

 Postgrex

 v0.22.0

 Table of contents

 	Postgrex

 	Changelog

 	
 Modules

 	Postgrex

 	Postgrex.Multirange

 	Postgrex.Notifications

 	Postgrex.Query

 	Postgrex.ReplicationConnection

 	Postgrex.Result

 	Postgrex.SimpleConnection

 	Postgrex.Stream

 	Data Types

 	Postgrex.Box

 	Postgrex.Circle

 	Postgrex.INET

 	Postgrex.Interval

 	Postgrex.Lexeme

 	Postgrex.Line

 	Postgrex.LineSegment

 	Postgrex.MACADDR

 	Postgrex.Path

 	Postgrex.Point

 	Postgrex.Polygon

 	Postgrex.Range

 	Custom types and Extensions

 	Postgrex.DefaultTypes

 	Postgrex.Extension

 	Postgrex.TypeInfo

 	Postgrex.Types

 	Exceptions

 	Postgrex.Error

 	Postgrex.QueryError

 Postgrex

[image: Build Status]
PostgreSQL driver for Elixir.
Documentation: http://hexdocs.pm/postgrex/
Examples
iex> {:ok, pid} = Postgrex.start_link(hostname: "localhost", username: "postgres", password: "postgres", database: "postgres")
{:ok, #PID<0.69.0>}

iex> Postgrex.query!(pid, "SELECT user_id, text FROM comments", [])
%Postgrex.Result{command: :select, empty?: false, columns: ["user_id", "text"], rows: [[3,"hey"],[4,"there"]], size: 2}}

iex> Postgrex.query!(pid, "INSERT INTO comments (user_id, text) VALUES (10, 'heya')", [])
%Postgrex.Result{command: :insert, columns: nil, rows: nil, num_rows: 1}
Features
	Automatic decoding and encoding of Elixir values to and from PostgreSQL's binary format
	User defined extensions for encoding and decoding any PostgreSQL type
	Supports transactions, prepared queries and multiple pools via DBConnection
	Supports PostgreSQL 8.4, 9.0-9.6, and later (hstore is not supported on 8.4)

Data representation
	PostgreSQL	Elixir
	NULL	nil
	bool	true, false
	char	"é"
	int	42
	float	42.0
	text	"eric"
	bytea	<<42>>
	numeric	#Decimal<42.0> (1)
	date	%Date{year: 2013, month: 10, day: 12}
	time(tz)	%Time{hour: 0, minute: 37, second: 14} (2)
	timestamp	%NaiveDateTime{year: 2013, month: 10, day: 12, hour: 0, minute: 37, second: 14}
	timestamptz	%DateTime{year: 2013, month: 10, day: 12, hour: 0, minute: 37, second: 14, time_zone: "Etc/UTC"} (2)
	interval	%Postgrex.Interval{months: 14, days: 40, secs: 10920, microsecs: 315}
	interval	%Duration{month: 2, day: 5, second: 0, microsecond: {315, 6}} (3)
	array	[1, 2, 3]
	composite type	{42, "title", "content"}
	range	%Postgrex.Range{lower: 1, upper: 5}
	multirange	%Postgrex.Multirange{ranges: [%Postgrex.Range{lower: 1, upper: 5}, %Postgrex.Range{lower: 20, upper: 23}]}
	uuid	<<160,238,188,153,156,11,78,248,187,109,107,185,189,56,10,17>>
	hstore	%{"foo" => "bar"}
	oid types	42
	enum	"ok" (4)
	bit	<< 1::1, 0::1 >>
	varbit	<< 1::1, 0::1 >>
	tsvector	[%Postgrex.Lexeme{positions: [{1, :A}], word: "a"}]

(1) Decimal
(2) Timezones will always be normalized to UTC or assumed to be UTC when no information is available, either by PostgreSQL or Postgrex
(3) %Duration{} may only be used with Elixir 1.17+. Intervals will only be decoded into a %Duration{} struct if the option interval_decode_type: Duration is passed to Postgrex.Types.define/3.
(4) Enumerated types (enum) are custom named database types with strings as values.
(5) Anonymous composite types are decoded (read) as tuples but they cannot be encoded (written) to the database
Postgrex does not automatically cast between types. For example, you can't pass a string where a date is expected. To add type casting, support new types, or change how any of the types above are encoded/decoded, you can use extensions.
JSON support
Postgrex comes with JSON support out of the box via the Jason library. To use it, add :jason to your dependencies:
{:jason, "~> 1.0"}
You can customize it to use another library via the :json_library configuration:
config :postgrex, :json_library, SomeOtherLib
Once you change the value, you have to recompile Postgrex, which can be done by cleaning its current build:
mix deps.clean postgrex --build

Extensions
Extensions are used to extend Postgrex' built-in type encoding/decoding.
The extensions directory in this project provides implementation for many Postgres' built-in data types. It is also a great example of how to implement your own extensions. For example, you can look at the Date extension as a starting point.
Once you defined your extensions, you should build custom type modules, passing all of your extensions as arguments:
Postgrex.Types.define(MyApp.PostgrexTypes, [MyApp.Postgis.Extensions], [])
Postgrex.Types.define/3 must be called on its own file, outside of any module and function, as it only needs to be defined once during compilation.
Once a type module is defined, you must specify it on start_link:
Postgrex.start_link(types: MyApp.PostgrexTypes)
OID type encoding
PostgreSQL's wire protocol supports encoding types either as text or as binary. Unlike most client libraries Postgrex uses the binary protocol, not the text protocol. This allows for efficient encoding of types (e.g. 4-byte integers are encoded as 4 bytes, not as a string of digits) and automatic support for arrays and composite types.
Unfortunately the PostgreSQL binary protocol transports OID types as integers while the text protocol transports them as string of their name, if one exists, and otherwise as integer.
This means you either need to supply oid types as integers or perform an explicit cast (which would be automatic when using the text protocol) in the query.
Fails since $1 is regclass not text.
query("select nextval($1)", ["some_sequence"])

Perform an explicit cast, this would happen automatically when using a
client library that uses the text protocol.
query("select nextval($1::text::regclass)", ["some_sequence"])

Determine the oid once and store it for later usage. This is the most
efficient way, since PostgreSQL only has to perform the lookup once. Client
libraries using the text protocol do not support this.
%{rows: [{sequence_oid}]} = query("select $1::text::regclass", ["some_sequence"])
query("select nextval($1)", [sequence_oid])
PgBouncer
PgBouncer versions 1.21.0 and later support named prepared statements. If you are using an older version of PgBouncer with transaction or statement pooling, named prepared queries cannot be used because the bouncer may route requests from the same Postgrex connection to different PostgreSQL backend processes and discards named queries after the transaction closes. To force unnamed prepared queries in such older versions:
Postgrex.start_link(prepare: :unnamed)
PgBouncer 1.21.0 release notes
Contributing
To contribute you need to compile Postgrex from source and test it:
$ git clone https://github.com/elixir-ecto/postgrex.git
$ cd postgrex
$ mix test

The tests requires some modifications to your hba file. The path to it can be found by running $ psql -U postgres -c "SHOW hba_file" in your shell. Put the following above all other configurations (so that they override):
local all all trust
host all postgrex_md5_pw 127.0.0.1/32 md5
host all postgrex_cleartext_pw 127.0.0.1/32 password
host all postgrex_scram_pw 127.0.0.1/32 scram-sha-256
The server needs to be restarted for the changes to take effect. Additionally you need to setup a PostgreSQL user with the same username as the local user and give it trust or ident in your hba file. Or you can export $PGUSER and $PGPASSWORD before running tests.
Testing hstore on 9.0
PostgreSQL versions 9.0 does not have the CREATE EXTENSION commands. This means we have to locate the postgres installation and run the hstore.sql in contrib to install hstore. Below is an example command to test 9.0 on OS X with homebrew installed postgres:
$ PGVERSION=9.0 PGPATH=/usr/local/share/postgresql9/ mix test

License
Copyright 2013 Eric Meadows-Jönsson
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

 Changelog

v0.22.0 (2026-01-10)
	Enhancements	Automatically retry when a connection disconnects on first read/write
	Make timeouts for TypeServer configurable
	Require Elixir v1.15+

v0.21.1 (2025-08-03)
	Bug fixes	Fix ssl: true with missing ssl_opts handling

v0.21.0 (2025-07-31)
This release requires Erlang/OTP 25+
	Enhancements
	Add query timeout option on ReplicationConnection

	Bug fixes
	PGHOST option does not override explicitly given endpoint configuration
	Add ltxtquery support

v0.20.0 (2025-02-05)
	Deprecations
	Deprecate :search_path and use :parameters option instead

	Bug fixes
	Ensure Duration type returns same units as Postgrex.Interval
	Call disconnect on protocol when reconnecting in Postgrex.ReplicationConnection
	Call disconnect only if there is protocol in Postgrex.SimpleConnection

v0.19.3 (2024-11-12)
	Enhancements
	Default params to in query APIs to []
	Allow :comment as options to query APIs

	Bug fixes
	Call disconnect on protocol when reconnecting in Postgrex.SimpleConnection

v0.19.2 (2024-10-23)
	Bug fixes	Protect against message length overflow vulnerability

v0.19.1 (2024-08-13)
	Enhancements
	Allow encoding/decoding of LSN

	Bug fixes
	Fix Dialyzer warnings on interval extension
	Log error message if Postgrex.ReplicationConnection is reconnecting

v0.19.0 (2024-08-03)
	Enhancements
	Respect precision for interval, time, timestamp, and timestamptz
	Remove restriction on year 9999 on datetime columns
	Support decoding and encoding Elixir's v1.17 Duration as interval
	Allow starting one stream after the other in replication

	Bug fixes
	Return {:stop, state} from gen_statem connection callback

v0.18.0 (2024-05-18)
	Deprecations
	:ssl_opts is deprecated in favor of ssl: options
	ssl: true now emits a warning, as it does not execute server certificate verification

	Enhancements
	Allow ReplicationConnection callbacks to trigger disconnect
	Add :commit_comment option on transactions for prepending a SQL comment to commit statements
	Return database messages from handle_prepare_execute

