

 ProdopsEx

 v0.1.0

 [image: Logo]

 Table of contents

 	ProdopsEx: The Prodops Elixir SDK

 	LICENSE

 	Contributing and Development

 	Releasing a new version

 	Contributor Covenant Code of Conduct

 	

 	Modules

 	ProdopsEx.Artifact

 	ProdopsEx.ArtifactType

 	ProdopsEx.DataCenter

 	ProdopsEx.Project

 	ProdopsEx.PromptTemplate

 	ProdopsEx.Validate

ProdopsEx: The Prodops Elixir SDK

ProdopsEx allows for access to the powerful Prodops API via Elixir.
This SDK allows for the creation and refinement of artifacts (content) within a ProdOps team.
Other features include data center document, uploads, project management and more.

 Motivation

To provide a simple way to interact with the Prodops API from within Elixir.

 Build Status

[image: tests]

 Key Features

	Create and manage artifacts (content) within a ProdOps team.
	Refine existing artifacts.
	Upload documents to ProdOps data center.
	Stream the creation and refining of artifacts.

 Installation

Add ProdopsEx to your mix.exs:
def deps do
 [
 {:prodops_ex, "~> 0.1.0"}
]
end
Fetch dependencies:
mix deps.get
Sign up for a ProdOps account if you don't already
have one, then go to Settings -> Team -> Manage Team Details to get your API
key. If you don't see Manage Team Details, you will need to ask an administrator
on your team for access. More into can be found on our help site.
Put the API key somewhere in your application configuration, such as
dev.secret.exs:
config :prodops_ex, api_key: "YOUR_API_KEY"

 Usage

Create a new artifact in ProdOps
params = %{
 prompt_template_id: 2,
 artifact_slug: "story",
 inputs: [
 %{name: "Context", value: "this is a test"}
],
 fire_and_forget: true
 }

artifact = ProdopsEx.Artifact.create(params)
This will create a new artifact of the given artifact type for the given team matching the api token placed in the config.
{:ok, %{"artifact_id" => 123, "status" => "created"}}

 ProdOps.AI Definitions

	Team: Synonymous with Company or Organization. Teams can have one or many Users. Teams can have details that define who they are, what they do, and what their culture represents. Q: Are there constraints or limiters on Teams (e.g. domain)
	Users: A member of a team. A person who uses ProdOps.AI to create something. Users are defined by email address and constrained by that email address to one Team.
	Project: A software development (or other) project, product, or idea, generally defined with a goal. A ProdOps project could have a start and a finish, like a typical project (Build a wordpress marketing site for NOLA PD; Update the Revelry website with new creative and branding). As well, a ProdOps project could be an ongoing effort, such as a product (Platform, Peerbot, Apple Music). At its most basic, a ProdOps project is the subject that will drive the types of content that will be generated.
	Artifact Types: Every piece of content generated in ProdOps has a type, which determines the purpose, format, and types of prompt used in generating the thing. Users define their own prompt template types based on their needs.
	Prompt templates / Prompt / Template: A re-usable template that contains both dynamic and static data. When the user is generating an artifact, this is what they will interact with, and that collaboration is what is sent to the LLM. Prompt templates are grouped by the type of artifact selected.

 Contributing and Development

Bug reports and pull requests are welcome on GitHub at https://github.com/revelrylabs/prodops_ex. Check out the contributing guidelines for more info.
Everyone is welcome to participate in the project. We expect contributors to adhere to the Contributor Covenant Code of Conduct.

 Releases

See RELEASES.md for details about the release process.

 Documentation

Documentation can be generated with ExDoc
and published on HexDocs. Docs can be found at https://hexdocs.pm/prodops_ex.
Prodops.AI documentation can be found on the help site.

 License

ProdopsEx is released under the MIT License. See the LICENSE file for details.

LICENSE

MIT License

Copyright (c) 2024 Revelry Labs, LLC

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Contributing and Development

 API Key

You'll need a ProdOps API key
to get started. Copy config/config.example-secret.exs to
config/config.secret.exs and put your API key into that file.

