

 Postgrex

 v0.19.3

 Table of contents

 	Postgrex

 	Changelog

 	

 	Modules

 	Postgrex

 	Postgrex.Extensions.Multirange

 	Postgrex.Multirange

 	Postgrex.Notifications

 	Postgrex.Query

 	Postgrex.ReplicationConnection

 	Postgrex.Result

 	Postgrex.SimpleConnection

 	Postgrex.Stream

 	Data Types

 	Postgrex.Box

 	Postgrex.Circle

 	Postgrex.INET

 	Postgrex.Interval

 	Postgrex.Lexeme

 	Postgrex.Line

 	Postgrex.LineSegment

 	Postgrex.MACADDR

 	Postgrex.Path

 	Postgrex.Point

 	Postgrex.Polygon

 	Postgrex.Range

 	Custom types and Extensions

 	Postgrex.DefaultTypes

 	Postgrex.Extension

 	Postgrex.TypeInfo

 	Postgrex.Types

 	Exceptions

 	Postgrex.Error

 	Postgrex.QueryError

Postgrex

[image: Build Status]
PostgreSQL driver for Elixir.
Documentation: http://hexdocs.pm/postgrex/

 Examples

iex> {:ok, pid} = Postgrex.start_link(hostname: "localhost", username: "postgres", password: "postgres", database: "postgres")
{:ok, #PID<0.69.0>}

iex> Postgrex.query!(pid, "SELECT user_id, text FROM comments", [])
%Postgrex.Result{command: :select, empty?: false, columns: ["user_id", "text"], rows: [[3,"hey"],[4,"there"]], size: 2}}

iex> Postgrex.query!(pid, "INSERT INTO comments (user_id, text) VALUES (10, 'heya')", [])
%Postgrex.Result{command: :insert, columns: nil, rows: nil, num_rows: 1}}

 Features

	Automatic decoding and encoding of Elixir values to and from PostgreSQL's binary format
	User defined extensions for encoding and decoding any PostgreSQL type
	Supports transactions, prepared queries and multiple pools via DBConnection
	Supports PostgreSQL 8.4, 9.0-9.6, and later (hstore is not supported on 8.4)

 Data representation

	PostgreSQL	Elixir
	NULL	nil
	bool	true, false
	char	"é"
	int	42
	float	42.0
	text	"eric"
	bytea	<<42>>
	numeric	#Decimal<42.0> (1)
	date	%Date{year: 2013, month: 10, day: 12}
	time(tz)	%Time{hour: 0, minute: 37, second: 14} (2)
	timestamp	%NaiveDateTime{year: 2013, month: 10, day: 12, hour: 0, minute: 37, second: 14}
	timestamptz	%DateTime{year: 2013, month: 10, day: 12, hour: 0, minute: 37, second: 14, time_zone: "Etc/UTC"} (2)
	interval	%Postgrex.Interval{months: 14, days: 40, secs: 10920, microsecs: 315}
	interval	%Duration{year: 1, month: 2, week: 5, day: 5, hour: 3, minute: 2, second: 0, microsecond: {315, 6}} (3)
	array	[1, 2, 3]
	composite type	{42, "title", "content"}
	range	%Postgrex.Range{lower: 1, upper: 5}
	multirange	%Postgrex.Multirange{ranges: [%Postgrex.Range{lower: 1, upper: 5}, %Postgrex.Range{lower: 20, upper: 23}]}
	uuid	<<160,238,188,153,156,11,78,248,187,109,107,185,189,56,10,17>>
	hstore	%{"foo" => "bar"}
	oid types	42
	enum	"ok" (4)
	bit	<< 1::1, 0::1 >>
	varbit	<< 1::1, 0::1 >>
	tsvector	[%Postgrex.Lexeme{positions: [{1, :A}], word: "a"}]

(1) Decimal
(2) Timezones will always be normalized to UTC or assumed to be UTC when no information is available, either by PostgreSQL or Postgrex
(3) %Duration{} may only be used with Elixir 1.17+. Intervals will only be decoded into a %Duration{} struct if the option interval_decode_type: Duration is passed to Postgrex.Types.define/3.
(4) Enumerated types (enum) are custom named database types with strings as values.
(5) Anonymous composite types are decoded (read) as tuples but they cannot be encoded (written) to the database
Postgrex does not automatically cast between types. For example, you can't pass a string where a date is expected. To add type casting, support new types, or change how any of the types above are encoded/decoded, you can use extensions.