	Backwards incompatible changes
	Postgrex now sets the SNI headers for SSL authentication by default. If this causes connection issues, you may set server_name_indication: :disable in your :ssl_opts

v0.17.5 (2024-03-01)
	Enhancements	Do not log if request cannot be cancelled on disconnect

v0.17.4 (2023-12-04)
	Enhancements	Trap exits from connect callback
	Add configuration to skip querying of comp_oids
	Handle duplicate column names in Table.Reader implementation

v0.17.3 (2023-08-29)
	Enhancements
	Automatically start :ssl application

	Bug fix
	Fix SSL configuration docs for failover case

v0.17.2 (2023-07-12)
	Bug fix	Suppress improper list warnings

v0.17.1 (2023-04-13)
	Bug fix	Fix timeout handling on SimpleConnection

v0.17.0 (2023-04-10)
	Enhancements	Add SCRAM server signature verification
	Support Multirange extension
	Support lquery and ltree extensions

v0.16.5 (2022-09-20)
	Enhancements	Allow the :search_path to be set for new connections

v0.16.4 (2022-07-29)
	Enhancements	Support Unix sockets in hostname and PGHOST
	Support infinity value on numerics/decimals (PG14+)
	Add count to Table.Reader metadata
	Fix warnings on Elixir v1.15

v0.16.3 (2022-04-27)
	Enhancements	Implement the Table.Reader protocol for query result

v0.16.2 (2022-02-21)
	Enhancements
	Add :ping_timeout start option

	Bug fixes
	Replication streaming can be resumed after reconnect

v0.16.1 (2022-01-24)
	Bug fixes	Fix inconsistent return type for multiple queries in Postgrex.SimpleConnection and Postgrex.ReplicationConnection. Instead always wrap Postgrex.Result in a list.

v0.16.0 (2022-01-23)
Require Elixir v1.11+.
	Enhancements	Support negative years for date, timestamp and timestampz types
	Add Postgrex.SimpleConnection and Postgrex.ReplicationConnection

	Bug fixes	Cancel any pending requests before closing the socket
	Fix possible crash on getting default opts when PGPORT is invalid but a port is given

v0.15.11 (2021-09-26)
	Enhancements	Support xid8 type introduced in PostgreSQL 13

v0.15.10 (2021-07-27)
	Enhancements	Define child_spec for Postgrex.Notifications
	Improve error handling when using multiple endpoints

	Bug fixes	Fix dialyzer warnings
	Fix invalid type error after failover

v0.15.9 (2021-04-24)
	Enhancements	Support the new :endpoints and :target_server_type to make it faster to rotate across multiple instances in cases of failovers

	Bug fixes	Do not warn on undefined JSON library
	Fix bug when a message which is not a row description, data row, command completion or error message occurs and there is buffer remaining to be processed

v0.15.8 (2021-01-19)
	Bug fixes	Make sure scram authentication method works on Erlang/OTP 24

v0.15.7 (2020-10-17)
	Enhancements	Add compare and to_string to Postgrex.Interval

	Bug fixes	Allow deallocated queries to be re-prepared

v0.15.6 (2020-09-21)
	Enhancements	Support Decimal 2.0

	Bug fixes	Do not keep credentials in state in Postgrex.Notifications

v0.15.5 (2020-06-03)
	Enhancements	Support optional decoding of infinite timestamps

	Bug fixes	Remove cache statements that cannot be described from cache when on a savepoint transaction (such as when inside the SQL sandbox)

v0.15.4 (2020-05-09)
	Enhancements	Fix warnings on Elixir v1.11.0-dev

v0.15.3 (2019-12-11)
	Enhancements
	Allow dynamic connection configuration with the :configure for notifications
	Add :auto_reconnect option for notifications
	Accept listen commands even if the notifications connection is down or yet to first connect

	Bug fixes
	Encode empty arrays in a mechanism compatible with CockroachDB
	Cleanly terminate connection started with a socket

v0.15.2 (2019-10-08)
	Enhancements	Improve performance of the bootstrap query

v0.15.1 (2019-09-16)
	Enhancements	Add support for microseconds in Postgrex.Interval
	Reduce bootstrap log message to debug and clarify error message

v0.15.0 (2019-07-18)
Postgrex v0.15+ requires Elixir v1.6+.
	Enhancements
	Filter bootstrap more efficiently by avoiding loading tables information on startup
	Only bootstrap new oids during describe: this means reconnects don't run a bootstrap
query and describe runs minimal query
	Parse Postgrex 12beta new version format
	Raise error when :ssl is required and not started in child_spec/1

	Bug fixes
	Don't encode DateTime, NaiveDateTime or Time unless Calendar.ISO

v0.14.3 (2019-05-08)
	Enhancements	Make bootstrap query compatible with CockroachDB 19.1
	Improve error message when encoding bad tuple

v0.14.2 (2019-04-12)
	Bug fixes	Fix Elixir deprecation warnings
	Do not crash when receiving notices during authentication
	Do not crash when receiving an error (caused by a raise) during query execution

v0.14.1 (2018-11-24)
	Bug fixes	Bump decimal dependency to avoid runtime warnings

v0.14.0 (2018-10-29)
	Enhancements
	Postgrex.INET will add a /32 netmask to an IPv4 address and a /128 netmask to an IPv6 address during encoding where netmask: nil. When decoding, a /32 netmask (for IPv4) or /128 netmask (for IPv6) will be removed, resulting in netmask: nil for the struct
	Add :disconnect_on_error_codes which allows Postgrex to automatically disconnect and then reconnect on certain errors. This is useful when using Postgrex against systems that support failover, which would emit certain errors on failover. This change allow those errors to be recovered from transparently
	Add :cache_statement to Postgrex.query/4 as a built-in statement cache
	Support scram-sha-256 authentication from PostgreSQL 10
	Add Postgrex.prepare_execute/4
	Automatically re-prepare queries that failed to encode due to a database type change

	Backwards incompatible changes
	Invoke encode_to_iodata! instead of encode! in JSON encoder
	Remove Postgrex.CIDR and use Postgrex.INET to encode both inet/cidr (as PostgreSQL may perform implicit/explicit casting at any time)
	Postgrex.Time, Postgrex.Date and Postgrex.Timestamp were deprecated and now have been effectively removed
	Postgrex.execute/4 now always returns the prepared query
	:pool_timeout is removed in favor of :queue_target and :queue_interval. See DBConnection.start_link/2 for more information

v0.13.4 (2018-01-25)
	Enhancements
	Support custom range domains
	Support custom array domains
	Add support for UNIX domain sockets via the :socket_dir option
	Remove warnings on Elixir v1.6

	Bug fixes
	Fix encoding of empty ranges
	Fix Postgrex.Path open/closed byte parity

v0.13.3 (2017-05-31)
	Enhancements
	Reload types on unknown oid during prepare

	Bug fixes
	Fix default timeout for connection process from 5000s to 15000s

v0.13.2 (2017-03-05)
	Bug fixes	Do not build invalid dates at compilation time on Elixir master

v0.13.1 (2017-02-20)
	Enhancements
	Allow naming Postgrex.Notifications server
	Provide tsvector and lexeme support using binary formats

	Bug fixes
	Fix encoding of Decimal values that would be wrong in certain circumstances
	Add :crypto to applications
	Specify proper Elixir dependency
	Restore compatibility with postgres versions prior to 8.4 and with redshift

v0.13.0 (2016-12-17)
	Enhancements
	Support built-in geometry types
	Fallback to PGDATABASE system env for the database
	Support bit and varbit types
	Add postgres error code to error messages
	Support unprepared when using a stream
	:connect_timeout and :handshake_timeout to configure TCP connect and handshake timeouts
	Improve numeric encode/decode

	Bug fixes
	Quote channel on listen/unlisten
	Check datetime structs available before defining calendar extension
	Backoff all awaiting connections if a bootstrap fails to prevent timeout loop
	Handle idle admin shutdown of postgres backend
	Fix rebootstrap query to be O(Nlog(N)) instead of O(N^2)
	Fix encoding of numerical values

	Backwards incompatible changes
	:copy_data query option is no longer supported and data can only be copied to the database using a collectable
	Query struct has removed encoders/decoders and changed param_info/result_info values
	Extensions now use a new encoder/decoder API based on quoted expressions
	The :extensions, :decode_binary and :null options in start_link are no longer supported in favor of defining custom types with Postgrex.Types.define(module, extra_extensions, options). Postgrex.Types.define/3 must be called on its own file, outside of any module and function, as it only needs to be defined once during compilation.

v0.12.1 (2016-09-29)
	Enhancements
	Support special "char" type

	Bug fixes
	Limit re-bootstrap to one connection at a time
	Fix re-bootstrap of new composite types that use old types

v0.12.0 (2016-09-06)
	Enhancements	Raise DBConnection.ConnectionError on connection error
	Use send encoding to determine citext encoding
	Use Map in favor of deprecated modules (to avoid warnings on v1.4)
	Run rebootstrap test synchronously on every connect
	Add support for Elixir 1.3+ Calendar types

v0.11.2 (2016-06-16)
	Enhancements
	Add support for COPY TO STDOUT and COPY FROM STDIN
	Support packets bigger than 64MB
	Introduce mode: :savepoint for prepare/execute/close that allows wrapping a request in a savepoint so that an error does not fail the transaction
	Introduce streaming queries
	Add :decode_binary option which is either :copy (default) or :reference.

	Bug fixes
	Consistently convert the port number to integer
	Remove type server entry on disconnect

v0.11.1 (2016-02-15)
	Enhancements
	Support PgBouncer transaction/statement pooling
	Include more information in error messages
	Add support for built-in postgres point type
	Add Postgrex.child_spec/1
	Allow custom encoding/decoding of postgres' NULL on a per query basis

	Bug fixes
	Correctly pad decimal digits during encoding

v0.11.0 (2016-01-21)
	Enhancements
	Rely on DBConnection. This means better performance by copying less data between processes, faster encoding/decoding, support for transactions, after_connect hooks, connection backoff, logging, prepared queries, the ability to use both Poolboy and Sojourn as pools out of the box, and more

	Backwards incompatible change
	Connection API from Postgrex.Connection has been moved to Postgrex
	Notifications API from Postgrex.Connection has been moved to Postgrex.Notifications

v0.10.0 (2015-11-17)
	Enhancements
	Improve error message on encoding/decoding failures
	Add network types such as: inet, cidr and macaddr
	Improve TCP error messages
	Support PGPORT environment variable
	Improve decoding performance by caching extension information
	Improve query performance by decoding in the client process hence not blocking the connection
	Raise if number of parameters to query is wrong

	Bug fixes
	Correctly handle errors in connection initialization with sync_connect: true
	Do not fail on custom error codes
	Correctly handle large number of parameters, also fixes some protocol issues where unsigned integers were treated as signed

v0.9.1 (2015-07-14)
	Enhancements	Revert client side decoding as affects performance negatively (around 15% slower)
	Cast floats and integers to decimal if a decimal is requested

v0.9.0 (2015-07-12)
	Enhancements
	Cached type bootstrapping for less memory usage and faster connection set up
	The result set is now decoded in the calling process to reduce time spent in the connection process
	Add a decode: :manual option to Postgrex.query/4 and the function Postgrex.decode/2 for manually decoding the result
	Add :sync_connect option to Postgrex.start_link/1

	Bug fixes
	Correctly handle extension types created inside schemas

	Backwards incompatible changes
	Each row in Postgrex.Result.rows is now a list of columns instead of a tuple

v0.8.4 (2015-06-24)
	Bug fixes	Fix version detection

v0.8.3 (2015-06-22)
	Enhancements	Add Postgrex.Extensions.JSON extension for json and jsonb types
	Set suitable TCP buffer size automatically

v0.8.2 (2015-06-01)
	Enhancements
	Add :socket_options option to Postgrex.start_link/1
	Improved performance regarding binary handling
	Add hstore support