 Development Setup

	Make sure you have Elixir 1.12+ installed
	Clone the repo
	Run mix deps.get
	Run mix test

You can run the same checks that are in the CI pipeline, which is run via GitHub Actions:
./presubmit.sh
For convenience we recommend using this as a pre-push hook:
cp presubmit.sh .git/hooks/pre-push
You can run the library via the iex shell to run functions through it, e.g.:
iex -S mix
iex()> ProdopsEx.Artifact.get(123, "story")

 Submitting Changes

	Find or open an Issue related to the changes you're making
	Fork the project
	Create a new topic branch to contain your feature, change, or fix.
	Make sure all the checks are still passing: the CI system runs these checks automatically
	Implement your feature, change, or fix. Make sure to write tests, update and/or add documentation.
	Push your topic branch up to your fork.
	Open a Pull Request with a clear title and description, and mention the related Issue(s)

Releasing a new version

 Preparation

	[] Update the package version in mix.exs
	[] Update the package version badge and installation instructions in README.md

 Release Process

	[] Make sure all changes in the Preparation section are in main
	[] In GitHub, create, and publish, a new release with appropriate notes, and version matching the package version mix.exs
	[] The github actions workflow should automatically publish the package and docs to hex

Contributor Covenant Code of Conduct

 Our Pledge

In the interest of fostering an open and welcoming environment, we as
contributors and maintainers pledge to making participation in our project and
our community a harassment-free experience for everyone, regardless of age, body
size, disability, ethnicity, gender identity and expression, level of experience,
nationality, personal appearance, race, religion, or sexual identity and
orientation.

 Our Standards

Examples of behavior that contributes to creating a positive environment
include:
	Using welcoming and inclusive language
	Being respectful of differing viewpoints and experiences
	Gracefully accepting constructive criticism
	Focusing on what is best for the community
	Showing empathy towards other community members

Examples of unacceptable behavior by participants include:
	The use of sexualized language or imagery and unwelcome sexual attention or
advances
	Trolling, insulting/derogatory comments, and personal or political attacks
	Public or private harassment
	Publishing others' private information, such as a physical or electronic
address, without explicit permission
	Other conduct which could reasonably be considered inappropriate in a
professional setting

 Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable
behavior and are expected to take appropriate and fair corrective action in
response to any instances of unacceptable behavior.
Project maintainers have the right and responsibility to remove, edit, or
reject comments, commits, code, wiki edits, issues, and other contributions
that are not aligned to this Code of Conduct, or to ban temporarily or
permanently any contributor for other behaviors that they deem inappropriate,
threatening, offensive, or harmful.

 Scope

This Code of Conduct applies both within project spaces and in public spaces
when an individual is representing the project or its community. Examples of
representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an appointed
representative at an online or offline event. Representation of a project may be
further defined and clarified by project maintainers.

 Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported by contacting the project team at support@revelry.co. All
complaints will be reviewed and investigated and will result in a response that
is deemed necessary and appropriate to the circumstances. The project team is
obligated to maintain confidentiality with regard to the reporter of an incident.
Further details of specific enforcement policies may be posted separately.
Project maintainers who do not follow or enforce the Code of Conduct in good
faith may face temporary or permanent repercussions as determined by other
members of the project's leadership.

 Attribution

This Code of Conduct is adapted from the Contributor Covenant, version 1.4,
available at http://contributor-covenant.org/version/1/4

ProdopsEx.Artifact

Handles artifact operations for the ProdOps API such as retrieving artifacts
for a given project, creating artifacts, refining artifacts, and deleting artifacts.
Artifacts are any generated content, i.e. user stories, blog posts, code
snippets, etc. They are organized by artifact_slugs, which define what type
of content they are. Most artifact operations require specifying the
artifact_slug.
They are generated by passing input into a prompt template. Inputs come from
up to three places:
	user inputs: you can specify what values these have when creating Artifacts
	document queries: semantically similar parts of documents are automatically
found within a collection of documents, and inserted into the prompt template
prior to generation, known as Retrieval-Augmented Generation (RAG)
	document attachments: an entire document, such as something uploaded by you,
is inserted into the prompt template prior to generation

 Summary

 Functions

 create(params, config \\ [])

 Creates an artifact by submitting a request with the required parameters.

 delete(artifact_id, artifact_slug, config \\ [])

 Deletes an artifact by its ID.

 get(artifact_id, artifact_slug, config \\ [])

 Retrieves an artifact by its ID.

 list_project_artifacts(project_id, artifact_slug, config \\ [])

 Retrieves artifacts of one type based on the artifact_slug for a given project.

 refine_artifact(params, config \\ [])

 Refines an artifact by submitting a request with the required parameters.

 stream_create_artifact(params, config \\ [])

 Creates an artifact by submitting a request with the required parameters.

 stream_refine_artifact(params, config \\ [])

 Refines an artifact by submitting a request with the required parameters.