 JSON support

Postgrex comes with JSON support out of the box via the Jason library. To use it, add :jason to your dependencies:
{:jason, "~> 1.0"}
You can customize it to use another library via the :json_library configuration:
config :postgrex, :json_library, SomeOtherLib
Once you change the value, you have to recompile Postgrex, which can be done by cleaning its current build:
mix deps.clean postgrex --build

 Extensions

Extensions are used to extend Postgrex' built-in type encoding/decoding.
The extensions directory in this project provides implementation for many Postgres' built-in data types. It is also a great example of how to implement your own extensions. For example, you can look at the Date extension as a starting point.
Once you defined your extensions, you should build custom type modules, passing all of your extensions as arguments:
Postgrex.Types.define(MyApp.PostgrexTypes, [MyApp.Postgis.Extensions], [])
Postgrex.Types.define/3 must be called on its own file, outside of any module and function, as it only needs to be defined once during compilation.
Once a type module is defined, you must specify it on start_link:
Postgrex.start_link(types: MyApp.PostgrexTypes)

 OID type encoding

PostgreSQL's wire protocol supports encoding types either as text or as binary. Unlike most client libraries Postgrex uses the binary protocol, not the text protocol. This allows for efficient encoding of types (e.g. 4-byte integers are encoded as 4 bytes, not as a string of digits) and automatic support for arrays and composite types.
Unfortunately the PostgreSQL binary protocol transports OID types as integers while the text protocol transports them as string of their name, if one exists, and otherwise as integer.
This means you either need to supply oid types as integers or perform an explicit cast (which would be automatic when using the text protocol) in the query.
Fails since $1 is regclass not text.
query("select nextval($1)", ["some_sequence"])

Perform an explicit cast, this would happen automatically when using a
client library that uses the text protocol.
query("select nextval($1::text::regclass)", ["some_sequence"])

Determine the oid once and store it for later usage. This is the most
efficient way, since PostgreSQL only has to perform the lookup once. Client
libraries using the text protocol do not support this.
%{rows: [{sequence_oid}]} = query("select $1::text::regclass", ["some_sequence"])
query("select nextval($1)", [sequence_oid])

 PgBouncer

When using PgBouncer with transaction or statement pooling named prepared
queries can not be used because the bouncer may route requests from the same
postgrex connection to different PostgreSQL backend processes and discards named
queries after the transactions closes. To force unnamed prepared queries:
Postgrex.start_link(prepare: :unnamed)

 Contributing

To contribute you need to compile Postgrex from source and test it:
$ git clone https://github.com/elixir-ecto/postgrex.git
$ cd postgrex
$ mix test

The tests requires some modifications to your hba file. The path to it can be found by running $ psql -U postgres -c "SHOW hba_file" in your shell. Put the following above all other configurations (so that they override):
local all all trust
host all postgrex_md5_pw 127.0.0.1/32 md5
host all postgrex_cleartext_pw 127.0.0.1/32 password
host all postgrex_scram_pw 127.0.0.1/32 scram-sha-256
The server needs to be restarted for the changes to take effect. Additionally you need to setup a PostgreSQL user with the same username as the local user and give it trust or ident in your hba file. Or you can export $PGUSER and $PGPASSWORD before running tests.

 Testing hstore on 9.0

PostgreSQL versions 9.0 does not have the CREATE EXTENSION commands. This means we have to locate the postgres installation and run the hstore.sql in contrib to install hstore. Below is an example command to test 9.0 on OS X with homebrew installed postgres:
$ PGVERSION=9.0 PGPATH=/usr/local/share/postgresql9/ mix test

 License

Copyright 2013 Eric Meadows-Jönsson
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Changelog

 v0.19.3 (2024-11-12)

	Enhancements
	Default params to in query APIs to []
	Allow :comment as options to query APIs

	Bug fixes
	Call disconnect on protocol when reconnecting in Postgrex.SimpleConnection

 v0.19.2 (2024-10-23)

	Bug fixes	Protect against message length overflow vulnerability

 v0.19.1 (2024-08-13)

	Enhancements
	Allow encoding/decoding of LSN

	Bug fixes
	Fix Dialyzer warnings on interval extension
	Log error message if Postgrex.ReplicationConnection is reconnecting

 v0.19.0 (2024-08-03)

	Enhancements
	Respect precision for interval, time, timestamp, and timestamptz
	Remove restriction on year 9999 on datetime columns
	Support decoding and encoding Elixir's v1.17 Duration as interval
	Allow starting one stream after the other in replication

	Bug fixes
	Return {:stop, state} from gen_statem connection callback

 v0.18.0 (2024-05-18)

	Deprecations
	:ssl_opts is deprecated in favor of ssl: options
	ssl: true now emits a warning, as it does not execute server certificate verification

	Enhancements
	Allow ReplicationConnection callbacks to trigger disconnect
	Add :commit_comment option on transactions for prepending a SQL comment to commit statements
	Return database messages from handle_prepare_execute