	Backwards incompatible changes
	Remove :async_connect option and make it the default

v0.8.1 (2015-04-09)
	Enhancements
	Keep the postgres error code in :pg_code
	Support oid types and all its aliases (regclass etc)

	Backwards incompatible changes
	Rename :msec field to :usec on Postgrex.Time and Postgrex.Timestamp

	Bug fixes
	Fix numeric encoding for fractional numbers with less digits than the numeric base
	Support encoding timetz type
	Fix time and timestamp off-by-one bounds

v0.8.0 (2015-02-26)
	Enhancements
	Add extensions
	Encode/decode ranges generically
	Add bounds when encoding integer types to error instead of overflowing the integer
	Log unhandled PostgreSQL errors (when it cant be replied to anyone)
	Add support for enum types
	Add support for citext type
	Add microseconds to times and timestamps
	Add the ability to rebootstrap types for an open connection

	Backwards incompatible changes
	Remove the support for type-hinted queries
	Remove encoder, decoder and formatter functions, use extensions instead
	Use structs for dates, times, timestamps, interval and ranges
	Change the default timeout for all operations to 5000ms
	Show PostgreSQL error codes as their names instead

v0.7.0 (2015-01-20)
	Enhancements
	Add asynchronous notifications through listen and unlisten
	Add support for range types
	Add support for uuid type
	Add :async_connect option to start_link/1

	Bug fixes
	Fix encoding nil values in arrays and composite types

v0.6.0 (2014-09-07)
	Enhancements
	Queries can be constructed of iodata
	Support "type hinted" queries to save one client-server round trip which will reduce query latency

	Backwards incompatible changes
	Postgrex.Error postgres field is converted from keyword list to map
	Postgrex.Connect.query params parameter is no longer optional (pass an empty list if query has no parameters)
	The timeout parameter for all functions have been moved to a keyword list with the key :timeout

v0.5.5 (2014-08-20)
	Enhancements	Reduce the amount of intermediary binaries constructed with the help of iodata

v0.5.4 (2014-08-04)
v0.5.3 (2014-07-13)
v0.5.2 (2014-06-18)
v0.5.1 (2014-05-24)
	Backwards incompatible changes	Postgrex.Error exception converted to struct

v0.5.0 (2014-05-01)
	Backwards incompatible changes	Postgrex.Result and Postgrex.TypeInfo converted to structs

v0.4.2 (2014-04-21)
	Enhancements	Add timeouts to all synchronous calls. When a timeout is hit an exit error will be raised in the caller process and the connection process will exit
	Add automatic fallback to environment variables PGUSER, PGHOST and PGPASSWORD

v0.4.0 (2014-01-16)
	Enhancements	Numerics decode and encode to Decimal

v0.3.1 (2014-01-15)
	Enhancements	Compact state before printing to logs and hide password
	Concurrency support, safe to use connection from multiple processes concurrently

v0.3.0 (2013-12-16)
	Bug fixes
	Don't try to decode values of text format

	Backwards incompatible changes
	Types are stored as binaries instead of atoms, update your custom encoders and decoders

v0.2.1 (2013-12-10)
	Enhancements
	Add support for SSL

	Bug fixes
	Fix decoding of unknown type when using custom decoder

v0.2.0 (2013-11-14)
	Enhancements
	Floats handles NaN, inf and -inf
	Add support for numerics
	Custom encoders and decoders works on elements in arrays
	Add support for composite types
	Add functions that raise on error

	Bug fixes
	INSERT query works with extended query parameters
	Return proper num_rows on PostgreSQL 8.4
	Fix race condition

	Backwards incompatible changes
	Simplify custom decoding and encoding with default function

v0.1.0 (2013-10-14)
First release!

Postgrex

PostgreSQL driver for Elixir.
Postgrex is a partial implementation of the Postgres frontend/backend
message protocol.
It performs wire messaging in Elixir, as opposed to binding to a library
such as libpq in C.
A Postgrex query is performed as "extended query".
An "extended query" involves separate server-side parse, bind, and execute
stages, each of which may be re-used for efficiency. For example, libraries
like Ecto caches queries, so a query only has to be parsed and planned once.
This is all done via wire messaging, without relying on PREPARE q AS (...)
and EXECUTE q() SQL statements directly.
This module handles the connection to PostgreSQL, providing support
for queries, transactions, connection backoff, logging, pooling and
more.
Note that the notifications API (pub/sub) supported by PostgreSQL is
handled by Postgrex.Notifications. Hence, to use this feature,
you need to start a separate (notifications) connection.

 Summary

 Types

 conn()

 A connection process name, pid or reference.

 execute_option()

 option()

 start_option()

 Functions

 child_spec(opts)

 Returns a supervisor child specification for a DBConnection pool.

 close(conn, query, opts \\ [])

 Closes an (extended) prepared query and returns :ok or
{:error, %Postgrex.Error{}} if there was an error. Closing a query releases
any resources held by postgresql for a prepared query with that name. See
Postgrex.Query for the query data.

 close!(conn, query, opts \\ [])

 Closes an (extended) prepared query and returns :ok or raises
Postgrex.Error if there was an error. See close/3.

 execute(conn, query, params, opts \\ [])

 Runs an (extended) prepared query.

 execute!(conn, query, params, opts \\ [])

 Runs an (extended) prepared query and returns the result or raises
Postgrex.Error if there was an error. See execute/4.

 parameters(conn, opts \\ [])

 Returns a cached map of connection parameters.

 prepare(conn, name, statement, opts \\ [])

 Prepares an (extended) query.

 prepare!(conn, name, statement, opts \\ [])

 Prepares an (extended) query and returns the prepared query or raises
Postgrex.Error if there was an error. See prepare/4.

 prepare_execute(conn, name, statement, params, opts \\ [])

 Prepares and executes a query in a single step.

 prepare_execute!(conn, name, statement, params, opts \\ [])

 Prepares and runs a query and returns the result or raises
Postgrex.Error if there was an error. See prepare_execute/5.

 query(conn, statement, params \\ [], opts \\ [])

 Runs an (extended) query and returns the result as {:ok, %Postgrex.Result{}}
or {:error, %Postgrex.Error{}} if there was a database error. Parameters can
be set in the query as $1 embedded in the query string. Parameters are given
as a list of elixir values. See the README for information on how Postgrex
encodes and decodes Elixir values by default. See Postgrex.Result for the
result data.

 query!(conn, statement, params \\ [], opts \\ [])

 Runs an (extended) query and returns the result or raises Postgrex.Error if
there was an error. See query/3.

 rollback(conn, reason)

 Rollback a transaction, does not return.

 start_link(opts)

 Start the connection process and connect to postgres.

 stream(conn, query, params, options \\ [])

 Returns a stream for a query on a connection.

 transaction(conn, fun, opts \\ [])

 Acquire a lock on a connection and run a series of requests inside a
transaction. The result of the transaction fun is return inside an :ok
tuple: {:ok, result}.

 Types

 conn()

 @type conn() :: DBConnection.conn()

A connection process name, pid or reference.
A connection reference is used when making multiple requests to the same
connection, see transaction/3.

 execute_option()

 @type execute_option() :: {:decode_mapper, (list() -> term())} | option()

 option()

 @type option() :: {:mode, :transaction | :savepoint} | DBConnection.option()

 start_option()

 @type start_option() ::
 {:hostname, String.t()}
 | {:endpoints, [tuple()]}
 | {:socket_dir, Path.t()}
 | {:socket, Path.t()}
 | {:port, :inet.port_number()}
 | {:database, String.t()}
 | {:username, String.t()}
 | {:password, String.t()}
 | {:parameters, keyword()}
 | {:timeout, timeout()}
 | {:connect_timeout, timeout()}
 | {:handshake_timeout, timeout()}
 | {:ping_timeout, timeout()}
 | {:ssl, boolean() | [:ssl.tls_client_option()]}
 | {:socket_options, [:gen_tcp.connect_option()]}
 | {:prepare, :named | :unnamed}
 | {:transactions, :strict | :naive}
 | {:types, module()}
 | {:disconnect_on_error_codes, [atom()]}
 | DBConnection.start_option()

 Functions

 child_spec(opts)

 @spec child_spec([start_option()]) :: :supervisor.child_spec()

Returns a supervisor child specification for a DBConnection pool.

 close(conn, query, opts \\ [])

 @spec close(conn(), Postgrex.Query.t(), [option()]) :: :ok | {:error, Exception.t()}

Closes an (extended) prepared query and returns :ok or
{:error, %Postgrex.Error{}} if there was an error. Closing a query releases
any resources held by postgresql for a prepared query with that name. See
Postgrex.Query for the query data.
This function may still raise an exception if there is an issue with types
(ArgumentError), connection (DBConnection.ConnectionError), ownership
(DBConnection.OwnershipError) or other error (RuntimeError).
Options
	:queue - Whether to wait for connection in a queue (default: true);
	:timeout - Close request timeout (default: 15000);
	:mode - set to :savepoint to use a savepoint to rollback to before the
close on error, otherwise set to :transaction (default: :transaction);

Examples
query = Postgrex.prepare!(conn, "", "CREATE TABLE posts (id serial, title text)")
Postgrex.close(conn, query)

 close!(conn, query, opts \\ [])

 @spec close!(conn(), Postgrex.Query.t(), [option()]) :: :ok

Closes an (extended) prepared query and returns :ok or raises
Postgrex.Error if there was an error. See close/3.

 execute(conn, query, params, opts \\ [])

 @spec execute(conn(), Postgrex.Query.t(), list(), [execute_option()]) ::
 {:ok, Postgrex.Query.t(), Postgrex.Result.t()} | {:error, Postgrex.Error.t()}

Runs an (extended) prepared query.
It returns the result as {:ok, %Postgrex.Query{}, %Postgrex.Result{}} or
{:error, %Postgrex.Error{}} if there was an error. Parameters are given as
part of the prepared query, %Postgrex.Query{}.
See the README for information on how Postgrex encodes and decodes Elixir
values by default. See Postgrex.Query for the query data and
Postgrex.Result for the result data.
Options
	:queue - Whether to wait for connection in a queue (default: true);
	:timeout - Execute request timeout (default: 15000);
	:decode_mapper - Fun to map each row in the result to a term after
decoding, (default: fn x -> x end);
	:mode - set to :savepoint to use a savepoint to rollback to before the
execute on error, otherwise set to :transaction (default: :transaction);

Examples
query = Postgrex.prepare!(conn, "", "CREATE TABLE posts (id serial, title text)")
Postgrex.execute(conn, query, [])

query = Postgrex.prepare!(conn, "", "SELECT id FROM posts WHERE title like $1")
Postgrex.execute(conn, query, ["%my%"])

 execute!(conn, query, params, opts \\ [])