 Functions

 Link to this function

 create(params, config \\ [])

 View Source

 @spec create(
 %{
 prompt_template_id: integer(),
 artifact_slug: String.t(),
 project_id: integer(),
 inputs: list(),
 fire_and_forget: boolean()
 },
 Keyword.t()
) :: {:ok, map()} | {:error, term()}

Creates an artifact by submitting a request with the required parameters.

 Parameters

	params: The parameters for the artifact request.
	config (optional): a configuration map used to override default config values

 Examples

iex> ProdopsEx.Artifact.create(%{
...> prompt_template_id: 2,
...> artifact_slug: "story",
...> project_id: 1,
...> inputs: [
...> %{name: "Context", value: "this is a test"}
...>],
...> fire_and_forget: true
...> })
{:ok, %{"artifact_id" => 123, "status" => "created"}}

 Link to this function

 delete(artifact_id, artifact_slug, config \\ [])

 View Source

 @spec delete(integer(), String.t(), Keyword.t()) :: {:ok, map()} | {:error, any()}

Deletes an artifact by its ID.

 Parameters

	artifact_id: the ID of the artifact
	artifact_slug: the type of the artifact to be deleted
	config (optional): a configuration map used to override default config values

 Example

iex> ProdopsEx.Artifact.delete(1, "story")
{:ok,
 %{status: "ok", response: %{"message" => "Artifact deleted successfully."}}}

 Link to this function

 get(artifact_id, artifact_slug, config \\ [])

 View Source

 @spec get(integer(), String.t(), Keyword.t()) :: {:ok, map()} | {:error, any()}

Retrieves an artifact by its ID.

 Parameters

	artifact_id: the ID of the artifact
	artifact_slug: the slug which defines the type of artifact that will be returned
	config (optional): a configuration map used to override default config values

 Example

iex> ProdopsEx.Artifact.get(1, "story")
{:ok,
 %{
 status: "ok",
 response: %{
 "artifact" => %{
 "chat_history" => [
 %{
 "content" => "some user prompt content",
 "role" => "user"
 },
 %{
 "content" => "some assistant response content",
 "role" => "assistant"
 }
],
 "id" => 123,
 "manually_edited" => false,
 "name" => "Some Name",
 "notes" => nil,
 "share_token" => nil
 }
 }
 }}

 Link to this function

 list_project_artifacts(project_id, artifact_slug, config \\ [])

 View Source

 @spec list_project_artifacts(integer(), String.t(), Keyword.t()) ::
 {:ok, list()} | {:error, any()}

Retrieves artifacts of one type based on the artifact_slug for a given project.

 Parameters

	project_id: the ID of the project
	artifact_slug: the slug which defines the type of artifacts that will be returned
	config (optional): a configuration map used to override default config values

 Example

iex> ProdopsEx.Artifact.list_project_artifacts(1, "story")
{:ok,
 %{
 status: "ok",
 response: %{
 "artifacts" => [
 %{
 "chat_history" => [
 %{
 "content" => "You are going to be a product manager and write a BDD-style user story...",
 "role" => "user"
 },
 %{
 "content" => "## Background ...",
 "role" => "assistant"
 }
],
 "content" => "## Background ...",
 "id" => 1,
 "manually_edited" => false,
 "name" => "Artifact Name",
 "notes" => nil,
 "share_token" => nil
 }
]
 }
 }}

 Returns

The function returns a list of artifacts for the specified project which
match the artifact slug.

 Link to this function

 refine_artifact(params, config \\ [])

 View Source

 @spec refine_artifact(
 %{
 artifact_id: integer(),
 artifact_slug: String.t(),
 refine_prompt: String.t()
 },
 Keyword.t()
) :: {:ok, map()} | {:error, any()}

Refines an artifact by submitting a request with the required parameters.

 Parameters

	params: The parameters for the artifact request.
	config: The configuration map containing the API key and optionally the URL.

 Example

iex> ProdopsEx.Artifact.refine_artifact(%{
...> artifact_id: 1,
...> artifact_slug: "story",
...> refine_prompt: "Refine this story"
...> })

 Link to this function

 stream_create_artifact(params, config \\ [])

 View Source

 @spec stream_create_artifact(map(), Keyword.t()) :: {:ok, map()} | {:error, any()}

Creates an artifact by submitting a request with the required parameters.

 Parameters

	params: The parameters for the artifact creation request.
	config: The configuration map containing the API key and endpoint URL.

