

 PrimerLive

 v0.8.0

 Table of contents

 	Installation

 	Usage

 	Menus and dialogs

 	Changelog

 	LICENSE

 	

 	Modules

 	PrimerLive

 	PrimerLive.Component

 	PrimerLive.FieldState

 	PrimerLive.Octicons

 	PrimerLive.StatefulConditionComponent

 	PrimerLive.Theme

 	PrimerLive.UIIcons

Installation

 1. Add primer_live dependency

Add PrimerLive as a dependency in your Phoenix application's mix.exs
{:primer_live, "~> 0.8"}
Run mix.deps get.

 2. Mark PrimerLive resources as static

In endpoint.ex, create a new Static Plug entry:
PrimerLive resources
plug(Plug.Static,
 at: "/primer_live",
 from: {:primer_live, "priv/static"}
)

 3. Update VerifiedRoutes config (optional)

In <app>_web.ex, change the Phoenix.VerifiedRoutes configuration to include the primer_live directory:
def static_paths, do: ~w(assets fonts images favicon.png robots.txt primer_live)

 4. Add the CSS and JavaScript to the base HTML

Add the import link to root.html.heex.
If you are using verified routes:
<link phx-track-static rel="stylesheet" href={~p"/primer_live/primer-live.min.css"}>
<script defer phx-track-static type="text/javascript" src={~p"/primer_live/primer-live.min.js"}></script>
Otherwise:
<link phx-track-static rel="stylesheet" href="/primer_live/primer-live.min.css">
<script defer phx-track-static type="text/javascript" src={"/primer_live/primer-live.min.js"}></script>

 5. Add the Prompt hook

In assets/js/app.js, add global Prompt to the hooks:
let liveSocket = new LiveSocket("/live", Socket, {
 params: { _csrf_token: csrfToken },
 hooks: {
 Prompt: window.Prompt,
 // existing hooks ...
 },
});

Usage

 Usage in LiveView pages

defmodule MyAppWeb.MyLiveView do
 use MyAppWeb, :live_view
 alias PrimerLive.Component, as: Primer

 def render(assigns) do
 ~H"""
 <Primer.button>Click me</Primer.button>
 """
 end

end
Or import with use:
defmodule MyAppWeb.MyLiveView do
 use MyAppWeb, :live_view
 use PrimerLive

 def render(assigns) do
 ~H"""
 <.button>Click me</.button>
 """
 end

end

 Usage in regular views

In view files, for example in page_view.ex:
defmodule MyAppWeb.PageView do
 use MyAppWeb, :view
 alias PrimerLive.Component, as: Primer
end
Then call the component on a page, for example in templates/page/index.html.heex:
<Primer.button>Click me</Primer.button>
Or import with use:
defmodule MyAppWeb.PageView do
 use MyAppWeb, :view
 use PrimerLive
end
Call the component on a page:
<.button>Click me</.button>

Menus and dialogs

	Usage	Menus
	Dialogs and drawers

	Opening and closing
	Attributes	Appearance
	Behavior

	Generated HTML
	Conditional state
	Persisting dialogs and drawers	Refinements

	Status callbacks
	Prompt hook
	CSS	z-index
	Customization

 Usage

Menu and dialog components - action_menu, dropdown, select_menu, drawer and dialog - share common interaction.
To use these components, CSS and JavaScript must be installed - see Installation.

 Menus

Menus are created with 3 elements: the component wrapper, a toggle button and the menu contents. For example for a dropdown menu:
<.dropdown>
 <:toggle>Menu</:toggle>
 Content
</.dropdown>
The toggle slot is required for menus. It generates a toggle element (default with button appearance) using the slot content as label.

 Dialogs and drawers

With dialogs and drawers, the toggle element not used as these are usually opened from the outside.
<.dialog id="my-dialog">
 <:header_title>Title</:header_title>
 <:body>
 Content
 </:body>
</.dialog>

 Opening and closing

	Menus can be opened using the label button created from the toggle slot.
	All components can be conditionally opened with is_open in combination with Phoenix's :if attribute.
	All components can be opened and closed with open, close and toggle functions - (open_dialog for dialogs, and so on).

