

    

        PropertyDamage

        v0.1.0



    


  

    Table of contents

    
      



      	PropertyDamage


      	Changelog





    	Guides
      


      	Getting Started with PropertyDamage


      	Writing Commands


      	Writing Effective Invariants


      	Debugging Failures


      	Async and Eventual Consistency


      	Chaos Engineering with Nemesis


      	Differential Testing


      	Integration Testing with PropertyDamage


      	Load Testing with PropertyDamage



      

    




        	
          Modules
          


      	CPUStressInjected


      	CPUStressReleased


      	CertificateFailureInjected


      	CertificateFailureRestored


      	ClockSkewInjected


      	ClockSkewRestored


      	MemoryPressureInjected


      	MemoryPressureReleased


      	NetworkLatencyInjected


      	NetworkLatencyRestored


      	NetworkPartitionHealed


      	NetworkPartitioned


      	PacketLossInjected


      	PacketLossRestored


      	ProcessKillCompleted


      	ProcessKilled


      	PropertyDamage


      	PropertyDamage.Differential


      	PropertyDamage.Differential.Baseline


      	PropertyDamage.Differential.Equivalence


      	PropertyDamage.Differential.Result


      	PropertyDamage.Differential.Target


      	PropertyDamage.Error


      	PropertyDamage.Errors


      	PropertyDamage.EventLog.Entry


      	PropertyDamage.Events.CommandSequenceTerminated


      	PropertyDamage.ExUnit


      	PropertyDamage.Export.Common


      	PropertyDamage.Export.ExUnit


      	PropertyDamage.Export.HTTPSpec


      	PropertyDamage.Export.LiveBook


      	PropertyDamage.Export.Script


      	PropertyDamage.Export.Script.Curl


      	PropertyDamage.Export.Script.Elixir


      	PropertyDamage.Export.Script.Python


      	PropertyDamage.FailureIntelligence.Fingerprint


      	PropertyDamage.FailureIntelligence.Patterns


      	PropertyDamage.FailureIntelligence.Similarity


      	PropertyDamage.FailureIntelligence.Verification


      	PropertyDamage.FailureReport


      	PropertyDamage.FailureReport.Formatter


      	PropertyDamage.FailureReport.Timeline


      	PropertyDamage.Forensics.EventMapping


      	PropertyDamage.Generator


      	PropertyDamage.GuidedRunner


      	PropertyDamage.IEx


      	PropertyDamage.LoadTest.Metrics


      	PropertyDamage.LoadTest.RampStrategy


      	PropertyDamage.LoadTest.Report


      	PropertyDamage.LoadTest.Runner


      	PropertyDamage.LoadTest.Worker


      	PropertyDamage.LoadTest.WorkerPool


      	PropertyDamage.MockServiceAdapter


      	PropertyDamage.MockServiceRegistry


      	PropertyDamage.Model.Projection.Liveness


      	PropertyDamage.Model.Projection.Statistics


      	PropertyDamage.Mutation.Analysis


      	PropertyDamage.Mutation.Formatter


      	PropertyDamage.Mutation.MutatingAdapter


      	PropertyDamage.Mutation.Operator


      	PropertyDamage.Mutation.Operators.Boundary


      	PropertyDamage.Mutation.Operators.Event


      	PropertyDamage.Mutation.Operators.Omission


      	PropertyDamage.Mutation.Operators.Status


      	PropertyDamage.Mutation.Operators.Value


      	PropertyDamage.Mutation.Report


      	PropertyDamage.Mutation.Runner


      	PropertyDamage.Options


      	PropertyDamage.Progress


      	PropertyDamage.Ref.Unresolved


      	PropertyDamage.Sequence


      	PropertyDamage.Settle


      	PropertyDamage.Shrinker.Config


      	PropertyDamage.Shrinker.Graph


      	PropertyDamage.Stutter


      	PropertyDamage.Stutter.Config


      	PropertyDamage.Stutter.Violation


      	PropertyDamage.Suggestions.Analyzer


      	PropertyDamage.Suggestions.Formatter


      	PropertyDamage.Suggestions.Patterns


      	PropertyDamage.TargetedGeneration


      	PropertyDamage.Telemetry.Events


      	PropertyDamage.Telemetry.Events.CacheOperation


      	PropertyDamage.Telemetry.Events.ConnectionPoolExhausted


      	PropertyDamage.Telemetry.Events.DatabaseQuery


      	PropertyDamage.Telemetry.Events.HTTPRequest


      	PropertyDamage.Telemetry.Events.QueueOperation


      	PropertyDamage.Telemetry.Events.RetryAttempt


      	PropertyDamage.Telemetry.Events.ServiceError


      	PropertyDamage.Telemetry.Events.SlowOperation


      	PropertyDamage.TelemetryReceiver


      	PropertyDamage.Validation


      	PropertyDamage.Validator


      	ResourceExhausted


      	ResourceReleased


      	SlowIOInjected


      	SlowIORestored





    	Core Behaviours
      


      	PropertyDamage.Adapter


      	PropertyDamage.Adapter.Injector


      	PropertyDamage.Command


      	PropertyDamage.Model


      	PropertyDamage.Model.Projection


      	PropertyDamage.Model.Simulator


      	PropertyDamage.Nemesis



      

    




    	Execution
      


      	PropertyDamage.EventQueue


      	PropertyDamage.Executor


      	PropertyDamage.Linearization


      	PropertyDamage.Ref



      

    




    	Shrinking & Analysis
      


      	PropertyDamage.Analysis


      	PropertyDamage.Coverage


      	PropertyDamage.Flakiness


      	PropertyDamage.Replay


      	PropertyDamage.Shrinker



      

    




    	Fault Injection
      


      	PropertyDamage.Nemesis.CPUStress


      	PropertyDamage.Nemesis.CertificateExpiry


      	PropertyDamage.Nemesis.ClockSkew


      	PropertyDamage.Nemesis.MemoryPressure


      	PropertyDamage.Nemesis.NetworkLatency


      	PropertyDamage.Nemesis.NetworkPartition


      	PropertyDamage.Nemesis.PacketLoss


      	PropertyDamage.Nemesis.ProcessKill


      	PropertyDamage.Nemesis.ResourceExhaustion


      	PropertyDamage.Nemesis.SlowIO



      

    




    	Testing Tools
      


      	PropertyDamage.FailureIntelligence


      	PropertyDamage.LoadTest


      	PropertyDamage.Mutation


      	PropertyDamage.Suggestions



      

    




    	Debugging & Export
      


      	PropertyDamage.Diagram


      	PropertyDamage.Diff


      	PropertyDamage.Export


      	PropertyDamage.Forensics



      

    




    	Integration
      


      	PropertyDamage.Integration


      	PropertyDamage.Livebook


      	PropertyDamage.Livebook.Charts


      	PropertyDamage.Telemetry


      	PropertyDamage.Telemetry.Collector


      	PropertyDamage.Telemetry.Dashboard



      

    




    	Persistence
      


      	PropertyDamage.Persistence


      	PropertyDamage.Regression


      	PropertyDamage.SeedLibrary



      

    




    	Exceptions
      


      	PropertyDamage.AssertionFailed



      

    




        



          	
            Mix Tasks
            

                	mix pd.gen.adapter


                	mix pd.gen.command


                	mix pd.gen.model


                	mix pd.gen.projection


                	mix pd.integration


                	mix pd.scaffold


                	mix pd.validate


            

          


      

    

  

    PropertyDamage

Controlled chaos from the outside in: break your systems before your users do it in prod.
A stateful property-based testing (SPBT) framework for Elixir.
PropertyDamage generates random sequences of operations against your system and verifies that invariants hold throughout. When a failure is found, it automatically shrinks the sequence to the minimal reproduction case.
Features
	Stateful Testing: Generate sequences of commands, not just individual inputs
	Automatic Shrinking: Failed sequences are minimized to the smallest reproduction
	Symbolic References: Commands can reference results from earlier commands
	Parallel Execution: Branching sequences for race condition detection
	Linearization Checking: Verify parallel results are sequentially explainable
	Idempotency Testing: Built-in stutter testing for retry safety
	Rich Failure Reports: Comprehensive diagnostics when tests fail
	Failure Persistence: Save failures for later analysis and regression testing
	Step-by-Step Replay: Debug failures by executing commands one at a time
	Seed Library: Track and share interesting seeds across your team
	Coverage Metrics: Know how thoroughly your model is being exercised
	Flakiness Detection: Identify non-deterministic behavior in your SUT
	Load Testing: Generate realistic load using SPBT traffic patterns
	Visual Diagrams: Sequence diagrams in Mermaid, PlantUML, WebSequence formats
	Diff Debugging: Compare passing vs failing runs to find divergence
	Failure Export Hub: Convert failures to portable artifacts (scripts, tests, notebooks)
	Mutation Testing: Verify your tests catch bugs by injecting faults
	Invariant Suggestions: Get AI-powered suggestions for missing checks
	Failure Intelligence: Pattern detection, similarity analysis, and fix verification
	OpenAPI Scaffolding: Generate command modules from API specifications
	Telemetry Dashboard: Real-time monitoring of test runs with LiveView integration
	Livebook Integration: Interactive exploration with rich visualizations and charts
	Chaos Engineering: Built-in nemesis operations for network, resource, time, and process faults
	Differential Testing: Compare implementations against oracles, baselines, or each other

Installation
Add property_damage to your list of dependencies in mix.exs:
def deps do
  [
    {:property_damage, "~> 0.1.0"}
  ]
end
Quick Start
1. Define Commands
Commands represent operations that can be executed against your system:
defmodule MyApp.Commands.CreateUser do
  use PropertyDamage.Command

  defstruct [:name, :email]

  @impl true
  def new!(state, generators) do
    %__MODULE__{
      name: Faker.Person.name(),
      email: Faker.Internet.email()
    }
  end

  @impl true
  def precondition(_state), do: true

  @impl true
  def events(command, response) do
    [%MyApp.Events.UserCreated{
      id: response["id"],
      name: command.name,
      email: command.email
    }]
  end

  @impl true
  def ref(_command, response), do: response["id"]
end
2. Define Projections
Projections maintain state by processing events:
defmodule MyApp.Projections.Users do
  use PropertyDamage.Model.Projection

  def init, do: %{}

  def handles?(%MyApp.Events.UserCreated{}), do: true
  def handles?(_), do: false

  def apply(state, %MyApp.Events.UserCreated{} = event) do
    Map.put(state, event.id, %{name: event.name, email: event.email})
  end
end
3. Define Assertions (Invariants)
Assertions verify that invariants hold after each command. Use Model.Projection to define assertions with optional state tracking:
defmodule MyApp.Assertions.UniqueEmails do
  use PropertyDamage.Model.Projection

  # Track users state (optional - defaults to %{})
  def init, do: %{users: %{}}

  # Update state on events (optional - defaults to returning state unchanged)
  def apply(state, %UserCreated{id: id, email: email}) do
    put_in(state, [:users, id], %{email: email})
  end
  def apply(state, _), do: state

  # Assert unique emails after every step
  @trigger every: 1
  def assert_unique_emails(state, _cmd_or_event) do
    emails = Map.values(state.users) |> Enum.map(& &1.email)
    unless length(emails) == length(Enum.uniq(emails)) do
      PropertyDamage.fail!("Duplicate emails found", emails: emails)
    end
  end
end
For simpler assertions that don't need state tracking, you can skip init/0 and apply/2:
defmodule MyApp.Assertions.ValidEmails do
  use PropertyDamage.Model.Projection

  # Just define assertions - defaults are injected
  @trigger every: CreateUser
  def assert_valid_email(_state, %CreateUser{email: email}) do
    unless String.contains?(email, "@") do
      PropertyDamage.fail!("Invalid email", email: email)
    end
  end
end
4. Define a Model
The model ties everything together:
defmodule MyApp.TestModel do
  @behaviour PropertyDamage.Model

  @impl true
  def commands do
    [
      {MyApp.Commands.CreateUser, weight: 10},
      {MyApp.Commands.UpdateUser, weight: 5},
      {MyApp.Commands.DeleteUser, weight: 3}
    ]
  end

  @impl true
  def state_projection, do: MyApp.Projections.Users

  @impl true
  def extra_projections do
    [MyApp.Assertions.UniqueEmails, MyApp.Assertions.ValidEmails]
  end
end
5. Define an Adapter
The adapter executes commands against your actual system:
defmodule MyApp.TestAdapter do
  @behaviour PropertyDamage.Adapter

  @impl true
  def execute(%MyApp.Commands.CreateUser{} = cmd, config) do
    Req.post!("#{config.base_url}/users", json: %{
      name: cmd.name,
      email: cmd.email
    }).body
  end

  # ... other commands
end
6. Run Tests
PropertyDamage.run(
  model: MyApp.TestModel,
  adapter: MyApp.TestAdapter,
  adapter_config: %{base_url: "http://localhost:4000"},
  max_commands: 50,
  max_runs: 100
)
Debugging Failures
When PropertyDamage finds a failure, it provides rich tools for understanding what went wrong.
Understanding Failure Reports
{:error, failure} = PropertyDamage.run(model: M, adapter: A)

# Get a quick explanation
explanation = PropertyDamage.explain(failure)
IO.puts(PropertyDamage.Analysis.format_explanation(explanation))

# Find what triggered the failure
{:ok, trigger} = PropertyDamage.isolate_trigger(failure)
IO.puts("Cause: #{trigger.likely_cause}")

# Generate a reproducible test
test_code = PropertyDamage.generate_test(failure, format: :exunit)
File.write!("test/regression_test.exs", test_code)
Interactive Shrinking
If the initial shrinking didn't produce a minimal sequence:
# Try harder to shrink
{:ok, smaller} = PropertyDamage.shrink_further(failure,
  strategy: :exhaustive,
  max_time_ms: 120_000
)
Strategies:
	:quick - Fast, may miss some reductions
	:thorough - Balanced approach (default)
	:exhaustive - Try all possible reductions

Step-by-Step Replay
Execute commands one at a time to see exactly what happens:
{:ok, steps} = PropertyDamage.replay(failure)

for step <- steps do
  IO.puts("[#{step.index}] #{step.command_name}")
  IO.inspect(step.projections, label: "State after")

  case step.result do
    :ok -> IO.puts("  OK")
    {:check_failed, check, msg} -> IO.puts("  FAILED: #{msg}")
  end
end
For interactive debugging:
alias PropertyDamage.Replay

{:ok, session} = Replay.start(failure)
{:ok, session, step1} = Replay.step(session)
IO.inspect(Replay.current_state(session))
{:ok, session, step2} = Replay.step(session)
# ... continue stepping
Replay.stop(session)
Visual Debugging Tools
For complex failures, PropertyDamage provides visual tools to understand execution flow:
# Generate a sequence diagram from a failure
diagram = PropertyDamage.Diagram.from_failure_report(failure, :mermaid)
IO.puts(diagram)  # Paste into GitHub markdown, Notion, etc.

# Compare a passing run against a failing run to find the divergence
passing_trace = PropertyDamage.Diff.create_trace(passing_commands, passing_events, [], :pass)
failing_trace = PropertyDamage.Diff.create_trace(failing_commands, failing_events, [], {:fail, :test})
diff = PropertyDamage.Diff.compare_traces(passing_trace, failing_trace)
IO.puts(PropertyDamage.Diff.format(diff, format: :terminal))
See Visual Sequence Diagrams and Diff-Based Debugging for detailed documentation.
Failure Persistence
Save failures for later analysis or to build a regression suite:
# Save a failure
{:error, failure} = PropertyDamage.run(model: M, adapter: A)
{:ok, path} = PropertyDamage.save_failure(failure, "failures/")
# => {:ok, "failures/20251226T143000-check_failed-UniqueEmails-seed512902757.pd"}

# Load and analyze later
{:ok, loaded} = PropertyDamage.load_failure(path)
{:ok, steps} = PropertyDamage.replay(loaded)

# List all saved failures
failures = PropertyDamage.list_failures("failures/", sort: :newest)

# Delete old failures
PropertyDamage.delete_failure(path)
Seed Library
Track seeds that have found bugs for regression testing:
# Create or load a seed library
{:ok, library} = PropertyDamage.load_seed_library("seeds.json")

# Add a failure to the library
{:error, failure} = PropertyDamage.run(model: M, adapter: A)
{:ok, library} = PropertyDamage.add_to_seed_library(library, failure,
  tags: [:currency, :capture],
  description: "Currency mismatch in capture"
)

# Save the library
PropertyDamage.save_seed_library(library, "seeds.json")

# Get seeds to run in CI
alias PropertyDamage.SeedLibrary
failing_seeds = SeedLibrary.seed_values(library, status: :failing)

# Update status after running
library = SeedLibrary.record_run(library, seed, failed: false)

# View statistics
IO.puts(SeedLibrary.format(library))
Coverage Metrics
Track how thoroughly your model is being exercised:
alias PropertyDamage.Coverage

# Single run coverage
result = PropertyDamage.run(model: M, adapter: A)
coverage = PropertyDamage.coverage(result, M)
IO.puts(Coverage.format(coverage))

# Track across multiple runs
tracker = Coverage.new(M)
tracker = Coverage.record(tracker, result1)
tracker = Coverage.record(tracker, result2)

# Check thresholds in CI
unless Coverage.meets_threshold?(tracker, command: 80, transition: 50) do
  raise "Coverage threshold not met!"
end

# Find untested commands
untested = Coverage.untested_commands(tracker)
Format Options
Coverage supports multiple output formats:
# Summary - basic stats
IO.puts(Coverage.format(tracker, :summary))

# Matrix - shows command transition coverage
IO.puts(Coverage.format(tracker, :matrix))

# Full - includes everything
IO.puts(Coverage.format(tracker, :full))

# State classes (when classifier is set)
IO.puts(Coverage.format(tracker, :state_classes))
Transition Coverage
Track which command pairs (transitions) have been tested:
# Get a transition matrix showing which A→B pairs were tested
matrix = Coverage.transition_matrix(tracker)
# => %{CreateAccount => %{CreateAccount => 5, CreditAccount => 12, DebitAccount => 8}, ...}

# Find untested transitions
untested = Coverage.untested_transitions(tracker)
# => [{CreateAccount, DeleteAccount}, {DebitAccount, CloseAccount}, ...]

# Get most frequent transitions
top = Coverage.top_transitions(tracker, 5)
# => [{{CreateAccount, CreditAccount}, 42}, {{CreditAccount, DebitAccount}, 38}, ...]
State Class Coverage
For more meaningful coverage, define a state classifier to group concrete states into abstract classes:
# Define a classifier function
classifier = fn state ->
  cond do
    state.accounts == %{} -> :no_accounts
    Enum.all?(state.accounts, fn {_, a} -> a.balance == 0 end) -> :all_zero_balance
    Enum.any?(state.accounts, fn {_, a} -> a.balance < 0 end) -> :has_negative
    true -> :has_positive
  end
end

# Create tracker with classifier
tracker = Coverage.new(MyModel, state_classifier: classifier)
tracker = Coverage.record(tracker, result1)
tracker = Coverage.record(tracker, result2)

# View state class distribution
counts = Coverage.state_class_counts(tracker)
# => %{no_accounts: 5, all_zero_balance: 12, has_positive: 83}

# View state class transitions (what state classes lead to what)
transitions = Coverage.state_class_transitions(tracker)
# => %{{:no_accounts, :all_zero_balance} => 5, {:all_zero_balance, :has_positive} => 10, ...}

# Get state class matrix for visualization
state_matrix = Coverage.state_class_matrix(tracker)

# Format with state class matrix
IO.puts(Coverage.format(tracker, :state_classes))
State class coverage helps answer: "Have we tested all interesting state configurations?"
Flakiness Detection
Detect non-deterministic behavior in your system:
# Check if a specific seed is flaky
case PropertyDamage.check_determinism(M, A, 512902757, runs: 10) do
  {:ok, :deterministic} ->
    IO.puts("Seed produces consistent results")

  {:ok, :flaky, stats} ->
    IO.puts("FLAKY: passed #{stats.passes}/#{stats.runs} times")
    IO.puts("Variance type: #{stats.variance_type}")
end

# Discover flaky seeds
flaky_seeds = PropertyDamage.discover_flaky_seeds(M, A,
  num_seeds: 20,
  runs_per_seed: 5,
  verbose: true
)
OpenAPI Scaffolding
Generate command modules from an OpenAPI specification:
# Generate from a local file
mix pd.scaffold --from openapi.json --output lib/my_app_test/commands/

# Generate from a URL
mix pd.scaffold --from https://api.example.com/openapi.json --output lib/

# Only specific operations
mix pd.scaffold --from openapi.json --operations createUser,updateUser

# Preview without writing
mix pd.scaffold --from openapi.json --dry-run

Generated commands include:
	Struct fields from request body schemas
	Type hints from OpenAPI types
	Placeholder generators based on field types
	Adapter execution hints

Model Validation
Validate your model before running tests:
mix pd.validate --model MyApp.TestModel

This checks:
	All commands implement required callbacks
	Projections handle their declared events
	Checks reference valid projections
	No circular dependencies

Configuration
Run Options
PropertyDamage.run(
  model: MyApp.TestModel,
  adapter: MyApp.TestAdapter,

  # Generation
  max_commands: 50,        # Max commands per sequence
  max_runs: 100,           # Number of test runs
  seed: 12345,             # Deterministic seed (optional)

  # Shrinking
  shrink_timeout_ms: 30_000,
  max_shrink_iterations: 1000,

  # Idempotency
  stutter_probability: 0.1,  # Retry probability

  # Adapter
  adapter_config: %{base_url: "http://localhost:4000"}
)
Model Callbacks
defmodule MyModel do
  @behaviour PropertyDamage.Model