	Backwards incompatible changes
	Postgrex now sets the SNI headers for SSL authentication by default. If this causes connection issues, you may set server_name_indication: :disable in your :ssl_opts

 v0.17.5 (2024-03-01)

	Enhancements	Do not log if request cannot be cancelled on disconnect

 v0.17.4 (2023-12-04)

	Enhancements	Trap exits from connect callback
	Add configuration to skip querying of comp_oids
	Handle duplicate column names in Table.Reader implementation

 v0.17.3 (2023-08-29)

	Enhancements
	Automatically start :ssl application

	Bug fix
	Fix SSL configuration docs for failover case

 v0.17.2 (2023-07-12)

	Bug fix	Suppress improper list warnings

 v0.17.1 (2023-04-13)

	Bug fix	Fix timeout handling on SimpleConnection

 v0.17.0 (2023-04-10)

	Enhancements	Add SCRAM server signature verification
	Support Multirange extension
	Support lquery and ltree extensions

 v0.16.5 (2022-09-20)

	Enhancements	Allow the :search_path to be set for new connections

 v0.16.4 (2022-07-29)

	Enhancements	Support Unix sockets in hostname and PGHOST
	Support infinity value on numerics/decimals (PG14+)
	Add count to Table.Reader metadata
	Fix warnings on Elixir v1.15

 v0.16.3 (2022-04-27)

	Enhancements	Implement the Table.Reader protocol for query result

 v0.16.2 (2022-02-21)

	Enhancements
	Add :ping_timeout start option

	Bug fixes
	Replication streaming can be resumed after reconnect

 v0.16.1 (2022-01-24)

	Bug fixes	Fix inconsistent return type for multiple queries in Postgrex.SimpleConnection and Postgrex.ReplicationConnection. Instead always wrap Postgrex.Result in a list.

 v0.16.0 (2022-01-23)

Require Elixir v1.11+.
	Enhancements	Support negative years for date, timestamp and timestampz types
	Add Postgrex.SimpleConnection and Postgrex.ReplicationConnection

	Bug fixes	Cancel any pending requests before closing the socket
	Fix possible crash on getting default opts when PGPORT is invalid but a port is given

 v0.15.11 (2021-09-26)

	Enhancements	Support xid8 type introduced in PostgreSQL 13

 v0.15.10 (2021-07-27)

	Enhancements	Define child_spec for Postgrex.Notifications
	Improve error handling when using multiple endpoints

	Bug fixes	Fix dialyzer warnings
	Fix invalid type error after failover

 v0.15.9 (2021-04-24)

	Enhancements	Support the new :endpoints and :target_server_type to make it faster to rotate across multiple instances in cases of failovers

	Bug fixes	Do not warn on undefined JSON library
	Fix bug when a message which is not a row description, data row, command completion or error message occurs and there is buffer remaining to be processed

 v0.15.8 (2021-01-19)

	Bug fixes	Make sure scram authentication method works on Erlang/OTP 24

 v0.15.7 (2020-10-17)

	Enhancements	Add compare and to_string to Postgrex.Interval

	Bug fixes	Allow deallocated queries to be re-prepared

 v0.15.6 (2020-09-21)

	Enhancements	Support Decimal 2.0

	Bug fixes	Do not keep credentials in state in Postgrex.Notifications

 v0.15.5 (2020-06-03)

	Enhancements	Support optional decoding of infinite timestamps

	Bug fixes	Remove cache statements that cannot be described from cache when on a savepoint transaction (such as when inside the SQL sandbox)

 v0.15.4 (2020-05-09)

	Enhancements	Fix warnings on Elixir v1.11.0-dev

 v0.15.3 (2019-12-11)

	Enhancements
	Allow dynamic connection configuration with the :configure for notifications
	Add :auto_reconnect option for notifications
	Accept listen commands even if the notifications connection is down or yet to first connect

	Bug fixes
	Encode empty arrays in a mechanism compatible with CockroachDB
	Cleanly terminate connection started with a socket

 v0.15.2 (2019-10-08)

	Enhancements	Improve performance of the bootstrap query

 v0.15.1 (2019-09-16)

	Enhancements	Add support for microseconds in Postgrex.Interval
	Reduce bootstrap log message to debug and clarify error message

 v0.15.0 (2019-07-18)

Postgrex v0.15+ requires Elixir v1.6+.
	Enhancements
	Filter bootstrap more efficiently by avoiding loading tables information on startup
	Only bootstrap new oids during describe: this means reconnects don't run a bootstrap
query and describe runs minimal query
	Parse Postgrex 12beta new version format
	Raise error when :ssl is required and not started in child_spec/1

	Bug fixes
	Don't encode DateTime, NaiveDateTime or Time unless Calendar.ISO

 v0.14.3 (2019-05-08)