See component documentation for details.

 Attributes

The following attributes are common for all menus and dialogs.

 Appearance

	is_backdrop - Generates a backdrop background with a default strength and tint values. Default backdrop strenght: "medium" for dialog and drawer; "light" for menus. Default backdrop tint: "dark".
	backdrop_strength - Backdrop strenght: stronger is less transparent. Overrides the default value from is_backdrop.
	backdrop_tint - Backdrop tint: "dark" or "light". Overrides the default value from is_backdrop.
	transition_duration - The number of milliseconds to fade-in/out the backdrop and content. Adds a CSS style attribute to component HTML.
	is_fast - Generates fast fade transitions for backdrop and content.
	is_dropdown_caret - For menus: adds a dropdown caret to the toggle button.

 Behavior

	id - Used for opening and closing from the outside. Required for dialog and drawer.
	is_escapable - Closes the content when the Escape key is pressed. Default true; set to false to prevent this. When components are stacked (for example a confirmation dialog is shown above a base dialog), Escape will close them one by one.
	focus_after_opening_selector - By default, the first interactive element gets focus after opening the component. Use to set focus to a different element after opening.
	focus_after_closing_selector - Returns focus to the specified element after closing the component.
	on_cancel - Phoenix.LiveView.JS command to configure the closing/cancel event of the component, for example: on_cancel={JS.navigate(~p"/posts")}.
	is_show - Sets the display state of the component. Control conditional display by using Phoenix's :if attribute.
	is_show_on_mount - Displays the component on mount without fade-in transition. Control conditional display by using Phoenix's :if attribute. See Conditional state below for details.
	show_state - Use when the component is already displayed, and should be persisted when navigating to another LiveViews. See Persisting dialogs and drawers below.
	status_callback_selector - Receiver to get status callback events. Events are passed from the Prompt hook using pushEventTo.

 Generated HTML

The HTML that is generated contains these common elements:
	Component root element: Contains data attributes with stored Phoenix.LiveView.JS commands.
	Label: Appears when the component is a menu, created from the toggle slot. The label is rendered as button, and opens the menu.
	Touch layer: Closes the component when clicked, unless is_modal is used.
	Backdrop layer: Displayed when is_backdrop is used.
	Focus wrap container: Encapsulates the component content and includes the Escape key command, unless is_escapable is set to false.
	Content: Based on the content of inner_block and other slots and attributes.

 Conditional state

Helper component PrimerLive.StatefulConditionComponent takes a condition and compares the initial state with the current state after a re-render. This is useful when the wrapped component should behave differently on initial mount and subsequent updates.
A practical example is to conditionally render a dialog at a specific route.
	When navigating to the route, the dialog should open with a fade-in transition.
	When loading that route directly (through a link or page refresh), the dialog should appear immediately, without any transition.

To make that happen, we can set is_show_on_mount to true only when the current route (where the dialog opens) is equal to the route the StatefulConditionComponent was located from the beginning.
See PrimerLive.StatefulConditionComponent for example code, and primer-live.org/dialog for a working example.

 Persisting dialogs and drawers

To keep a dialog or drawer on screen when navigating to a different LiveView (using navigate instead of patch), the component must be available on the destination route. This approach is best suited for "global" components, such as navigation panels and app header menus.
Attribute show_state assists in rendering the component slightly different, depending on the context.
Let's use the side drawer navigation on primer-live.org as an example (accessible on smaller screens via the top-right menu button).
The drawer's show_state is set using the URL search param "menu":
menu_param = assigns.params["menu"]

show_state =
 case menu_param do
 "1" -> "onset"
 "2" -> "hold"
 _ -> "default"
end

assigns =
 assigns
 |> assign(:show_drawer, menu_param in ["1", "2"])
 |> assign(:show_state, show_state)
We set the drawer attributes :if={@show_drawer}, is_show, and show_state={@show_state}, and add on_cancel, which removes the URL search parameters to hide the drawer.
The top bar menu button sets the search parameter "menu=1":
	show_state is "onset": This intermediate state prepares for the "hold" state. It removes the phx-remove attribute, ensuring that navigating away doesn't trigger a close transition. Other than that, the drawer's opening behavior remains unchanged.