  # Required
  def commands, do: [{CommandModule, weight: N}, ...]
  def state_projection, do: MyStateProjection
  def extra_projections, do: [MyExtraProjection, ...]  # Optional

  # Optional
  def injectable_events, do: []  # For Adapter.Injector
  def simulator, do: MySimulatorModule  # Returns module implementing Simulator behaviour
  def setup_once(config), do: :ok
  def setup_each(config), do: :ok  # Called before each run/shrink attempt
  def teardown_each(config), do: :ok
  def teardown_once(config), do: :ok
  def terminate?(state, command, events), do: false  # Custom termination
end
Parallel Execution
PropertyDamage supports branching sequences for detecting race conditions and
concurrent bugs. Commands can execute in parallel branches, and the framework
verifies that results are linearizable.
Enabling Branching Sequences
PropertyDamage.run(
  model: MyApp.TestModel,
  adapter: MyApp.TestAdapter,
  max_commands: 50,
  max_runs: 100,
  branching: [
    branch_probability: 0.3,   # Probability of creating branch points
    max_branches: 3,           # Max parallel branches
    max_branch_length: 5,      # Max commands per branch
    min_prefix_length: 3       # Min commands before branching
  ]
)
How It Works
A branching sequence has three parts:
	Prefix: Commands executed sequentially before branching
	Branches: Parallel command lists executed concurrently
	Suffix: Commands executed after branches merge

Prefix:  [cmd1, cmd2]
                |
       +--------+--------+
       |                 |
Branch A: [cmd3a, cmd4a] | Branch B: [cmd3b]
       |                 |
       +--------+--------+
                |
Suffix: [cmd5]
Linearization Checking
After parallel execution, PropertyDamage verifies that the observed results
can be explained by some sequential ordering of the commands. If no valid
ordering exists, a :linearization_failed error is raised.
alias PropertyDamage.Linearization

# Check complexity before verification
case Linearization.feasibility(branches) do
  :ok -> IO.puts("Manageable linearization space")
  {:warning, count} -> IO.puts("#{count} possible orderings")
end

# Count possible linearizations
count = Linearization.linearization_count([[cmd1, cmd2], [cmd3]])
# => 3 (possible orderings: [1,2,3], [1,3,2], [3,1,2])
Shrinking Branching Sequences
The shrinker handles branching sequences with special strategies:
	Convert to linear: If race not required for failure
	Remove branches: Eliminate unnecessary parallel branches
	Shrink branches: Remove commands within individual branches
	Shrink prefix/suffix: Remove non-essential sequential commands

Ref Constraints in Parallel Execution
Symbolic references follow strict rules in branching sequences:
	Refs from prefix can be used in any branch
	Refs from one branch cannot be used in another branch
	Refs from branches can be used in suffix

# Valid: prefix ref used in branch
prefix = [CreateUser.new()]  # Creates :user_ref
branches = [[GetUser.new(user_ref: :user_ref)], [UpdateUser.new(user_ref: :user_ref)]]

# Invalid: cross-branch ref usage
branches = [[CreateItem.new()],  # Creates :item_ref
            [ViewItem.new(item_ref: :item_ref)]]  # ERROR: :item_ref not visible
Eventual Consistency (Async Support)
For systems with eventual consistency, PropertyDamage provides probe and async
command semantics with automatic settle/retry logic.
Command Semantics
Commands can declare their semantics via the semantics/0 callback:
defmodule MyTest.Commands.GetOrderStatus do
  @behaviour PropertyDamage.Command

  defstruct [:order_id]

  # This is a probe - it queries state and may need to retry
  def semantics, do: :probe

  # Configure settle behavior
  def settle_config do
    %{
      timeout_ms: 5_000,    # Max time to wait
      interval_ms: 200,     # Time between retries
      backoff: :exponential # :linear or :exponential
    }
  end

  def read_only?, do: true
end
Semantics Types
	Semantics	Purpose	Settle Behavior
	:sync	Mutates state (default)	Execute once
	:probe	Queries state	Retry until success or timeout
	:async	Waits for async completion	Retry until complete
	:mock_config	Configures mock services	Not sent to SUT

Adapter Integration
Adapters return settle-compatible results for probes:
def execute(%GetOrderStatus{order_id: id}, ctx) do
  case MyAPI.get_order(id) do
    {:ok, %{status: "pending"}} ->
      {:retry, :still_pending}  # Keep trying

    {:ok, order} ->
      {:ok, order}  # Success - stop retrying

    {:error, :not_found} ->
      {:retry, :not_found}  # Keep trying

    {:error, reason} ->
      {:error, reason}  # Hard failure - stop immediately
  end
end
See Async and Eventual Consistency Guide
for complete documentation including bridge commands, Adapter.Injector, and
handling async operations that require polling.
Fault Injection (Nemesis)
Test system resilience by injecting faults like network partitions, latency,
and node crashes.
Defining a Nemesis Command
defmodule MyTest.Nemesis.PartitionNetwork do
  @behaviour PropertyDamage.Nemesis

  defstruct [:partition_type, :duration_ms]

  @impl true
  def precondition(_state), do: true

  @impl true
  def inject(%__MODULE__{partition_type: type}, ctx) do
    :ok = Toxiproxy.partition(ctx.proxy, type)
    {:ok, [%NetworkPartitioned{type: type}]}
  end

  @impl true
  def restore(%__MODULE__{partition_type: type}, ctx) do
    Toxiproxy.restore(ctx.proxy, type)
    {:ok, [%NetworkRestored{type: type}]}
  end

  # Auto-restore after duration
  def auto_restore?, do: true
  def duration_ms(%__MODULE__{duration_ms: d}), do: d
end
Using Nemesis in Models
Add nemesis commands with lower weights:
def commands do
  [
    {CreateOrder, weight: 5},
    {ProcessPayment, weight: 3},
    {PartitionNetwork, weight: 1},   # Fault injection
    {InjectLatency, weight: 1}
  ]
end
Built-in Nemesis Operations
PropertyDamage includes ready-to-use nemesis operations for common fault injection scenarios:
Network Operations
	Operation	Description
	NetworkLatency	Add latency (50-500ms) with optional jitter
	NetworkPartition	Block traffic (full, upstream, downstream, asymmetric)
	PacketLoss	Drop percentage of packets (5-50%)

# Add network latency
alias PropertyDamage.Nemesis.NetworkLatency

def commands do
  [
    {CreateOrder, weight: 5},
    {NetworkLatency, weight: 1}  # Uses defaults: 100ms latency, 5s duration
  ]
end

# Or customize
%NetworkLatency{latency_ms: 200, jitter_ms: 50, duration_ms: 10_000}
Resource Operations
	Operation	Description
	MemoryPressure	Allocate memory to create pressure (bulk or fragmented)
	CPUStress	Spawn busy-loop processes to stress schedulers
	ResourceExhaustion	Exhaust file descriptors, ports, ETS tables, or processes

alias PropertyDamage.Nemesis.{MemoryPressure, CPUStress}

# Create memory pressure (100MB)
%MemoryPressure{megabytes: 100, allocation_pattern: :bulk}

# Create CPU stress (intensity 1-10)
%CPUStress{intensity: 5, schedulers: :all, duration_ms: 5000}
Time Operations
	Operation	Description
	ClockSkew	Shift virtual time forward/backward with optional drift

alias PropertyDamage.Nemesis.ClockSkew

# Jump 1 minute into the future
%ClockSkew{skew_ms: 60_000, mode: :instant}

# Gradual drift (10% fast)
%ClockSkew{skew_ms: 0, drift_rate: 1.1, mode: :gradual}

# In your adapter, use the virtual clock:
def get_current_time do
  ClockSkew.now()  # Returns skewed time when active
end
Process Operations
	Operation	Description
	ProcessKill	Kill processes by name, pattern, or randomly
	SlowIO	Add artificial delay to I/O operations

Security Operations
	Operation	Description

| CertificateExpiry | Simulate TLS certificate failures (expired, wrong host, self-signed, revoked)
alias PropertyDamage.Nemesis.CertificateExpiry

# Simulate expired certificate
%CertificateExpiry{failure_type: :expired}

# Simulate hostname mismatch
%CertificateExpiry{failure_type: :wrong_host, target: :api}

# In your adapter:
def connect(host, port, opts) do
  if CertificateExpiry.should_fail?() do
    CertificateExpiry.get_ssl_error()  # Returns {:error, {:tls_alert, ...}}
  else
    :ssl.connect(host, port, opts)
  end
end
Process Operations (continued)
alias PropertyDamage.Nemesis.{ProcessKill, SlowIO}

# Kill a specific named process
%ProcessKill{target: {:name, :my_worker}, signal: :kill}

# Kill random processes from supervised children
%ProcessKill{target: {:supervised_by, MyApp.WorkerSupervisor}}

# Slow down I/O operations
%SlowIO{delay_ms: 100, target: :all}  # :reads, :writes, or :all

# In your adapter:
def read_data(path) do
  if SlowIO.should_delay?(:reads), do: SlowIO.apply_delay()
  File.read(path)
end
Integration with Toxiproxy
Network operations integrate with Toxiproxy when available:
# Configure in adapter context
context = %{
  toxiproxy: %{
    proxy_name: "my_service",
    api_url: "http://localhost:8474"
  }
}

# Nemesis operations will automatically use Toxiproxy
# Falls back to simulated mode if not configured
Adjusting Invariants During Faults
@trigger every: 1
def assert_latency_sla(state, _cmd_or_event) do
  # Skip SLA check during partition
  unless Map.get(state.active_faults, :network_partition) do
    unless state.last_latency_ms < 100 do
      PropertyDamage.fail!("SLA violated", latency_ms: state.last_latency_ms)
    end
  end
end
Production Forensics
Replay production event logs through your model to analyze incidents.
Basic Usage
# Fetch events from your observability system
{:ok, events} = ProductionLogs.fetch(trace_id: "abc123")

# Replay through model projections
result = PropertyDamage.Forensics.analyze(
  events: events,
  model: OrderModel
)

case result do
  {:ok, %{final_state: state, events_processed: n}} ->
    IO.puts("Processed #{n} events - no violations")

  {:error, failure} ->
    IO.puts("Violation at event ##{failure.failure_step}")
    IO.puts(PropertyDamage.Forensics.format_report(failure))
end
Event Mapping
Translate production event formats to your model's event structs:
defmodule MyEventMapping do
  @behaviour PropertyDamage.Forensics.EventMapping

  @impl true
  def map(%{"type" => "order.created", "payload" => p}) do
    {:ok, %OrderCreated{
      order_id: p["order_id"],
      amount: p["total"]
    }}
  end

  def map(%{"type" => "internal.metric"}), do: :skip
  def map(_), do: {:skip, :unknown_event}
end

# Use with analyze
Forensics.analyze(
  events: production_events,
  model: OrderModel,
  event_mapping: MyEventMapping
)
Generate Regression Tests
Create test cases from production failures:
{:error, failure} = Forensics.analyze(events: events, model: MyModel)
test_code = Forensics.generate_regression_test(failure, MyModel)
File.write!("test/regressions/incident_2025_01_15_test.exs", test_code)
Liveness Checking
Detect deadlocks, livelocks, and starvation with the Liveness projection.
Configuration
defmodule MyModel do
  def extra_projections do
    [
      {PropertyDamage.Model.Projection.Liveness, [
        max_pending_duration_ms: 10_000,
        check_interval: 10,
        required_completions: %{
          CreateTransfer => [TransferCompleted, TransferFailed],
          CreateOrder => [OrderConfirmed, OrderRejected]
        }
      ]}
    ]
  end
end
How It Works
	Track starts: When CreateTransfer executes, mark operation as pending
	Track completions: When TransferCompleted or TransferFailed arrives, mark complete
	Check timeouts: Periodically check for operations pending too long
	Report stuck: If any operation exceeds max_pending_duration_ms, fail

What It Detects
	Issue	Symptom
	Deadlock	Operations never complete
	Livelock	System busy but no progress
	Starvation	Some operations always timeout

Load Testing
Generate realistic load against your system using SPBT-generated traffic. Unlike synthetic benchmarks, each simulated user session follows valid state transitions with command weights that model real usage patterns.
Basic Usage
{:ok, report} = PropertyDamage.LoadTest.run(
  model: MyModel,
  adapter: HTTPAdapter,
  adapter_config: %{base_url: "http://localhost:4000"},
  concurrent_users: 50,
  duration: {2, :minutes}
)

# Print formatted report
IO.puts(PropertyDamage.LoadTest.format(report, :terminal))
Advanced Configuration
{:ok, report} = PropertyDamage.LoadTest.run(
  model: MyModel,
  adapter: HTTPAdapter,
  adapter_config: %{base_url: "http://localhost:4000"},

  # Load configuration
  concurrent_users: 100,
  duration: {5, :minutes},

  # Ramp strategies: :immediate, {:linear, duration}, {:step, N, interval}, {:exponential, duration}
  ramp_up: {:linear, {30, :seconds}},
  ramp_down: {:linear, {10, :seconds}},

  # Session behavior
  commands_per_session: {10, 50},  # {min, max} commands per sequence
  think_time: {100, 500},          # {min, max} ms between commands

  # Live metrics callback (called every interval)
  metrics_interval: {1, :seconds},
  on_metrics: fn m ->
    IO.puts("RPS: #{m.requests_per_second}, p95: #{m.latency_p95}ms, errors: #{m.error_rate}%")
  end,

  # Called when test completes
  on_complete: fn report ->
    PropertyDamage.LoadTest.save(report, "load_test.md", :markdown)
  end,

  # Assertion mode: :disabled (default), :record, or :log
  assertion_mode: :record  # Track assertion failures in metrics
)
Ramp Strategies
	Strategy	Description
	:immediate	All users start at once
	{:linear, {30, :seconds}}	Gradually add users over 30 seconds
	{:step, 4, {15, :seconds}}	Add users in 4 steps, 15 seconds apart
	{:exponential, {1, :minutes}}	Exponential growth over 1 minute

Metrics Collected
	Throughput: Total requests, requests/second
	Latency: p50, p95, p99, min, max, mean (in milliseconds)
	Errors: Total count, error rate, breakdown by type
	Assertions: Failures count, rate, by assertion name (when enabled via assertion_mode)
	Per-Command: Individual metrics for each command type
	History: Time series for trend analysis

Report Formats
# Terminal output with ASCII charts
IO.puts(PropertyDamage.LoadTest.format(report, :terminal))

# Markdown for documentation
PropertyDamage.LoadTest.save(report, "report.md", :markdown)

# JSON for programmatic analysis
json = PropertyDamage.LoadTest.format(report, :json)
Async Control
# Start without blocking
{:ok, runner} = PropertyDamage.LoadTest.start(opts)

# Monitor progress
status = PropertyDamage.LoadTest.status(runner)
# => %{phase: :steady, active_sessions: 50, progress_percent: 45.0, ...}

# Get live metrics
metrics = PropertyDamage.LoadTest.get_metrics(runner)

# Stop early if needed
{:ok, report} = PropertyDamage.LoadTest.stop(runner)

# Or wait for completion
{:ok, report} = PropertyDamage.LoadTest.await(runner)
Visual Sequence Diagrams
Generate sequence diagrams from failure reports to visualize command flows and pinpoint failures.
Supported Formats
	Format	Description	Use Case
	:mermaid	Mermaid syntax	GitHub, GitLab, Notion
	:plantuml	PlantUML syntax	Enterprise docs, IDE plugins
	:websequence	sequencediagram.org	Quick sharing

Basic Usage
# From a failure report
{:error, report} = PropertyDamage.run(model: MyModel, adapter: MyAdapter)
diagram = PropertyDamage.Diagram.from_failure_report(report, :mermaid)
IO.puts(diagram)

# From sequence and event log
diagram = PropertyDamage.Diagram.generate(sequence, event_log, :plantuml,
  title: "Account Creation Flow",
  highlight_failure: true
)

# Save to file
PropertyDamage.Diagram.save(diagram, "failure_diagram", :mermaid)
# Creates: failure_diagram.md
Example Output (Mermaid)
sequenceDiagram
    title Failure: NonNegativeBalance (seed: 12345)
    participant Test
    participant SUT

    Test->>SUT: CreateAccount(name: "Alice")
    SUT-->>Test: AccountCreated(id: "acc_123", balance: 0)

    Test->>SUT: Deposit(amount: 100)
    SUT-->>Test: DepositSucceeded(new_balance: 100)

    Note over Test,SUT: ❌ FAILURE at command 2
    Test-xSUT: Withdraw(amount: 200)
    Note right of SUT: Balance went negative
Options
	:title - Custom diagram title
	:show_state - Include state participant
	:max_value_length - Truncate long values (default: 50)
	:highlight_failure - Visual failure markers (default: true)

Diff-Based Debugging
Compare passing and failing test runs to identify exactly what changed.
Comparing Traces
# Compare two failure reports
passing = PropertyDamage.run(model: M, adapter: A, seed: 123) |> elem(1)
failing = PropertyDamage.run(model: M, adapter: A, seed: 456) |> elem(1)

diff = PropertyDamage.Diff.compare_reports(passing, failing)
IO.puts(PropertyDamage.Diff.format(diff))
Output Formats
# Terminal (default) - ASCII boxes
PropertyDamage.Diff.format(diff, format: :terminal)

# Markdown - tables for documentation
PropertyDamage.Diff.format(diff, format: :markdown)

# JSON - for programmatic analysis
PropertyDamage.Diff.format(diff, format: :json)
Example Terminal Output
╔══════════════════════════════════════════════════════════════════════╗
║                         EXECUTION DIFF                               ║
╚══════════════════════════════════════════════════════════════════════╝

Summary: Divergence at command 2: Withdraw. Events differ.

┌─ Event Differences ─────────────────────────────────────────────────┐
│ Cmd 2 ≠: LEFT: [WithdrawSucceeded]                                  │
│         RIGHT: [WithdrawFailed]                                     │
└──────────────────────────────────────────────────────────────────────┘

┌─ State Differences ─────────────────────────────────────────────────┐
│ After command 2:                                                    │
│   balance: -50 → 100                                                │
└──────────────────────────────────────────────────────────────────────┘
What It Detects
	Difference	Description
	Command divergence	Different commands in sequence
	Event differences	Different events produced
	State changes	Field values that differ
	Missing commands	Commands present in one trace but not other

Failure Export Hub
Convert failure reports into portable artifacts for sharing, regression testing, and interactive exploration.
Export Formats
	Format	Output	Use Case
	ExUnit	.exs test file	CI regression protection
	Elixir Script	.exs standalone	Elixir developers
	Bash/curl Script	.sh with curl	Any developer with a shell
	Python Script	.py with requests	Python teams
	LiveBook	.livemd notebook	Interactive debugging

Basic Usage
{:error, failure} = PropertyDamage.run(model: MyModel, adapter: MyAdapter)

# Generate ExUnit regression test
test_code = PropertyDamage.Export.to_exunit(failure)
File.write!("test/regressions/seed_#{failure.seed}_test.exs", test_code)

# Generate standalone scripts
elixir_script = PropertyDamage.Export.to_script(failure, :elixir,
  base_url: "http://localhost:4000",
  adapter: MyHTTPAdapter
)

curl_script = PropertyDamage.Export.to_script(failure, :curl,
  base_url: "http://localhost:4000",
  adapter: MyHTTPAdapter
)

python_script = PropertyDamage.Export.to_script(failure, :python,
  base_url: "http://localhost:4000",
  adapter: MyHTTPAdapter
)

# Generate LiveBook notebook
notebook = PropertyDamage.Export.to_livebook(failure,
  base_url: "http://localhost:4000",
  adapter: MyHTTPAdapter
)
File Operations
# Save single format
{:ok, path} = PropertyDamage.Export.save(failure, "exports/", :exunit)
# => {:ok, "exports/reproduce_512902757.exs"}

{:ok, path} = PropertyDamage.Export.save(failure, "exports/", {:script, :curl},
  base_url: "http://localhost:4000",
  adapter: MyHTTPAdapter
)
# => {:ok, "exports/reproduce_512902757.sh"}

# Save all formats at once
{:ok, paths} = PropertyDamage.Export.save_all(failure, "exports/",
  base_url: "http://localhost:4000",
  adapter: MyHTTPAdapter,
  script_languages: [:elixir, :curl, :python]
)
# => {:ok, %{
#   exunit: "exports/reproduce_512902757.exs",
#   livebook: "exports/reproduce_512902757.livemd",
#   script_elixir: "exports/reproduce_512902757.exs",
#   script_curl: "exports/reproduce_512902757.sh",
#   script_python: "exports/reproduce_512902757.py"
# }}
HTTPSpec for Script Generation
For scripts to make HTTP calls, your adapter needs to implement http_spec/2:
defmodule MyHTTPAdapter do
  @behaviour PropertyDamage.Adapter

  alias PropertyDamage.Export.HTTPSpec

  # Standard adapter callbacks...
  def execute(cmd, ctx), do: # ...

  # Optional: HTTP mapping for export
  def http_spec(%CreateAccount{currency: curr}, _ctx) do
    %HTTPSpec{
      method: :post,
      path: "/api/accounts",
      body: %{currency: curr}
    }
  end

  def http_spec(%CreditAccount{account_ref: ref, amount: amt}, _ctx) do
    %HTTPSpec{
      method: :post,
      path: "/api/accounts/:account_id/credit",
      path_params: %{account_id: ref},
      body: %{amount: amt}
    }
  end

  def http_spec(%DebitAccount{account_ref: ref, amount: amt}, _ctx) do
    %HTTPSpec{
      method: :post,
      path: "/api/accounts/:account_id/debit",
      path_params: %{account_id: ref},
      body: %{amount: amt}
    }
  end
end
LiveBook Features
Generated LiveBook notebooks include:
	Setup section: Installs dependencies (Req, Jason)
	State tracking: Tracks refs and model state alongside execution
	Step-by-step commands: Each command in its own cell with HTTP call
	Failure marker: Highlights the command that caused the failure
	Exploration section: Space to experiment with variations

