

 Pots

 v0.1.2

 Table of contents

 	Pots

 	LICENSE

 	Changelog

 	Modules

 	PotUtils

 	Mix Tasks

 	mix pot.build

 	mix pot.clean

 	mix pot.info

 	mix pot.new

 	mix pot.run

Pots

Some wrapper functionality around generating Dockerfiles and managing them
for an elixir project. This project is still very much in the early stages
so use at your own risk.
ATTENTION: While this has been written to support docker, podman, and nerdctl
it has only been tested with podman currently. Test the other two is still a
TODO.

 TODO

	[] Generate some kind of configuration for Pots.
	[] Allow selection of container runtime in config.
	[] Provide better defaults for the Dockerfile.
	[] Config options for how the containers are run. (e.g. a list of flags such as --rm, -it, ect.)
	[] Test with both docker and nerdctl

 Requirements

You will need one of the following container run times;
	Docker
	Podman
	Nerdctl (containerd)

 Installation

If available in Hex, the package can be installed
by adding pots to your list of dependencies in mix.exs:
def deps do
 [
 {:pots, "~> 0.1.0"}
]
end
Documentation can be generated with ExDoc
and published on HexDocs. Once published, the docs can
be found at https://hexdocs.pm/pots.

 Tasks

mix pot.new
This task will generate a Dockerfile to be used by Pots. This
is just a regular Dockerfile so you don't have to run it
specifically using Pots.

mix pot.build
This will build the Dockerfile generated from mix pot.new. If
you haven't generated a file yet it will run mix pot.new

mix pot.run
This will start the container. It defaults to -d (detached mode).
You may also pass in -i for interactive mode. Be aware, all containers
are started with --rm so they will be discarded once shut down.

mix pot.clean
This will remove files, images, and containers created by Pots.
You may pass --files to remove Dockerfiles, --images to remove
images, and --containers to stop (and remove) containers.

mix pot.info
This will simply output information about the files/images/containers
generated by pots using your container runtime.

LICENSE

MIT License

Copyright (c) [year] [fullname]

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Changelog

 v0.1.2 (2023-10-28)

	Bufix	Fixed an issue when logging status of mix pot.clean was referencing
a possible nil key in map
	Removed having the --file option as default in mix pot.clean

 v0.1.1 (2023-10-28)

	Bufix	Added a runtime_cmd_output command because runtime_cmd only returned an iostruct

 v0.1.0 (2023-10-28)

	Enhancements	First version created
	Support for docker, podman, and nerdctl

PotUtils

Utils for running Pot tasks. Most of the logic of Pot tasks are contained here.

 Summary

 Functions

 app_name()

 Get the application name. Thils is either the value of :app in the
application configuration or the return value of Application.get_all_env(__MODULE__)

 get_all_docker_files()

 Returns a list of Dockerfiles for Pot. It looks for files that start
with Docker and end with .pot.

 get_docker()

 Trys to run the program docker. If it errors, it will raise
and error because no suitable container runtime can be found.

 get_docker_containers()

 Returns a list of all docker containers, filtered by the label of
pot_<app-name> in JSON format. If none are returned, it returns
an empty list. Uses the command in the format of
<container-runtime> container ls --filter lable=pot_<app-name> --format {{json}}

 get_docker_file_for_pot(pot_name)

 Gets the name of the Dockerfile. If :no_name is passed in then it
simply returns Dockerfile.pot. If any other string is passed to it, it will
return Docerfile.<string>.pot.

 get_docker_images()

 Returns a list of all docker images, filtered by the label of
pot_<app-name> in JSON format. If none are returned, it returns
an empty list. Uses the command in the format of
<container-runtime> images --filter lable=pot_<app-name> --format {{json}}

 get_nerdctl()

 Trys to run the program nerdctl. If it errors, it will move
on to try the next runtime podman.

 get_podman()

 Trys to run the program podman. If it errors, it will move
on to try the next runtime docker.

 get_runtime()

 Get the current container run time to use. The return values can
be the strings of "docker", "podman", or "nerdctl". Currently
does not allow for choosing your runtime, this is to be added later.

 print_containers()

 Similar to PotUtils.get_docker_containers/0, it filters all containers on the label of
pot_<app-name> and simply prints the output of the command. Uses the command
in the format of
<container-runtime> container ls --filter lable=pot_<app-name>

 print_images()

 Similar to PotUtils.get_docker_images/0, it filters all images on the label of
pot_<app-name> and simply prints the output of the command. Uses the command
in the format of
<container-runtime> images --filter lable=pot_<app-name>

 remove_image(img)

 Remove all container images created by Pot. This will only touch images labled appropriately
by pot. This runs the command <container-runtime> image rm <img-id>

 runtime_cmd(cmd)