Drawer links set the search parameter "menu=2":
	show_state is "hold": This state removes the phx-remove attribute, as well as any opening transitions and the first focus. When navigating to a linked page, the drawer is recreated without transitions.

This will keep the drawer in place when clicking the drawer links. Closing is done by clicking outside (this uses the touch layer).

 Refinements

Auto closing the drawer
Clicking a link dispatches a custom event "drawer:selected" that is picked up by the app's JavaScript, which - after a delay - calls the drawer's cancel instruction.
Drawer link
phx-click={JS.dispatch("drawer:selected", to: "##{drawer_id}")}
// app.js

window.addEventListener("drawer:selected", (evt) => {
 const id = evt.target.id;
 setTimeout(() => {
 // Get a fresh reference with updated data attributes:
 const el = document.getElementById(id);
 liveSocket.execJS(el, el.dataset.cancel);
 }, 650);
});
Maintaining the scroll position
When in "hold" state, the drawer is not really persisted; with each click the drawer is recreated, losing the scroll position. Not ideal, when clicking items at the bottom of the list. We need to recreate the scroll position in JavaScript.
This is the behavior we want:
	Open the drawer (show_state is "onset"):	Restore the last stored scroll position.
	Find the selected item an scroll the item into view (without animation).

	When clicking a link, the drawer is unmounted. We use a hook to store the scroll position at that point.

Using a hook for all these steps would be the logical choice, but the onmount callback turns out to be just a bit too late, resulting in a slight flickering of the drawer contents inbetween the first render and the desired scroll position.
A better choice is the "phx:page-loading-stop" event:
// app.js

window.addEventListener("phx:page-loading-stop", (_info) => {
 setDrawerScrollPosition();
 window.viewReady = true;
});

 Status callbacks

The opened/closed status of the component can be read using attribute status_callback_selector and a LiveComponent that listens for the "primer_live:prompt" event.
<.live_component id="status_event_component" module={MyAppWeb.StatusEventComponent} />

<.button phx-click={open_dialog("my-dialog")}>Open</.button>

<.dialog id="my-dialog" status_callback_selector="#status_events">
 <:body>Body</:body>
</.dialog>
Example event listener LiveComponent:
defmodule MyAppWeb.StatusEventComponent do
 @moduledoc false
 use MyAppWeb, :live_component

 @impl true
 def render(assigns) do
 ~H"""
 <div id="status_events">
 <p>Status: <%= @status %></p>
 </div>
 """
 end

 @impl true
 def update(assigns, socket) do
 socket =
 socket
 |> assign(assigns)
 |> assign(:status, "initial")

 {:ok, socket}
 end

 @impl true
 def handle_event("primer_live:prompt", %{"elementId" => prompt_id, "status" => status}, socket)
 when prompt_id == "my-dialog" do
 socket =
 socket
 |> assign(:status, status)

 {:noreply, socket}
 end

end

 Prompt hook

The Prompt hook does not expose an API because it operates under the hood.
Functionality:
	Listens for server commands prompt:open, prompt:close and prompt:toggle (enabling the toggle function).
	Sends status event "primer_live:prompt" to the server.
	Intercepts the Escape key event to close components one by one.

 CSS

 z-index

Commonly, menu panels are placed close to the page content, while dialogs and drawers are stacked above everything else (except for notifications).
When scrolling the page with a menu panel open, a top bar / app header should cover the menu panel. Using a z-index of 100 for a the app header ensures that it sits in between menus and dialogs/drawers. See the default values below for reference.