	Enhancements	Make bootstrap query compatible with CockroachDB 19.1
	Improve error message when encoding bad tuple

 v0.14.2 (2019-04-12)

	Bug fixes	Fix Elixir deprecation warnings
	Do not crash when receiving notices during authentication
	Do not crash when receiving an error (caused by a raise) during query execution

 v0.14.1 (2018-11-24)

	Bug fixes	Bump decimal dependency to avoid runtime warnings

 v0.14.0 (2018-10-29)

	Enhancements
	Postgrex.INET will add a /32 netmask to an IPv4 address and a /128 netmask to an IPv6 address during encoding where netmask: nil. When decoding, a /32 netmask (for IPv4) or /128 netmask (for IPv6) will be removed, resulting in netmask: nil for the struct
	Add :disconnect_on_error_codes which allows Postgrex to automatically disconnect and then reconnect on certain errors. This is useful when using Postgrex against systems that support failover, which would emit certain errors on failover. This change allow those errors to be recovered from transparently
	Add :cache_statement to Postgrex.query/4 as a built-in statement cache
	Support scram-sha-256 authentication from PostgreSQL 10
	Add Postgrex.prepare_execute/4
	Automatically re-prepare queries that failed to encode due to a database type change

	Backwards incompatible changes
	Invoke encode_to_iodata! instead of encode! in JSON encoder
	Remove Postgrex.CIDR and use Postgrex.INET to encode both inet/cidr (as PostgreSQL may perform implicit/explicit casting at any time)
	Postgrex.Time, Postgrex.Date and Postgrex.Timestamp were deprecated and now have been effectively removed
	Postgrex.execute/4 now always returns the prepared query
	:pool_timeout is removed in favor of :queue_target and :queue_interval. See DBConnection.start_link/2 for more information

 v0.13.4 (2018-01-25)

	Enhancements
	Support custom range domains
	Support custom array domains
	Add support for UNIX domain sockets via the :socket_dir option
	Remove warnings on Elixir v1.6

	Bug fixes
	Fix encoding of empty ranges
	Fix Postgrex.Path open/closed byte parity

 v0.13.3 (2017-05-31)

	Enhancements
	Reload types on unknown oid during prepare

	Bug fixes
	Fix default timeout for connection process from 5000s to 15000s

 v0.13.2 (2017-03-05)

	Bug fixes	Do not build invalid dates at compilation time on Elixir master

 v0.13.1 (2017-02-20)

	Enhancements
	Allow naming Postgrex.Notifications server
	Provide tsvector and lexeme support using binary formats

	Bug fixes
	Fix encoding of Decimal values that would be wrong in certain circumstances
	Add :crypto to applications
	Specify proper Elixir dependency
	Restore compatibility with postgres versions prior to 8.4 and with redshift

 v0.13.0 (2016-12-17)

	Enhancements
	Support built-in geometry types
	Fallback to PGDATABASE system env for the database
	Support bit and varbit types
	Add postgres error code to error messages
	Support unprepared when using a stream
	:connect_timeout and :handshake_timeout to configure TCP connect and handshake timeouts
	Improve numeric encode/decode

	Bug fixes
	Quote channel on listen/unlisten
	Check datetime structs available before defining calendar extension
	Backoff all awaiting connections if a bootstrap fails to prevent timeout loop
	Handle idle admin shutdown of postgres backend
	Fix rebootstrap query to be O(Nlog(N)) instead of O(N^2)
	Fix encoding of numerical values

	Backwards incompatible changes
	:copy_data query option is no longer supported and data can only be copied to the database using a collectable
	Query struct has removed encoders/decoders and changed param_info/result_info values
	Extensions now use a new encoder/decoder API based on quoted expressions
	The :extensions, :decode_binary and :null options in start_link are no longer supported in favor of defining custom types with Postgrex.Types.define(module, extra_extensions, options). Postgrex.Types.define/3 must be called on its own file, outside of any module and function, as it only needs to be defined once during compilation.

 v0.12.1 (2016-09-29)

	Enhancements
	Support special "char" type

	Bug fixes
	Limit re-bootstrap to one connection at a time
	Fix re-bootstrap of new composite types that use old types

 v0.12.0 (2016-09-06)

	Enhancements	Raise DBConnection.ConnectionError on connection error
	Use send encoding to determine citext encoding
	Use Map in favor of deprecated modules (to avoid warnings on v1.4)
	Run rebootstrap test synchronously on every connect
	Add support for Elixir 1.3+ Calendar types

 v0.11.2 (2016-06-16)

	Enhancements
	Add support for COPY TO STDOUT and COPY FROM STDIN
	Support packets bigger than 64MB
	Introduce mode: :savepoint for prepare/execute/close that allows wrapping a request in a savepoint so that an error does not fail the transaction
	Introduce streaming queries
	Add :decode_binary option which is either :copy (default) or :reference.