# Exclude exploration section if not needed
notebook = PropertyDamage.Export.to_livebook(failure,
  base_url: "http://localhost:4000",
  adapter: MyHTTPAdapter,
  include_exploration: false
)
Example Generated Script (curl)
#!/bin/bash
# Failure Reproduction Script
# Generated: 2025-12-26T14:30:00Z
# Failure: NonNegativeBalance check failed
# Seed: 512902757

set -e
BASE_URL="${BASE_URL:-http://localhost:4000}"

echo "=== Step 1: CreateAccount ==="
RESP1=$(curl -s -X POST "$BASE_URL/api/accounts" \
  -H "Content-Type: application/json" \
  -d '{"currency": "USD"}')
echo "$RESP1"
REF_account_0=$(echo "$RESP1" | jq -r '.data.id // .id // empty')

echo "=== Step 2: CreditAccount ==="
RESP2=$(curl -s -X POST "$BASE_URL/api/accounts/$REF_account_0/credit" \
  -H "Content-Type: application/json" \
  -d '{"amount": 100}')
echo "$RESP2"

echo "=== Step 3: DebitAccount (FAILURE POINT) ==="
RESP3=$(curl -s -X POST "$BASE_URL/api/accounts/$REF_account_0/debit" \
  -H "Content-Type: application/json" \
  -d '{"amount": 200}')
echo "$RESP3"

Mutation Testing
Verify that your property tests are actually effective at catching bugs. Mutation testing injects faults into adapter responses and checks if your tests detect them.
Basic Usage
{:ok, report} = PropertyDamage.Mutation.run(
  model: MyModel,
  adapter: MyAdapter,
  adapter_config: %{base_url: "http://localhost:4000"},
  target_score: 0.80
)

# Check results
IO.puts(PropertyDamage.Mutation.format(report))

# Get detailed analysis
if not PropertyDamage.Mutation.passes?(report) do
  analysis = PropertyDamage.Mutation.analyze(report)
  IO.puts(PropertyDamage.Mutation.Analysis.format(analysis))
end
Understanding Results
	Killed mutant: Your tests detected the simulated bug (good)
	Survived mutant: Your tests missed the bug (bad - weak tests)
	Mutation score: killed / total - aim for 80%+

Mutation Operators
	Operator	Description
	:value	Mutates numeric/string values (zero, negate, off-by-one)
	:omission	Removes fields from events
	:status	Changes success/error outcomes
	:event	Modifies event contents and structure
	:boundary	Pushes values to edge cases (0, -1, max, nil)

Options
PropertyDamage.Mutation.run(
  model: MyModel,
  adapter: MyAdapter,
  adapter_config: %{base_url: "http://localhost:4000"},

  # Which operators to use (default: all)
  operators: [:value, :omission, :status],

  # Mutations per command type (default: 5)
  mutations_per_command: 10,

  # PropertyDamage runs per mutation (default: 10)
  max_runs: 20,

  # Target score to pass (default: 0.80)
  target_score: 0.80,

  # Timeout per mutation test (default: 30000)
  timeout_ms: 60_000,

  # Print progress
  verbose: true
)
Example Report
╔══════════════════════════════════════════════════════════════════════╗
║                       MUTATION TESTING REPORT                        ║
╚══════════════════════════════════════════════════════════════════════╝

Mutation Score: 85% (17/20 killed)  ✓ PASS (target: 80%)

┌─ By Command ────────────────────────────────────────────────────────┐
│ CreateAccount    ████████████████████ 100% (5/5)                    │
│ CreditAccount    ██████████████░░░░░░  86% (6/7)                    │
│ DebitAccount     ████████████░░░░░░░░  75% (6/8)                    │
└─────────────────────────────────────────────────────────────────────┘

┌─ Survived Mutations (Weaknesses) ───────────────────────────────────┐
│ 1. CreditAccount: amount 100→99 (off-by-one not detected)           │
│ 2. DebitAccount: omitted 'timestamp' field not detected             │
└─────────────────────────────────────────────────────────────────────┘
Analysis & Suggestions
analysis = PropertyDamage.Mutation.analyze(report)

# Weak commands (low kill rates)
for {cmd, score} <- analysis.weak_commands do
  IO.puts("#{cmd}: #{Float.round(score * 100, 1)}%")
end

# Fields that aren't being validated
IO.inspect(analysis.unchecked_fields)

# Actionable suggestions
for suggestion <- analysis.suggestions do
  IO.puts("• #{suggestion}")
end
Property & Invariant Suggestions
Automatically analyze your model and get suggestions for missing checks and invariants.
Basic Usage
# Analyze a model
suggestions = PropertyDamage.Suggestions.analyze(MyModel)

# Print formatted suggestions
IO.puts(PropertyDamage.Suggestions.format(suggestions))

# Get high-priority suggestions only
high_priority = PropertyDamage.Suggestions.high_priority(suggestions)

# Filter by field or event
balance_suggestions = PropertyDamage.Suggestions.for_field(suggestions, :balance)
What It Detects
The suggestion system examines your events and existing checks to identify gaps:
	Pattern Type	Fields Detected	Suggested Checks
	Numeric	balance, amount, total, count, price	Non-negative, reasonable bounds
	Currency	currency, currency_code	Currency consistency across operations
	Reference	*_ref, *_id	Reference exists, reference valid
	Status	status, state, phase	Valid status values, valid transitions
	Timestamp	*_at, created_at, updated_at	Timestamp ordering, not future

Example Output
╔════════════════════════════════════════════════════════════════════════╗
║             PROPERTY & INVARIANT SUGGESTIONS                           ║
╚════════════════════════════════════════════════════════════════════════╝

Model: MyApp.TestModel
Events analyzed: 12
Existing checks: 3
Field coverage: 40%

Suggestions: 8 total
  ▸ 2 high priority (should address)
  ▸ 4 medium priority (consider adding)
  ▸ 2 low priority (nice to have)

┌─ Suggestions ──────────────────────────────────────────────────────────┐
│ ▶ HIGH PRIORITY ───────────────────────────────────────────────────────│
│   1. Add non-negative check for balance (balance)                      │
│   2. Add currency consistency check (currency)                         │
│                                                                        │
│ ▶ MEDIUM PRIORITY ─────────────────────────────────────────────────────│
│   3. Add reference existence check for account_ref (account_ref)       │
│   4. Add status transition validation for status (status)              │
└────────────────────────────────────────────────────────────────────────┘
Output Formats
# Terminal - ASCII boxes (default)
PropertyDamage.Suggestions.format(suggestions, :terminal)

# Markdown - tables with example code
PropertyDamage.Suggestions.format(suggestions, :markdown)

# JSON - for programmatic analysis
PropertyDamage.Suggestions.format(suggestions, :json)
Options
PropertyDamage.Suggestions.analyze(MyModel,
  # Include low-priority suggestions (default: true)
  include_low_priority: true,

  # Maximum suggestions to return (default: 20)
  max_suggestions: 10,

  # Focus on specific areas (default: :all)
  # Options: :all, :numeric, :references, :consistency
  focus: :numeric
)
Integration with Mutation Testing
Use suggestions to improve your mutation testing score:
# Run mutation testing
{:ok, mutation_report} = PropertyDamage.Mutation.run(model: MyModel, adapter: MyAdapter)

# If score is low, get suggestions for improvement
if mutation_report.mutation_score < 0.8 do
  suggestions = PropertyDamage.Suggestions.analyze(MyModel)
  IO.puts(PropertyDamage.Suggestions.format(suggestions, :markdown))
end
Failure Intelligence
Analyze, cluster, and verify fixes for failures using fingerprinting and similarity detection.
Pattern Detection
When you have multiple failures, identify patterns to find root causes:
# Analyze a set of failures
failures = [failure1, failure2, failure3, ...]
analysis = PropertyDamage.FailureIntelligence.analyze(failures)

IO.puts(analysis.pattern_summary)
# => "Analyzed 15 failures:
#     - 3 distinct patterns (12 failures)
#     - 3 unique failures (no pattern match)
#
#     Top patterns:
#       - Check failure in :balance_valid during DebitAccount (5 occurrences)
#       - Invariant violation during CreditAccount (4 occurrences)"

# Get individual clusters
for cluster <- analysis.clusters do
  IO.puts("Pattern: #{cluster.pattern.description}")
  IO.puts("Occurrences: #{cluster.size}")
end
Similarity Detection
Compare failures to identify duplicates and related issues:
# Check if two failures are similar
if PropertyDamage.FailureIntelligence.similar?(failure1, failure2) do
  IO.puts("These failures likely have the same root cause")
end

# Get similarity score (0.0 to 1.0)
score = PropertyDamage.FailureIntelligence.similarity_score(failure1, failure2)
# => 0.85

# Detailed comparison
comparison = PropertyDamage.FailureIntelligence.compare(failure1, failure2)
# => %{
#   score: 0.85,
#   breakdown: %{failure_type: 1.0, check_name: 1.0, command_type: 0.8, ...},
#   is_similar: true
# }

# Find similar failures from a list
similar = PropertyDamage.FailureIntelligence.find_similar(new_failure, known_failures,
  threshold: 0.80,
  limit: 5
)
Fingerprinting
Fingerprints capture the essential characteristics of a failure:
# Get a fingerprint for quick comparison
fingerprint = PropertyDamage.FailureIntelligence.fingerprint(failure)
# => %Fingerprint{
#   failure_type: :check_failed,
#   check_name: :balance_non_negative,
#   command_type: DebitAccount,
#   event_types: [AccountDebited],
#   sequence_shape: [CreateAccount, CreditAccount, DebitAccount],
#   error_category: :check_violation,
#   ...
# }

# Get a short hash for display
hash = PropertyDamage.FailureIntelligence.fingerprint_hash(failure)
# => "a1b2c3d4"

# Group failures by fingerprint
groups = PropertyDamage.FailureIntelligence.group_by_fingerprint(failures)
for {hash, group} <- groups do
  IO.puts("Hash #{hash}: #{length(group)} failures")
end

# Find potential duplicates (> 90% similar)
duplicates = PropertyDamage.FailureIntelligence.find_duplicates(failures)
for {f1, f2, score} <- duplicates do
  IO.puts("Seeds #{f1.seed} and #{f2.seed} are #{score * 100}% similar")
end
Fix Verification
When you believe a bug is fixed, verify the fix is robust:
result = PropertyDamage.FailureIntelligence.verify_fix(failure, MyModel,
  adapter: MyAdapter,
  adapter_config: %{base_url: "http://localhost:4000"},
  max_variations: 20  # Test 20 seed variations
)

case result.status do
  :verified ->
    IO.puts("Fix verified with #{result.confidence * 100}% confidence")

  :still_failing ->
    IO.puts("Original failure still reproduces!")

  :partially_fixed ->
    IO.puts("Fix incomplete. #{result.variations_failed} variations still fail")

  :flaky ->
    IO.puts("Intermittent failures detected. May be timing-related.")
end

# Format for display
IO.puts(PropertyDamage.FailureIntelligence.format_verification(result))
Verification Result
%{
  status: :verified | :still_failing | :partially_fixed | :flaky,
  original_seed: 12345,
  original_passes: true,
  variations_run: 20,
  variations_passed: 18,
  variations_failed: 2,
  failed_variations: [12346, 12400],
  confidence: 0.95,
  summary: "Fix verified! Original seed and all 18 variations pass."
}
Quick Checks
# Quick check if a seed still fails
if PropertyDamage.FailureIntelligence.still_fails?(12345, MyModel, MyAdapter) do
  IO.puts("Bug not fixed yet!")
end

# Verify multiple fixes at once
results = PropertyDamage.FailureIntelligence.verify_fixes(failures, MyModel,
  adapter: MyAdapter
)
for {failure, result} <- results do
  IO.puts("Seed #{failure.seed}: #{result.status}")
end
Example Workflow
# 1. Collect failures from test runs
failures = collect_failures_from_ci()

# 2. Analyze to find patterns
analysis = PropertyDamage.FailureIntelligence.analyze(failures)
IO.puts("Found #{length(analysis.clusters)} distinct failure patterns")

# 3. Work on the most common pattern first
if pattern = analysis.most_common_pattern do
  IO.puts("Most common: #{pattern.description}")
end

# 4. After fixing, verify the fix
{:ok, fixed_failure} = PropertyDamage.load_failure("failures/issue_123.pd")
result = PropertyDamage.FailureIntelligence.verify_fix(fixed_failure, MyModel,
  adapter: MyAdapter,
  max_variations: 50
)

if result.status == :verified do
  IO.puts("Fix confirmed! Safe to merge.")
  PropertyDamage.delete_failure("failures/issue_123.pd")
end
Automatic Regression Management
Automatically save failures to seed libraries and generate regression tests when bugs are found.
Basic Usage
Use the :regression option in PropertyDamage.run/1:
PropertyDamage.run(
  model: MyModel,
  adapter: MyAdapter,
  regression: [
    save_failures: "failures/",           # Save failure files
    seed_library: "seeds.json",           # Add to seed library
    generate_tests: "test/regressions/",  # Generate ExUnit tests
    tags: [:auto_detected],               # Tags for seed library
    dedup: true                           # Skip similar failures
  ]
)
When a failure is found, PropertyDamage will automatically:
	Save the failure file to the specified directory
	Add the seed to your seed library
	Generate an ExUnit regression test

Deduplication
Avoid noise from multiple runs finding the same bug:
PropertyDamage.run(
  model: MyModel,
  adapter: MyAdapter,
  regression: [
    save_failures: "failures/",
    dedup: true,                 # Enable deduplication
    dedup_threshold: 0.90        # 90% similarity threshold
  ]
)
Using Handlers Directly
For more control, use handlers with :on_failure:
alias PropertyDamage.Regression

# Single handler
PropertyDamage.run(
  model: MyModel,
  adapter: MyAdapter,
  on_failure: Regression.save_failure("failures/")
)

# Compose multiple handlers
PropertyDamage.run(
  model: MyModel,
  adapter: MyAdapter,
  on_failure: Regression.compose([
    Regression.save_failure("failures/"),
    Regression.add_to_library("seeds.json", tags: [:critical]),
    fn report -> Logger.warning("Failure found: #{report.seed}") end
  ])
)
Batch Processing
Process multiple failures at once with deduplication:
failures = [failure1, failure2, failure3]

results = PropertyDamage.Regression.process_batch(failures,
  seed_library: "seeds.json",
  dedup: true,
  dedup_threshold: 0.90
)

summary = PropertyDamage.Regression.batch_summary(results)
IO.puts(PropertyDamage.Regression.format_batch_summary(summary))
Options
	Option	Description
	:save_failures	Directory to save failure files
	:seed_library	Path to seed library JSON file
	:generate_tests	Directory for ExUnit test files
	:tags	Tags for seed library entries (default: [:auto_detected])
	:description	Description for seed library entries
	:dedup	Enable deduplication (default: false)
	:dedup_threshold	Similarity threshold (default: 0.90)
	:dedup_source	Where to check: :failures, :library, or :both
	:verbose	Print actions taken (default: false)

Differential Testing
Compare multiple implementations by running the same command sequences against them.
Use cases include oracle testing, performance comparison, migration validation, and
regression testing.
Basic Usage
# Oracle testing - compare against reference implementation
PropertyDamage.Differential.run(
  model: MyModel,
  targets: [
    {ReferenceAdapter, role: :reference},
    {SUTAdapter, name: "new-impl"}
  ],
  compare: :correctness,
  max_runs: 100
)

# Performance comparison
PropertyDamage.Differential.run(
  model: MyModel,
  targets: [
    {RedisAdapter, name: "redis-backend"},
    {PostgresAdapter, name: "postgres-backend"}
  ],
  compare: :performance
)

# Same adapter, different configurations (e.g., staging vs prod)
PropertyDamage.Differential.run(
  model: MyModel,
  targets: [
    {HTTPAdapter, role: :reference, opts: [base_url: "https://prod.example.com"]},
    {HTTPAdapter, name: "staging", opts: [base_url: "https://staging.example.com"]}
  ],
  compare: :correctness
)
Time-Separated Comparison
Save results now, compare later:
# Export baseline before deployment
PropertyDamage.Differential.run(
  model: MyModel,
  targets: [{ProdAdapter, name: "v2.3"}],
  compare: :performance,
  export_to: "baselines/v2.3.json",
  seed: 12345
)

# Compare against baseline after deployment
PropertyDamage.Differential.run(
  model: MyModel,
  targets: [{ProdAdapter, name: "v2.4"}],
  compare: :performance,
  baseline: "baselines/v2.3.json"
)
Equivalence Strategies
# Exact matching (default)
compare: :correctness, equivalence: :exact

# Structural - ignores IDs, timestamps, UUIDs
compare: :correctness, equivalence: :structural

# Custom comparison function
compare: :correctness, equivalence: fn ref, target ->
  ref.status == target.status && ref.amount == target.amount
end
See Differential Testing Guide for complete documentation.
Telemetry Dashboard
PropertyDamage emits telemetry events during test execution that can be used for real-time monitoring via a LiveView dashboard.
Setup
	Add the Collector to your application supervisor:

# In your application.ex
def start(_type, _args) do
  children = [
    # ... your other children
    PropertyDamage.Telemetry.Collector
  ]

  opts = [strategy: :one_for_one, name: MyApp.Supervisor]
  Supervisor.start_link(children, opts)
end
	Create a LiveView for the dashboard:

defmodule MyAppWeb.PropertyDamageDashboardLive do
  use MyAppWeb, :live_view

  alias PropertyDamage.Telemetry.{Collector, Dashboard}

  def mount(_params, _session, socket) do
    if connected?(socket) do
      Collector.subscribe()
    end

    state = Collector.get_state()

    {:ok,
     assign(socket,
       page_title: "PropertyDamage Dashboard",
       state: state,
       view_mode: :overview
     )}
  end

  def handle_info({:telemetry_update, _event_type, _data, state}, socket) do
    {:noreply, assign(socket, :state, state)}
  end

  def handle_event("reset", _params, socket) do
    Collector.reset()
    {:noreply, socket}
  end

  def handle_event("set_view_mode", %{"mode" => mode}, socket) do
    {:noreply, assign(socket, :view_mode, String.to_existing_atom(mode))}
  end

  def render(assigns) do
    Dashboard.render(assigns)
  end
end
	Add a route:

# In your router.ex
live "/property-damage", PropertyDamageDashboardLive
Dashboard Views
	View	Description
	Overview	Cards showing runs/commands/checks/shrinking stats, current run progress, pass rate
	Commands	Table with command counts, average timing, total timing
	Checks	Table with check pass/fail counts and rates
	Events	Timeline of recent telemetry events

Telemetry Events
PropertyDamage emits these telemetry events:
	Event	Description
	[:property_damage, :run, :start]	Test run started
	[:property_damage, :run, :stop]	Test run completed
	[:property_damage, :run, :exception]	Test run crashed
	[:property_damage, :sequence, :start]	Sequence execution started
	[:property_damage, :sequence, :stop]	Sequence execution completed
	[:property_damage, :command, :start]	Command execution started
	[:property_damage, :command, :stop]	Command execution completed
	[:property_damage, :check, :start]	Check evaluation started
	[:property_damage, :check, :stop]	Check evaluation completed
	[:property_damage, :shrink, :start]	Shrinking started
	[:property_damage, :shrink, :iteration]	Shrink iteration completed
	[:property_damage, :shrink, :stop]	Shrinking completed

Custom Telemetry Handlers
You can attach custom handlers to these events:
:telemetry.attach(
  "my-metrics-handler",
  [:property_damage, :command, :stop],
  fn _event, measurements, metadata, _config ->
    # Record command execution time to your metrics system
    MyMetrics.histogram(
      "property_damage.command.duration",
      measurements.duration,
      tags: [command: metadata.command]
    )
  end,
  nil
)
Collector API
# Get current aggregated state
state = PropertyDamage.Telemetry.Collector.get_state()

# Subscribe to updates (for LiveView)
PropertyDamage.Telemetry.Collector.subscribe()

# Reset all counters
PropertyDamage.Telemetry.Collector.reset()
Livebook Integration
PropertyDamage includes rich Livebook integration for interactive exploration of test results.
Setup
In your Livebook notebook:
Mix.install([
  {:property_damage, "~> 0.1"},
  {:kino, "~> 0.12"},
  {:vega_lite, "~> 0.1"},
  {:kino_vega_lite, "~> 0.1"}
])
Quick Start
alias PropertyDamage.Livebook

# Run tests and visualize results
result = PropertyDamage.run(
  model: MyModel,
  adapter: MyAdapter,
  max_runs: 100
)

# Create main dashboard with tabs
Livebook.visualize(result)
Available Widgets
	Widget	Description
	visualize/1	Main tabbed dashboard with overview, commands, state, failures
	results_table/1	Sortable DataTable of command execution history
	command_stats/1	Per-command execution counts and timing statistics
	state_timeline/1	Visual progression of state changes
	failure_details/1	Detailed failure analysis with shrunk sequence
	live_monitor/0	Real-time telemetry streaming widget
	command_stepper/1	Step through command execution interactively
	state_diff/1	Compare model vs actual state
	explore_failure/1	Interactive failure explorer with tabs

Charts and Visualizations
With VegaLite installed, you get rich interactive charts:
alias PropertyDamage.Livebook.Charts