 Customization

Styles can be modified by overriding default Custom Variables, for example by giving it a higher specificity.
Example:
/* App CSS */

.admin-pages [data-prompt] {
 --prompt-drawer-content-width: 22ch;
}
Default Custom Variables
[data-prompt] {
 /* Colors and opacity */

 /* - Dark */
 --prompt-background-color-backdrop-dark: black;
 --prompt-background-opacity-backdrop-dark-strong: 0.5;
 --prompt-background-opacity-backdrop-dark-medium: 0.2;
 --prompt-background-opacity-backdrop-dark-light: 0.07;

 /* - Light */
 --prompt-background-color-backdrop-light: white;
 --prompt-background-opacity-backdrop-light-strong: 0.9;
 --prompt-background-opacity-backdrop-light-medium: 0.7;
 --prompt-background-opacity-backdrop-light-light: 0.6;

 /* Transitions */
 --prompt-transition-timing-function: ease-in-out;
 --prompt-transition-duration: 170ms;
 --prompt-fast-transition-duration: 130ms;

 /* Stacking z-index */

 /* - Menus */
 --prompt-z-index-menu-backdrop: 40;
 --prompt-z-index-menu-touch: 41;
 --prompt-z-index-menu-focus-wrap: 42;
 --prompt-z-index-menu-content: 50;

 /* - Dialog and drawer */
 --prompt-z-index-backdrop: 190;
 --prompt-z-index-touch: 191;
 --prompt-z-index-focus-wrap: 192;
 --prompt-z-index-drawer-content: 200;
 --prompt-z-index-dialog-content: 300;

 /* Sizes */

 /* - Dialog max height */
 --prompt-max-height-content: 80;

 /* - Drawer width: defined by child content width */
 --prompt-drawer-content-width: initial;

 /* - Push drawer width */
 --push-drawer-width: 320px;
}

Changelog

 0.8.0

 Refactoring of dialogs, drawers, and menus

This refactoring builds on the Phoenix.LiveView.JS API - taking example from CoreComponent's modal component. These changes reduce reliance on additional JavaScript, improve alignment with standard practice, and include accessibility improvements.
Overview:
	Menus and dialogs

See component documentation for further details:
	Action menu
	Dialog
	Drawer
	Dropdown
	Select menu

Additions
	Dialogs, drawers and menus can now be shown conditionally, for example on a live_action route:

<.dialog
 :if={@live_action == :create}
 is_show
 id="new-post-dialog"
 on_cancel={JS.patch(~p"/posts")}
>
 ...
</.dialog>
	Added PrimerLive.StatefulConditionComponent.
	Dialog state is now preserved on form updates.
	Added attribute focus_after_closing_selector, mirroring the (renamed) focus_after_opening_selector.
	Added attribute on_cancel.
	Added attribute transition_duration.
	Added attribute show_state to persist dialogs, drawers and menus across different LiveViews.
	Added backdrop_tint with values "dark" (default) and "light". The latter (combined with backdrop_strength="strong") (see below) creates a backdrop that is similar to the CoreComponent's modal.
	Added focus trap.

Changes and removals
See for update instructions: "Updating to 0.8" below.
	Prompt functions show and hide are replaced with open_dialog, close_dialog and cancel_dialog.
	Replaced attribute prompt_options for status callbacks with status_callback_selector that sends status events to the component, so that state changes can be used in Elixir code.
	Removed attribute phx_click_touch in favor of using status_callback_selector, because closing can be initiated in several ways, not only through backdrop clicks, and we can't assume that the event handler always hosts the dialog/drawer as well.
	Renamed attribute focus_first to focus_after_opening_selector. Focus on the first interactive element is now default; with focus_after_opening_selector a specific element can be appointed.
	Removed attrs form and field from all prompt components.
	Added separate z-index settings for menus, so that the menu panel (and optional backdrop) are closer to the page, allowing them to be covered by other elements such as top bars. Using a z-index of 100 for a top bar ensures that it sits in between menus and dialogs/drawers.
	Replaced backdrop attributes is_dark_backdrop, is_medium_backdrop and is_light_backdrop with backdrop_strength and values "strong", "medium" and "light".
	Menus and dialogs can now be closed with Escape by default.