 @spec execute!(conn(), Postgrex.Query.t(), list(), [execute_option()]) ::
 Postgrex.Result.t()

Runs an (extended) prepared query and returns the result or raises
Postgrex.Error if there was an error. See execute/4.

 parameters(conn, opts \\ [])

 @spec parameters(conn(), [option]) :: %{required(binary()) => binary()}
when option: {:timeout, timeout()}

Returns a cached map of connection parameters.
Options
	:timeout - Call timeout (default: 15000)

 prepare(conn, name, statement, opts \\ [])

 @spec prepare(conn(), iodata(), iodata(), [option()]) ::
 {:ok, Postgrex.Query.t()} | {:error, Exception.t()}

Prepares an (extended) query.
It returns the result as {:ok, %Postgrex.Query{}} or {:error, %Postgrex.Error{}}
if there was an error. Parameters can be set in the query as $1 embedded in the
query string. To execute the query call execute/4. To close the prepared query
call close/3. See Postgrex.Query for the query data.
This function may still raise an exception if there is an issue with types
(ArgumentError), connection (DBConnection.ConnectionError), ownership
(DBConnection.OwnershipError) or other error (RuntimeError).
For unnamed prepared statements, pass an empty string for name. This can be useful
when trying to avoid the generic query plan Postgres creates for named prepared
statements. You may also set prepare: :unnamed at the connection level so that
every prepared statement using that connection will be unnamed.
Options
	:queue - Whether to wait for connection in a queue (default: true);
	:timeout - Prepare request timeout (default: 15000);
	:mode - set to :savepoint to use a savepoint to rollback to before the
prepare on error, otherwise set to :transaction (default: :transaction);

Examples
Postgrex.prepare(conn, "", "CREATE TABLE posts (id serial, title text)")

 prepare!(conn, name, statement, opts \\ [])

 @spec prepare!(conn(), iodata(), iodata(), [option()]) :: Postgrex.Query.t()

Prepares an (extended) query and returns the prepared query or raises
Postgrex.Error if there was an error. See prepare/4.

 prepare_execute(conn, name, statement, params, opts \\ [])

 @spec prepare_execute(conn(), iodata(), iodata(), list(), [execute_option()]) ::
 {:ok, Postgrex.Query.t(), Postgrex.Result.t()} | {:error, Postgrex.Error.t()}

Prepares and executes a query in a single step.
It returns the result as {:ok, %Postgrex.Query{}, %Postgrex.Result{}} or
{:error, %Postgrex.Error{}} if there was an error. Parameters are given as
part of the prepared query, %Postgrex.Query{}.
For unnamed prepared statements, pass an empty string for name. This can be useful
when trying to avoid the generic query plan Postgres creates for named prepared
statements. You may also set prepare: :unnamed at the connection level so that
every prepared statement using that connection will be unnamed.
See the README for information on how Postgrex encodes and decodes Elixir
values by default. See Postgrex.Query for the query data and
Postgrex.Result for the result data.
Options
	:queue - Whether to wait for connection in a queue (default: true);
	:timeout - Execute request timeout (default: 15000);
	:decode_mapper - Fun to map each row in the result to a term after
decoding, (default: fn x -> x end);
	:mode - set to :savepoint to use a savepoint to rollback to before the
execute on error, otherwise set to :transaction (default: :transaction);

Examples
Postgrex.prepare_execute(conn, "", "SELECT id FROM posts WHERE title like $1", ["%my%"])

 prepare_execute!(conn, name, statement, params, opts \\ [])

 @spec prepare_execute!(conn(), iodata(), iodata(), list(), [execute_option()]) ::
 {Postgrex.Query.t(), Postgrex.Result.t()}

Prepares and runs a query and returns the result or raises
Postgrex.Error if there was an error. See prepare_execute/5.

 query(conn, statement, params \\ [], opts \\ [])

 @spec query(conn(), iodata(), list(), [execute_option()]) ::
 {:ok, Postgrex.Result.t()} | {:error, Exception.t()}

Runs an (extended) query and returns the result as {:ok, %Postgrex.Result{}}
or {:error, %Postgrex.Error{}} if there was a database error. Parameters can
be set in the query as $1 embedded in the query string. Parameters are given
as a list of elixir values. See the README for information on how Postgrex
encodes and decodes Elixir values by default. See Postgrex.Result for the
result data.
This function may still raise an exception if there is an issue with types
(ArgumentError), connection (DBConnection.ConnectionError), ownership
(DBConnection.OwnershipError) or other error (RuntimeError).
Options
	:queue - Whether to wait for connection in a queue (default: true);
	:timeout - Query request timeout (default: 15000);
	:decode_mapper - Fun to map each row in the result to a term after
decoding, (default: fn x -> x end);
	:mode - set to :savepoint to use a savepoint to rollback to before the
query on error, otherwise set to :transaction (default: :transaction);
	:cache_statement - Caches the query with the given name

Examples
Postgrex.query(conn, "CREATE TABLE posts (id serial, title text)", [])

Postgrex.query(conn, "INSERT INTO posts (title) VALUES ('my title')", [])

Postgrex.query(conn, "SELECT title FROM posts", [])

Postgrex.query(conn, "SELECT id FROM posts WHERE title like $1", ["%my%"])

Postgrex.query(conn, "SELECT id FROM posts WHERE state = ANY($1)", [["draft", "scheduled"]])

Postgrex.query(conn, "COPY posts TO STDOUT", [])

 query!(conn, statement, params \\ [], opts \\ [])

 @spec query!(conn(), iodata(), list(), [execute_option()]) :: Postgrex.Result.t()

Runs an (extended) query and returns the result or raises Postgrex.Error if
there was an error. See query/3.

 rollback(conn, reason)

 @spec rollback(DBConnection.t(), reason :: any()) :: no_return()

Rollback a transaction, does not return.
Aborts the current transaction fun. If inside multiple transaction/3
functions, bubbles up to the top level.
Example
{:error, :oops} = Postgrex.transaction(pid, fn(conn) ->
 DBConnection.rollback(conn, :bar)
 IO.puts "never reaches here!"
end)

 start_link(opts)

 @spec start_link([start_option()]) :: GenServer.on_start()

Start the connection process and connect to postgres.
Options
Postgrex provides multiple ways to connect to the server, listed in order of
precedence below:
	:hostname - Server hostname (default: PGHOST env variable, then localhost);
	:port - Server port (default: PGPORT env variable, then 5432);
	:endpoints - A list of endpoints (host and port pairs) which Postgrex will attempt
to connect in order, until one succeeds.
The syntax is [{host1, port1}, {host2, port2}, {host3, port3}].
This option takes precedence over :hostname+:port;
	:socket_dir - Connect to PostgreSQL via UNIX sockets in the given directory;
The socket name is derived based on the port. This is the preferred method
for configuring sockets and it takes precedence over the hostname. If you are
connecting to a socket outside of the PostgreSQL convention, use :socket instead;
	:socket - Connect to PostgreSQL via UNIX sockets in the given path.
This option takes precedence over the :hostname, :endpoints and :socket_dir;

Once a server is specified, you can configure the connection with the following:
	:database - Database (default: PGDATABASE env variable; otherwise required);

	:username - Username (default: PGUSER env variable, then USER env var);

	:password - User password (default: PGPASSWORD env variable);

	:parameters - Keyword list of connection parameters;

	:timeout - Socket receive timeout when idle in milliseconds (default:
15000);

	:connect_timeout - Socket connect timeout in milliseconds (defaults to
:timeout value);

	:handshake_timeout - Connection handshake timeout in milliseconds
(defaults to :timeout value);

	:ping_timeout - Socket receive timeout when idle in milliseconds (defaults to
:timeout value);

	:idle_interval - Ping connections after a period of inactivity in milliseconds.
Defaults to 1000ms;

	:ssl - Enables SSL. Set to:
	false (default): no SSL.
	true: enable SSL with secure defaults, including peer certificate verification and hostname checking.
	keyword list of :ssl.tls_client_option()/0 values: enable SSL and merge your options on top of secure defaults.

	:socket_options - Options to be given to the underlying socket
(applies to both TCP and UNIX sockets);

	:target_server_type - Allows opening connections to a server in the given
replica mode. The allowed values are :any, :primary and :secondary
(default: :any). If this option is used together with endpoints, we will
traverse all endpoints until we find an endpoint matching the server type;

	:disconnect_on_error_codes - List of error code atoms that when encountered
will disconnect the connection. This is useful when using Postgrex against systems that
support failover, which when it occurs will emit certain error codes
e.g. :read_only_sql_transaction (default: []);

	:show_sensitive_data_on_connection_error - By default, Postgrex
hides all information during connection errors to avoid leaking credentials
or other sensitive information. You can set this option if you wish to
see complete errors and stacktraces during connection errors;

The following options controls the pool and other Postgrex features:
	:prepare - How to prepare queries, either :named to use named queries
or :unnamed to force unnamed queries (default: :named);

	:transactions - Set to :strict to error on unexpected transaction
state, otherwise set to :naive (default: :strict);

	:pool - The pool module to use, defaults to DBConnection.ConnectionPool.
See the pool documentation for more options. The default :pool_size for
the default pool is 1. If you set a different pool, this option must be
included with all requests contacting the pool;

	:types - The types module to use, see Postgrex.Types.define/3, this
option is only required when using custom encoding or decoding (default:
Postgrex.DefaultTypes);

	:disable_composite_types - Set to true to disable composite types support.
This is useful when using Postgrex against systems that do not support composite types
(default: false).

	:comment - When a binary string is provided, appends the given text as a comment to the
query. This can be useful for tracing purposes, such as when using SQLCommenter or similar
tools to track query performance and behavior. Note that including a comment disables query
caching since each query with a different comment is treated as unique (default: nil).