 Takes in the command to be run using the runtime returned from PotUtils.get_runtime/0.
Splits the cmd up and passes it to System.cmd.

 runtime_cmd_output(cmd)

 Takes in the command to be run using the runtime returned from PotUtils.get_runtime/0.
Splits the cmd up and passes it to System.cmd. This one returns the output from
the command run unlike runtime_cmd/1

 stop_container(container)

 Stop all running containers created by Pot. This should
also remove them as all containers are started with the
options --rm which means to remove them once stopped.
Uses the command in the format of <container-runtime> stop <container-id

 Functions

 Link to this function

 app_name()

 View Source

Get the application name. Thils is either the value of :app in the
application configuration or the return value of Application.get_all_env(__MODULE__)

 Link to this function

 get_all_docker_files()

 View Source

Returns a list of Dockerfiles for Pot. It looks for files that start
with Docker and end with .pot.

 Link to this function

 get_docker()

 View Source

Trys to run the program docker. If it errors, it will raise
and error because no suitable container runtime can be found.

 Link to this function

 get_docker_containers()

 View Source

Returns a list of all docker containers, filtered by the label of
pot_<app-name> in JSON format. If none are returned, it returns
an empty list. Uses the command in the format of
<container-runtime> container ls --filter lable=pot_<app-name> --format {{json}}

 Link to this function

 get_docker_file_for_pot(pot_name)

 View Source

Gets the name of the Dockerfile. If :no_name is passed in then it
simply returns Dockerfile.pot. If any other string is passed to it, it will
return Docerfile.<string>.pot.

 Example

 iex> PotUtils.get_docker_file_for_pot(:no_name)
 Dockerfile.pot
 iex> PotUtils.get_docker_file_for_pot("my_project")
 Dockerfile.my_project.pot

 Link to this function

 get_docker_images()

 View Source

Returns a list of all docker images, filtered by the label of
pot_<app-name> in JSON format. If none are returned, it returns
an empty list. Uses the command in the format of
<container-runtime> images --filter lable=pot_<app-name> --format {{json}}

 Link to this function

 get_nerdctl()

 View Source

Trys to run the program nerdctl. If it errors, it will move
on to try the next runtime podman.

 Link to this function

 get_podman()

 View Source

Trys to run the program podman. If it errors, it will move
on to try the next runtime docker.

 Link to this function

 get_runtime()

 View Source

Get the current container run time to use. The return values can
be the strings of "docker", "podman", or "nerdctl". Currently
does not allow for choosing your runtime, this is to be added later.

 Link to this function

 print_containers()

 View Source

Similar to PotUtils.get_docker_containers/0, it filters all containers on the label of
pot_<app-name> and simply prints the output of the command. Uses the command
in the format of
<container-runtime> container ls --filter lable=pot_<app-name>

 Link to this function

 print_images()

 View Source

Similar to PotUtils.get_docker_images/0, it filters all images on the label of
pot_<app-name> and simply prints the output of the command. Uses the command
in the format of
<container-runtime> images --filter lable=pot_<app-name>

 Link to this function

 remove_image(img)

 View Source

Remove all container images created by Pot. This will only touch images labled appropriately
by pot. This runs the command <container-runtime> image rm <img-id>

 Link to this function

 runtime_cmd(cmd)

 View Source

Takes in the command to be run using the runtime returned from PotUtils.get_runtime/0.
Splits the cmd up and passes it to System.cmd.

 Link to this function

 runtime_cmd_output(cmd)

 View Source

Takes in the command to be run using the runtime returned from PotUtils.get_runtime/0.
Splits the cmd up and passes it to System.cmd. This one returns the output from
the command run unlike runtime_cmd/1

 Link to this function

 stop_container(container)

 View Source

Stop all running containers created by Pot. This should
also remove them as all containers are started with the
options --rm which means to remove them once stopped.
Uses the command in the format of <container-runtime> stop <container-id

mix pot.build

 Summary

 Functions

 build_image(pot_name)

 Takes in the runtime ["docker" | "podman" | "nerdctl"], the pot name
passed in as arguments or :no_name. It will check to see
if there is an exisiting Dockerfile generated by pot
and if not run the tast pot.new with default arguments.
Then it will run the container runtime command in the following
format to generate the image.
<container-runtime> build -f <docker-file> --build-arg MIX_ENV=dev -t <app-name> --label pot_<app-name>=pot

 Functions

 Link to this function

 build_image(pot_name)