 Other changes

Box with streams
The box component now supports streams:
<.box stream={@streams.clients} id="clients">
 <:row :let={{_dom_id, data}}>
 <%= data.name %>
 </:row>
</.box>
This includes a breaking change: let is now reserved for stream data, so the callback data no longer contains classes.
Event attributes for slots
Slots now accept these "all-purpose" event attributes:
	phx-click
	phx-target
	phx-value-item

Components:
	box: slot row
	breadcrumb: slot item
	dialog: slot row
	dropdown: slot item
	filter_list: slot item
	header: slot item
	menu: slot item
	select_menu: slot item
	side_nav: slot item
	subnav_links: slot item
	tabnav: slot item
	truncate: slot item
	underline_nav: slot item

Example with tabnav:
<:item
 :for={%{label: label, id: tab_id} <- @tabs}
 is_selected={id == @selected_tab}
 phx-click="set_tab"
 phx-value-item={tab_id}
>
 ...

def handle_event(
 "set_tab", %{"item" => tab_id}, socket) do
 ...
Fieldset wrapper for checkbox_group and radio_group
The form group created by checkbox_group and radio_group is now automatically wrapped in a fieldset. The label attribute generates a legend element.
Updated Octicons
This update to version 19.11.0 includes around 50 additions. See primer-live.org/octicon for a visual list.
Accessibility
	Added ARIA tags aria-haspopup and aria-owns.
	DOM ids are reformatted to a DOM-safe ID string.

 Updating to 0.8

	Replace Promp.show and Prompt.hide:
	For example:
onclick="Prompt.show('#my-dialog')"
onclick="Prompt.hide('#my-dialog')"

	Becomes:
phx-click={open_dialog("my-dialog")}
phx-click={close_dialog("my-dialog")}

	Replace backdrop darkness attributes:
	is_dark_backdrop becomes backdrop_strength="strong"
	is_medium_backdrop becomes backdrop_strength="medium"
	is_light_backdrop becomes backdrop_strength="light"

	Attribute is_escapable can be removed because this is now the default. If the component should not be removed using Escape, use is_escapable={false}.

Less used attributes
	Form state: the previous method to preserve state, using "a fictitious and unique field name" can be removed.
	Remove form and field from menu and dialog component attributes.

	Because focus_first (without a selector) is now the default, nothing needs to be changed when using this attribute.
	If in existing code a selector value is used, rename the attribute to focus_after_opening_selector.

	Replace prompt_options and phx_click_touch with status_callback_selector. There's no simple way to replace prompt_options, because passing JavaScript functions is no longer supported. A solution could be very similar to the previous phx_click_touch method. See Status callbacks for an example.

	If you use checkbox_group or radio_group inside a fieldset, remove the fieldset as it is now redundant.

	If you are using box with a :let callback:
	Previous:
<:row :let={classes}>
 <.link href="/" class={classes.link}>Home</.link>
</:row>

	Becomes:
<:row>
 <.link href="/" class="Box-row-link">Home</.link>
</:row>

 0.7.2

 Changes

	Fixes support for Ash 3. Thanks @ademenev!
	Internal improvements

 0.7.1

 Changes

	Added dialog attr is_show_on_mount.
	Downgraded dependency @primer/css to 21.0.7 due to regressions.

 0.7.0

Updated dependencies:
	phoenix_ecto to 4.5
	phoenix_html to 4.1	Added phoenix_html_helpers

	phoenix_live_view to 0.20
	@primer/css to 21.2.2

Removed support for Ash Framework due to incompatible dependencies.

 0.6.4

Reverted dependency @primer/css to 21.0.9 because of an excessively increased file size in later versions.

 0.6.3

 Changes

	Class attrs now support class notation from Surface. Thanks @tunchamroeun!
	Component pagination: added class entry for "current_page" which now can receive a custom class.

 0.6.2

 Bug fixes

	Pagination: fixes the calculation when a gap between page numbers should be shown.

 Other changes

	Pagination: added role and improved ARIA labels.

 0.6.1

Bug fixes:
	Fixes reading the required state of input fields.

 0.6.0

Added support for forms created with Ash Framework. See test/frameworks/ash/form_test.exs for an example.

 0.5.4

Fixed a bug where the required marker would always be displayed, regardless of the field's required state.

 0.5.3

Downgraded phoenix_live_view version to 0.19; both 0.19 and 0.20 should be compatible.

 0.5.2

Added JS and CSS exports for Prompt functionality only. This is useful when you want to use menu/dialog/drawer behavior without Primer Design CSS. See the installation documentation for details.