Postgrex uses the DBConnection library and supports all DBConnection
options like :idle, :after_connect etc. See DBConnection.start_link/2
for more information.
Examples
iex> {:ok, pid} = Postgrex.start_link(database: "postgres")
{:ok, #PID<0.69.0>}
Run a query after connection has been established:
iex> {:ok, pid} = Postgrex.start_link(after_connect: &Postgrex.query!(&1, "SET TIME ZONE 'UTC';", []))
{:ok, #PID<0.69.0>}
Connect to postgres instance through a unix domain socket
iex> {:ok, pid} = Postgrex.start_link(socket_dir: "/tmp", database: "postgres")
{:ok, #PID<0.69.0>}
SSL client authentication
When connecting to Postgres or CockroachDB instances over SSL it is idiomatic to use
certificate authentication:
[ssl: [cacertfile: System.get_env("DB_CA_CERT_FILE")]]
The server name indication (SNI) will be automatically set based on the :hostname
configuration, if one was provided. Other options, such as depth: 3, may be necessary
depending on the server.
PgBouncer
PgBouncer versions 1.21.0 and later support named prepared statements. If you are using an
older version of PgBouncer with transaction or statement pooling, named prepared queries
cannot be used because the bouncer may route requests from the same Postgrex connection
to different PostgreSQL backend processes and discards named queries after the transaction closes.
To force unnamed prepared queries in such older versions, set the :prepare option to :unnamed.
Handling failover
Some services, such as AWS Aurora, support failovers. The 2 options
endpoints and target_server_type can be used together to achieve a faster fail-over.
Imagine an AWS Aurora cluster named "test" with 2 instances. Use the
following options minimize downtime by ensuring that Postgrex connects to
the new primary instance as soon as possible.
{:ok, pid} = Postgrex.start_link(
 endpoints: [
 {"test.cluster-xyz.eu-west-1.rds.amazonaws.com", 5432},
 {"test.cluster-ro-xyz.eu-west-1.rds.amazonaws.com", 5432}
],
 target_server_type: :primary,
 (...)
)
In the event of a fail-over, Postgrex gets first disconnected from what used
to be the primary instance. The primary instance will then reboot and turn into
a secondary instance. Meanwhile, one of the secondary instances will have turned
into the new primary instance. However, the DNS entry of the primary endpoint
provided by AWS can take some time to get updated. That is why it can be faster to
let Postgrex iterate over all the instances of the cluster to find the new
primary instance instead of waiting for the DNS update.
If the cluster does not have DNS-backed primary and secondary endpoints (like the
ones provided by AWS Aurora) or if the cluster is made of more than 2 instances,
the hostname (and port) of all of the individual instances can be specified
in the endpoints list:
endpoints: [
 {"test-instance-1.xyz.eu-west-1.rds.amazonaws.com", 5432},
 {"test-instance-2.xyz.eu-west-1.rds.amazonaws.com", 5432},
 (...),
 {"test-instance-N.xyz.eu-west-1.rds.amazonaws.com", 5432}
]

 stream(conn, query, params, options \\ [])

 @spec stream(DBConnection.t(), iodata() | Postgrex.Query.t(), list(), [option]) ::
 Postgrex.Stream.t()
when option: execute_option() | {:max_rows, pos_integer()}

Returns a stream for a query on a connection.
Stream consumes memory in chunks of at most max_rows rows (see Options).
This is useful for processing large datasets.
A stream must be wrapped in a transaction and may be used as an Enumerable
or a Collectable.
When used as an Enumerable with a COPY .. TO STDOUT SQL query no other
queries or streams can be interspersed until the copy has finished. Otherwise
it is possible to intersperse enumerable streams and queries.
When used as a Collectable the values are passed as copy data with the
query. No other queries or streams can be interspersed until the copy has
finished. If the query is not copying to the database the copy data will still
be sent but is silently discarded.
Options
	:max_rows - Maximum numbers of rows in a result (default to 500)
	:decode_mapper - Fun to map each row in the result to a term after
decoding, (default: fn x -> x end);
	:mode - set to :savepoint to use a savepoint to rollback to before an
execute on error, otherwise set to :transaction (default: :transaction);

Examples
Postgrex.transaction(pid, fn(conn) ->
 query = Postgrex.prepare!(conn, "", "COPY posts TO STDOUT")
 stream = Postgrex.stream(conn, query, [])
 result_to_iodata = fn(%Postgrex.Result{rows: rows}) -> rows end
 Enum.into(stream, File.stream!("posts"), result_to_iodata)
end)

Postgrex.transaction(pid, fn(conn) ->
 stream = Postgrex.stream(conn, "COPY posts FROM STDIN", [])
 Enum.into(File.stream!("posts"), stream)
end)

 transaction(conn, fun, opts \\ [])

 @spec transaction(conn(), (DBConnection.t() -> result), [option()]) ::
 {:ok, result} | {:error, any()}
when result: var

Acquire a lock on a connection and run a series of requests inside a
transaction. The result of the transaction fun is return inside an :ok
tuple: {:ok, result}.
To use the locked connection call the request with the connection
reference passed as the single argument to the fun. If the
connection disconnects all future calls using that connection
reference will fail.
rollback/2 rolls back the transaction and causes the function to
return {:error, reason}.
transaction/3 can be nested multiple times if the connection
reference is used to start a nested transaction. The top level
transaction function is the actual transaction.
Options
	:queue - Whether to wait for connection in a queue (default: true);
	:timeout - Transaction timeout (default: 15000);
	:mode - Set to :savepoint to use savepoints instead of an SQL
transaction, otherwise set to :transaction (default: :transaction);
	:commit_comment - When a binary string is provided, prepends the text as
a comment attached to the COMMIT statement issued to close the transaction (default: nil);

The :timeout is for the duration of the transaction and all nested
transactions and requests. This timeout overrides timeouts set by internal
transactions and requests. The :mode will be used for all requests inside
the transaction function. The :commit_comment can be helpful in distinguishing
between transactions in query performance monitoring tools.
Example
{:ok, res} = Postgrex.transaction(pid, fn(conn) ->
 Postgrex.query!(conn, "SELECT title FROM posts", [])
end)

Postgrex.Multirange

Struct for PostgreSQL multirange.
Fields
	ranges

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Postgrex.Multirange{ranges: [Postgrex.Range.t()]}

Postgrex.Notifications

API for notifications (pub/sub) in PostgreSQL.
In order to use it, first you need to start the notification process.
In your supervision tree:
{Postgrex.Notifications, name: MyApp.Notifications}
Then you can listen to certain channels:
{:ok, listen_ref} = Postgrex.Notifications.listen(MyApp.Notifications, "channel")
Now every time a message is broadcast on said channel, for example via
PostgreSQL command line:
NOTIFY "channel", "Oh hai!";
You will receive a message in the format:
{:notification, notification_pid, listen_ref, channel, message}
Async connect, auto-reconnects and missed notifications
By default, the notification system establishes a connection to the
database on initialization, you can configure the connection to happen
asynchronously. You can also configure the connection to automatically
reconnect.
Note however that when the notification system is waiting for a connection,
any notifications that occur during the disconnection period are not queued
and cannot be recovered. Similarly, any listen command will be queued until
the connection is up.
There is a race condition between starting to listen and notifications being
issued "at the same time", as explained in the PostgreSQL documentation.
If your application needs to keep a consistent representation of data, follow
the three-step approach of first subscribing, then obtaining the current
state of data, then handling the incoming notifications.
Beware that the same
race condition applies to auto-reconnects. A simple way of dealing with this
issue is not using the auto-reconnect feature directly, but monitoring and
re-starting the Notifications process, then subscribing to channel messages
over again, using the same three-step approach.
A note on casing
While PostgreSQL seems to behave as case-insensitive, it actually has a very
peculiar behaviour on casing. When you write:
SELECT * FROM POSTS
PostgreSQL actually converts POSTS into the lowercase posts. That's why
both SELECT * FROM POSTS and SELECT * FROM posts feel equivalent.
However, if you wrap the table name in quotes, then the casing in quotes
will be preserved.
These same rules apply to PostgreSQL notification channels. More importantly,
whenever Postgrex.Notifications listens to a channel, it wraps the channel
name in quotes. Therefore, if you listen to a channel named "fooBar" and
you send a notification without quotes in the channel name, such as:
NOTIFY fooBar, "Oh hai!";
The notification will not be received by Postgrex.Notifications because the
notification will be effectively sent to "foobar" and not "fooBar". Therefore,
you must guarantee one of the two following properties:
	If you can wrap the channel name in quotes when sending a notification,
then make sure the channel name has the exact same casing when listening
and sending notifications

	If you cannot wrap the channel name in quotes when sending a notification,
then make sure to give the lowercased channel name when listening

 Summary

 Types

 server()

 Functions

 listen(pid, channel, opts \\ [])

 Listens to an asynchronous notification channel using the LISTEN command.

 listen!(pid, channel, opts \\ [])

 Listens to an asynchronous notification channel channel. See listen/2.

 start_link(opts)

 Start the notification connection process and connect to postgres.

 unlisten(pid, ref, opts \\ [])

 Stops listening on the given channel by passing the reference returned from
listen/2.

 unlisten!(pid, ref, opts \\ [])

 Stops listening on the given channel by passing the reference returned from
listen/2.

 Types

 server()

 (since 0.17.0)

 @type server() :: :gen_statem.from()

 Functions

 listen(pid, channel, opts \\ [])

 @spec listen(server(), String.t(), Keyword.t()) ::
 {:ok, reference()} | {:eventually, reference()}

Listens to an asynchronous notification channel using the LISTEN command.
A message {:notification, connection_pid, ref, channel, payload} will be
sent to the calling process when a notification is received.
It returns {:ok, reference}. It may also return {:eventually, reference}
if the notification process is not currently connected to the database and
it was started with :sync_connect set to false or :auto_reconnect set
to true. The reference can be used to issue an unlisten/3 command.
Options
	:timeout - Call timeout (default: 5000)

 listen!(pid, channel, opts \\ [])

 @spec listen!(server(), String.t(), Keyword.t()) :: reference()

Listens to an asynchronous notification channel channel. See listen/2.

 start_link(opts)

 @spec start_link(Keyword.t()) :: {:ok, pid()} | {:error, Postgrex.Error.t() | term()}

Start the notification connection process and connect to postgres.
The options that this function accepts are the same as those accepted by
Postgrex.start_link/1, as well as the extra options :sync_connect,
:auto_reconnect, :reconnect_backoff, and :configure.
Options
	:sync_connect - controls if the connection should be established on boot
or asynchronously right after boot. Defaults to true.

	:auto_reconnect - automatically attempt to reconnect to the database
in event of a disconnection. See the
note about async connect and auto-reconnects
above. Defaults to false, which means the process terminates.

	:reconnect_backoff - time (in ms) between reconnection attempts when
auto_reconnect is enabled. Defaults to 500.

	:idle_interval - while also accepted on Postgrex.start_link/1, it has
a default of 5000ms in Postgrex.Notifications (instead of 1000ms).

	:configure - A function to run before every connect attempt to dynamically
configure the options as a {module, function, args}, where the current
options will prepended to args. Defaults to nil.

 unlisten(pid, ref, opts \\ [])

 @spec unlisten(server(), reference(), Keyword.t()) :: :ok | :error

Stops listening on the given channel by passing the reference returned from
listen/2.
Options
	:timeout - Call timeout (default: 5000)

 unlisten!(pid, ref, opts \\ [])

 @spec unlisten!(server(), reference(), Keyword.t()) :: :ok

Stops listening on the given channel by passing the reference returned from
listen/2.