	Bug fixes
	Consistently convert the port number to integer
	Remove type server entry on disconnect

 v0.11.1 (2016-02-15)

	Enhancements
	Support PgBouncer transaction/statement pooling
	Include more information in error messages
	Add support for built-in postgres point type
	Add Postgrex.child_spec/1
	Allow custom encoding/decoding of postgres' NULL on a per query basis

	Bug fixes
	Correctly pad decimal digits during encoding

 v0.11.0 (2016-01-21)

	Enhancements
	Rely on DBConnection. This means better performance by copying less data between processes, faster encoding/decoding, support for transactions, after_connect hooks, connection backoff, logging, prepared queries, the ability to use both Poolboy and Sojourn as pools out of the box, and more

	Backwards incompatible change
	Connection API from Postgrex.Connection has been moved to Postgrex
	Notifications API from Postgrex.Connection has been moved to Postgrex.Notifications

 v0.10.0 (2015-11-17)

	Enhancements
	Improve error message on encoding/decoding failures
	Add network types such as: inet, cidr and macaddr
	Improve TCP error messages
	Support PGPORT environment variable
	Improve decoding performance by caching extension information
	Improve query performance by decoding in the client process hence not blocking the connection
	Raise if number of parameters to query is wrong

	Bug fixes
	Correctly handle errors in connection initialization with sync_connect: true
	Do not fail on custom error codes
	Correctly handle large number of parameters, also fixes some protocol issues where unsigned integers were treated as signed

 v0.9.1 (2015-07-14)

	Enhancements	Revert client side decoding as affects performance negatively (around 15% slower)
	Cast floats and integers to decimal if a decimal is requested

 v0.9.0 (2015-07-12)

	Enhancements
	Cached type bootstrapping for less memory usage and faster connection set up
	The result set is now decoded in the calling process to reduce time spent in the connection process
	Add a decode: :manual option to Postgrex.query/4 and the function Postgrex.decode/2 for manually decoding the result
	Add :sync_connect option to Postgrex.start_link/1

	Bug fixes
	Correctly handle extension types created inside schemas

	Backwards incompatible changes
	Each row in Postgrex.Result.rows is now a list of columns instead of a tuple

 v0.8.4 (2015-06-24)

	Bug fixes	Fix version detection

 v0.8.3 (2015-06-22)

	Enhancements	Add Postgrex.Extensions.JSON extension for json and jsonb types
	Set suitable TCP buffer size automatically

 v0.8.2 (2015-06-01)

	Enhancements
	Add :socket_options option to Postgrex.start_link/1
	Improved performance regarding binary handling
	Add hstore support

	Backwards incompatible changes
	Remove :async_connect option and make it the default

 v0.8.1 (2015-04-09)

	Enhancements
	Keep the postgres error code in :pg_code
	Support oid types and all its aliases (regclass etc)

	Backwards incompatible changes
	Rename :msec field to :usec on Postgrex.Time and Postgrex.Timestamp

	Bug fixes
	Fix numeric encoding for fractional numbers with less digits than the numeric base
	Support encoding timetz type
	Fix time and timestamp off-by-one bounds

 v0.8.0 (2015-02-26)

	Enhancements
	Add extensions
	Encode/decode ranges generically
	Add bounds when encoding integer types to error instead of overflowing the integer
	Log unhandled PostgreSQL errors (when it cant be replied to anyone)
	Add support for enum types
	Add support for citext type
	Add microseconds to times and timestamps
	Add the ability to rebootstrap types for an open connection

	Backwards incompatible changes
	Remove the support for type-hinted queries
	Remove encoder, decoder and formatter functions, use extensions instead
	Use structs for dates, times, timestamps, interval and ranges
	Change the default timeout for all operations to 5000ms
	Show PostgreSQL error codes as their names instead

 v0.7.0 (2015-01-20)

	Enhancements
	Add asynchronous notifications through listen and unlisten
	Add support for range types
	Add support for uuid type
	Add :async_connect option to start_link/1

	Bug fixes
	Fix encoding nil values in arrays and composite types

 v0.6.0 (2014-09-07)

	Enhancements
	Queries can be constructed of iodata
	Support "type hinted" queries to save one client-server round trip which will reduce query latency

	Backwards incompatible changes
	Postgrex.Error postgres field is converted from keyword list to map
	Postgrex.Connect.query params parameter is no longer optional (pass an empty list if query has no parameters)
	The timeout parameter for all functions have been moved to a keyword list with the key :timeout

 v0.5.5 (2014-08-20)

	Enhancements	Reduce the amount of intermediary binaries constructed with the help of iodata

 v0.5.4 (2014-08-04)

 v0.5.3 (2014-07-13)

 v0.5.2 (2014-06-18)

 v0.5.1 (2014-05-24)