 View Source

Takes in the runtime ["docker" | "podman" | "nerdctl"], the pot name
passed in as arguments or :no_name. It will check to see
if there is an exisiting Dockerfile generated by pot
and if not run the tast pot.new with default arguments.
Then it will run the container runtime command in the following
format to generate the image.
<container-runtime> build -f <docker-file> --build-arg MIX_ENV=dev -t <app-name> --label pot_<app-name>=pot

mix pot.clean

 Summary

 Functions

 process_arg(arg)

 Breaks out the process arguments and runs different cleanup.
tasks depending on whats been passed in.

 remove_docker_files()

 Remove all docker files created by Pots. This will
only affect files that start with Docker and end
with .pot

 remove_docker_images()

 Remove all container images created by Pots. This will
only affect images with the label pot_<app-name>

 run_all()

 This will run all cleanup functions. Note: it will stop all
containers before attempting to remove the images. Excludes
running remove_docker_files/0 since it may contain
changes the user wants to keep.

 stop_docker_containers()

 Stop all running containers created by Pots. This will
only affect containers with the label pot_<app-name>

 Functions

 Link to this function

 process_arg(arg)

 View Source

Breaks out the process arguments and runs different cleanup.
tasks depending on whats been passed in.
	--files: It will remove all Docker files generated by Pots.
	--images: It will remove all container images created by Pots.
	--containers: It will remove all containers created by Pots.

 Link to this function

 remove_docker_files()

 View Source

Remove all docker files created by Pots. This will
only affect files that start with Docker and end
with .pot

 Link to this function

 remove_docker_images()

 View Source

Remove all container images created by Pots. This will
only affect images with the label pot_<app-name>

 Link to this function

 run_all()

 View Source

This will run all cleanup functions. Note: it will stop all
containers before attempting to remove the images. Excludes
running remove_docker_files/0 since it may contain
changes the user wants to keep.
	remove_docker_files/0
	stop_docker_containers/0
	remove_docker_images/0

 Link to this function

 stop_docker_containers()

 View Source

Stop all running containers created by Pots. This will
only affect containers with the label pot_<app-name>

mix pot.info

mix pot.new

mix pot.run

 OEBPS/dist/epub-TCI3LGHF.js
(()=>{var d=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var c="ex_doc:settings",h={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=h,this._loadSettings()}get(){return this._settings}update(t){let e=this._settings;this._settings={...this._settings,...t},this._subscribers.forEach(n=>n(this._settings,e)),this._storeSettings()}getAndSubscribe(t){this._subscribers.push(t),t(this._settings)}_loadSettings(){try{let t=localStorage.getItem(c);if(t){let e=JSON.parse(t);this._settings={...this._settings,...e}}this._loadSettingsLegacy()}catch(t){console.error(`Failed to load settings: ${t}`)}}_storeSettings(){try{this._storeSettingsLegacy(),localStorage.setItem(c,JSON.stringify(this._settings))}catch(t){console.error(`Failed to persist settings: ${t}`)}}_loadSettingsLegacy(){localStorage.getItem("tooltipsDisabled")!==null&&(this._settings={...this._settings,tooltips:!1}),localStorage.getItem("night-mode")==="true"&&(this._settings={...this._settings,nightMode:!0}),this._settings.nightMode===!0&&(this._settings={...this._settings,theme:"dark"})}_storeSettingsLegacy(){this._settings.tooltips?localStorage.removeItem("tooltipsDisabled"):localStorage.setItem("tooltipsDisabled","true"),this._settings.nightMode!==null?localStorage.setItem("night-mode",this._settings.nightMode===!0?"true":"false"):localStorage.removeItem("night-mode"),this._settings.theme!==null?(localStorage.setItem("night-mode",this._settings.theme==="dark"?"true":"false"),this._settings.nightMode=this._settings.theme==="dark"):(delete this._settings.nightMode,localStorage.removeItem("night-mode"))}},f=new s;function l(){["warning","info","error","neutral","tip"].forEach(t=>{i(`blockquote h3.${t}, blockquote h4.${t}`).forEach(e=>{e.closest("blockquote").classList.add(t)})})}document.addEventListener("click",function(o){if(window.innerWidth<=768){let t=o.target.closest('a[href^="#"]');if(t){o.preventDefault();let e=t.getAttribute("href").substring(1),n=document.getElementById(e);if(n){let u=n.getBoundingClientRect().top+window.scrollY-45;window.scrollTo({top:u,behavior:"smooth"})}}}});var m="hll";function g(){p()}function p(){i("[data-group-id]").forEach(t=>{let e=t.getAttribute("data-group-id");t.addEventListener("mouseenter",n=>{a(e,!0)}),t.addEventListener("mouseleave",n=>{a(e,!1)})})}function a(o,t){i(`[data-group-id="${o}"]`).forEach(n=>{n.classList.toggle(m,t)})}r(()=>{g(),l()});})();