 Example

iex> ProdopsEx.Artifact.stream_create_artifact(%{
...> prompt_template_id: 2,
...> project_id: 1,
...> artifact_slug: "story",
...> inputs: [
...> %{name: "Context", value: "this is a test"}
...>]
...> })

 Link to this function

 stream_refine_artifact(params, config \\ [])

 View Source

 @spec stream_refine_artifact(map(), Keyword.t()) :: {:ok, map()} | {:error, any()}

Refines an artifact by submitting a request with the required parameters.

 Parameters

	params: The parameters for the artifact request.
	config: The configuration map containing the API key and endpoint URL.

 Example

iex> ProdopsEx.Artifact.stream_refine_artifact(%{artifact_slug: "story", artifact_id: 1, refine_prompt: "some prompt"})

ProdopsEx.ArtifactType

Handles artifact type operations for the ProdOps API.
These represent types of outputs. They may be things like user stories, code
snippets, blog posts, or anything else that has been defined within the
ProdOps UI. They are used to classify generated Artifacts into groups.

 Summary

 Functions

 list(config \\ [])

 Returns a list of all artifact types for a given team

 Functions

 Link to this function

 list(config \\ [])

 View Source

 @spec list(Keyword.t()) :: {:ok, map()} | {:error, any()}

Returns a list of all artifact types for a given team

 Examples

iex> ProdopsEx.ArtifactType.list()
{:ok,
 %{
 status: "ok",
 response: %{
 "artifact_types" => [
 %{
 "description" => "This is a story",
 "name" => "Story",
 "slug" => "story"
 },
 ...
]
 }
 }
}

ProdopsEx.DataCenter

Handles data center operations for the ProdOps API.
The Data Center is used for:
	uploading documents
	managing collections of documents
	connecting external Data Sources (GitHub, Jira, Notion, etc.)

Not all of these items are currently supported by the ProdOps API, so there
is additional functionality in the UI not yet available in this SDK.

 Summary

 Functions

 upload_document(path_to_file, config \\ [])

 Uploads a document to the ProdOps data center.

 Functions

 Link to this function

 upload_document(path_to_file, config \\ [])

 View Source

 @spec upload_document(map(), Keyword.t()) :: {:ok, map()} | {:error, any()}

Uploads a document to the ProdOps data center.

 Parameters

	path_to_file: the full path to the file that will be uploaded
	config (optional): a configuration map used to override default config values

 Examples

iex> ProdopsEx.DataCenter.upload_document("/path/to/file.txt")
{:ok, %{status: "ok", response: %{"id" => 4}}}

ProdopsEx.Project

Handles project operations for the ProdOps API.
A Project is used for organization, and likely represents some real-world
project, such as development of an application. Some resources can be
Project-scoped. A Team may have multiple Projects.

 Summary

 Functions

 list(config \\ [])

 Returns a list of all projects for a given team

 Functions

 Link to this function

 list(config \\ [])

 View Source

 @spec list(Keyword.t()) :: {:ok, map()} | {:error, any()}

Returns a list of all projects for a given team

 Parameters

	config (optional): a configuration map used to override default config values

 Examples

iex> ProdopsEx.Project.list()
{:ok,
 %{
 status: "ok",
 response: %{
 "projects" => [
 %{
 "id" => 1,
 "name" => "Project Name",
 "overview" => "Project Overview"
 },
 %{
 "id" => 2,
 "name" => "Second Project",
 "overview" => "Second Project Overview"
 }
]
 }
 }
}

ProdopsEx.PromptTemplate

Handles prompt template operations for the ProdOps API.
Prompt Templates are the building blocks used for generating Artifacts.
They are a combination of hard-coded information and variables which represent
data that can be inserted. They are the basic building block for setting up
repeatable workflows to generate Artifacts.
They may look something like this:
You are a helpful assistant. A user has asked a question about company
policies, which you must answer. This is their question:

{custom.Question}

Use this information to answer the question:

{query.Company Policies}
The value {custom.Question} can be explicitly passed into the template
when generating a new Artifact.
The value {query.Company Policies} will automatically find relevant
information by checking the value of an explicit input such as
{custom.Question}, and can search through all Documents or a Collection of
Documents. In this example, it might search a Collection of employee manuals,
playbooks, etc., and will calculate the most semantically similar values
between their sections and the user's question, which is the value input into
{custom.Question}. It will then return the relevant segments and insert them
into the prompt prior to generation. This technique is known as
Retrieval-Augmented Generation.
For more information, see the ProdOps.AI Prompts help page.