	Backwards incompatible changes	Postgrex.Error exception converted to struct

 v0.5.0 (2014-05-01)

	Backwards incompatible changes	Postgrex.Result and Postgrex.TypeInfo converted to structs

 v0.4.2 (2014-04-21)

	Enhancements	Add timeouts to all synchronous calls. When a timeout is hit an exit error will be raised in the caller process and the connection process will exit
	Add automatic fallback to environment variables PGUSER, PGHOST and PGPASSWORD

 v0.4.0 (2014-01-16)

	Enhancements	Numerics decode and encode to Decimal

 v0.3.1 (2014-01-15)

	Enhancements	Compact state before printing to logs and hide password
	Concurrency support, safe to use connection from multiple processes concurrently

 v0.3.0 (2013-12-16)

	Bug fixes
	Don't try to decode values of text format

	Backwards incompatible changes
	Types are stored as binaries instead of atoms, update your custom encoders and decoders

 v0.2.1 (2013-12-10)

	Enhancements
	Add support for SSL

	Bug fixes
	Fix decoding of unknown type when using custom decoder

 v0.2.0 (2013-11-14)

	Enhancements
	Floats handles NaN, inf and -inf
	Add support for numerics
	Custom encoders and decoders works on elements in arrays
	Add support for composite types
	Add functions that raise on error

	Bug fixes
	INSERT query works with extended query parameters
	Return proper num_rows on PostgreSQL 8.4
	Fix race condition

	Backwards incompatible changes
	Simplify custom decoding and encoding with default function

 v0.1.0 (2013-10-14)

First release!

Postgrex

PostgreSQL driver for Elixir.
Postgrex is a partial implementation of the Postgres frontend/backend
message protocol.
It performs wire messaging in Elixir, as opposed to binding to a library
such as libpq in C.
A Postgrex query is performed as "extended query".
An "extended query" involves separate server-side parse, bind, and execute
stages, each of which may be re-used for efficiency. For example, libraries
like Ecto caches queries, so a query only has to be parsed and planned once.
This is all done via wire messaging, without relying on PREPARE q AS (...)
and EXECUTE q() SQL statements directly.
This module handles the connection to PostgreSQL, providing support
for queries, transactions, connection backoff, logging, pooling and
more.
Note that the notifications API (pub/sub) supported by PostgreSQL is
handled by Postgrex.Notifications. Hence, to use this feature,
you need to start a separate (notifications) connection.

 Summary

 Types

 Postgrex.Extensions.Multirange - Postgrex v0.19.3

Postgrex.Extensions.Multirange

 Summary

 Functions

 Postgrex.Multirange - Postgrex v0.19.3

Postgrex.Multirange

Struct for PostgreSQL multirange.

 Fields

	ranges

 Summary

 Types

 Postgrex.Notifications - Postgrex v0.19.3

Postgrex.Notifications

API for notifications (pub/sub) in PostgreSQL.
In order to use it, first you need to start the notification process.
In your supervision tree:
{Postgrex.Notifications, name: MyApp.Notifications}
Then you can listen to certain channels:
{:ok, listen_ref} = Postgrex.Notifications.listen(MyApp.Notifications, "channel")
Now every time a message is broadcast on said channel, for example via
PostgreSQL command line:
NOTIFY "channel", "Oh hai!";
You will receive a message in the format:
{:notification, notification_pid, listen_ref, channel, message}

 Async connect, auto-reconnects and missed notifications

By default, the notification system establishes a connection to the
database on initialization, you can configure the connection to happen
asynchronously. You can also configure the connection to automatically
reconnect.
Note however that when the notification system is waiting for a connection,
any notifications that occur during the disconnection period are not queued
and cannot be recovered. Similarly, any listen command will be queued until
the connection is up.
There is a race condition between starting to listen and notifications being
issued "at the same time", as explained in the PostgreSQL documentation.
If your application needs to keep a consistent representation of data, follow
the three-step approach of first subscribing, then obtaining the current
state of data, then handling the incoming notifications.
Beware that the same
race condition applies to auto-reconnects. A simple way of dealing with this
issue is not using the auto-reconnect feature directly, but monitoring and
re-starting the Notifications process, then subscribing to channel messages
over again, using the same three-step approach.