Postgrex.Query

Query struct returned from a successfully prepared query.
Its public fields are:
	name - The name of the prepared statement;
	statement - The prepared statement;
	columns - The column names;
	ref - A reference used to identify prepared queries;

Prepared queries
Once a query is prepared with Postgrex.prepare/4, the
returned query will have its ref field set to a reference.
When Postgrex.execute/4 is called with the prepared query,
it always returns a query. If the ref field in the query
given to execute and the one returned are the same, it
means the cached prepared query was used. If the ref field
is not the same, it means the query had to be re-prepared.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Postgrex.Query{
 cache: :reference | :statement,
 columns: [String.t()] | nil,
 name: iodata(),
 param_formats: [:binary | :text] | nil,
 param_oids: [Postgrex.Types.oid()] | nil,
 param_types: [Postgrex.Types.type()] | nil,
 ref: reference() | nil,
 result_formats: [:binary | :text] | nil,
 result_oids: [Postgrex.Types.oid()] | nil,
 result_types: [Postgrex.Types.type()] | nil,
 statement: iodata(),
 types: Postgrex.Types.state() | nil
}

Postgrex.ReplicationConnection behaviour

A process that receives and sends PostgreSQL replication messages.
Note: this module is experimental and may be subject to changes
in the future.

Logical replication
Let's see how to use this module for connecting to PostgreSQL
for logical replication. First of all, you need to configure the
wal level in PostgreSQL to logical. Run this inside your PostgreSQL
shell/configuration:
ALTER SYSTEM SET wal_level='logical';
ALTER SYSTEM SET max_wal_senders='10';
ALTER SYSTEM SET max_replication_slots='10';
Then you must restart your server. Alternatively, you can set
those values when starting "postgres". This is useful, for example,
when running it from Docker:
services:
 postgres:
 image: postgres:14
 env:
 ...
 command: ["postgres", "-c", "wal_level=logical"]
For CI, GitHub Actions do not support setting command, so you can
update and restart Postgres instead in a step:
- name: "Set PG settings"
 run: |
 docker exec ${{ job.services.postgres.id }} sh -c 'echo "wal_level=logical" >> /var/lib/postgresql/data/postgresql.conf'
 docker restart ${{ job.services.pg.id }}
Then you must create a publication to be replicated.
This can be done in any session:
CREATE PUBLICATION postgrex_example FOR ALL TABLES;
You can also filter if you want to publish insert, update,
delete or a subset of them:
Skips updates (keeps inserts, deletes, begins, commits, etc)
create PUBLICATION postgrex_example FOR ALL TABLES WITH (publish = 'insert,delete');

Skips inserts, updates, and deletes (keeps begins, commits, etc)
create PUBLICATION postgrex_example FOR ALL TABLES WITH (publish = '');
Now we are ready to create module that starts a replication slot
and listens to our publication. Our example will use the pgoutput
for logical replication and print all incoming messages to the
terminal:
Mix.install([:postgrex])

defmodule Repl do
 use Postgrex.ReplicationConnection

 def start_link(opts) do
 # Automatically reconnect if we lose connection.
 extra_opts = [
 auto_reconnect: true
]

 Postgrex.ReplicationConnection.start_link(__MODULE__, :ok, extra_opts ++ opts)
 end

 @impl true
 def init(:ok) do
 {:ok, %{step: :disconnected}}
 end

 @impl true
 def handle_connect(state) do
 query = "CREATE_REPLICATION_SLOT postgrex TEMPORARY LOGICAL pgoutput NOEXPORT_SNAPSHOT"
 {:query, query, %{state | step: :create_slot}}
 end

 @impl true
 def handle_result(results, %{step: :create_slot} = state) when is_list(results) do
 query = "START_REPLICATION SLOT postgrex LOGICAL 0/0 (proto_version '1', publication_names 'postgrex_example')"
 {:stream, query, [], %{state | step: :streaming}}
 end

 @impl true
 # https://www.postgresql.org/docs/14/protocol-replication.html
 def handle_data(<<?w, _wal_start::64, _wal_end::64, _clock::64, rest::binary>>, state) do
 IO.inspect(rest)
 {:noreply, state}
 end

 def handle_data(<<?k, wal_end::64, _clock::64, reply>>, state) do
 messages =
 case reply do
 1 -> [<<?r, wal_end + 1::64, wal_end + 1::64, wal_end + 1::64, current_time()::64, 0>>]
 0 -> []
 end

 {:noreply, messages, state}
 end

 @epoch DateTime.to_unix(~U[2000-01-01 00:00:00Z], :microsecond)
 defp current_time(), do: System.os_time(:microsecond) - @epoch
end

{:ok, pid} =
 Repl.start_link(
 host: "localhost",
 database: "demo_dev",
 username: "postgres",
)

Process.sleep(:infinity)
use options
use Postgrex.ReplicationConnection accepts a list of options which configures the
child specification and therefore how it runs under a supervisor.
The generated child_spec/1 can be customized with the following options:
	:id - the child specification identifier, defaults to the current module
	:restart - when the child should be restarted, defaults to :permanent
	:shutdown - how to shut down the child, either immediately or by giving
it time to shut down

For example:
use Postgrex.ReplicationConnection, restart: :transient, shutdown: 10_000
See the "Child specification" section in the Supervisor module for more
detailed information. The @doc annotation immediately preceding
use Postgrex.ReplicationConnection will be attached to the generated child_spec/1
function.
Name registration
A Postgrex.ReplicationConnection is bound to the same name registration rules as a
GenServer. Read more about them in the GenServer docs.

 Summary

 Types

 ack()

 query()

 query_opts()

 The following options configure querying

 reason()

 server()

 state()

 stream_opts()

 The following options configure streaming

 Callbacks

 handle_call(term, from, state)

 Callback for call/3.

 handle_connect(state)

 Invoked after connecting.

 handle_data(arg1, state)

 Callback for :stream outputs.

 handle_disconnect(state)

 Invoked after disconnecting.

 handle_info(term, state)

 Callback for Kernel.send/2.

 handle_result(arg1, state)

 Callback for :query outputs.

 init(term)

 Callback for process initialization.

 Functions

 call(server, message, timeout \\ 5000)

 Calls the given replication server.

 decode_lsn(lsn)

 Returns the integer representation of an LSN value, given its string representation.

 encode_lsn(lsn)

 Returns the string representation of an LSN value, given its integer representation.

 reply(client, reply)

 Replies to the given call/3.

 start_link(module, arg, opts)

 Starts a replication process with the given callback module.

 Types

 ack()

 @type ack() :: iodata()

 query()

 @type query() :: iodata()

 query_opts()

 @type query_opts() :: [{:timeout, timeout()}]

The following options configure querying:
	:timeout - Query request timeout (default: infinity);

 reason()

 @type reason() :: String.t()

 server()

 @type server() :: :gen_statem.server_ref()

 state()

 @type state() :: term()

 stream_opts()

 @type stream_opts() :: [{:max_messages, pos_integer()}]

The following options configure streaming:
	:max_messages - The maximum number of replications messages that can be
accumulated from the wire until they are relayed to handle_data/2.
Defaults to 500.

 Callbacks

 handle_call(term, from, state)

 (optional)

 @callback handle_call(term(), :gen_statem.from(), state()) ::
 {:noreply, state()}
 | {:noreply, ack(), state()}
 | {:query, query(), state()}
 | {:query, query(), query_opts(), state()}
 | {:stream, query(), stream_opts(), state()}
 | {:disconnect, reason()}

Callback for call/3.
Replies must be sent with reply/2.
If auto_reconnect: false (the default) and there is a disconnection,
the process will terminate and the caller will exit even if no reply is
sent. However, if auto_reconnect is set to true, a disconnection will
keep the process alive, which means that any command that has not yet
been replied to should eventually do so. One simple approach is to
reply to any pending commands on handle_disconnect/1.

 handle_connect(state)

 (optional)

 @callback handle_connect(state()) ::
 {:noreply, state()}
 | {:noreply, ack(), state()}
 | {:query, query(), state()}
 | {:query, query(), query_opts(), state()}
 | {:stream, query(), stream_opts(), state()}
 | {:disconnect, reason()}

Invoked after connecting.
This may be invoked multiple times if :auto_reconnect is set to true.

 handle_data(arg1, state)

 (optional)

 @callback handle_data(binary() | :done, state()) ::
 {:noreply, state()}
 | {:noreply, ack(), state()}
 | {:query, query(), state()}
 | {:query, query(), query_opts(), state()}
 | {:stream, query(), stream_opts(), state()}
 | {:disconnect, reason()}

Callback for :stream outputs.
If any callback returns {:stream, iodata, opts, state}, then this
callback will be eventually called with the result of the query.
It receives binary streaming messages.
This can be useful for replication and copy commands. For replication,
the format of the messages are described under the START_REPLICATION
section in PostgreSQL docs.
Replication messages may require explicit acknowledgement, which can
be done by returning a list of binaries according to the replication
protocol.

 handle_disconnect(state)

 (optional)

 @callback handle_disconnect(state()) :: {:noreply, state()}

Invoked after disconnecting.
This is only invoked if :auto_reconnect is set to true.

 handle_info(term, state)

 (optional)

 @callback handle_info(term(), state()) ::
 {:noreply, state()}
 | {:noreply, ack(), state()}
 | {:query, query(), state()}
 | {:query, query(), query_opts(), state()}
 | {:stream, query(), stream_opts(), state()}
 | {:disconnect, reason()}

Callback for Kernel.send/2.

 handle_result(arg1, state)

 (optional)

 @callback handle_result([Postgrex.Result.t()] | Postgrex.Error.t(), state()) ::
 {:noreply, state()}
 | {:noreply, ack(), state()}
 | {:query, query(), state()}
 | {:query, query(), query_opts(), state()}
 | {:stream, query(), stream_opts(), state()}
 | {:disconnect, reason()}

Callback for :query outputs.
If any callback returns {:query, iodata, state} or
{:query, iodata, opts, state}, then this callback will
be immediately called with the result of the query.
Please note that even though replication connections use
the simple query protocol, Postgres currently limits them to
single command queries.
Due to this constraint, this callback will be passed
either a list with a single successful query result or
an error.

 init(term)

 @callback init(term()) :: {:ok, state()}

Callback for process initialization.
This is called once and before the Postgrex connection is established.

 Functions

 call(server, message, timeout \\ 5000)

Calls the given replication server.

 decode_lsn(lsn)

 @spec decode_lsn(String.t()) :: {:ok, integer()} | :error

Returns the integer representation of an LSN value, given its string representation.
It returns :error if the provided string is not a valid LSN.
Log Sequence Numbers
PostgreSQL uses two representations for the Log Sequence Number (LSN):
	An unsigned 64-bit integer. Used internally by PostgreSQL and sent in the XLogData
replication messages.

	A string of two hexadecimal numbers of up to eight digits each, separated
by a slash. e.g. 1/F73E0220. This is the form accepted by start_replication/2.

For more information on Log Sequence Numbers, see
PostgreSQL pg_lsn docs and
PostgreSQL WAL internals docs.

 encode_lsn(lsn)

 @spec encode_lsn(integer()) :: {:ok, String.t()} | :error

Returns the string representation of an LSN value, given its integer representation.
It returns :error if the provided integer falls outside the range for a valid
unsigned 64-bit integer.
Log Sequence Numbers
PostgreSQL uses two representations for the Log Sequence Number (LSN):
	An unsigned 64-bit integer. Used internally by PostgreSQL and sent in the XLogData
replication messages.