 Summary

 Functions

 list(artifact_slug, config \\ [])

 Retrieves prompt templates for a given artifact type.

 Functions

 Link to this function

 list(artifact_slug, config \\ [])

 View Source

 @spec list(String.t(), Keyword.t()) :: {:ok, list()} | {:error, any()}

Retrieves prompt templates for a given artifact type.

 Parameters

	artifact_slug: the type of prompt templates to return from the request
	config (optional): a configuration map used to override default config values

 Example

iex> ProdopsEx.PromptTemplate.list("questions")
{:ok,
 %{
 status: "ok",
 response: %{
 "prompt_templates" => [
 %{
 "content" => "Answer this: {custom.Question} Use these docs: {query.Documents}",
 "custom_variables" => [
 %{
 "question" => "Question",
 "id" => "fc4cbbe7-8f90-4c39-a8e6-582d37884f14",
 "name" => "Question"
 }
],
 "description" => "Answers a question using document queries",
 "document_queries" => [
 %{
 "collection_id" => nil,
 "collection_ids" => ~c"s",
 "count" => 3,
 "id" => "6c69b859-8c40-41c9-b8f9-8bb1bdf369a1",
 "min_score" => 0.75,
 "name" => "Documents",
 "query" => "{custom.Question}",
 "type" => nil
 }
],
 "id" => 1,
 "name" => "Question Answering"
 }
]
 }
 }}

 Returns

The function returns a list of prompt templates for the specified artifact type.

ProdopsEx.Validate

Handles validation operations for the ProdOps API.

 Summary

 Functions

 validate_api_key(config \\ [])

 Validates the provided API key and returns team information.

 Functions

 Link to this function

 validate_api_key(config \\ [])

 View Source

 @spec validate_api_key(Keyword.t()) :: {:ok, map()} | {:error, any()}

Validates the provided API key and returns team information.

 Parameters

	config (optional): a configuration map used to override default config values

 Example

iex> ProdopsEx.Validate.validate_api_key()
{:ok, %{status: "ok", response: %{"team_id" => 1, "team_name" => "ProdOps"}}}

 OEBPS/dist/epub-N2MDDSYJ.js
(()=>{var g=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var l="ex_doc:settings",d={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=d,this._loadSettings()}get(){return this._settings}update(t){let e=this._settings;this._settings={...this._settings,...t},this._subscribers.forEach(n=>n(this._settings,e)),this._storeSettings()}getAndSubscribe(t){this._subscribers.push(t),t(this._settings)}_loadSettings(){try{let t=localStorage.getItem(l);if(t){let e=JSON.parse(t);this._settings={...this._settings,...e}}this._loadSettingsLegacy()}catch(t){console.error(`Failed to load settings: ${t}`)}}_storeSettings(){try{this._storeSettingsLegacy(),localStorage.setItem(l,JSON.stringify(this._settings))}catch(t){console.error(`Failed to persist settings: ${t}`)}}_loadSettingsLegacy(){localStorage.getItem("tooltipsDisabled")!==null&&(this._settings={...this._settings,tooltips:!1}),localStorage.getItem("night-mode")==="true"&&(this._settings={...this._settings,nightMode:!0}),this._settings.nightMode===!0&&(this._settings={...this._settings,theme:"dark"})}_storeSettingsLegacy(){this._settings.tooltips?localStorage.removeItem("tooltipsDisabled"):localStorage.setItem("tooltipsDisabled","true"),this._settings.nightMode!==null?localStorage.setItem("night-mode",this._settings.nightMode===!0?"true":"false"):localStorage.removeItem("night-mode"),this._settings.theme!==null?(localStorage.setItem("night-mode",this._settings.theme==="dark"?"true":"false"),this._settings.nightMode=this._settings.theme==="dark"):(delete this._settings.nightMode,localStorage.removeItem("night-mode"))}},h=new s;function a(){["warning","info","error","neutral","tip"].forEach(t=>{i(`blockquote h3.${t}, blockquote h4.${t}`).forEach(e=>{e.closest("blockquote").classList.add(t)})})}var m="hll";function u(){f()}function f(){i("[data-group-id]").forEach(t=>{let e=t.getAttribute("data-group-id");t.addEventListener("mouseenter",n=>{c(e,!0)}),t.addEventListener("mouseleave",n=>{c(e,!1)})})}function c(o,t){i(`[data-group-id="${o}"]`).forEach(n=>{n.classList.toggle(m,t)})}r(()=>{u(),a()});})();

OEBPS/assets/logo.png