 A note on casing

While PostgreSQL seems to behave as case-insensitive, it actually has a very
peculiar behaviour on casing. When you write:
SELECT * FROM POSTS
PostgreSQL actually converts POSTS into the lowercase posts. That's why
both SELECT * FROM POSTS and SELECT * FROM posts feel equivalent.
However, if you wrap the table name in quotes, then the casing in quotes
will be preserved.
These same rules apply to PostgreSQL notification channels. More importantly,
whenever Postgrex.Notifications listens to a channel, it wraps the channel
name in quotes. Therefore, if you listen to a channel named "fooBar" and
you send a notification without quotes in the channel name, such as:
NOTIFY fooBar, "Oh hai!";
The notification will not be received by Postgrex.Notifications because the
notification will be effectively sent to "foobar" and not "fooBar". Therefore,
you must guarantee one of the two following properties:
	If you can wrap the channel name in quotes when sending a notification,
then make sure the channel name has the exact same casing when listening
and sending notifications

	If you cannot wrap the channel name in quotes when sending a notification,
then make sure to give the lowercased channel name when listening

 Summary

 Types

 Postgrex.Query - Postgrex v0.19.3

Postgrex.Query

Query struct returned from a successfully prepared query.
Its public fields are:
	name - The name of the prepared statement;
	statement - The prepared statement;
	columns - The column names;
	ref - A reference used to identify prepared queries;

 Prepared queries

Once a query is prepared with Postgrex.prepare/4, the
returned query will have its ref field set to a reference.
When Postgrex.execute/4 is called with the prepared query,
it always returns a query. If the ref field in the query
given to execute and the one returned are the same, it
means the cached prepared query was used. If the ref field
is not the same, it means the query had to be re-prepared.

 Summary

 Types

 Postgrex.ReplicationConnection - Postgrex v0.19.3

Postgrex.ReplicationConnection behaviour

A process that receives and sends PostgreSQL replication messages.
Note: this module is experimental and may be subject to changes
in the future.

 Logical replication

Let's see how to use this module for connecting to PostgreSQL
for logical replication. First of all, you need to configure the
wal level in PostgreSQL to logical. Run this inside your PostgreSQL
shell/configuration:
ALTER SYSTEM SET wal_level='logical';
ALTER SYSTEM SET max_wal_senders='10';
ALTER SYSTEM SET max_replication_slots='10';
Then you must restart your server. Alternatively, you can set
those values when starting "postgres". This is useful, for example,
when running it from Docker:
services:
 postgres:
 image: postgres:14
 env:
 ...
 command: ["postgres", "-c", "wal_level=logical"]
For CI, GitHub Actions do not support setting command, so you can
update and restart Postgres instead in a step:
- name: "Set PG settings"
 run: |
 docker exec ${{ job.services.postgres.id }} sh -c 'echo "wal_level=logical" >> /var/lib/postgresql/data/postgresql.conf'
 docker restart ${{ job.services.pg.id }}
Then you must create a publication to be replicated.
This can be done in any session:
CREATE PUBLICATION postgrex_example FOR ALL TABLES;
You can also filter if you want to publish insert, update,
delete or a subset of them:
Skips updates (keeps inserts, deletes, begins, commits, etc)
create PUBLICATION postgrex_example FOR ALL TABLES WITH (publish = 'insert,delete');

Skips inserts, updates, and deletes (keeps begins, commits, etc)
create PUBLICATION postgrex_example FOR ALL TABLES WITH (publish = '');
Now we are ready to create module that starts a replication slot
and listens to our publication. Our example will use the pgoutput
for logical replication and print all incoming messages to the
terminal:
Mix.install([:postgrex])

defmodule Repl do
 use Postgrex.ReplicationConnection

 def start_link(opts) do
 # Automatically reconnect if we lose connection.
 extra_opts = [
 auto_reconnect: true
]

 Postgrex.ReplicationConnection.start_link(__MODULE__, :ok, extra_opts ++ opts)
 end

 @impl true
 def init(:ok) do
 {:ok, %{step: :disconnected}}
 end

 @impl true
 def handle_connect(state) do
 query = "CREATE_REPLICATION_SLOT postgrex TEMPORARY LOGICAL pgoutput NOEXPORT_SNAPSHOT"
 {:query, query, %{state | step: :create_slot}}
 end

 @impl true
 def handle_result(results, %{step: :create_slot} = state) when is_list(results) do
 query = "START_REPLICATION SLOT postgrex LOGICAL 0/0 (proto_version '1', publication_names 'postgrex_example')"
 {:stream, query, [], %{state | step: :streaming}}
 end

 @impl true
 # https://www.postgresql.org/docs/14/protocol-replication.html
 def handle_data(<<?w, _wal_start::64, _wal_end::64, _clock::64, rest::binary>>, state) do
 IO.inspect(rest)
 {:noreply, state}
 end

 def handle_data(<<?k, wal_end::64, _clock::64, reply>>, state) do
 messages =
 case reply do
 1 -> [<<?r, wal_end + 1::64, wal_end + 1::64, wal_end + 1::64, current_time()::64, 0>>]
 0 -> []
 end