	A string of two hexadecimal numbers of up to eight digits each, separated
by a slash. e.g. 1/F73E0220. This is the form accepted by start_replication/2.

For more information on Log Sequence Numbers, see
PostgreSQL pg_lsn docs and
PostgreSQL WAL internals docs.

 reply(client, reply)

Replies to the given call/3.

 start_link(module, arg, opts)

 @spec start_link(module(), term(), Keyword.t()) ::
 {:ok, pid()} | {:error, Postgrex.Error.t() | term()}

Starts a replication process with the given callback module.
Options
The options that this function accepts are the same as those
accepted by Postgrex.start_link/1, except for :idle_interval.
It also accepts extra options for connection management, documented below.
Also note this function also automatically set :replication to "database"
as part of the connection :parameters if none is set yet.
Connection options
	:sync_connect - controls if the connection should be established on boot
or asynchronously right after boot. Defaults to true.

	:auto_reconnect - automatically attempt to reconnect to the database
in event of a disconnection. See the
note about async connect and auto-reconnects
above. Defaults to false, which means the process terminates.

	:reconnect_backoff - time (in ms) between reconnection attempts when
:auto_reconnect is enabled. Defaults to 500.

Postgrex.Result

Result struct returned from any successful query. Its fields are:
	command - An atom or a list of atoms of the query command, for example:
:select, :insert, or [:rollback, :release];
	columns - The column names;
	rows - The result set. A list of lists, each inner list corresponding to a
row, each element in the inner list corresponds to a column;
	num_rows - The number of fetched or affected rows;
	connection_id - The OS pid of the PostgreSQL backend that executed the query;
	messages - A list of maps of messages, such as hints and notices, sent by the
driver during the execution of the query.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Postgrex.Result{
 columns: [String.t()] | nil,
 command: atom() | [atom()],
 connection_id: pos_integer(),
 messages: [map()],
 num_rows: integer(),
 rows: [[term()] | binary()] | nil
}

Postgrex.SimpleConnection behaviour

A generic connection suitable for simple queries and pubsub functionality.
On its own, a SimpleConnection server only maintains a connection. To execute
queries, process results, or relay notices you must implement a callback module
with the SimpleConnection behaviour.
Example
The SimpleConnection behaviour abstracts common client/server interactions,
along with optional mechanisms for running queries or relaying notifications.
Let's start with a minimal callback module that executes a query and relays
the result back to the caller.
defmodule MyConnection do
 @behaviour Postgrex.SimpleConnection

 @impl true
 def init(_args) do
 {:ok, %{from: nil}}
 end

 @impl true
 def handle_call({:query, query}, from, state) do
 {:query, query, %{state | from: from}}
 end

 @impl true
 def handle_result(results, state) when is_list(results) do
 SimpleConnection.reply(state.from, results)

 {:noreply, state}
 end

 @impl true
 def handle_result(%Postgrex.Error{} = error, state) do
 SimpleConnection.reply(state.from, error)

 {:noreply, state}
 end
end

Start the connection
{:ok, pid} = SimpleConnection.start_link(MyConnection, [], database: "demo")

Execute a literal query
SimpleConnection.call(pid, {:query, "SELECT 1"})
=> %Postgrex.Result{rows: [["1"]]}
We start a connection by passing the callback module, callback options, and
server options to SimpleConnection.start_link/3. The init/1 function
receives any callback options and returns the callback state.
Queries are sent through SimpleConnection.call/2, executed on the server,
and the result is handed off to handle_result/2. At that point the callback
can process the result before replying back to the caller with
SimpleConnection.reply/2.
Building a PubSub Connection
With the notify/3 callback you can also build a pubsub server on top of
LISTEN/NOTIFY. Here's a naive pubsub implementation:
defmodule MyPubSub do
 @behaviour Postgrex.SimpleConnection

 defstruct [:from, listeners: %{}]

 @impl true
 def init(args) do
 {:ok, struct!(__MODULE__, args)}
 end

 @impl true
 def notify(channel, payload, state) do
 for pid <- state.listeners[channel] do
 send(pid, {:notice, channel, payload})
 end
 end

 @impl true
 def handle_call({:listen, channel}, {pid, _} = from, state) do
 listeners = Map.update(state.listeners, channel, [pid], &[pid | &1])

 {:query, ~s(LISTEN "#{channel}"), %{state | from: from, listeners: listeners}}
 end

 def handle_call({:query, query}, from, state) do
 {:query, query, %{state | from: from}}
 end

 @impl true
 def handle_result(_results, state) do
 SimpleConnection.reply(state.from, :ok)

 {:noreply, %{state | from: nil}}
 end
end

Start the connection
{:ok, pid} = SimpleConnection.start_link(MyPubSub, [], database: "demo")

Start listening to the "demo" channel
SimpleConnection.call(pid, {:listen, "demo"})
=> %Postgrex.Result{command: :listen}

Notify all listeners
SimpleConnection.call(pid, {:query, ~s(NOTIFY "demo", 'hello')})
=> %Postgrex.Result{command: :notify}

Check the inbox to see the notice message
flush()
=> {:notice, "demo", "hello"}
See Postgrex.Notifications for a more complex implementation that can
unlisten, handle process exits, and persist across reconnection.
Name registration
A Postgrex.SimpleConnection is bound to the same name registration rules as a
GenServer. Read more about them in the GenServer docs.

 Summary

 Types

 from()

 query()

 state()

 Callbacks

 handle_call(term, from, state)

 Callback for SimpleConnection.call/3.

 handle_connect(state)

 Invoked after connecting or reconnecting.

 handle_disconnect(state)

 Invoked after disconnection.

 handle_info(term, state)

 Callback for Kernel.send/2.

 handle_result(arg1, state)

 Callback for processing or relaying queries executed via {:query, query, state}.

 init(term)

 Callback for process initialization.

 notify(binary, binary, state)

 Callback for processing or relaying pubsub notifications.

 Functions

 call(server, message, timeout \\ 5000)

 Calls the given server.

 reply(from, reply)

 Replies to the given client.

 start_link(module, args, opts)

 Start the connection process and connect to Postgres.

 Types

 from()

 (since 0.17.0)

 @type from() :: {pid(), term()}

 query()

 @type query() :: iodata()

 state()

 @type state() :: term()

 Callbacks

 handle_call(term, from, state)

 (optional)

 @callback handle_call(term(), from(), state()) ::
 {:noreply, state()} | {:query, query(), state()}

Callback for SimpleConnection.call/3.
Replies must be sent with SimpleConnection.reply/2.

 handle_connect(state)

 (optional)

 @callback handle_connect(state()) :: {:noreply, state()} | {:query, query(), state()}

Invoked after connecting or reconnecting.
This may be called multiple times if :auto_reconnect is true.

 handle_disconnect(state)

 (optional)

 @callback handle_disconnect(state()) :: {:noreply, state()}

Invoked after disconnection.
This is invoked regardless of the :auto_reconnect option.

 handle_info(term, state)

 (optional)

 @callback handle_info(term(), state()) :: {:noreply, state()} | {:query, query(), state()}

Callback for Kernel.send/2.

 handle_result(arg1, state)

 (optional)

 @callback handle_result([Postgrex.Result.t()] | Postgrex.Error.t(), state()) ::
 {:noreply, state()}

Callback for processing or relaying queries executed via {:query, query, state}.
Either a list of successful query results or an error will be passed to this callback.
A list is passed because the simple query protocol allows multiple commands to be
issued in a single query.

 init(term)

 @callback init(term()) :: {:ok, state()}

Callback for process initialization.
This is called once and before the Postgrex connection is established.

 notify(binary, binary, state)

 @callback notify(binary(), binary(), state()) :: :ok

Callback for processing or relaying pubsub notifications.

 Functions

 call(server, message, timeout \\ 5000)

Calls the given server.
Wrapper for :gen_statem.call/3.

 reply(from, reply)

Replies to the given client.
Wrapper for :gen_statem.reply/2.

 start_link(module, args, opts)

 @spec start_link(module(), term(), Keyword.t()) ::
 {:ok, pid()} | {:error, Postgrex.Error.t() | term()}

Start the connection process and connect to Postgres.
The options that this function accepts are the same as those accepted by
Postgrex.start_link/1, as well as the extra options :sync_connect,
:auto_reconnect, :reconnect_backoff, and :configure.
Options
	:auto_reconnect - automatically attempt to reconnect to the database
in event of a disconnection. Defaults to false, which means the process
terminates. See the note in Postgrex.Notifications about async connect
and auto-reconnects.

	:configure - A function to run before every connect attempt to dynamically
configure the options as a {module, function, args}, where the current
options will prepended to args. Defaults to nil.

	:idle_interval - while also accepted on Postgrex.start_link/1, it has
a default of 5000ms in Postgrex.SimpleConnection (instead of 1000ms).

	:reconnect_backoff - time (in ms) between reconnection attempts when
auto_reconnect is enabled. Defaults to 500.

	:sync_connect - controls if the connection should be established on boot
or asynchronously right after boot. Defaults to true.

Postgrex.Stream

Stream struct returned from stream commands.
All of its fields are private.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Postgrex.Stream{
 conn: term(),
 options: term(),
 params: term(),
 query: term()
}

Postgrex.Box

Struct for PostgreSQL box.
Fields
	upper_right
	bottom_left

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Postgrex.Box{
 bottom_left: Postgrex.Point.t(),
 upper_right: Postgrex.Point.t()
}

Postgrex.Circle

Struct for PostgreSQL circle.
Fields
	center
	radius

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Postgrex.Circle{center: Postgrex.Point.t(), radius: number()}

Postgrex.INET

Struct for PostgreSQL inet / cidr.
Fields
	address
	netmask

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Postgrex.INET{address: :inet.ip_address(), netmask: nil | 0..128}

Postgrex.Interval

Struct for PostgreSQL interval.
Fields
	months
	days
	secs
	microsecs

 Summary

 Types

 t()

 Functions

 compare(interval1, interval2)

 to_string(interval)

 Types

 t()

 @type t() :: %Postgrex.Interval{
 days: integer(),
 microsecs: integer(),
 months: integer(),
 secs: integer()
}

 Functions

 compare(interval1, interval2)

 to_string(interval)

Postgrex.Lexeme

Struct for PostgreSQL lexeme.
Fields
	word
	positions

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Postgrex.Lexeme{
 positions: [{pos_integer(), :A | :B | :C | nil}],
 word: String.t()
}

Postgrex.Line

Struct for PostgreSQL line.
Note, lines are stored in PostgreSQL in the form {a, b, c}, which
parameterizes a line as a*x + b*y + c = 0.
Fields
	a
	b
	c

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Postgrex.Line{a: float(), b: float(), c: float()}

Postgrex.LineSegment

Struct for PostgreSQL lseg.
Fields
	point1
	point2

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Postgrex.LineSegment{
 point1: Postgrex.Point.t(),
 point2: Postgrex.Point.t()
}

Postgrex.MACADDR

Struct for PostgreSQL macaddr.
Fields
	address

 Summary

 Types

 macaddr()

 t()

 Types

 macaddr()

 @type macaddr() :: {0..255, 0..255, 0..255, 0..255, 0..255, 0..255}

 t()

 @type t() :: %Postgrex.MACADDR{address: macaddr()}

Postgrex.Path

Struct for PostgreSQL path.
Fields
	open
	points

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Postgrex.Path{open: boolean(), points: [Postgrex.Point.t()]}

Postgrex.Point

Struct for PostgreSQL point.
Fields
	x
	y

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Postgrex.Point{x: float(), y: float()}

Postgrex.Polygon

Struct for PostgreSQL polygon.
Fields
	vertices

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Postgrex.Polygon{vertices: [Postgrex.Point.t()]}

Postgrex.Range

Struct for PostgreSQL range.
Note that PostgreSQL itself does not return ranges exactly as stored:
SELECT '(1,5)'::int4range returns [2,5), which is equivalent in terms
of the values included in the range (PostgreSQL docs).
When selecting data, this struct simply reflects what PostgreSQL returns.
Fields
	lower
	upper
	lower_inclusive
	upper_inclusive

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Postgrex.Range{
 lower: term() | :empty | :unbound,
 lower_inclusive: boolean(),
 upper: term() | :empty | :unbound,
 upper_inclusive: boolean()
}

Postgrex.DefaultTypes

The default module used to encode/decode PostgreSQL types.
Type modules are given as the :types option in Postgrex.start_link/1.