 0.5.1

 Deprecated

	Component avatar_pair: renamed parent_child_avatar to avatar_pair.
	Components action_menu and select_menu: renamed is_right_aligned to is_aligned_end (added RTL support).
	Component spinner: renamed gap_color to highlight_color.

 New component

	toggle_switch: Toggle switch is used to immediately toggle a setting on or off.

 Updated components

	avatar: Added attr is_round.
	avatar_pair: Improved styling: support display inside flex container, add inner border to child avatar.
	button	Improved dimensions according to Primer Style specs, including placing a trailing icon.
	Added attr is_aligned_start. Aligns contents to the start (at the left in left-to-right languages), while the dropdown caret (if any) is placed at the far end.

	spinner: Updated to latest Primer Style design.

 0.5.0

Form elements have been revamped and aligned with the most recent form element documentation at Primer Style.

 Deprecated

For all listed deprecations below: existing syntax will keep working, but log warnings will inform about the deprecation.
	form_group is replaced by form_control (and is_form_group is replaced by is_form_control). When updating your code:	You may need to add styling to correct the missing whitespace at top and bottom, because class "form-group" (which is also added when using attrs form_group and is_form_group) contains a top and bottom margin.
	Without a form group, text inputs (as well as selects) will be given a default width by the browser and will probably be displayed smaller than they currently are.

	The horizontal "tab-row" layout of radio_group is not mentioned in the Primer Design specification, while "Radio group" is (with vertical layout).	The current radio_group has been renamed to radio_tabs.
	The new component radio_group uses a vertical layout.

	checkbox and radio_button slot hint has been renamed to caption.
	button_group slot button is replaced by button components as children.
	For consistency, attr is_full has been renamed to is_full_width (in alert and header slot: item).

 Improvements

	Added component checkbox_group.
	Added convenience component checkbox_in_group for checkboxes inside a checkbox_group.
	Added component radio_group (with vertical layout).
	Added attr caption to show hint message below the form fields.	Implemented for select, text_input and textarea.
	Implemented for checkbox_group and radio_group to show a hint below the group label.

	Added a required marker to form_control, checkbox_group and radio_group. The form control label will show a required marker if the field is required.	Added is_required? to FieldState, so it can also be queried in validation_message and caption callbacks.

	Added disabled state to form_control:	With components select, text_input and textarea: the attribute disabled is automatically passed to form_control.
	When using component form_control on its own: set explicitly with attr is_disabled.

 Removed

	Form element width variation attrs is_short and is_shorter. These are no longer supported by Primer System.
	form_control class body: this extra div is removed to simplify the styling of validation states.

 0.4.0

 Improvements

	The open state of menus and dialogs can now be maintained when used inside forms.
	Improved validation message logic.
	Updated components:	theme_menu_options: added attr update_theme_event: the event name to be called for updating the theme.
	radio_group: added to slot radio_button the attr label to set a custom label.

	Updated @primer/css to 21.0.7.

 Breaking changes

	Removed functions related to using session for theme state - see PrimerLive.Theme for alternatives. Removed:	ThemeSessionController
	ThemeEvent
	Theme hook

	IDs of checkboxes and radio buttons have been updated to only include valid characters.

 Deprecated

	For all menu components, including 'dialog' and 'drawer': passing prompt options to the toggle slot is replaced by passing prompt_options to the main component.
	In the drawer component, replace the subcomponent drawer_content with the slot body.	This allows the focus wrap ID to be derived from the drawer's 'id' attribute, similar to how it is done for 'dialog'.
	When using the previous syntax, a warning message will be shown in the shell.

 Other changes

	The HTML structure and some of the CSS classes of action_menu, dropdown_menu and select_menu have changed. Instead of <details> and <summary> elements, the open state is now controlled with <input type="checkbox"> and <label>.
	HTML attributes are sorted alphabetically.

 0.3.1

Replaced underscores in HTML element attributes with dashes because Phoenix LiveView 0.19 no longer does automatic substitution.
Updated components:
	select: attr prompt is ignored when is_multiple is also used. This prevents Phoenix.HTML.Form.multiple_select from raising an error.