 {:noreply, messages, state}
 end

 @epoch DateTime.to_unix(~U[2000-01-01 00:00:00Z], :microsecond)
 defp current_time(), do: System.os_time(:microsecond) - @epoch
end

{:ok, pid} =
 Repl.start_link(
 host: "localhost",
 database: "demo_dev",
 username: "postgres",
)

Process.sleep(:infinity)

 use options

use Postgrex.ReplicationConnection accepts a list of options which configures the
child specification and therefore how it runs under a supervisor.
The generated child_spec/1 can be customized with the following options:
	:id - the child specification identifier, defaults to the current module
	:restart - when the child should be restarted, defaults to :permanent
	:shutdown - how to shut down the child, either immediately or by giving
it time to shut down

For example:
use Postgrex.ReplicationConnection, restart: :transient, shutdown: 10_000
See the "Child specification" section in the Supervisor module for more
detailed information. The @doc annotation immediately preceding
use Postgrex.ReplicationConnection will be attached to the generated child_spec/1
function.

 Name registration

A Postgrex.ReplicationConnection is bound to the same name registration rules as a
GenServer. Read more about them in the GenServer docs.

 Summary

 Types

 Postgrex.Result - Postgrex v0.19.3

Postgrex.Result

Result struct returned from any successful query. Its fields are:
	command - An atom or a list of atoms of the query command, for example:
:select, :insert, or [:rollback, :release];
	columns - The column names;
	rows - The result set. A list of lists, each inner list corresponding to a
row, each element in the inner list corresponds to a column;
	num_rows - The number of fetched or affected rows;
	connection_id - The OS pid of the PostgreSQL backend that executed the query;
	messages - A list of maps of messages, such as hints and notices, sent by the
driver during the execution of the query.

 Summary

 Types

 Postgrex.SimpleConnection - Postgrex v0.19.3

Postgrex.SimpleConnection behaviour

A generic connection suitable for simple queries and pubsub functionality.
On its own, a SimpleConnection server only maintains a connection. To execute
queries, process results, or relay notices you must implement a callback module
with the SimpleConnection behaviour.

 Example

The SimpleConnection behaviour abstracts common client/server interactions,
along with optional mechanisms for running queries or relaying notifications.
Let's start with a minimal callback module that executes a query and relays
the result back to the caller.
defmodule MyConnection do
 @behaviour Postgrex.SimpleConnection

 @impl true
 def init(_args) do
 {:ok, %{from: nil}}
 end

 @impl true
 def handle_call({:query, query}, from, state) do
 {:query, query, %{state | from: from}}
 end

 @impl true
 def handle_result(results, state) when is_list(results) do
 SimpleConnection.reply(state.from, results)

 {:noreply, state}
 end

 @impl true
 def handle_result(%Postgrex.Error{} = error, state) do
 SimpleConnection.reply(state.from, error)

 {:noreply, state}
 end
end

Start the connection
{:ok, pid} = SimpleConnection.start_link(MyConnection, [], database: "demo")

Execute a literal query
SimpleConnection.call(pid, {:query, "SELECT 1"})
=> %Postgrex.Result{rows: [["1"]]}
We start a connection by passing the callback module, callback options, and
server options to SimpleConnection.start_link/3. The init/1 function
receives any callback options and returns the callback state.
Queries are sent through SimpleConnection.call/2, executed on the server,
and the result is handed off to handle_result/2. At that point the callback
can process the result before replying back to the caller with
SimpleConnection.reply/2.

 Building a PubSub Connection

With the notify/3 callback you can also build a pubsub server on top of
LISTEN/NOTIFY. Here's a naive pubsub implementation:
defmodule MyPubSub do
 @behaviour Postgrex.SimpleConnection

 defstruct [:from, listeners: %{}]

 @impl true
 def init(args) do
 {:ok, struct!(__MODULE__, args)}
 end

 @impl true
 def notify(channel, payload, state) do
 for pid <- state.listeners[channel] do
 send(pid, {:notice, channel, payload})
 end
 end

 @impl true
 def handle_call({:listen, channel}, {pid, _} = from, state) do
 listeners = Map.update(state.listeners, channel, [pid], &[pid | &1])

 {:query, ~s(LISTEN "#{channel}"), %{state | from: from, listeners: listeners}}
 end

 def handle_call({:query, query}, from, state) do
 {:query, query, %{state | from: from}}
 end

 @impl true
 def handle_result(_results, state) do
 SimpleConnection.reply(state.from, :ok)

 {:noreply, %{state | from: nil}}
 end
end

Start the connection
{:ok, pid} = SimpleConnection.start_link(MyPubSub, [], database: "demo")

Start listening to the "demo" channel
SimpleConnection.call(pid, {:listen, "demo"})
=> %Postgrex.Result{command: :listen}

Notify all listeners
Simple