Postgrex.Extension behaviour

An extension knows how to encode and decode PostgreSQL types to and
from Elixir values.
Custom extensions can be enabled via Postgrex.Types.define/3.
Postgrex.Types.define/3 must be called on its own file, outside of
any module and function, as it only needs to be defined once during
compilation.
For example to support label trees using the text encoding format:
defmodule MyApp.LTree do
 @behaviour Postgrex.Extension

 # It can be memory efficient to copy the decoded binary because a
 # reference counted binary that points to a larger binary will be passed
 # to the decode/4 callback. Copying the binary can allow the larger
 # binary to be garbage collected sooner if the copy is going to be kept
 # for a longer period of time. See `:binary.copy/1` for more
 # information.
 def init(opts) do
 Keyword.get(opts, :decode_copy, :copy)
 end

 # Use this extension when `type` from %Postgrex.TypeInfo{} is "ltree"
 def matching(_state), do: [type: "ltree"]

 # Use the text format, "ltree" does not have a binary format.
 def format(_state), do: :text

 # Use quoted expression to encode a string that is the same as
 # postgresql's ltree text format. The quoted expression should contain
 # clauses that match those of a `case` or `fn`. Encoding matches on the
 # value and returns encoded `iodata()`. The first 4 bytes in the
 # `iodata()` must be the byte size of the rest of the encoded data, as a
 # signed 32bit big endian integer.
 def encode(_state) do
 quote do
 bin when is_binary(bin) ->
 [<<byte_size(bin)::signed-size(32)>> | bin]
 end
 end

 # Use quoted expression to decode the data to a string. Decoding matches
 # on an encoded binary with the same signed 32bit big endian integer
 # length header.
 def decode(:reference) do
 quote do
 <<len::signed-size(32), bin::binary-size(len)>> ->
 bin
 end
 end
 def decode(:copy) do
 quote do
 <<len::signed-size(32), bin::binary-size(len)>> ->
 :binary.copy(bin)
 end
 end
end
This example could be used in a custom types module:
Postgrex.Types.define(MyApp.Types, [MyApp.LTree])
Or pass in opts for the extension that will be passed to the init/1 callback:
Postgrex.Types.define(MyApp.Types, [{MyApp.LTree, [decode_copy: :copy]}])

 Summary

 Types

 state()

 t()

 Callbacks

 decode(state)

 Returns a quoted list of clauses that decode a binary to an Elixir value.

 encode(state)

 Returns a quoted list of clauses that encode an Elixir value to iodata.

 format(state)

 Returns the format the type should be encoded as. See
http://www.postgresql.org/docs/9.4/static/protocol-overview.html#PROTOCOL-FORMAT-CODES.

 init(t)

 Should perform any initialization of the extension. The function receives the
user options. The state returned from this function will be passed to other
callbacks.

 matching(state)

 Specifies the types the extension matches, see Postgrex.TypeInfo for
specification of the fields.

 prelude(state)

 Prelude defines properties and values that are attached to the body of
the types module.

 Types

 state()

 @type state() :: term()

 t()

 @type t() :: module()

 Callbacks

 decode(state)

 @callback decode(state()) :: Macro.t()

Returns a quoted list of clauses that decode a binary to an Elixir value.
The pattern must use binary syntax and decode a fixed length using the signed
32 bit big endian integer byte length header.
def decode(_) do
 quote do
 # length header is in bytes
 <<len::signed-32, integer::signed-size(len)-unit(8)>> ->
 integer
 end
end

 encode(state)

 @callback encode(state()) :: Macro.t()

Returns a quoted list of clauses that encode an Elixir value to iodata.
It must use a signed 32 bit big endian integer byte length header.
def encode(_) do
 quote do
 integer ->
 <<8::signed-32, integer::signed-64>>
 end
end

 format(state)

 @callback format(state()) :: :binary | :text

Returns the format the type should be encoded as. See
http://www.postgresql.org/docs/9.4/static/protocol-overview.html#PROTOCOL-FORMAT-CODES.

 init(t)

 @callback init(Keyword.t()) :: state()

Should perform any initialization of the extension. The function receives the
user options. The state returned from this function will be passed to other
callbacks.

 matching(state)

 @callback matching(state()) :: [
 type: String.t(),
 send: String.t(),
 receive: String.t(),
 input: String.t(),
 output: String.t()
]

Specifies the types the extension matches, see Postgrex.TypeInfo for
specification of the fields.

 prelude(state)

 (optional)

 @callback prelude(state()) :: Macro.t()

Prelude defines properties and values that are attached to the body of
the types module.

Postgrex.TypeInfo

The information about a type that is provided to the custom encoder/decoder
functions. See http://www.postgresql.org/docs/9.4/static/catalog-pg-type.html
for clarifications of the fields.
	oid - The type's id;
	type - The type name;
	send - The name of the "send" function (the function postgres uses
to convert the type to its binary format);
	receive - The name of the "receive" function (the function postgres uses
to convert the type from its binary format);
	output - The name of the "output" function (the function postgres uses
to convert the type to its text format);
	input - The name of the "input" function (the function postgres uses
to convert the type from its text format);
	array_elem - If this is an array, the array elements' oid;
	base_type - If this is a range type, the base type's oid;
	comp_elems - If this is a composite type (record), the tuple
elements' oid;

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Postgrex.TypeInfo{
 array_elem: Postgrex.Types.oid(),
 base_type: Postgrex.Types.oid(),
 comp_elems: [Postgrex.Types.oid()],
 input: String.t(),
 oid: Postgrex.Types.oid(),
 output: String.t(),
 receive: String.t(),
 send: String.t(),
 type: String.t()
}

Postgrex.Types

Encodes and decodes between PostgreSQL protocol and Elixir values.

 Summary

 Types

 oid()

 PostgreSQL internal identifier that maps to a type. See
https://www.postgresql.org/docs/9.4/static/datatype-oid.html.

 state()

 State used by the encoder/decoder functions

 type()

 Term used to describe type information

 Functions

 define(module, extensions, opts \\ [])

 Defines a type module with custom extensions and options.

 Types

 oid()

 @type oid() :: pos_integer()

PostgreSQL internal identifier that maps to a type. See
https://www.postgresql.org/docs/9.4/static/datatype-oid.html.

 state()

 @opaque state()

State used by the encoder/decoder functions

 type()

 @opaque type()

Term used to describe type information

 Functions

 define(module, extensions, opts \\ [])

Defines a type module with custom extensions and options.
Postgrex.Types.define/3 must be called on its own file, outside of
any module and function, as it only needs to be defined once during
compilation.
Type modules are given to Postgrex on start_link via the :types
option and are used to control how Postgrex encodes and decodes data
coming from PostgreSQL.
For example, to define a new type module with a custom extension
called MyExtension while also changing Postgrex's default
behaviour regarding binary decoding, you may create a new file
called "lib/my_app/postgrex_types.ex" with the following:
Postgrex.Types.define(MyApp.PostgrexTypes, [MyExtension], [decode_binary: :reference])
The line above will define a new module, called MyApp.PostgrexTypes
which can be passed as :types when starting Postgrex. The type module
works by rewriting and inlining the extensions' encode and decode
expressions in an optimal fashion for postgrex to encode parameters and
decode multiple rows at a time.
Extensions
Extensions is a list of Postgrex.Extension modules or a 2-tuple
containing the module and a keyword list. The keyword, defaulting
to [], will be passed to the modules init/1 callback.
Extensions at the front of the list will take priority over later
extensions when the matching/1 callback returns have conflicting
matches. If an extension is not provided for a type then Postgrex
will fallback to default encoding/decoding methods where possible.
All extensions that ship as part of Postgrex are included out of the
box.
See Postgrex.Extension for more information on extensions.
Options
	:null - The atom to use as a stand in for postgres' NULL in
encoding and decoding. The module attribute @null is registered
with the value so that extension can access the value if desired
(default: nil);

	:decode_binary - Either :copy to copy binary values when decoding
with default extensions that return binaries or :reference to use a
reference counted binary of the binary received from the socket.
Referencing a potentially larger binary can be more efficient if the binary
value is going to be garbaged collected soon because a copy is avoided.
However the larger binary can not be garbage collected until all references
are garbage collected (default: :copy);

	:json - The JSON module to encode and decode JSON binaries, calls
module.encode_to_iodata!/1 to encode and module.decode!/1 to decode.
If nil then no default JSON handling
(default: Application.get_env(:postgrex, :json_library, Jason));

	:bin_opt_info - Either true to enable binary optimisation information,
or false to disable, for more information see Kernel.SpecialForms.<<>>/1
in Elixir (default: false);

	:debug_defaults - Generate debug information when building default
extensions so they point to the proper source. Enabling such option
will increase the time to compile the type module (default: false);

	:moduledoc - The moduledoc to be used for the generated module.

	:allow_infinite_timestamps - A boolean controlling whether or not
the built-in extensions timestamp and timestamptz will allow
a value of infinity to be decoded. Defaults to false.

	:interval_decode_type - The struct that intervals will be decoded
into. Either Postgrex.Interval or Duration (Elixir 1.17.0+ only).
Defaults to Postgrex.Interval.

Postgrex.Error exception

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Postgrex.Error{
 __exception__: true,
 connection_id: term(),
 message: term(),
 postgres: term(),
 query: term()
}

Postgrex.QueryError exception

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