 0.3.0

Breaking change: action_list_item now always renders a checkbox group, also when is_multiple_select is set on the list items. This change makes handling form data in events more consistent: the data will always consist of a list of checkbox values.

 0.2.7

Fixes a bug introduced in 0.2.6 where single select action_list_items did not get unique ids.

 0.2.6

	Fixes a bug where FormHelpers.field_state did not handle forms without a changeset.
	Updated components:	text_input: added attrs name and value
	checkbox: add attrs checked, checked_value, hidden_input

	Update @primer/css to 21.0.0.

 0.2.5

Updated components:
	action_menu and select_menu:	Added prompt slot attr options to pass Prompt options. This enables (for example) to postpone submitting a form in the menu by calling submit event in the Prompt functions willHide or didHide.

 0.2.4

	Fixes a bug where variables in error messages where not interpolated.
	Update to phoenix_html 3.3.x

 0.2.3

	Clarified layout attributes to change the rendered order of slots.
	Improve field name and id generation.
	Use checkboxes and radio buttons in action lists.

Updated component:
	checkbox:	Added attr is_multiple: When creating a list of checkboxes. Appends [] to the input name so that a list of values is passed to the form events.
	Added attr is_omit_label: Omits any label.

 0.2.2

Updated component:
	text_input:	Moved attr is_trailing_action_divider to slot trailing_action as is_divider
	Added attr is_visible_with_value to slot trailing_action to only show the trailing action when the input has a value. Use this cor example to show a clear button only when the input has a value to clear.

 0.2.1

 Rework of form controls

The rework includes styles from Primer ViewComponents. The form styles from this flavor of Primer is more mature than the generally used Primer CSS.
Updated components:
	text_input:	Added attr is_monospace
	Added slots leading_visual and trailing_action
	Added attr is_trailing_action_divider
	Inputs inside a form group no longer have a background color by default; use is_contrast to set it explicitly
	Removed validation message for hidden inputs

	textarea:	Added attr is_monospace
	Use is_contrast to explicitly set a contrasting background color

	checkbox and radio_button	Have a clearer (more colorful) appearance
	Changed the HTML structure

	radio_group	For consistency, added input styling from Primer ViewComponents radio button (keeping the initial size)

	select:	Added wrapper HTML element
	Added attr is_monospace
	Added attr is_large
	Added attr is_short
	Added attr is_shorter
	Added attr is_full_width
	Improved styling for multiple select

	subnav with search field:	Added attr is_wrap to wrap child elements
	Improved CSS for small screens

Added component:
	input_validation_message - can be used as standalone message component for inputs where the position of the validation feedback is not so obvious, for example lists of checkboxes or radio buttons

Additional:
	Added styling for input elements inside a disabled fieldset

 Integration of npm dependencies

JavaScript and CSS dependencies (from npm library primer-live) are now incorporated in the Elixir package. The installation instructions are slightly simplified (see the documentation) and are recommended for a fresh setup. The previous installation method works just fine for existing projects.

 0.1.16

Added anchor link attributes to button to create a link that looks like a button.

 0.1.15

Removed Octicon builder template files from distribution.

 0.1.14

	Updated octicons dependency to 17.10.1
	Code quality refactoring
	Documentation updates

 0.1.13

Added:
	theme_menu_options to create a theme menu
	Theme.html_attributes to set theme attributes on elements
	Theme functions for persistent theme data in the session

 0.1.12

Fixes an issue where validation messages did not show.

 0.1.11

Added:
	theme

 0.1.10

Updated:
	Prevent attribute open on select menu

 0.1.9

Added:
	styled_html

 0.1.8

Updated:
	Removed requirement for Elixir version

 0.1.7

Updated:
	Added is_small for tabnav items

 0.1.6

Updated:
	oticon icons

 0.1.5

Added:
	drawer

 0.1.4

Bug fix:
	Improve action_menu on mobile

 0.1.3

Added:
	action_menu

 0.1.2

Bug fix:
	action_link_item: pass class to link slot.

 0.1.1

First release.

LICENSE

Copyright Arthur Clemens
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHOR