: module(),
 busy_workers_pids: [pid()],
 idle_workers_count: non_neg_integer(),
 idle_workers_impl: module(),
 idle_workers_pids: [pid()],
 max_overflow: non_neg_integer(),
 overflow: non_neg_integer(),
 waiting_callers: [pid()],
 waiting_callers_impl: module(),
 worker_args: [any()],
 worker_module: module(),
 worker_start_fun: atom()
}

Poolex.State

Internal structure containing the state of the pool.
Can be used for debugging.

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Poolex.State{
 busy_workers_state: Poolex.Workers.Behaviour.state(),
 idle_workers_state: Poolex.Workers.Behaviour.state(),
 max_overflow: non_neg_integer(),
 monitor_id: atom() | reference(),
 overflow: non_neg_integer(),
 pool_id: Poolex.pool_id(),
 supervisor: pid(),
 waiting_callers_state: Poolex.Callers.Behaviour.state(),
 worker_args: [any()],
 worker_module: module(),
 worker_start_fun: atom()
}

Poolex.Workers.Behaviour behaviour

Behaviour for worker collection implementations.

 Anchor for this section

 Summary

 Types

 state()

 Callbacks

 add(state, worker)

 Adds worker's pid to state and returns new state.

 count(state)

 Returns the number of workers in the state.

 empty?(state)

 Returns true if the state is empty, false otherwise.

 init()

 Returns state (any data structure) which will be passed as the first argument to all other functions.

 init(list)

 Same as init/0 but returns state initialized with passed list of workers.

 member?(state, worker)

 Returns true if given worker contained in the state, false otherwise.

 pop(state)

 Removes one of workers from state and returns it as {caller, state}. Returns :empty if state is empty.

 remove(state, worker)

 Removes given worker from state and returns new state.

 to_list(state)

 Returns list of workers pids.

 Anchor for this section

Types

 Link to this type

 state()

 View Source

 @type state() :: any()

 Anchor for this section

Callbacks

 Link to this callback

 add(state, worker)

 View Source

 @callback add(state(), Poolex.worker()) :: state()

Adds worker's pid to state and returns new state.

 Link to this callback

 count(state)

 View Source

 @callback count(state()) :: non_neg_integer()

Returns the number of workers in the state.

 Link to this callback

 empty?(state)

 View Source

 @callback empty?(state()) :: boolean()

Returns true if the state is empty, false otherwise.

 Link to this callback

 init()

 View Source

 @callback init() :: state()

Returns state (any data structure) which will be passed as the first argument to all other functions.

 Link to this callback

 init(list)

 View Source

 @callback init([pid()]) :: state()

Same as init/0 but returns state initialized with passed list of workers.

 Link to this callback

 member?(state, worker)

 View Source

 @callback member?(state(), Poolex.worker()) :: boolean()

Returns true if given worker contained in the state, false otherwise.

 Link to this callback

 pop(state)

 View Source

 @callback pop(state()) :: {Poolex.worker(), state()} | :empty

Removes one of workers from state and returns it as {caller, state}. Returns :empty if state is empty.

 Link to this callback

 remove(state, worker)

 View Source

 @callback remove(state(), Poolex.worker()) :: state()

Removes given worker from state and returns new state.

 Link to this callback

 to_list(state)

 View Source

 @callback to_list(state()) :: [Poolex.worker()]

Returns list of workers pids.

Poolex.Workers.Impl.ErlangQueue

Simple workers queue (FIFO) implementation based on Erlang :queue

Poolex.Workers.Impl.List

Simple workers stack (LIFO) implementation based on List.

 OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