# Bar chart of command execution counts
Charts.command_bar_chart(result)

# Histogram of command timing distribution
Charts.timing_histogram(result)

# Pie chart of success/failure rate
Charts.success_pie_chart(result)

# Timeline showing execution progression
Charts.execution_timeline(result)

# Heatmap of command transitions
Charts.command_transition_heatmap(result)

# Check results by type
Charts.check_results_chart(result)
Live Visualization
Run tests with live progress updates:
# Displays real-time progress as tests run
result = Livebook.run_with_visualization(
  model: MyModel,
  adapter: MyAdapter,
  max_runs: 100,
  max_commands: 20
)
Interactive Command Stepper
Debug failures by stepping through commands:
# Navigate through execution step-by-step
Livebook.command_stepper(result)
The stepper shows:
	Command name and arguments
	Result status (success/failure)
	Events generated
	State before and after

Sample Notebook
A demo notebook is included at notebooks/property_damage_demo.livemd showing all features.
Example Projects
Complete working examples are available in the example_tests/ directory:
Counter (Hello World)
The simplest PropertyDamage example - a counter with an intentional bug.
Start here if you're new to stateful property-based testing.
example_tests/counter/
ToyBank (Payment Authorization)
A banking API with 12 intentional bugs. Demonstrates:
	Multiple entity types (accounts, authorizations, captures)
	Complex state machines and cross-entity invariants
	Parallel testing for race conditions
	Bug detection and regression testing

example_tests/toy_bank/
TravelBooking (Chaos Engineering)
A travel booking service demonstrating chaos engineering:
	Multi-provider coordination (flights, hotels)
	Fault injection with nemesis operations
	Certificate failure simulation
	Partial failure rollback testing

example_tests/travel_booking/
Guides
	Getting Started - First steps with PropertyDamage
	Writing Invariants - Projections and assertions
	Debugging Failures - Analyzing and fixing test failures
	Async and Eventual Consistency - Probes, bridges, and Adapter.Injector
	Chaos Engineering - Nemesis fault injection
	Integration Testing - Testing against live services
	Differential Testing - Comparing implementations

Architecture
PropertyDamage
├── Core Types (Tier 0)
│   ├── Ref          - Symbolic references
│   ├── Command      - Operation behaviour
│   ├── Model        - Test model behaviour
│   │   ├── Projection   - State reducer behaviour
│   │   └── Simulator    - Symbolic execution behaviour
│   └── Sequence     - Linear and branching command sequences
│
├── Execution (Tier 1)
│   ├── Adapter      - SUT bridge behaviour
│   │   └── Injector - External event injection behaviour
│   ├── Executor     - Command execution (linear and parallel)
│   ├── Linearization - Parallel execution verification
│   └── EventQueue   - Event coordination
│
├── Shrinking (Tier 2)
│   ├── Shrinker     - Sequence minimization (supports branching)
│   ├── Validator    - Sequence validation
│   └── Graph        - Dependency analysis
│
├── Analysis (Tier 3)
│   ├── Analysis     - Causal explanation, trigger isolation
│   ├── Replay       - Step-by-step execution
│   ├── Coverage     - Metrics tracking
│   └── Flakiness    - Determinism checking
│
├── Load Testing
│   ├── LoadTest     - Main API
│   ├── Runner       - Orchestrates concurrent sessions
│   ├── Session      - Single user session
│   ├── Metrics      - Lock-free metrics collection
│   ├── RampStrategy - Load ramping strategies
│   └── Report       - Report generation
│
├── Debugging
│   ├── Diagram      - Visual sequence diagrams
│   └── Diff         - Trace comparison and diffing
│
├── Export
│   ├── Export       - Main API (to_exunit, to_script, to_livebook)
│   ├── HTTPSpec     - HTTP call description struct
│   ├── ExUnit       - ExUnit test generation
│   ├── Script       - Script dispatcher
│   ├── Script.Elixir - Elixir + Req scripts
│   ├── Script.Curl  - Bash + curl scripts
│   ├── Script.Python - Python + requests scripts
│   ├── LiveBook     - LiveBook notebook generation
│   └── Common       - Shared utilities
│
├── Mutation
│   ├── Mutation     - Main API (run, analyze, format)
│   ├── Runner       - Orchestrates mutation runs
│   ├── MutatingAdapter - Wraps adapters to inject faults
│   ├── Report       - Aggregates results
│   ├── Analysis     - Weakness detection
│   ├── Formatter    - Output formatting
│   └── Operators    - Value, Omission, Status, Event, Boundary
│
├── Suggestions
│   ├── Suggestions  - Main API (analyze, format, high_priority)
│   ├── Analyzer     - Model analysis and suggestion generation
│   ├── Patterns     - Pattern detection for fields and events
│   └── Formatter    - Output formatting (terminal, markdown, json)
│
├── FailureIntelligence
│   ├── FailureIntelligence - Main API (analyze, similar?, verify_fix)
│   ├── Fingerprint         - Extract comparable features from failures
│   ├── Similarity          - Compare fingerprints and compute scores
│   ├── Patterns            - Cluster failures and detect patterns
│   └── Verification        - Verify fixes with seed variations
│
├── Regression
│   └── Regression          - Automatic regression test management
│
├── Differential
│   ├── Differential        - Main API (run, compare modes)
│   ├── Target              - Target parsing and validation
│   ├── Result              - Result struct and formatting
│   ├── Equivalence         - Comparison strategies (exact, structural, custom)
│   └── Baseline            - Export/import for time-separated testing
│
├── Telemetry
│   ├── Telemetry    - Event emission API
│   ├── Collector    - Aggregates events for dashboard
│   └── Dashboard    - HTML rendering for LiveView
│
└── Utilities
    ├── Persistence  - Save/load failures
    ├── SeedLibrary  - Seed management
    └── Scaffold     - Code generation
License
MIT License. See LICENSE for details.


  

    Changelog

All notable changes to PropertyDamage will be documented in this file.
The format is based on Keep a Changelog,
and this project adheres to Semantic Versioning.
Unreleased
0.1.0 - 2024-12-27
Added
Core Framework
	Stateful property-based testing with commands, events, and projections
	Two-phase execution (symbolic and concrete)
	Symbolic references for entity IDs
	Automatic shrinking of failing sequences
	Seed-based reproducibility

Command System
	PropertyDamage.Command behaviour for defining operations
	Two-layer generator architecture (generator/1 and new!/2)
	Command preconditions for state-aware generation
	Ref extraction for entity relationships

Projections
	PropertyDamage.Projection behaviour for state tracking
	State projections for model state
	Assertion projections for invariant checking
	Configurable check triggers (:always, :end_of_sequence)
	Sampling support for expensive checks

Model System
	PropertyDamage.Model behaviour for test configuration
	Weighted command selection
	Lifecycle hooks (setup_each/1, teardown_each/1)

Adapter System
	PropertyDamage.Adapter behaviour for SUT integration
	Setup and teardown lifecycle
	Context passing between executions

Parallel Execution
	Branching sequences for race condition testing
	Linearization checking for parallel results
	Parallel shrinking support

Shrinking
	Automatic sequence minimization
	Command removal strategies
	Value simplification
	Ref dependency analysis
	Exhaustive shrinking option

Analysis & Debugging
	Causal explanation of failures
	Trigger isolation
	Step-by-step replay
	State diff comparison
	Sequence diagrams (Mermaid, PlantUML, WebSequenceDiagrams)
	Diff-based trace comparison

Failure Management
	Failure persistence (save/load)
	Seed library for regression testing
	Automatic regression test management
	Failure fingerprinting and clustering
	Similar failure detection
	Fix verification

Coverage
	Command coverage metrics
	Transition coverage
	State class coverage
	Multiple output formats (terminal, markdown, JSON)

Flakiness Detection
	Non-deterministic behavior detection
	Pass rate analysis
	Likely cause identification

Load Testing
	SPBT-based load generation
	Configurable ramp strategies (linear, step, spike, wave)
	Real-time metrics collection
	Report generation

Export
	ExUnit test generation
	Script generation (curl, Elixir, Python)
	Livebook notebook generation
	Markdown reports

Mutation Testing
	Adapter response mutation
	Multiple operators (value, omission, status, event, boundary)
	Mutation score calculation
	Weakness analysis
	Actionable suggestions

Property & Invariant Suggestions
	Model analysis for missing checks
	Pattern detection
	Priority-based recommendations

Failure Intelligence
	Pattern detection across failures
	Similarity scoring
	Fix verification with seed variations

Chaos Engineering (Nemesis)
	PropertyDamage.Nemesis behaviour for fault injection
	Network operations:	NetworkLatency - Add latency with jitter
	NetworkPartition - Full/asymmetric partitions
	PacketLoss - Simulate packet loss


	Resource operations:	MemoryPressure - Memory allocation stress
	CPUStress - Scheduler stress
	ResourceExhaustion - File descriptors, ports, ETS, processes


	Time operations:	ClockSkew - Clock drift and jumps


	Process operations:	ProcessKill - Kill by name, pattern, supervisor
	SlowIO - Artificial I/O delay


	Security operations:	CertificateExpiry - TLS certificate failures


	Auto-restore support
	Toxiproxy integration

Telemetry
	Comprehensive telemetry events
	Event collector for dashboards
	HTML dashboard rendering

Livebook Integration
	Interactive visualization dashboard
	Results tables and command statistics
	Charts (bar, histogram, pie, heatmap, timeline)
	Live monitoring
	Command stepper
	Failure exploration

OpenAPI Scaffolding
	Generate command modules from OpenAPI specs

Documentation
	Comprehensive README with all features
	Example projects (Counter, ToyBank, TravelBooking)
	User guides:	Getting Started
	Writing Effective Invariants
	Debugging Failures
	Chaos Engineering with Nemesis


	Interactive Livebook demo notebook
	ExDoc configuration with module groups



  

    Getting Started with PropertyDamage

This guide walks you through creating your first stateful property-based test
with PropertyDamage.
What is Stateful Property-Based Testing?
Traditional property-based testing generates random inputs and verifies
properties hold. Stateful property-based testing goes further:
	Generate random sequences of operations (not just inputs)
	Maintain expected state throughout the sequence
	Verify invariants hold after every operation
	Shrink failing sequences to minimal reproductions

Installation
Add PropertyDamage to your mix.exs:
def deps do
  [
    {:property_damage, "~> 0.1.0"},
    {:stream_data, "~> 1.0"}
  ]
end
Core Concepts
PropertyDamage has five key components:
	Component	Purpose
	Commands	Operations that can be executed (create, update, delete)
	Events	Outcomes of operations (what happened)
	Projections	State reducers that process events
	Model	Ties commands and projections together
	Adapter	Bridge between tests and your actual system

Step 1: Define Events
Events represent the outcomes of operations. They're simple structs:
defmodule MyApp.Events do
  defmodule UserCreated do
    defstruct [:user_id, :email, :name]
  end

  defmodule UserUpdated do
    defstruct [:user_id, :name]
  end

  defmodule UserDeleted do
    defstruct [:user_id]
  end
end
Step 2: Define Commands
Commands represent operations. Each command must implement the
PropertyDamage.Command behaviour:
defmodule MyApp.Commands.CreateUser do
  @behaviour PropertyDamage.Command
  import PropertyDamage.Generator, only: [merge_overrides: 2]

  defstruct [:email, :name]

  @impl true
  def generator(overrides \\ %{}) do
    %{
      name: StreamData.string(:alphanumeric, min_length: 5),
      email: StreamData.map(
        StreamData.string(:alphanumeric, min_length: 5),
        &"#{&1}@example.com"
      )
    }
    |> merge_overrides(overrides)
    |> StreamData.fixed_map()
  end

  # Optional: this command creates a user ref
  def creates_ref, do: :user_id
end
Key Command Callbacks
	generator/1 - Generate command field values (returns StreamData of maps)
	creates_ref/0 (optional) - Field name for entity ref this command creates
	read_only?/0 (optional) - Whether command only reads state

Step 3: Define Projections
Projections are state reducers. They process events and maintain state:
defmodule MyApp.Projections.ModelState do
  use PropertyDamage.Model.Projection

  alias MyApp.Events.{UserCreated, UserUpdated, UserDeleted}

  @impl true
  def init, do: %{users: %{}}

  @impl true
  def apply(state, %UserCreated{user_id: id, email: email, name: name}) do
    put_in(state, [:users, id], %{email: email, name: name})
  end

  def apply(state, %UserUpdated{user_id: id, name: name}) do
    put_in(state, [:users, id, :name], name)
  end

  def apply(state, %UserDeleted{user_id: id}) do
    update_in(state, [:users], &Map.delete(&1, id))
  end

  def apply(state, _), do: state
end
Step 4: Define Invariants
Invariants are checks that should always hold. Define them in assertion
projections using @trigger and assert_* functions:
defmodule MyApp.Projections.UserInvariants do
  use PropertyDamage.Model.Projection

  alias MyApp.Events.UserCreated

  @impl true
  def init, do: %{emails: MapSet.new()}

  @impl true
  def apply(state, %UserCreated{email: email}) do
    update_in(state, [:emails], &MapSet.put(&1, email))
  end

  def apply(state, _), do: state

  # Assertions use @trigger to specify when to run
  # and assert_* naming convention
  @trigger every: 1
  def assert_emails_unique(state, _cmd_or_event) do
    # In a real system, duplicate emails would be caught at creation time
    # This is just an example of the pattern
    :ok
  end
end
Step 5: Define the Model
The model ties everything together:
defmodule MyApp.TestModel do
  @behaviour PropertyDamage.Model

  alias MyApp.Commands.{CreateUser, UpdateUser, DeleteUser}
  alias MyApp.Projections.{ModelState, UserInvariants}

  @impl true
  def commands do
    [
      {CreateUser, weight: 5},   # Higher weight = more likely
      {UpdateUser, weight: 2},
      {DeleteUser, weight: 1}
    ]
  end

  @impl true
  def state_projection, do: ModelState

  @impl true
  def extra_projections, do: [UserInvariants]

  @impl true
  def injectable_events, do: []
end
Step 6: Define the Adapter
The adapter executes commands against your actual system:
defmodule MyApp.TestAdapter do
  @behaviour PropertyDamage.Adapter

  alias MyApp.Commands.{CreateUser, UpdateUser, DeleteUser}
  alias MyApp.Events.{UserCreated, UserUpdated, UserDeleted}

  @impl true
  def setup(config) do
    base_url = Map.get(config, :base_url, "http://localhost:4000")
    {:ok, %{base_url: base_url}}
  end

  @impl true
  def teardown(_ctx), do: :ok

  @impl true
  def execute(%CreateUser{email: email, name: name}, ctx) do
    case post(ctx.base_url, "/users", %{email: email, name: name}) do
      {:ok, %{status: 201, body: body}} ->
        events = [%UserCreated{
          user_id: body["id"],
          email: body["email"],
          name: body["name"]
        }]
        {:ok, events}

      {:ok, %{status: status, body: body}} ->
        {:error, {:unexpected_status, status, body}}

      {:error, reason} ->
        {:error, reason}
    end
  end

  # ... implement execute for other commands
end
Step 7: Run the Tests
Basic Run
PropertyDamage.run(
  model: MyApp.TestModel,
  adapter: MyApp.TestAdapter,
  adapter_config: %{base_url: "http://localhost:4000"},
  max_runs: 100,
  max_commands: 50
)
In ExUnit
defmodule MyApp.PropertyTest do
  use ExUnit.Case

  test "system maintains invariants" do
    result = PropertyDamage.run(
      model: MyApp.TestModel,
      adapter: MyApp.TestAdapter,
      adapter_config: %{base_url: "http://localhost:4000"},
      max_runs: 100
    )

    assert result.success, "Property test failed: #{inspect(result.failure)}"
  end
end
Understanding Results
When tests pass:
Run 1/100: 23 commands, PASSED
Run 2/100: 18 commands, PASSED
...
100/100 runs passed!
When tests fail:
Run 42/100: 31 commands, FAILED!

Shrinking...
Minimal failing sequence (3 commands):
  [0] CreateUser{email: "test@example.com", name: "Alice"}
      => user_ref: "user_123"
  [1] CreateUser{email: "test@example.com", name: "Bob"}
      => FAILED: duplicate email

Invariant violated: UserInvariants.emails_unique

Seed: 987654321 (use this to reproduce)
Next Steps
	Writing Effective Invariants
	Debugging Failures
	Chaos Engineering with Nemesis
	See example_tests/ for complete working examples



  

    Writing Commands

Commands are semantic operations that can be executed against the System Under Test (SUT). They define WHAT can happen, while Adapters define HOW it happens against specific targets.
Command Architecture
Commands follow a pure generator pattern - they are decoupled from state shape and reusable across different Models.
Command Responsibilities
Commands define:
	Struct fields - The data needed for the operation
	generator/1 - How to generate valid field values
	Metadata - Optional callbacks like creates_ref/0, read_only?/0, downstream_observables/0

Commands do NOT define:
	When the command is valid (preconditions) - defined in Model via when:
	How to parameterize based on state - defined in Model via with:
	Expected events from execution - defined in Model via simulate/2

Basic Command Example
defmodule MyTest.Commands.CreateOrder do
  @behaviour PropertyDamage.Command
  import PropertyDamage.Generator, only: [merge_overrides: 2]

  defstruct [:amount, :currency]

  @impl true
  def generator(overrides \\ %{}) do
    %{
      amount: StreamData.positive_integer(),
      currency: StreamData.member_of(["USD", "EUR", "GBP"])
    }
    |> merge_overrides(overrides)
    |> StreamData.fixed_map()
  end

  # Optional: this command creates an order ref
  def creates_ref, do: :order_ref

  # Optional: events this command can produce
  def downstream_observables, do: [OrderCreated, OrderRejected]
end
State-Dependent Command Example
For commands that need state-dependent values (like selecting from existing refs):
defmodule MyTest.Commands.ViewOrder do
  @behaviour PropertyDamage.Command
  import PropertyDamage.Generator, only: [merge_overrides: 2]

  defstruct [:order_ref]

  @impl true
  def generator(overrides \\ %{}) do
    # Default to nil - Model provides actual refs via with:
    %{order_ref: nil}
    |> merge_overrides(overrides)
    |> StreamData.fixed_map()
  end

  def read_only?, do: true
  def downstream_observables, do: [OrderViewed, OrderNotFound]
end
The Model wires this command with state:
defmodule MyTest.OrderModel do
  @behaviour PropertyDamage.Model
  @behaviour PropertyDamage.Model.Simulator

  def commands do
    [
      CreateOrder,
      {ViewOrder,
        when: fn s -> map_size(s.orders) > 0 end,
        with: fn s -> %{order_ref: StreamData.member_of(Map.keys(s.orders))} end}
    ]
  end

  # Return self as the simulator module
  def simulator, do: __MODULE__

  # simulate/2 defines expected events (Simulator behaviour)
  def simulate(%ViewOrder{order_ref: ref}, state) do
    if Map.has_key?(state.orders, ref) do
      [%OrderViewed{order_ref: ref}]
    else
      [%OrderNotFound{order_ref: ref}]
    end
  end
end
Model-Level Wiring
All state-dependent configuration lives in the Model:
Command Specification Options
def commands do
  [
    # Simple: always enabled, weight 1
    CreateOrder,

    # Weighted: {module, weight: n}
    {CreateOrder, weight: 3},

    # Full options
    {ViewOrder,
      weight: 2,
      when: fn state -> map_size(state.orders) > 0 end,
      with: fn state -> %{order_ref: StreamData.member_of(Map.keys(state.orders))} end}
  ]
end
	Option	Type	Description
	weight:	pos_integer()	Relative selection frequency (default: 1)
	when:	(state -> boolean)	Precondition function
	with:	(state -> map)	Override function for generation

Simulate Callback
Models that need symbolic execution implement the PropertyDamage.Model.Simulator behaviour
and return themselves (or a delegate module) via simulator/0:
defmodule MyTest.OrderModel do
  @behaviour PropertyDamage.Model
  @behaviour PropertyDamage.Model.Simulator

  def commands, do: [CreateOrder, CancelOrder]
  def state_projection, do: MyTest.OrderProjection
  def extra_projections, do: []

  # Return self as the simulator module
  def simulator, do: __MODULE__

  # Simulator behaviour callback
  @impl PropertyDamage.Model.Simulator
  def simulate(%CreateOrder{amount: amount}, _state) do
    [%OrderCreated{amount: amount, order_ref: nil}]
  end

  def simulate(%CancelOrder{order_ref: ref}, state) do
    if Map.has_key?(state.orders, ref) do
      [%OrderCancelled{order_ref: ref}]
    else
      [%OrderNotFound{order_ref: ref}]
    end
  end

  # Catch-all for commands with no events
  def simulate(_command, _state), do: []
end
Managing Model Verbosity
With many commands, Models can grow large. Here are patterns to keep them manageable:
Pattern 1: Helper Modules for Wiring
Factor wiring functions into a helper module:
defmodule MyTest.OrderModel do
  @behaviour PropertyDamage.Model
  @behaviour PropertyDamage.Model.Simulator

  alias MyTest.CommandWiring
  alias MyTest.Simulation

  def commands do
    [
      {CreateOrder, CommandWiring.create_order()},
      {ViewOrder, CommandWiring.view_order()},
      {CancelOrder, CommandWiring.cancel_order()}
    ]
  end

  def state_projection, do: MyTest.OrderProjection
  def extra_projections, do: []

  # Return self as the simulator (delegates to Simulation module)
  def simulator, do: __MODULE__

  # Delegate simulate/2 to helper module
  defdelegate simulate(command, state), to: Simulation
end

defmodule MyTest.CommandWiring do
  def create_order, do: [weight: 3]

  def view_order do
    [
      weight: 2,
      when: fn s -> map_size(s.orders) > 0 end,
      with: fn s -> %{order_ref: StreamData.member_of(Map.keys(s.orders))} end
    ]
  end

  def cancel_order do
    [
      weight: 1,
      when: fn s -> Enum.any?(s.orders, fn {_, o} -> o.status == :active end) end,
      with: fn s ->
        active = Enum.filter(s.orders, fn {_, o} -> o.status == :active end)
        %{order_ref: StreamData.member_of(Keyword.keys(active))}
      end
    ]
  end
end

defmodule MyTest.Simulation do
  @behaviour PropertyDamage.Model.Simulator

  @impl true
  def simulate(%CreateOrder{amount: amount}, _state) do
    [%OrderCreated{amount: amount, order_ref: nil}]
  end

  def simulate(%ViewOrder{order_ref: ref}, _state) do
    [%OrderViewed{order_ref: ref}]
  end

  def simulate(%CancelOrder{order_ref: ref}, _state) do
    [%OrderCancelled{order_ref: ref}]
  end
end
Pattern 2: Shared Wiring Across Models
When multiple Models use the same commands with similar wiring:
defmodule SharedWiring.Orders do
  @moduledoc """
  Reusable wiring for order-related commands.
  Parameterized by state key for flexibility.
  """

  def view_order_wiring(orders_key \\ :orders) do
    [
      when: fn s -> map_size(Map.get(s, orders_key, %{})) > 0 end,
      with: fn s ->
        orders = Map.get(s, orders_key, %{})
        %{order_ref: StreamData.member_of(Map.keys(orders))}
      end
    ]
  end

  def cancel_order_wiring(orders_key \\ :orders, status_field \\ :status) do
    [
      when: fn s ->
        orders = Map.get(s, orders_key, %{})
        Enum.any?(orders, fn {_, o} -> Map.get(o, status_field) == :active end)
      end,
      with: fn s ->
        orders = Map.get(s, orders_key, %{})
        active_refs =
          orders
          |> Enum.filter(fn {_, o} -> Map.get(o, status_field) == :active end)
          |> Enum.map(fn {ref, _} -> ref end)
        %{order_ref: StreamData.member_of(active_refs)}
      end
    ]
  end
end

# Model A uses standard state shape
defmodule ModelA do
  import SharedWiring.Orders

  def commands do
    [
      CreateOrder,
      {ViewOrder, view_order_wiring()},
      {CancelOrder, cancel_order_wiring()}
    ]
  end
end

# Model B uses different state key
defmodule ModelB do
  import SharedWiring.Orders

  def commands do
    [
      CreateOrder,
      {ViewOrder, view_order_wiring(:pending_orders)},
      {CancelOrder, cancel_order_wiring(:pending_orders, :state)}
    ]
  end
end
Pattern 3: Command Documentation
Since behavior is split between Command and Model, document requirements in the Command:
defmodule ViewOrder do
  @moduledoc """
  Views an order by reference.

  ## Generator Requirements

  Requires `order_ref` override - typically provided via Model's `with:`:

      {ViewOrder, with: fn s -> %{order_ref: StreamData.member_of(Map.keys(s.orders))} end}

  ## Expected Events

  Model's simulate/2 should return one of:
  - `[%OrderViewed{order_ref: ref}]` - if order exists
  - `[%OrderNotFound{order_ref: ref}]` - if order doesn't exist
  """

  defstruct [:order_ref]
  # ...
end
Optional Command Callbacks
creates_ref/0
Return the field name where a newly created ref should be stored:
def creates_ref, do: :order_ref
read_only?/0
Mark commands that don't modify state (prioritized for removal during shrinking):
def read_only?, do: true
downstream_observables/0
Declare which event types this command can produce:
def downstream_observables, do: [OrderCreated, OrderRejected]
label/2
Provide human-readable labels for debugging:
def label(_state, %__MODULE__{order_ref: ref}) do
  "view order #{inspect(ref)}"
end
semantics/0
Declare execution semantics (:sync, :probe, :async, :mock_config):
def semantics, do: :probe  # For read operations that may need retry/settle
Summary
	Concern	Location
	Struct fields	Command
	Field generation	Command (generator/1)
	Metadata	Command (optional callbacks)
	When to enable	Model (when: option)
	State-dependent params	Model (with: option)
	Expected events	Simulator (simulate/2 via simulator/0)
	State shape	Model's projection



  

    Writing Effective Invariants

Invariants are the heart of property-based testing. They define what "correct"
means for your system. This guide covers how to write invariants that catch
real bugs.
What Makes a Good Invariant?
Good invariants are:
	Always true - If it can be violated, the system has a bug
	Independently verifiable - Can be checked without knowing how the system works internally
	Specific enough - Catches bugs when violated
	General enough - Doesn't fail due to timing or edge cases

Types of Invariants
1. Balance Invariants
Track that quantities add up correctly:
@trigger every: 1
def assert_balance_matches_ledger(state, _cmd_or_event) do
  # Account balance should equal sum of all transactions
  expected_balances =
    state.transactions
    |> Enum.group_by(& &1.account_id)
    |> Enum.map(fn {account_id, txns} ->
      balance = Enum.reduce(txns, 0, fn
        %{type: :credit, amount: amt}, acc -> acc + amt
        %{type: :debit, amount: amt}, acc -> acc - amt
      end)
      {account_id, balance}
    end)
    |> Map.new()

  mismatches =
    state.accounts
    |> Enum.filter(fn {id, account} ->
      expected = Map.get(expected_balances, id, 0)
      account.balance != expected
    end)

  if Enum.empty?(mismatches) do
    :ok
  else
    {:error, "Balance mismatches: #{inspect(mismatches)}"}
  end
end
2. Uniqueness Invariants
Verify uniqueness constraints:
@trigger every: 1
def assert_emails_unique(state, _cmd_or_event) do
  emails = Enum.map(state.users, fn {_id, user} -> user.email end)
  unique_emails = Enum.uniq(emails)

  if length(emails) == length(unique_emails) do
    :ok
  else
    duplicates = emails -- unique_emails
    {:error, "Duplicate emails: #{inspect(duplicates)}"}
  end
end
3. State Machine Invariants
Verify valid state transitions:
@valid_transitions %{
  :draft => [:pending, :cancelled],
  :pending => [:approved, :rejected, :cancelled],
  :approved => [:completed, :cancelled],
  :rejected => [],
  :cancelled => [],
  :completed => []
}

@trigger every: 1
def assert_valid_status_transitions(state, _cmd_or_event) do
  invalid =
    state.transition_history
    |> Enum.filter(fn {from, to} ->
      valid_next = Map.get(@valid_transitions, from, [])
      to not in valid_next
    end)

  if Enum.empty?(invalid) do
    :ok
  else
    {:error, "Invalid transitions: #{inspect(invalid)}"}
  end
end
4. Referential Integrity Invariants
Verify foreign key relationships:
@trigger every: 1
def assert_orders_reference_valid_users(state, _cmd_or_event) do
  user_ids = MapSet.new(Map.keys(state.users))

  orphan_orders =
    state.orders
    |> Enum.filter(fn {_id, order} ->
      order.user_id not in user_ids
    end)

  if Enum.empty?(orphan_orders) do
    :ok
  else
    {:error, "Orphan orders: #{inspect(Enum.map(orphan_orders, &elem(&1, 0)))}"}
  end
end
5. Bounds Invariants
Verify values stay within acceptable ranges:
@trigger every: 1
def assert_balances_non_negative(state, _cmd_or_event) do
  negative =
    state.accounts
    |> Enum.filter(fn {_id, account} -> account.balance < 0 end)

  if Enum.empty?(negative) do
    :ok
  else
    {:error, "Negative balances: #{inspect(negative)}"}
  end
end

@trigger every: 1
def assert_inventory_non_negative(state, _cmd_or_event) do
  negative =
    state.inventory
    |> Enum.filter(fn {_sku, qty} -> qty < 0 end)

  if Enum.empty?(negative) do
    :ok
  else
    {:error, "Negative inventory: #{inspect(negative)}"}
  end
end
6. Temporal Invariants
Verify time-based constraints:
@trigger every: 1
def assert_expiry_after_creation(state, _cmd_or_event) do
  invalid =
    state.authorizations
    |> Enum.filter(fn {_id, auth} ->
      DateTime.compare(auth.expires_at, auth.created_at) != :gt
    end)

  if Enum.empty?(invalid) do
    :ok
  else
    {:error, "Authorizations with invalid expiry: #{inspect(invalid)}"}
  end
end
Invariant Triggers
Control when invariants are checked using the @trigger attribute:
# Check after every event (every: 1)
@trigger every: 1
def assert_balance_non_negative(state, _cmd_or_event) do
  # ...
end

# Check only at end of sequence (expensive checks)
@trigger at: :end_of_sequence
def assert_full_consistency_check(state, _cmd_or_event) do
  # ...
end

# Check after specific event types
@trigger every: OrderCreated
def assert_order_valid(state, _cmd_or_event) do
  # ...
end
Tracking State for Invariants
Assertion projections can track their own state:
defmodule MyApp.Projections.AuditInvariants do
  use PropertyDamage.Model.Projection

  @impl true
  def init do
    %{
      # Track what we need for invariant checks
      operation_counts: %{},
      last_operation_per_user: %{},
      suspicious_patterns: []
    }
  end

  @impl true
  def apply(state, %OperationCompleted{user_id: uid, op_type: type}) do
    state
    |> update_in([:operation_counts, type], &((&1 || 0) + 1))
    |> put_in([:last_operation_per_user, uid], type)
  end

  def apply(state, _), do: state

  @trigger at: :end_of_sequence
  def assert_no_suspicious_patterns(state, _cmd_or_event) do
    if Enum.empty?(state.suspicious_patterns) do
      :ok
    else
      {:error, "Suspicious patterns detected: #{inspect(state.suspicious_patterns)}"}
    end
  end
end
Relaxing Invariants During Faults
When using nemesis (chaos engineering), some invariants may not apply:
@trigger every: 1
def assert_latency_within_sla(state, _cmd_or_event) do
  # Skip SLA check during active network partition
  if Map.get(state.active_faults, :network_partition) do
    :ok
  else
    if state.last_latency_ms < 100 do
      :ok
    else
      {:error, "SLA violated: #{state.last_latency_ms}ms"}
    end
  end
end
Common Mistakes
1. Checking Implementation Details
Bad: Checking internal counters or cache state
# Don't do this - relies on implementation details
@trigger every: 1
def assert_cache_hit_ratio(state, _cmd_or_event) do
  if state.cache.hits / state.cache.total > 0.8, do: :ok, else: {:error, "Low cache hits"}
end
Good: Check observable behavior
# Check what users can observe
@trigger every: 1
def assert_orders_match_line_items(state, _cmd_or_event) do
  # Sum of line items should equal order total
  ...
end
2. Non-Deterministic Checks
Bad: Time-dependent checks that can flake
# Don't do this - can fail due to timing
@trigger every: 1
def assert_recent_activity(state, _cmd_or_event) do
  if DateTime.diff(DateTime.utc_now(), state.last_activity, :second) < 60 do
    :ok
  else
    {:error, "No recent activity"}
  end
end
Good: Use logical time from events
# Use event timestamps, not wall clock
@trigger every: 1
def assert_activity_ordering(state, _cmd_or_event) do
  sorted = Enum.sort_by(state.activities, & &1.timestamp)
  if state.activities == sorted, do: :ok, else: {:error, "Out of order"}
end
3. Too Specific
Bad: Checks exact values
# Too specific - will break with any change
@trigger every: 1
def assert_exact_balance(state, _cmd_or_event) do
  if state.accounts["acc_1"].balance == 1000, do: :ok, else: {:error, "Wrong"}
end
Good: Check relationships
# Check the relationship, not specific values
@trigger every: 1
def assert_credits_minus_debits(state, _cmd_or_event) do
  expected = state.total_credits - state.total_debits
  actual = Enum.reduce(state.accounts, 0, fn {_, acc}, sum -> sum + acc.balance end)
  if expected == actual, do: :ok, else: {:error, "Mismatch"}
end
Using Mutation Testing to Validate Invariants
Use mutation testing to verify your invariants catch bugs:
{:ok, report} = PropertyDamage.Mutation.run(
  model: MyModel,
  adapter: MyAdapter,
  target_score: 0.80
)

# If mutation score is low, invariants need improvement
if report.mutation_score < 0.80 do
  analysis = PropertyDamage.Mutation.analyze(report)
  IO.puts("Weak invariants: #{inspect(analysis.weak_checks)}")
end
Next Steps
	Debugging Failures - What to do when invariants catch bugs
	Chaos Engineering - Testing resilience with nemesis
	See PropertyDamage.Suggestions for AI-powered invariant recommendations



  

    Debugging Failures

When PropertyDamage finds a failing sequence, it provides powerful tools for
understanding and fixing the bug. This guide covers the debugging workflow.
The Failure Report
When a test fails, PropertyDamage returns a failure report:
{:error, failure} = PropertyDamage.run(
  model: MyModel,
  adapter: MyAdapter,
  max_runs: 100
)

IO.inspect(failure, label: "Failure")
The report includes:
	seed - Random seed for reproducibility
	original_sequence - Full command sequence that failed
	shrunk_sequence - Minimal reproduction (after shrinking)
	shrink_info - How much shrinking reduced the sequence
	invariant_violated - Which check failed
	error_message - Description of the failure
	state_at_failure - Model state when failure occurred

Step 1: Reproduce the Failure
Use the seed to reproduce exactly:
# Run with the same seed
result = PropertyDamage.run(
  model: MyModel,
  adapter: MyAdapter,
  seed: failure.seed
)
Step 2: Understand the Shrunk Sequence
The shrunk sequence is the minimal reproduction. Every command in it is
necessary for the failure:
# Print the shrunk sequence
failure.shrunk_sequence
|> Enum.with_index()
|> Enum.each(fn {cmd, idx} ->
  IO.puts("[#{idx}] #{inspect(cmd)}")
end)
Example output:
[0] CreateAccount{currency: "USD", initial_balance: 1000}
[1] CreateAuthorization{account_ref: @0, amount: 500}
[2] CreateCapture{authorization_ref: @1, amount: 600}
Step 3: Explain the Sequence
Use explain/1 to understand why each command matters:
explanation = PropertyDamage.explain(failure)
IO.puts(explanation)
Output:
Command Analysis:

[0] CreateAccount{currency: "USD", initial_balance: 1000}
    Required: Creates the account referenced by later commands
    State change: Adds account with $10.00 balance

[1] CreateAuthorization{account_ref: @0, amount: 500}
    Required: Creates authorization referenced by capture
    State change: Holds $5.00 on account

[2] CreateCapture{authorization_ref: @1, amount: 600}
    Fails because: Capture exceeds authorization amount
    Expected: Capture should fail or be limited to $5.00
    Actual: Capture of $6.00 succeeded
Step 4: Step-by-Step Replay
Replay the sequence step by step to observe state changes:
{:ok, replay} = PropertyDamage.Replay.step_through(failure)

replay.steps
|> Enum.each(fn step ->
  IO.puts("=== Step #{step.index} ===")
  IO.puts("Command: #{inspect(step.command)}")
  IO.puts("Events: #{inspect(step.events)}")
  IO.puts("State after: #{inspect(step.state_after)}")
  IO.puts("")
end)
Step 5: Isolate the Trigger
Find the specific field/value that causes the failure:
{:ok, trigger} = PropertyDamage.isolate_trigger(failure)

IO.puts("Trigger: #{inspect(trigger)}")
# => %{command_index: 2, field: :amount, value: 600, threshold: 500}
Step 6: Visual Debugging
Sequence Diagrams
Generate visual diagrams of the failing sequence:
# Mermaid diagram
diagram = PropertyDamage.Diagram.to_mermaid(failure)
File.write!("failure.mmd", diagram)

# PlantUML diagram
diagram = PropertyDamage.Diagram.to_plantuml(failure)
File.write!("failure.puml", diagram)
Diff Debugging
Compare a passing run with the failing run:
# Get a passing trace
{:ok, passing} = PropertyDamage.run(
  model: MyModel,
  adapter: MyAdapter,
  seed: 12345  # A known good seed
)

# Compare traces
diff = PropertyDamage.Diff.compare_traces(passing.trace, failure.trace)
IO.puts(PropertyDamage.Diff.format(diff, :terminal))
Output highlights where traces diverge:
Step 2: CreateCapture
  Passing: {:error, :exceeds_authorization}
  Failing: {:ok, [%CaptureCreated{amount: 600}]}
           ^^^^ BUG: Should have rejected
Step 7: Livebook Exploration
For interactive debugging, use Livebook:
alias PropertyDamage.Livebook

# Interactive failure explorer
Livebook.explore_failure(failure)

# Step through with UI controls
Livebook.command_stepper(failure)

# Compare expected vs actual state
Livebook.state_diff(failure)
Step 8: Export for Sharing
Generate ExUnit Test
Create a regression test:
test_code = PropertyDamage.Export.to_exunit(failure)
File.write!("test/regression/capture_overflow_test.exs", test_code)
Generate Reproduction Script
# Curl script for API testing
script = PropertyDamage.Export.to_script(failure, :curl)
File.write!("debug/reproduce.sh", script)

# Elixir script
script = PropertyDamage.Export.to_script(failure, :elixir)
File.write!("debug/reproduce.exs", script)
Generate Livebook
notebook = PropertyDamage.Export.to_livebook(failure)
File.write!("debug/failure_analysis.livemd", notebook)
Step 9: Save for Later
Persist the Failure
{:ok, path} = PropertyDamage.save_failure(failure, "failures/")
# => "failures/capture_overflow_20240115_143022.failure"
Add to Seed Library
Track for regression testing:
{:ok, library} = PropertyDamage.load_seed_library("seeds.json")
{:ok, library} = PropertyDamage.add_to_seed_library(
  library,
  failure,
  tags: [:bug, :capture, :overflow]
)
PropertyDamage.save_seed_library(library, "seeds.json")
Step 10: Verify the Fix
After fixing the bug:
# Run with the same seed - should pass now
result = PropertyDamage.run(
  model: MyModel,
  adapter: MyAdapter,
  seed: failure.seed
)

assert result.success, "Fix didn't work!"

# Use fix verification for comprehensive check
{:ok, verification} = PropertyDamage.FailureIntelligence.verify_fix(
  failure,
  model: MyModel,
  adapter: MyAdapter,
  variations: 50  # Test with seed variations
)

if verification.verified do
  IO.puts("Fix verified!")
else
  IO.puts("Fix incomplete: #{inspect(verification.still_failing)}")
end
Shrinking Deep Dive
How Shrinking Works
PropertyDamage shrinks by:
	Removing commands - Try removing each command
	Simplifying values - Try smaller numbers, shorter strings
	Simplifying refs - Try using earlier refs

When Shrinking Gets Stuck
If the shrunk sequence is still large:
# Try harder with exhaustive strategy
{:ok, smaller} = PropertyDamage.shrink_further(
  failure,
  strategy: :exhaustive,
  max_iterations: 1000
)
Understanding Shrink Info
IO.inspect(failure.shrink_info)
# => %{
#   original_length: 47,
#   shrunk_length: 3,
#   iterations: 156,
#   strategy: :default
# }
Flakiness Detection
If a failure doesn't reproduce consistently:
flakiness = PropertyDamage.Flakiness.detect(
  model: MyModel,
  adapter: MyAdapter,
  seed: failure.seed,
  iterations: 10
)

if flakiness.is_flaky do
  IO.puts("Flaky! Passes #{flakiness.pass_rate * 100}% of the time")
  IO.puts("Likely causes: #{inspect(flakiness.likely_causes)}")
end
Common Issues
1. Can't Reproduce
	Check that the SUT is in the same state (database reset)
	Verify no external dependencies changed
	Check for time-dependent behavior

2. Shrunk Sequence Too Long
	Add more command preconditions
	Use shrink_further/2 with :exhaustive strategy
	Check for hidden dependencies between commands

3. Multiple Failures
	Focus on one at a time
	Use PropertyDamage.FailureIntelligence.cluster/1 to group similar failures

Next Steps
	Writing Invariants - Improve your checks
	Chaos Engineering - Test resilience
	See PropertyDamage.FailureIntelligence for pattern detection



  

    Async and Eventual Consistency

This guide covers patterns for testing systems with asynchronous operations and
eventual consistency, including:
	Probe commands - Query until data appears
	Async commands - Create resource and poll until settled
	Mid-execution injection - Emit events as they happen during polling
	Adapter.Injector - Handle webhook/callback events

Overview
Many real-world APIs involve asynchronous operations:
Client                          API                         Backend
  │                              │                              │
  │── POST /authorizations ─────>│                              │
  │<── 201 {status: processing} ─│── Queue for processing ─────>│
  │                              │                              │
  │── GET /authorizations/123 ──>│                              │
  │<── 200 {status: processing} ─│                              │
  │                              │<── Processing complete ──────│
  │── GET /authorizations/123 ──>│                              │
  │<── 200 {status: approved} ───│                              │
PropertyDamage provides several mechanisms to handle these patterns.
Command Semantics
Commands declare their behavior via the semantics/0 callback:
	Semantics	Purpose	Mutates State?	Settle Behavior
	:sync	Standard operations (default)	Yes	Execute once
	:probe	Query and wait for consistency	No	Retry until success
	:async	Create and wait for completion	Yes	Retry until complete
	:mock_config	Configure mock services	No	Not sent to SUT

Probe Commands
Use probes for read-only queries that may need to wait for eventual consistency.
When to Use
	Checking if a resource exists after creation
	Waiting for a computed value to update
	Polling for state changes caused by other commands

Implementation
defmodule MyTest.Commands.GetOrder do
  @behaviour PropertyDamage.Command
  import PropertyDamage.Generator, only: [merge_overrides: 2]

  defstruct [:order_id]

  @impl true
  def generator(overrides \\ %{}) do
    # Default to nil - Model provides actual order_id via with:
    %{order_id: nil}
    |> merge_overrides(overrides)
    |> StreamData.fixed_map()
  end

  # Probe semantics enables settle/retry logic
  def semantics, do: :probe

  # Read-only commands are prioritized for removal during shrinking
  def read_only?, do: true

  # Configure retry behavior
  def settle_config do
    %{
      timeout_ms: 5_000,     # Max time to wait
      interval_ms: 200,      # Time between retries
      backoff: :exponential  # :linear or :exponential
    }
  end
end
The Model wires this probe with state-dependent order selection:
def commands do
  [
    {GetOrder,
      when: fn state -> map_size(state.orders) > 0 end,
      with: fn state -> %{order_id: StreamData.member_of(Map.keys(state.orders))} end}
  ]
end
Adapter Implementation
Return {:retry, reason} when the data isn't ready yet:
def execute(%GetOrder{order_id: id}, ctx) do
  case Req.get(ctx.client, url: "/orders/#{id}") do
    {:ok, %{status: 200, body: body}} ->
      {:ok, [%OrderRetrieved{order_id: id, data: body}]}

    {:ok, %{status: 404}} ->
      # Not found yet - Settle module will retry
      {:retry, :not_found}

    {:error, %{reason: :timeout}} ->
      # Transient error - retry
      {:retry, :timeout}

    {:error, reason} ->
      # Hard failure - stop immediately
      {:error, reason}
  end
end
The executor wraps probe execution with Settle.settle/2, which:
	Calls adapter.execute/2
	If {:retry, reason} is returned, sleeps and retries
	Continues until {:ok, events}, {:error, reason}, or timeout

Async Commands
Use async commands for operations that create resources and must wait for them to settle.
When to Use
	Creating authorizations that process asynchronously
	Submitting jobs that complete in the background
	Any operation returning "processing" status that requires polling

The Retry Limitation
Important: The Settle module calls the adapter with identical arguments each retry:
# Inside executor - same command every time
Settle.settle(
  fn -> adapter.execute(command, adapter_context) end,
  ...
)
This means {:retry, reason} does not work for create-then-poll scenarios:
# BROKEN: First call creates, retry creates AGAIN!
def execute(%CreateAuthorization{} = cmd, ctx) do
  case Req.post(ctx.client, url: "/authorizations", json: payload(cmd)) do
    {:ok, %{body: %{"status" => "processing"}}} ->
      {:retry, :processing}  # Next retry will POST again!
    ...
  end
end
Recommended Pattern: Internal Polling
Handle the entire create-and-poll flow inside execute/2:
defmodule MyTest.Commands.CreateAuthorization do
  @behaviour PropertyDamage.Command
  import PropertyDamage.Generator, only: [merge_overrides: 2]

  defstruct [:account_id, :amount, :currency]

  @impl true
  def generator(overrides \\ %{}) do
    # account_id provided via Model's with: option
    %{
      account_id: nil,
      amount: StreamData.integer(100..10000),
      currency: StreamData.member_of(["USD", "EUR", "GBP"])
    }
    |> merge_overrides(overrides)
    |> StreamData.fixed_map()
  end

  # Async semantics protects this command during shrinking
  # if downstream commands use its ref
  def semantics, do: :async

  # This command creates a ref used by other commands
  def creates_ref, do: :authorization_id
end
The Model wires this command with account selection:
def commands do
  [
    {CreateAuthorization,
      when: fn state -> map_size(state.accounts) > 0 end,
      with: fn state -> %{account_id: StreamData.member_of(Map.keys(state.accounts))} end}
  ]
end
defmodule MyTest.HTTPAdapter do
  @behaviour PropertyDamage.Adapter

  @poll_timeout_ms 10_000
  @poll_interval_ms 200

  def execute(%CreateAuthorization{} = cmd, ctx) do
    payload = %{
      account_id: cmd.account_id,
      amount: cmd.amount,
      currency: cmd.currency
    }

    case Req.post(ctx.client, url: "/authorizations", json: payload) do
      {:ok, %{status: 201, body: %{"id" => id, "status" => status}}} ->
        case status do
          "approved" ->
            {:ok, approved_events(id, cmd)}

          "declined" ->
            {:ok, declined_events(id, cmd, "immediate")}

          "processing" ->
            # Poll until settled - all inside this single execute call
            poll_until_settled(ctx.client, id, cmd)
        end

      {:ok, %{status: status, body: body}} ->
        {:error, {:unexpected_response, status, body}}

      {:error, reason} ->
        {:error, reason}
    end
  end

  defp poll_until_settled(client, id, cmd) do
    deadline = System.monotonic_time(:millisecond) + @poll_timeout_ms
    do_poll(client, id, cmd, deadline)
  end

  defp do_poll(client, id, cmd, deadline) do
    if System.monotonic_time(:millisecond) >= deadline do
      {:error, {:timeout, :authorization_not_settled}}
    else
      case Req.get(client, url: "/authorizations/#{id}") do
        {:ok, %{status: 200, body: %{"status" => "approved"}}} ->
          {:ok, approved_events(id, cmd)}

        {:ok, %{status: 200, body: %{"status" => "declined", "reason" => reason}}} ->
          {:ok, declined_events(id, cmd, reason)}

        {:ok, %{status: 200, body: %{"status" => "processing"}}} ->
          Process.sleep(@poll_interval_ms)
          do_poll(client, id, cmd, deadline)

        {:error, _reason} ->
          # Transient error - keep polling
          Process.sleep(@poll_interval_ms)
          do_poll(client, id, cmd, deadline)
      end
    end
  end

  defp approved_events(id, cmd) do
    [
      %AuthorizationCreated{
        authorization_id: id,
        account_id: cmd.account_id,
        amount: cmd.amount,
        currency: cmd.currency,
        status: :approved
      },
      %AuthorizationApproved{
        authorization_id: id,
        amount: cmd.amount
      }
    ]
  end

  defp declined_events(id, cmd, reason) do
    [
      %AuthorizationCreated{
        authorization_id: id,
        account_id: cmd.account_id,
        amount: cmd.amount,
        currency: cmd.currency,
        status: :declined
      },
      %AuthorizationDeclined{
        authorization_id: id,
        reason: reason
      }
    ]
  end
end
Alternative: Mid-Execution Event Injection
The internal polling pattern above has a limitation: all events are returned together
at the end, compressing the timeline. If your model needs to see intermediate states
(e.g., verify the authorization exists before it's approved), use ctx.inject:
def execute(%CreateAuthorization{} = cmd, ctx) do
  payload = %{
    account_id: cmd.account_id,
    amount: cmd.amount,
    currency: cmd.currency
  }

  case Req.post(ctx.client, url: "/authorizations", json: payload) do
    {:ok, %{status: 201, body: %{"id" => id, "status" => status}}} ->
      # Inject AuthorizationCreated NOW - projections update immediately
      ctx.inject.(%AuthorizationCreated{
        authorization_id: id,
        account_id: cmd.account_id,
        amount: cmd.amount,
        currency: cmd.currency,
        status: status_to_atom(status)
      })

      case status do
        "approved" ->
          {:ok, [%AuthorizationApproved{authorization_id: id, amount: cmd.amount}]}

        "declined" ->
          {:ok, [%AuthorizationDeclined{authorization_id: id, reason: "immediate"}]}

        "processing" ->
          # Poll until settled - AuthorizationCreated already visible to projections
          poll_until_settled(ctx.client, id, cmd)
      end

    {:error, reason} ->
      {:error, reason}
  end
end

defp poll_until_settled(client, id, cmd) do
  # ... polling logic ...
  case final_status do
    "approved" ->
      {:ok, [%AuthorizationApproved{authorization_id: id, amount: cmd.amount}]}

    "declined" ->
      {:ok, [%AuthorizationDeclined{authorization_id: id, reason: reason}]}
  end
end
Key behaviors of ctx.inject:
	Injected events update projections immediately when injected
	Injected events are recorded with source :injected in the event log
	If the command has creates_ref/0, refs are bound from the first injected event
	Events returned from execute/2 are processed after injected events
	Adapters not using inject continue to work unchanged (backward compatible)

When to use ctx.inject:
	Model assertions depend on intermediate states
	Projections need to track resources before they settle
	Event timeline accuracy matters for debugging/visualization
	You want to emit Created event immediately, then Settled event after polling

Alternative: Process Dictionary for Retry State
If you prefer using {:retry, reason} with the Settle module, track in-flight
operations using the process dictionary:
def execute(%CreateAuthorization{} = cmd, ctx) do
  # Use command hash as key to track this specific operation
  cmd_key = :erlang.phash2({cmd.account_id, cmd.amount, cmd.currency})

  case Process.get({:pending_auth, cmd_key}) do
    nil ->
      # First call - create the authorization
      create_authorization(cmd, cmd_key, ctx)

    authorization_id ->
      # Retry call - just poll
      poll_authorization(authorization_id, cmd, cmd_key, ctx)
  end
end

defp create_authorization(cmd, cmd_key, ctx) do
  case Req.post(ctx.client, url: "/authorizations", json: payload(cmd)) do
    {:ok, %{body: %{"id" => id, "status" => "processing"}}} ->
      # Store ID for subsequent retries
      Process.put({:pending_auth, cmd_key}, id)
      {:retry, :processing}

    {:ok, %{body: %{"id" => id, "status" => "approved"}}} ->
      {:ok, approved_events(id, cmd)}

    {:ok, %{body: %{"id" => id, "status" => "declined", "reason" => r}}} ->
      {:ok, declined_events(id, cmd, r)}
  end
end

defp poll_authorization(authorization_id, cmd, cmd_key, ctx) do
  case Req.get(ctx.client, url: "/authorizations/#{authorization_id}") do
    {:ok, %{body: %{"status" => "approved"}}} ->
      Process.delete({:pending_auth, cmd_key})
      {:ok, approved_events(authorization_id, cmd)}

    {:ok, %{body: %{"status" => "declined", "reason" => r}}} ->
      Process.delete({:pending_auth, cmd_key})
      {:ok, declined_events(authorization_id, cmd, r)}

    {:ok, %{body: %{"status" => "processing"}}} ->
      {:retry, :still_processing}
  end
end
Async Shrinking Protection
The :async semantics provides shrinking protection. When a test fails, the
shrinker tries to minimize the command sequence. Async commands that create
refs used by downstream commands are protected from removal:
Sequence:
1. CreateAuthorization  → creates auth_ref     ← Protected (ref used below)
2. GetAuthorization     → uses auth_ref        ← Can be removed (read-only)
3. CaptureAuthorization → uses auth_ref        ← Uses the ref

During shrinking:
- GetAuthorization may be removed (probe, read-only)
- CreateAuthorization is kept because CaptureAuthorization needs its ref
Adapter.Injector (Webhook Events)
Use Adapter.Injector when external systems push events to your test
(webhooks, callbacks, message queues) rather than you polling for them.
When to Use
	Payment gateway sends webhook on completion
	Message queue delivers async results
	External service calls back with status updates

Implementation
defmodule MyTest.PaymentWebhookAdapter do
  use PropertyDamage.Adapter.Injector

  alias MyTest.Events.{PaymentApproved, PaymentDeclined}

  # Declare which events this adapter can emit
  @emits [PaymentApproved, PaymentDeclined]

  @impl true
  def setup(config) do
    # Start a mock webhook server
    {:ok, server} = Plug.Cowboy.http(
      WebhookHandler,
      [event_queue: config.event_queue, adapter: __MODULE__],
      port: config[:webhook_port] || 4001
    )

    {:ok, %{server: server, event_queue: config.event_queue}}
  end

  @impl true
  def teardown(%{server: server}) do
    Plug.Cowboy.shutdown(server)
    :ok
  end

  @impl true
  def to_event(%{"type" => "payment.approved", "payment_id" => id, "amount" => amt}) do
    {:ok, %PaymentApproved{payment_id: id, amount: amt}}
  end

  def to_event(%{"type" => "payment.declined", "payment_id" => id, "reason" => r}) do
    {:ok, %PaymentDeclined{payment_id: id, reason: r}}
  end

  def to_event(_unknown) do
    :skip  # Ignore unrecognized webhooks
  end
end
Webhook Handler
defmodule MyTest.WebhookHandler do
  use Plug.Router

  plug Plug.Parsers, parsers: [:json], json_decoder: Jason
  plug :match
  plug :dispatch

  post "/webhooks/payment" do
    event_queue = conn.private[:event_queue]
    adapter = conn.private[:adapter]

    case adapter.to_event(conn.body_params) do
      {:ok, event} ->
        PropertyDamage.EventQueue.push(event_queue, adapter, event)
        send_resp(conn, 200, ~s({"received": true}))

      :skip ->
        send_resp(conn, 200, ~s({"skipped": true}))

      {:error, reason} ->
        send_resp(conn, 400, Jason.encode!(%{error: reason}))
    end
  end
end
Using Adapter.Injector
Register injector adapters when running tests:
PropertyDamage.run(
  model: MyTest.Model,
  adapter: MyTest.HTTPAdapter,
  adapter_config: %{base_url: "http://localhost:4000"},
  injector_adapters: [MyTest.PaymentWebhookAdapter],
  max_runs: 100
)
The executor drains injected events after each command, applying them to
projections just like events from regular command execution.
Model Configuration
Declare which events can be injected in your model:
defmodule MyTest.Model do
  @behaviour PropertyDamage.Model

  def injectable_events do
    [PaymentApproved, PaymentDeclined]
  end

  # ... rest of model
end
Polling Adapter.Injector (Advanced)
For systems where you must actively poll for status changes but want events
processed through the injection system (e.g., between commands rather than
blocking a single command), you can create a polling Adapter.Injector:
defmodule MyTest.AuthorizationPollerAdapter do
  use PropertyDamage.Adapter.Injector

  @emits [AuthorizationApproved, AuthorizationDeclined]

  @impl true
  def setup(config) do
    {:ok, poller} = AuthorizationPoller.start_link(
      base_url: config[:base_url],
      event_queue: config[:event_queue],
      adapter_module: __MODULE__,
      poll_interval_ms: config[:poll_interval_ms] || 200
    )

    {:ok, %{poller: poller}}
  end

  @impl true
  def teardown(%{poller: poller}) do
    GenServer.stop(poller)
    :ok
  end

  @impl true
  def to_event(%AuthorizationApproved{} = event), do: {:ok, event}
  def to_event(%AuthorizationDeclined{} = event), do: {:ok, event}
  def to_event(_), do: :skip

  # Called by main adapter after creating an authorization
  def watch(poller, authorization_id) do
    AuthorizationPoller.watch(poller, authorization_id)
  end
end

defmodule MyTest.AuthorizationPoller do
  use GenServer

  def start_link(opts), do: GenServer.start_link(__MODULE__, opts)

  def watch(poller, authorization_id) do
    GenServer.cast(poller, {:watch, authorization_id})
  end

  @impl true
  def init(opts) do
    state = %{
      base_url: Keyword.fetch!(opts, :base_url),
      event_queue: Keyword.fetch!(opts, :event_queue),
      adapter_module: Keyword.fetch!(opts, :adapter_module),
      poll_interval_ms: Keyword.get(opts, :poll_interval_ms, 200),
      pending: %{}
    }

    schedule_poll(state.poll_interval_ms)
    {:ok, state}
  end

  @impl true
  def handle_cast({:watch, id}, state) do
    {:noreply, %{state | pending: Map.put(state.pending, id, :watching)}}
  end

  @impl true
  def handle_info(:poll, state) do
    new_pending =
      Enum.reduce(state.pending, %{}, fn {id, _}, acc ->
        case poll_authorization(state.base_url, id) do
          {:settled, event} ->
            PropertyDamage.EventQueue.push(
              state.event_queue,
              state.adapter_module,
              event
            )
            acc  # Remove from pending

          :processing ->
            Map.put(acc, id, :watching)  # Keep watching
        end
      end)

    schedule_poll(state.poll_interval_ms)
    {:noreply, %{state | pending: new_pending}}
  end

  defp schedule_poll(interval), do: Process.send_after(self(), :poll, interval)

  defp poll_authorization(base_url, id) do
    case Req.get("#{base_url}/authorizations/#{id}") do
      {:ok, %{body: %{"status" => "approved", "amount" => amt}}} ->
        {:settled, %AuthorizationApproved{authorization_id: id, amount: amt}}

      {:ok, %{body: %{"status" => "declined", "reason" => r}}} ->
        {:settled, %AuthorizationDeclined{authorization_id: id, reason: r}}

      _ ->
        :processing
    end
  end
end
Summary
	Pattern	Use When	Implementation
	Probe	Read-only query waiting for data	Return {:retry, reason} from adapter
	Async (internal poll)	Create + wait for completion	Poll inside execute/2
	Async (ctx.inject)	Create + wait, need accurate event timing	Call ctx.inject.(event) mid-execution
	Async (process dict)	Create + wait, prefer Settle module	Track state in process dictionary
	Adapter.Injector	External system pushes webhooks	Implement to_event/1 callback
	Polling Adapter.Injector	Poll but inject events between commands	Background GenServer + EventQueue

Choose the simplest pattern that fits your use case:
	Most async create operations: Use internal polling (simplest)
	Need intermediate state visibility: Use ctx.inject for accurate event timing
	External webhooks/callbacks: Use Adapter.Injector



  

    Chaos Engineering with Nemesis

PropertyDamage includes nemesis operations for fault injection testing.
This enables chaos engineering - verifying your system handles failures
gracefully.
What is Chaos Engineering?
Chaos engineering answers: "What happens when things go wrong?"
Instead of hoping your system handles failures, you deliberately inject
faults and verify the system responds correctly.
Built-in Nemesis Operations
PropertyDamage provides these fault injection operations:
	Category	Operation	What It Tests
	Network	NetworkLatency	Timeout handling, retries
		NetworkPartition	Split-brain, failover
		PacketLoss	Reliability, retry logic
	Resource	MemoryPressure	OOM handling, GC behavior
		CPUStress	Scheduler starvation
		ResourceExhaustion	File descriptor limits
	Time	ClockSkew	Time-based logic, TTLs
	Process	ProcessKill	Supervisor recovery
		SlowIO	I/O bound operations
	Security	CertificateExpiry	TLS error handling

Quick Start
1. Create a Chaos Model
Extend your model with nemesis commands:
defmodule MyApp.ChaosModel do
  @behaviour PropertyDamage.Model

  # Regular commands
  alias MyApp.Commands.{CreateOrder, ProcessOrder, CancelOrder}

  # Nemesis commands
  alias PropertyDamage.Nemesis.{
    NetworkLatency,
    NetworkPartition,
    CertificateExpiry
  }

  @impl true
  def commands do
    [
      # Regular operations (higher weights)
      {CreateOrder, weight: 5},
      {ProcessOrder, weight: 3},
      {CancelOrder, weight: 2},

      # Nemesis operations (lower weights = occasional faults)
      {NetworkLatency, weight: 1},
      {NetworkPartition, weight: 1},
      {CertificateExpiry, weight: 1}
    ]
  end

  # ... rest of model
end
2. Add Nemesis-Aware Invariants
Create a projection that tracks active faults:
defmodule MyApp.Projections.NemesisInvariants do
  use PropertyDamage.Model.Projection

  @impl true
  def init do
    %{
      active_faults: %{},
      operations_during_fault: []
    }
  end

  # Track fault injection
  @impl true
  def apply(state, %PropertyDamage.Nemesis.Events.FaultInjected{} = event) do
    put_in(state, [:active_faults, event.fault_type], event)
  end

  def apply(state, %PropertyDamage.Nemesis.Events.FaultRestored{} = event) do
    update_in(state, [:active_faults], &Map.delete(&1, event.fault_type))
  end

  def apply(state, _), do: state

  # Verify all faults were cleaned up
  @trigger at: :end_of_sequence
  def assert_no_orphaned_faults(state, _cmd_or_event) do
    if map_size(state.active_faults) == 0 do
      :ok
    else
      {:error, "Orphaned faults: #{inspect(state.active_faults)}"}
    end
  end
end
3. Update Your Adapter
Handle faults in your adapter:
defmodule MyApp.ChaosAdapter do
  @behaviour PropertyDamage.Adapter

  alias PropertyDamage.Nemesis.{NetworkLatency, CertificateExpiry}

  @impl true
  def execute(cmd, ctx) do
    # Check for network latency
    if NetworkLatency.should_delay?() do
      NetworkLatency.apply_delay()
    end

    # Check for certificate failure
    if CertificateExpiry.should_fail?() do
      CertificateExpiry.get_ssl_error()
    else
      do_execute(cmd, ctx)
    end
  end

  # ... actual execution
end
Network Operations
NetworkLatency
Simulate slow network responses:
alias PropertyDamage.Nemesis.NetworkLatency

# Add 100ms latency with 20ms jitter
%NetworkLatency{
  latency_ms: 100,
  jitter_ms: 20,
  duration_ms: 10_000
}

# In adapter:
if NetworkLatency.should_delay?() do
  NetworkLatency.apply_delay()  # Sleeps for configured duration
end
NetworkPartition
Simulate network splits:
alias PropertyDamage.Nemesis.NetworkPartition

# Full partition - no traffic either direction
%NetworkPartition{
  partition_type: :full,
  duration_ms: 5000
}

# Asymmetric - requests work, responses don't
%NetworkPartition{
  partition_type: :asymmetric,
  direction: :responses,
  duration_ms: 5000
}
PacketLoss
Simulate unreliable network:
alias PropertyDamage.Nemesis.PacketLoss

# 10% packet loss
%PacketLoss{
  loss_percent: 10,
  duration_ms: 10_000
}
Resource Operations
MemoryPressure
Simulate memory pressure:
alias PropertyDamage.Nemesis.MemoryPressure

# Allocate 100MB
%MemoryPressure{
  allocation_mb: 100,
  allocation_style: :bulk,  # or :fragmented
  duration_ms: 5000
}
CPUStress
Stress the scheduler:
alias PropertyDamage.Nemesis.CPUStress

# 80% CPU usage across all schedulers
%CPUStress{
  intensity: 0.8,
  schedulers: :all,  # or specific count
  duration_ms: 5000
}
Time Operations
ClockSkew
Simulate clock drift:
alias PropertyDamage.Nemesis.ClockSkew

# Jump forward 1 hour
%ClockSkew{
  skew_ms: 3_600_000,
  direction: :forward,
  drift_rate: 0  # No ongoing drift
}

# Backward drift at 10x speed
%ClockSkew{
  skew_ms: 0,
  direction: :backward,
  drift_rate: 10.0,  # 10 seconds per second
  duration_ms: 5000
}

# In your code, use the virtual clock:
ClockSkew.now()  # Returns adjusted time
Security Operations
CertificateExpiry
Simulate TLS certificate failures:
alias PropertyDamage.Nemesis.CertificateExpiry

# Expired certificate
%CertificateExpiry{
  failure_type: :expired,
  target: :api,  # or :all, :specific_service
  duration_ms: 10_000
}

# Hostname mismatch
%CertificateExpiry{
  failure_type: :wrong_host,
  target: :payment_gateway
}

# In adapter:
if CertificateExpiry.should_fail?(:api) do
  CertificateExpiry.get_ssl_error()
  # Returns {:error, {:tls_alert, :certificate_expired}}
end
Available failure types:
	:expired - Certificate past validity
	:not_yet_valid - Certificate not yet valid
	:wrong_host - Hostname mismatch
	:self_signed - Untrusted CA
	:revoked - Certificate revoked

Process Operations
ProcessKill
Kill processes to test recovery:
alias PropertyDamage.Nemesis.ProcessKill

# Kill by name
%ProcessKill{
  target: {:name, :my_worker},
  signal: :kill
}

# Kill random supervised child
%ProcessKill{
  target: {:supervised_by, MyApp.WorkerSupervisor},
  signal: :shutdown
}

# Kill by pattern
%ProcessKill{
  target: {:pattern, ~r/worker/},
  signal: :kill
}
SlowIO
Simulate slow disk I/O:
alias PropertyDamage.Nemesis.SlowIO

%SlowIO{
  delay_ms: 50,
  target: :all,  # :reads, :writes, or :all
  duration_ms: 10_000
}

# In your I/O code:
if SlowIO.should_delay?(:reads) do
  SlowIO.apply_delay()
end
Relaxing Invariants During Faults
Some invariants don't apply during faults. Adjust checks accordingly:
@trigger every: 1
def assert_response_time_sla(state, _cmd_or_event) do
  # Don't check SLA during network partition
  if has_active_fault?(state, :network_partition) do
    :ok
  else
    if state.last_response_ms < 100 do
      :ok
    else
      {:error, "SLA violated: #{state.last_response_ms}ms"}
    end
  end
end

@trigger every: 1
def assert_all_requests_succeed(state, _cmd_or_event) do
  # Allow failures during certificate issues
  if has_active_fault?(state, :certificate_expiry) do
    :ok
  else
    # Normal check
  end
end

defp has_active_fault?(state, type) do
  Map.has_key?(state.active_faults, type)
end
Toxiproxy Integration
For network operations, PropertyDamage can integrate with
Toxiproxy:
# Configure in adapter
adapter_config: %{
  toxiproxy: %{
    proxy_name: "my_service",
    api_url: "http://localhost:8474"
  }
}

# Nemesis operations will use Toxiproxy automatically
# Falls back to simulated mode if not configured
Example: Complete Chaos Model
defmodule TravelBooking.ChaosModel do
  @behaviour PropertyDamage.Model

  # Regular commands
  alias TravelBooking.Commands.{
    CreateBooking,
    AddFlight,
    AddHotel,
    ConfirmBooking
  }

  # Nemesis commands
  alias TravelBooking.Nemesis.{
    InjectLatency,
    InjectProviderError,
    InjectCertificateFailure,
    InjectPartialFailure
  }

  alias TravelBooking.Projections.{
    ModelState,
    BookingInvariants,
    NemesisInvariants
  }

  @impl true
  def commands do
    [
      # Regular operations (70-80% of commands)
      {CreateBooking, weight: 5},
      {AddFlight, weight: 4},
      {AddHotel, weight: 4},
      {ConfirmBooking, weight: 2},

      # Nemesis operations (20-30% of commands)
      {InjectLatency, weight: 1},
      {InjectProviderError, weight: 1},
      {InjectCertificateFailure, weight: 1},
      {InjectPartialFailure, weight: 1}
    ]
  end

  @impl true
  def state_projection, do: ModelState

  @impl true
  def extra_projections do
    [
      BookingInvariants,
      NemesisInvariants
    ]
  end
end
Best Practices
	Start with low fault rates - Weight nemesis commands at 1 while
regular commands are 3-5

	Test one fault type at a time - Easier to debug failures

	Verify fault cleanup - Use :no_orphaned_faults invariant

	Relax appropriate invariants - SLA checks don't apply during partitions

	Use auto-restore - Nemesis operations automatically restore after
their duration

	Log fault injection - Track when faults are active for debugging


What Chaos Engineering Detects
	Missing error handling
	Incorrect retry behavior
	Missing circuit breakers
	Resource leaks during failures
	Inconsistent state after partial failures
	Missing timeout handling
	Poor error messages to users
	Missing security event logging

Next Steps
	See example_tests/travel_booking/ for a complete chaos engineering example
	Read about Writing Invariants for fault-aware checks
	Use PropertyDamage.Mutation to verify your chaos tests catch bugs



  

    Differential Testing

PropertyDamage supports differential testing - running the same command sequences
against multiple implementations and comparing results.
What is Differential Testing?
Differential testing answers: "Do these implementations behave the same?"
Instead of defining expected outcomes, you compare outputs from different sources.
If they diverge, something is wrong. This is particularly powerful when you have:
	A reference implementation (oracle) to compare against
	Two systems that should be equivalent
	Old vs new versions during migrations

Use Cases
	Use Case	Description
	Oracle Testing	Compare SUT against a known-correct reference implementation
	Performance Comparison	Compare latency/throughput across backends
	Regression Testing	Compare old vs new versions of the same system
	Migration Validation	Verify legacy and new systems produce identical results
	Environment Comparison	Compare staging vs production behavior

Quick Start
1. Oracle Testing (Correctness)
Compare your system under test against a reference implementation:
PropertyDamage.Differential.run(
  model: MyModel,
  targets: [
    {ReferenceAdapter, role: :reference},
    {SUTAdapter, name: "new-impl"}
  ],
  compare: :correctness,
  max_runs: 100
)
The reference target's results are treated as "correct" - divergences indicate
bugs in other targets.
2. Performance Comparison
Compare implementations for latency and throughput:
result = PropertyDamage.Differential.run(
  model: MyModel,
  targets: [
    {RedisAdapter, name: "redis-backend"},
    {PostgresAdapter, name: "postgres-backend"}
  ],
  compare: :performance,
  max_runs: 100,
  warmup_runs: 10
)

IO.puts(PropertyDamage.Differential.Result.format(result, format: :full))
3. Same Adapter, Different Configs
A powerful pattern is comparing the same adapter with different configurations:
# Compare staging vs production
PropertyDamage.Differential.run(
  model: MyModel,
  targets: [
    {HTTPAdapter, role: :reference, opts: [base_url: "https://prod.example.com"]},
    {HTTPAdapter, name: "staging", opts: [base_url: "https://staging.example.com"]}
  ],
  compare: :correctness
)

# Compare different database configurations
PropertyDamage.Differential.run(
  model: MyModel,
  targets: [
    {DBAdapter, name: "with-cache", opts: [cache: true]},
    {DBAdapter, name: "no-cache", opts: [cache: false]}
  ],
  compare: :both  # Check both correctness and performance
)
Time-Separated Execution
Run tests now, compare against results from later (or vice versa).
Export a Baseline
PropertyDamage.Differential.run(
  model: MyModel,
  targets: [{ProdAdapter, name: "v2.3"}],
  compare: :performance,
  export_to: "baselines/v2.3.json",
  seed: 12345  # Use fixed seed for reproducibility
)
Compare Against Baseline
Days or weeks later:
result = PropertyDamage.Differential.run(
  model: MyModel,
  targets: [{ProdAdapter, name: "v2.4"}],
  compare: :performance,
  baseline: "baselines/v2.3.json"
)

if PropertyDamage.Differential.Result.divergent?(result) do
  IO.puts("Performance regression detected!")
  IO.puts(PropertyDamage.Differential.Result.format(result))
end
The baseline contains:
	Complete command sequences (as structs, not just seeds)
	Results per command
	Timing data
	Aggregate metrics

This makes baselines portable - they work even if your model changes.
Execution Modes
Interleaved (Default for Correctness)
Commands execute round-robin across targets:
Target A: cmd1 → cmd2 → cmd3
Target B: cmd1 → cmd2 → cmd3
         ↓     ↓     ↓
      compare compare compare
Divergences are detected immediately after each command.
Sequential (Default for Performance)
Full sequence runs on each target:
Target A: cmd1 → cmd2 → cmd3 → cmd4 → cmd5
                                         ↓
Target B: cmd1 → cmd2 → cmd3 → cmd4 → cmd5
                                         ↓
                                     compare
Better for performance testing - no context switching overhead.
Specifying Execution Mode
PropertyDamage.Differential.run(
  model: MyModel,
  targets: [...],
  compare: :correctness,
  execution: :sequential  # Override default
)
Equivalence Strategies
For correctness comparison, results must be "equivalent". Configure this:
Exact (Default)
Results must be identical:
compare: :correctness,
equivalence: :exact
Structural
Ignores common non-deterministic fields (id, timestamps, uuids):
compare: :correctness,
equivalence: :structural
This normalizes:
	Fields named id, uuid, ref, *_id, *_ref
	Fields named *_at, timestamp, created, updated
	UUIDs matching standard format
	ISO8601 datetime strings

Custom Function
Define your own equivalence logic:
compare: :correctness,
equivalence: fn reference_result, target_result ->
  # Custom comparison logic
  case {reference_result, target_result} do
    {{:ok, ref_data}, {:ok, target_data}} ->
      # Compare only specific fields
      ref_data.status == target_data.status &&
        ref_data.amount == target_data.amount

    {{:error, _}, {:error, _}} ->
      # Both errored - consider equivalent
      true

    _ ->
      false
  end
end
Understanding Results
{:ok, result} = PropertyDamage.Differential.run(...)

# Check status
result.status
# => :equivalent | :divergent | :complete

# Check for divergences
if PropertyDamage.Differential.Result.divergent?(result) do
  IO.puts("Found #{length(result.divergences)} divergences")

  for div <- result.divergences do
    IO.puts("Step #{div.step}: #{inspect(div.command)}")
    IO.puts("  Reference: #{inspect(div.reference_result)}")
    IO.puts("  #{div.divergent_target}: #{inspect(div.divergent_result)}")
  end
end

# Get metrics per target
for target <- result.targets do
  metrics = PropertyDamage.Differential.Result.metrics_for(result, target)
  IO.puts("#{target}: p50=#{metrics.latency_p50}µs, p99=#{metrics.latency_p99}µs")
end
Result Formatting
# Summary
IO.puts(PropertyDamage.Differential.Result.format(result))

# Full with metrics and divergences
IO.puts(PropertyDamage.Differential.Result.format(result, format: :full))

# Just metrics
IO.puts(PropertyDamage.Differential.Result.format(result, format: :metrics))

# Just divergences
IO.puts(PropertyDamage.Differential.Result.format(result, format: :divergences))
Options Reference
Required Options
	Option	Description
	:model	Model module implementing PropertyDamage.Model
	:targets	List of target specifications
	:compare	:correctness, :performance, or :both

Target Specification
{AdapterModule}
{AdapterModule, opts}

# opts can include:
#   name:  Display name (default: derived from module)
#   role:  :reference for oracle testing
#   opts:  Options passed to adapter's setup/1
Optional Options
	Option	Default	Description
	:max_commands	50	Maximum commands per sequence
	:max_runs	100	Number of test sequences
	:seed	random	Random seed for reproducibility
	:execution	auto	:interleaved or :sequential
	:equivalence	:exact	Equivalence strategy
	:baseline	nil	Path to baseline file
	:export_to	nil	Path to export results
	:warmup_runs	0	Runs to discard before measuring
	:verbose	false	Print progress

Example: Migration Validation
Testing a database migration from PostgreSQL to CockroachDB:
defmodule MigrationTest do
  def validate_migration do
    # Define adapter that works with both databases
    # (same schema, different connection strings)

    result = PropertyDamage.Differential.run(
      model: OrderModel,
      targets: [
        {SQLAdapter, role: :reference, name: "postgres",
         opts: [url: "postgres://localhost/orders"]},
        {SQLAdapter, name: "cockroach",
         opts: [url: "postgres://localhost:26257/orders"]}
      ],
      compare: :both,
      max_runs: 500,
      equivalence: :structural,  # Ignore auto-generated IDs
      verbose: true
    )

    case result.status do
      :equivalent ->
        IO.puts("Migration validated! Results are equivalent.")
        IO.puts("Performance comparison:")
        IO.puts(PropertyDamage.Differential.Result.format(result, format: :metrics))

      :divergent ->
        IO.puts("DIVERGENCE DETECTED!")
        IO.puts(PropertyDamage.Differential.Result.format(result, format: :full))
    end
  end
end
Example: API Version Comparison
Comparing v1 and v2 of an API:
PropertyDamage.Differential.run(
  model: UserModel,
  targets: [
    {HTTPAdapter, role: :reference, name: "v1",
     opts: [base_url: "https://api.example.com/v1"]},
    {HTTPAdapter, name: "v2",
     opts: [base_url: "https://api.example.com/v2"]}
  ],
  compare: :correctness,
  equivalence: fn v1_result, v2_result ->
    # V2 returns additional fields - only compare common ones
    case {v1_result, v2_result} do
      {{:ok, v1}, {:ok, v2}} ->
        Map.take(v2, Map.keys(v1)) == v1
      _ ->
        v1_result == v2_result
    end
  end
)
Best Practices
	Use fixed seeds for baselines - Makes comparisons reproducible

	Start with structural equivalence - Exact matching often fails on
auto-generated fields

	Warmup for performance tests - Discard initial runs to avoid JIT effects

	Export baselines before deployments - Create a comparison point

	Use interleaved for bug finding - Detects divergences immediately

	Use sequential for performance - Avoids context-switching overhead

	Compare in CI - Catch regressions before they reach production


What Differential Testing Detects
	Implementation bugs (oracle testing)
	Performance regressions
	Behavior changes between versions
	Environment-specific bugs
	Race conditions (with interleaved execution)
	Data migration errors

Next Steps
	See PropertyDamage.Differential module docs for full API
	Read about Chaos Engineering for fault injection
	Use Integration Testing for live service testing



  

    Integration Testing with PropertyDamage

This guide covers running PropertyDamage tests against live services using
the integration testing tools and scripts.
Overview
Integration testing runs your PropertyDamage model and adapter against a real
running service instead of mocks. This finds issues that only appear when
interacting with real infrastructure:
	Network timing issues
	Database constraints and race conditions
	Serialization/deserialization bugs
	Service startup and shutdown behavior

Prerequisites
	Docker and Docker Compose (for containerized testing)
	Elixir 1.14+ with Mix
	Your service running or ability to start it

Quick Start
Using the Mix Task
# Run integration tests against a running service
mix pd.integration \
  --model MyApp.Model \
  --adapter MyApp.HTTPAdapter \
  --url http://localhost:4000 \
  --runs 100

Using Test Scripts
PropertyDamage includes ready-to-use test scripts for example services:
# ToyBank integration tests
./scripts/test_toybank.sh --runs 100

# TravelBooking integration tests
./scripts/test_travelbooking.sh --runs 100

The mix pd.integration Task
Required Options
	Option	Description
	--model	Your PropertyDamage model module (e.g., MyApp.Model)
	--adapter	Your adapter module (e.g., MyApp.HTTPAdapter)
	--url	Base URL of the running service

Optional Options
	Option	Description	Default
	--runs	Number of test sequences to run	100
	--commands	Maximum commands per sequence	50
	--health	Health check URL to wait for	{url}/api/health
	--report	Report format: terminal, markdown, junit, json	terminal
	--report-path	Output path for report file	auto-generated
	--save-failures	Directory to save failing sequences	-
	--stop-on-fail	Stop immediately on first failure	false
	--hunt N	Bug hunt mode: run until N unique bugs found	-
	--quiet	Suppress progress output	false

Examples
# Basic test run
mix pd.integration \
  --model ToyBankTest.Model \
  --adapter ToyBankTest.Adapters.HTTPAdapter \
  --url http://localhost:4555

# Generate JUnit report for CI
mix pd.integration \
  --model ToyBankTest.Model \
  --adapter ToyBankTest.Adapters.HTTPAdapter \
  --url http://localhost:4555 \
  --runs 500 \
  --report junit \
  --report-path reports/integration.xml

# Bug hunting mode - find 10 unique bugs
mix pd.integration \
  --model ToyBankTest.Model \
  --adapter ToyBankTest.Adapters.HTTPAdapter \
  --url http://localhost:4555 \
  --hunt 10 \
  --save-failures bugs/

# Quick smoke test - stop on first failure
mix pd.integration \
  --model ToyBankTest.Model \
  --adapter ToyBankTest.Adapters.HTTPAdapter \
  --url http://localhost:4555 \
  --runs 10 \
  --stop-on-fail

ToyBank Integration Testing
ToyBank is a banking service with accounts, authorizations, and captures.
Starting ToyBank
cd /path/to/toy_bank

# Using Docker Compose (recommended for testing)
docker compose -f docker-compose.test.yml up -d

# Or start manually
docker compose -f docker-compose.dev.yml up -d  # Database only
mix ecto.setup
mix phx.server

Running Tests
# Use the test script (handles startup/teardown)
./scripts/test_toybank.sh --runs 100

# Or run manually with mix
mix pd.integration \
  --model ToyBankTest.Model \
  --adapter ToyBankTest.Adapters.HTTPAdapter \
  --url http://localhost:4555

Test Script Options
./scripts/test_toybank.sh --help

Options:
  --runs N          Number of test runs (default: 100)
  --hunt N          Bug hunt mode: find N unique bugs
  --chaos           Enable chaos testing with ChaosModel
  --report FORMAT   Generate report: markdown, junit, json
  --keep-running    Don't stop ToyBank after tests
  --skip-start      Assume ToyBank is already running
  --verbose         Show detailed output

Chaos Testing
The ToyBank docker-compose.test.yml includes Toxiproxy for fault injection:
# Start with chaos testing support
cd /path/to/toy_bank
docker compose -f docker-compose.test.yml --profile chaos up -d

# Run chaos tests through Toxiproxy (port 4556)
./scripts/test_toybank.sh --chaos --runs 50

TravelBooking Integration Testing
TravelBooking is an in-memory travel booking service with flights, hotels, and bookings.
Starting TravelBooking
cd /path/to/travel_booking

# Using Docker Compose
docker compose -f docker-compose.test.yml up -d

# Or run locally (simpler - no database required)
mix deps.get
mix run --no-halt

Running Tests
# Use the test script
./scripts/test_travelbooking.sh --runs 100

# Or run manually
mix pd.integration \
  --model TravelBookingTest.Model \
  --adapter TravelBookingTest.Adapters.HTTPAdapter \
  --url http://localhost:4445

Test Script Options
./scripts/test_travelbooking.sh --help

Options:
  --runs N          Number of test runs (default: 100)
  --commands N      Max commands per run (default: 50)
  --hunt N          Bug hunt mode: find N unique bugs
  --chaos           Enable chaos testing with ChaosModel
  --lifecycle       Use BookingLifecycleModel (state transitions)
  --report FORMAT   Generate report: markdown, junit, json
  --keep-running    Don't stop TravelBooking after tests
  --skip-start      Assume TravelBooking is already running
  --local           Run TravelBooking locally (no Docker)
  --verbose         Show detailed output

Different Models
TravelBooking has multiple models for different testing scenarios:
# Full model - all commands
./scripts/test_travelbooking.sh --runs 100

# Lifecycle model - focuses on booking state transitions
./scripts/test_travelbooking.sh --lifecycle --runs 100

# Chaos model - includes fault injection
./scripts/test_travelbooking.sh --chaos --runs 50

Docker Compose Test Configurations
Both example services include docker-compose.test.yml files optimized for testing:
ToyBank docker-compose.test.yml
services:
  db:
    # PostgreSQL with no persistent volume (ephemeral)
    # Uses port 5433 to avoid conflicts with dev

  app:
    # ToyBank with health check
    # Includes database migration on startup

  toxiproxy:
    # Optional chaos testing proxy
    # Activated with: --profile chaos

  db-reset:
    # Helper to reset database between runs
    # Usage: docker compose run --rm db-reset
TravelBooking docker-compose.test.yml
services:
  app:
    # TravelBooking with health check
    # In-memory storage (no database needed)

  toxiproxy:
    # Optional chaos testing proxy

  data-reset:
    # Reset in-memory data
    # Usage: docker compose run --rm data-reset

  enable-fixes:
    # Enable all bug fixes

  disable-fixes:
    # Disable all bug fixes (for bug hunting)
CI/CD Integration
GitHub Actions Example
name: Integration Tests

on: [push, pull_request]

jobs:
  integration:
    runs-on: ubuntu-latest

    steps:
      - uses: actions/checkout@v4

      - name: Start services
        run: docker compose -f docker-compose.test.yml up -d

      - name: Wait for services
        run: |
          timeout 60 bash -c 'until curl -s http://localhost:4555/api/health; do sleep 1; done'

      - name: Set up Elixir
        uses: erlef/setup-beam@v1
        with:
          elixir-version: '1.16'
          otp-version: '26'

      - name: Run integration tests
        run: |
          mix deps.get
          mix pd.integration \
            --model ToyBankTest.Model \
            --adapter ToyBankTest.Adapters.HTTPAdapter \
            --url http://localhost:4555 \
            --runs 200 \
            --report junit \
            --report-path reports/integration.xml

      - name: Upload test results
        uses: actions/upload-artifact@v4
        if: always()
        with:
          name: test-results
          path: reports/

      - name: Publish test results
        uses: EnricoMi/publish-unit-test-result-action@v2
        if: always()
        with:
          files: reports/*.xml

      - name: Stop services
        if: always()
        run: docker compose -f docker-compose.test.yml down -v
Makefile Example
.PHONY: test-integration test-chaos test-hunt

# Start test services
test-services-up:
	docker compose -f docker-compose.test.yml up -d
	@echo "Waiting for services..."
	@timeout 60 bash -c 'until curl -s http://localhost:4555/api/health; do sleep 1; done'

# Stop test services
test-services-down:
	docker compose -f docker-compose.test.yml down -v

# Run integration tests
test-integration: test-services-up
	mix pd.integration \
		--model ToyBankTest.Model \
		--adapter ToyBankTest.Adapters.HTTPAdapter \
		--url http://localhost:4555 \
		--runs 100 \
		--report markdown \
		--report-path reports/integration.md
	$(MAKE) test-services-down

# Run chaos tests
test-chaos:
	docker compose -f docker-compose.test.yml --profile chaos up -d
	@timeout 60 bash -c 'until curl -s http://localhost:4555/api/health; do sleep 1; done'
	mix pd.integration \
		--model ToyBankTest.ChaosModel \
		--adapter ToyBankTest.Adapters.HTTPAdapter \
		--url http://localhost:4556 \
		--runs 50
	docker compose -f docker-compose.test.yml down -v

# Bug hunting
test-hunt: test-services-up
	mix pd.integration \
		--model ToyBankTest.Model \
		--adapter ToyBankTest.Adapters.HTTPAdapter \
		--url http://localhost:4555 \
		--hunt 10 \
		--save-failures bugs/
	$(MAKE) test-services-down
Programmatic API
You can also use the integration testing API directly in Elixir:
# Run integration tests
{:ok, result} = PropertyDamage.Integration.run(
  model: ToyBankTest.Model,
  adapter: ToyBankTest.Adapters.HTTPAdapter,
  adapter_config: %{base_url: "http://localhost:4555"},
  max_runs: 100,
  max_commands: 50,
  health_check: %{
    url: "http://localhost:4555/api/health",
    timeout_ms: 30_000,
    retries: 30
  },
  report: %{
    format: :markdown,
    path: "reports/integration.md"
  },
  save_failures: "bugs/"
)

# Check results
if result.success do
  IO.puts("All tests passed!")
  IO.puts("Runs: #{result.runs_completed}")
else
  IO.puts("Tests failed!")
  IO.puts("Failures: #{result.failures}")
end
Bug Hunting
# Run until we find 5 unique bugs
{:ok, bugs} = PropertyDamage.Integration.hunt_bugs(
  model: ToyBankTest.Model,
  adapter: ToyBankTest.Adapters.HTTPAdapter,
  adapter_config: %{base_url: "http://localhost:4555"},
  stop_after: 5,
  max_runs: :unlimited,
  save_to: "discovered_bugs/"
)

# Analyze findings
for bug <- bugs do
  IO.puts("Bug: #{bug.description}")
  IO.puts("Seed: #{bug.seed}")
  IO.puts("Commands: #{length(bug.commands)}")
end
Report Formats
Terminal (Default)
Real-time progress with colored output:
PropertyDamage Integration Test
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Progress: ████████████████████████████░░░░░░░░░░░░░░░░░░░░  56%
Runs: 56/100 | Passed: 54 | Failed: 2 | Duration: 23.4s

Recent failures:
  • Seed 12345678: Balance went negative after debit
  • Seed 87654321: Authorization not found after creation
Markdown
Detailed report for documentation:
# Integration Test Report

**Date**: 2024-12-27 15:30:00 UTC
**Model**: ToyBankTest.Model
**Runs**: 100

## Summary

| Metric | Value |
|--------|-------|
| Passed | 98 |
| Failed | 2 |
| Duration | 45.2s |

## Failures

### Failure 1: Balance went negative

**Seed**: 12345678
**Commands**: 5

...
JUnit XML
For CI systems:
<?xml version="1.0" encoding="UTF-8"?>
<testsuites>
  <testsuite name="PropertyDamage" tests="100" failures="2" time="45.2">
    <testcase name="Seed_12345678" time="0.45">
      <failure message="Balance went negative">...</failure>
    </testcase>
    ...
  </testsuite>
</testsuites>
JSON
For programmatic analysis:
{
  "success": false,
  "runs_completed": 100,
  "passed": 98,
  "failures": 2,
  "duration_ms": 45200,
  "failed_runs": [
    {
      "seed": 12345678,
      "commands": [...],
      "error": "Balance went negative"
    }
  ]
}
Best Practices
1. Use Ephemeral Data
Configure your test database/storage to reset between runs:
# Reset before each run
docker compose run --rm db-reset
mix pd.integration ...

2. Start Small, Scale Up
# Quick smoke test first
mix pd.integration --runs 10 --stop-on-fail

# Then comprehensive testing
mix pd.integration --runs 500

3. Save Failures for Regression
# Save all failures
mix pd.integration --save-failures bugs/

# Later, replay them
mix pd.replay bugs/seed_12345678.pdtest

4. Use Appropriate Models
	Standard Model: Normal operations
	Lifecycle Model: Focus on state transitions
	Chaos Model: Include fault injection
	Mock Model: In-memory testing (fast)

5. Monitor in CI
	Generate JUnit reports for test result tracking
	Archive failure files as artifacts
	Set appropriate timeouts

Troubleshooting
Service Not Ready
ERROR: Service did not become ready within 60 seconds
Solutions:
	Increase health check timeout
	Check service logs: docker compose logs app
	Verify health endpoint is correct

Connection Refused
** (Mint.TransportError) connection refused
Solutions:
	Verify service is running: curl http://localhost:4555/api/health
	Check port mappings in docker-compose
	Ensure no firewall blocking

Flaky Tests
Test passes sometimes, fails other times with same seed
Solutions:
	Look for time-dependent behavior
	Check for external dependencies
	Use --verbose to see timing details
	Consider chaos testing to find race conditions

Next Steps
	Writing Effective Invariants - Improve test quality
	Debugging Failures - Analyze and fix bugs
	Chaos Engineering - Fault injection testing



  

    Load Testing with PropertyDamage

This guide covers running sustained load tests against your system using
PropertyDamage's arrival rate scheduling and worker pool architecture.
Overview
Load testing differs from integration testing:
	Aspect	Integration Testing	Load Testing
	Goal	Find bugs via randomized sequences	Measure performance under sustained load
	Duration	Short (seconds)	Long (minutes to hours)
	Concurrency	Sequential or low	High concurrent arrivals
	Metrics	Pass/fail, bug count	Throughput, latency, error rates

PropertyDamage load testing uses an arrival rate model:
Runner (GenServer)
  ├── Metrics (GenServer) - Collects metrics from all workers
  ├── WorkerPool (GenServer) - Manages workers with persistent contexts
  │   ├── Worker 1 - Holds adapter context, executes sequences
  │   ├── Worker 2
  │   └── Worker N
  └── Arrivals (Tasks) - Spawned at configured rate
Each arrival checks out a worker, runs a command sequence, then returns
the worker to the pool. The arrival rate controls how many new sequences
start per second.
Quick Start
alias PropertyDamage.LoadTest.{Runner, Report}

# Start a load test
{:ok, runner} = Runner.start_link(
  model: MyApp.Model,
  adapter: MyApp.HTTPAdapter,
  adapter_config: %{base_url: "http://localhost:4000"},
  arrival_rate: 50,           # 50 new sequences per second
  duration: {2, :minutes}
)

# Wait for completion
{:ok, report} = Runner.await(runner)

# Display results
IO.puts(Report.format(report, :terminal))

# Or save to file
Report.save(report, "load_test_report.md", :markdown)
Configuration Options
Required Options
	Option	Description	Example
	model	Your PropertyDamage model module	MyApp.Model
	adapter	Your adapter module	MyApp.HTTPAdapter
	arrival_rate	Target sequences per second	50 or {100, {1, :seconds}}
	duration	Test length	{5, :minutes}

Optional Options
	Option	Description	Default
	adapter_config	Adapter configuration	%{}
	pool_size	Number of workers (see below)	auto
	ramp_up	How to ramp up to target rate	:immediate
	ramp_down	How to ramp down at end	:immediate
	think_time	{min_ms, max_ms} between commands	{0, 0}
	arrival_jitter	{min_ms, max_ms} jitter per arrival	{0, 0}
	max_queue_size	Queue depth before dropping arrivals	100
	metrics_interval	How often to sample metrics	{1, :second}
	on_metrics	Callback for periodic metrics	nil
	on_complete	Callback when test finishes	nil
	assertion_mode	:disabled, :log, or :fail	:disabled

Arrival Rate Formats
# Simple: arrivals per second
arrival_rate: 100

# Explicit: count per time unit
arrival_rate: {100, {1, :seconds}}
arrival_rate: {10, {100, :milliseconds}}
arrival_rate: {6000, {1, :minutes}}
Ramp Strategies
Control how the arrival rate changes over time:
# Immediate - full rate from the start
ramp_up: :immediate

# Linear - gradually increase over duration
ramp_up: {:linear, {30, :seconds}}

# Step - increase in discrete steps
ramp_up: {:step, 5, {10, :seconds}}  # 5 steps, 10 seconds each

# Exponential - exponential growth curve
ramp_up: {:exponential, {1, :minute}}
Example with ramp-up and ramp-down:
Runner.start_link(
  model: MyModel,
  adapter: MyAdapter,
  arrival_rate: 100,
  duration: {5, :minutes},
  ramp_up: {:linear, {30, :seconds}},    # 30s to reach full rate
  ramp_down: {:linear, {15, :seconds}}   # 15s to wind down
)
Understanding the Report
Key Terminology
	Term	Meaning
	Arrival	One command sequence spawned
	Command	One individual operation executed
	Drop	Arrival that couldn't run (pool exhausted)

A single arrival may execute multiple commands before the sequence terminates.
Throughput Section
┌─ Throughput ─────────────────────────────────────────────────────────┐
│ Total Commands:    15,234                                            │
│ Commands/Second:   50.78                                             │
│ Arrivals Spawned:  3,048                                             │
│ Arrivals/Second:   10.16                                             │
│ Arrivals Dropped:  152 (4.99%)                                       │
└──────────────────────────────────────────────────────────────────────┘
	Total Commands: Individual operations completed
	Commands/Second: Average command throughput
	Arrivals Spawned: Sequences that started
	Arrivals/Second: Actual arrival rate achieved
	Arrivals Dropped: Sequences that couldn't start (pool full)

If Total Commands ≈ Arrivals Spawned, each sequence runs ~1 command.
If Total Commands >> Arrivals Spawned, sequences run multiple commands.
Worker Pool Section
┌─ Worker Pool ────────────────────────────────────────────────────────┐
│ Pool Size:       100                                                 │
│ Peak Utilization: 85.00%                                             │
│ Avg Utilization: 62.34%                                              │
│ Total Checkouts: 3,048                                               │
│ Avg Queue Time:  12.34ms                                             │
└──────────────────────────────────────────────────────────────────────┘
	Pool Size: Number of workers available
	Peak Utilization: Maximum utilization seen during the test
	Avg Utilization: Average utilization across all checkout attempts
	Total Checkouts: How many times workers were borrowed
	Avg Queue Time: How long arrivals waited for a worker

High peak utilization (>90%) with drops suggests the pool is undersized.
High average utilization (>70%) indicates sustained load on the pool.
Latency Section
┌─ Latency (ms) ───────────────────────────────────────────────────────┐
│ Min:     5.23       │ p50:   45.67      │ Mean:  52.34              │
│ Max:     523.45     │ p95:   125.89     │ p99:   234.56             │
└──────────────────────────────────────────────────────────────────────┘
Latency is measured per command, not per HTTP request. If a command
internally makes multiple HTTP calls (e.g., polling), the latency includes
all of them.
Throughput Tuning
When arrivals are being dropped or throughput is lower than expected:
1. Increase Pool Size
By default, pool size auto-calculates as min(arrival_rate * 2, 500) with
a minimum of 10 workers. Override this with the pool_size option:
Runner.start_link(
  arrival_rate: 50,
  duration: {5, :minutes},
  pool_size: 200,  # Override auto-calculated value
  # ...
)
When to increase pool size:
	Commands are slow (>100ms average) and you're seeing drops
	The SUT can handle more concurrent requests than the default allows
	You need to stress test connection pooling behavior

When to decrease pool size:
	You want to limit concurrency to avoid overwhelming the SUT
	Testing how the system behaves under resource constraints
	Simulating a fixed number of concurrent users

Sizing guidance:
Required workers ≥ arrival_rate × avg_command_latency_seconds

Example: 50 arrivals/sec with 200ms avg latency
  → 50 × 0.2 = 10 workers minimum
  → Auto-calc gives: min(50 × 2, 500) = 100 workers (plenty of headroom)

Example: 50 arrivals/sec with 2s avg latency (slow commands)
  → 50 × 2 = 100 workers minimum
  → Auto-calc gives: 100 workers (borderline - consider pool_size: 150)
2. Increase max_queue_size
When all workers are busy, arrivals queue up. Once the queue exceeds
max_queue_size, arrivals are dropped:
Runner.start_link(
  # ...
  max_queue_size: 500  # Default is 100
)
A larger queue absorbs traffic bursts but increases memory usage and
queue wait times.
3. Lower Arrival Rate
Match the arrival rate to what your system can actually handle:
# If you're seeing 30% drops at rate 100, try rate 70
Runner.start_link(
  arrival_rate: 70,
  # ...
)
4. Reduce Command Latency
Faster commands mean workers become available sooner:
	Optimize SUT: Database indexes, caching, query optimization
	Connection pooling: Reuse HTTP connections in your adapter
	Reduce polling: If commands poll for async results, reduce intervals

5. Check Sequence Length
If Total Commands ≈ Arrivals Spawned, your sequences terminate after
~1 command. Check your model's terminate?/3 implementation:
# This terminates immediately - only 1 command per sequence
def terminate?(_state, _history, _step), do: true

# This runs 5-10 commands per sequence
def terminate?(_state, _history, step), do: step >= Enum.random(5..10)
Longer sequences mean more commands per arrival, potentially improving
overall throughput efficiency.
Real-Time Monitoring
Use callbacks to monitor progress:
Runner.start_link(
  # ...
  on_metrics: fn snapshot ->
    IO.puts("RPS: #{snapshot.requests_per_second}, " <>
            "p95: #{snapshot.latency_p95}ms, " <>
            "errors: #{snapshot.total_errors}")
  end,
  metrics_interval: {5, :seconds}
)
Or check status programmatically:
status = Runner.status(runner)
# %{
#   phase: :steady,
#   current_rate: {50, {1, :seconds}},
#   pool_utilization: 0.75,
#   in_flight: 38,
#   progress_percent: 45.2
# }
Troubleshooting
	Symptom	Likely Cause	Solution
	High drop rate (>10%)	Pool saturation	Increase pool size or lower arrival rate
	Commands ≈ Arrivals	Early termination	Check terminate?/3 returns false initially
	Peak util 100%, avg util low	Bursty traffic	Increase pool size or add ramp-up
	Peak and avg util both high	Sustained overload	Increase pool size significantly
	High avg queue time	Pool undersized	Increase pool size
	Low arrivals/sec vs target	Ramp-up or drops	Check ramp config and drop rate
	Latency spikes	SUT bottleneck	Profile SUT, check for resource contention

Report Formats
Terminal
Colored output with ASCII charts for interactive use:
IO.puts(Report.format(report, :terminal))
Markdown
Detailed report suitable for documentation:
Report.save(report, "results/load_test.md", :markdown)
JSON
Machine-readable format for analysis pipelines:
json = Report.format(report, :json)
File.write!("results/load_test.json", json)
Example: Full Load Test Script
alias PropertyDamage.LoadTest.{Runner, Report}

# Configuration
config = [
  model: ToyBankTest.Model,
  adapter: ToyBankTest.Adapters.HTTPAdapter,
  adapter_config: %{base_url: "http://localhost:4555"},
  arrival_rate: 50,
  duration: {5, :minutes},
  ramp_up: {:linear, {30, :seconds}},
  ramp_down: {:linear, {15, :seconds}},
  think_time: {10, 50},
  on_metrics: fn m ->
    IO.puts("[#{m.duration_ms}ms] #{m.requests_per_second} cmd/s, " <>
            "p95=#{m.latency_p95}ms, drops=#{m.arrivals_dropped}")
  end
]

# Run test
IO.puts("Starting load test...")
{:ok, runner} = Runner.start_link(config)
{:ok, report} = Runner.await(runner)

# Output results
IO.puts(Report.format(report, :terminal))
Report.save(report, "load_test_#{System.os_time(:second)}.md", :markdown)

# Summary
IO.puts("\n#{Report.summary(report)}")
Next Steps
	Integration Testing - Correctness testing
	Chaos Engineering - Fault injection under load
	Debugging Failures - Analyzing test failures



  

    
CPUStressInjected 
    



      
Event emitted when CPU stress is injected

      




  

    
CPUStressReleased 
    



      
Event emitted when CPU stress is released

      




  

    
CertificateFailureInjected 
    



      
Event emitted when certificate failure is injected

      




  

    
CertificateFailureRestored 
    



      
Event emitted when certificate failure is restored

      




  

    
ClockSkewInjected 
    



      
Event emitted when clock skew is injected

      




  

    
ClockSkewRestored 
    



      
Event emitted when clock skew is restored

      




  

    
MemoryPressureInjected 
    



      
Event emitted when memory pressure is created

      




  

    
MemoryPressureReleased 
    



      
Event emitted when memory pressure is released

      




  

    
NetworkLatencyInjected 
    



      
Event emitted when network latency is injected

      




  

    
NetworkLatencyRestored 
    



      
Event emitted when network latency is restored

      




  

    
NetworkPartitionHealed 
    



      
Event emitted when network partition is healed

      




  

    
NetworkPartitioned 
    



      
Event emitted when network partition is created

      




  

    
PacketLossInjected 
    



      
Event emitted when packet loss is injected

      




  

    
PacketLossRestored 
    



      
Event emitted when packet loss is restored

      




  

    
ProcessKillCompleted 
    



      
Event emitted when process kill operation completes

      




  

    
ProcessKilled 
    



      
Event emitted when processes are killed

      




  

    
PropertyDamage 
    



      
PropertyDamage: A stateful property-based testing framework for Elixir.
PropertyDamage combines the power of property-based testing with stateful system
testing, allowing you to verify that your system behaves correctly under any
sequence of operations.
Overview
Traditional property-based testing generates random inputs and verifies properties
hold for all inputs. Stateful property-based testing extends this by generating
random sequences of operations (commands) and verifying that the system under
test (SUT) behaves correctly throughout the entire sequence.
Key Concepts
	Commands: Operations that can be executed against the SUT (create, update, delete, etc.)
	Model: Defines what commands are available and how state is tracked
	Projections: Pure state reducers that process commands and events to maintain state
	Adapters: Bridge between the test framework and the actual SUT
	Refs: Symbolic placeholders for entity IDs, resolved during execution

Two-Phase Execution
PropertyDamage uses a two-phase execution model:
	Symbolic Phase: Generate a sequence of commands with symbolic refs
	Concrete Phase: Execute commands against the SUT, resolving refs to real values

This separation enables powerful shrinking of failing test cases while maintaining
the dependency relationships between commands.
Basic Usage
defmodule MyModelTest do
  use ExUnit.Case
  use PropertyDamage

  @model MyApp.TestModel
  @adapter MyApp.TestAdapter

  property_damage "system maintains invariants" do
    max_commands: 50,
    max_runs: 100
  end
end
Running Directly
PropertyDamage.run(
  model: MyApp.TestModel,
  adapter: MyApp.TestAdapter,
  max_commands: 50,
  max_runs: 100
)
Debugging Failures
When a test fails, PropertyDamage provides rich tools for understanding what went wrong:
{:error, failure} = PropertyDamage.run(model: M, adapter: A)

# Understand why each command in the shrunk sequence is needed
explanation = PropertyDamage.explain(failure)

# Find the specific field/value that caused the failure
{:ok, trigger} = PropertyDamage.isolate_trigger(failure)

# Generate a reproducible test case
test_code = PropertyDamage.generate_test(failure, format: :exunit)

# Try harder to shrink if needed
{:ok, smaller} = PropertyDamage.shrink_further(failure, strategy: :exhaustive)

# Replay step-by-step
{:ok, steps} = PropertyDamage.replay(failure)
Failure Persistence
Save failures for later analysis or regression testing:
{:ok, path} = PropertyDamage.save_failure(failure, "failures/")
{:ok, loaded} = PropertyDamage.load_failure(path)
failures = PropertyDamage.list_failures("failures/")
See PropertyDamage.Persistence for details.
Seed Library
Track interesting seeds for regression testing:
{:ok, library} = PropertyDamage.load_seed_library("seeds.json")
{:ok, library} = PropertyDamage.add_to_seed_library(library, failure, tags: [:bug])
PropertyDamage.save_seed_library(library, "seeds.json")
See PropertyDamage.SeedLibrary for details.
Coverage Metrics
Track how thoroughly your model is being exercised:
coverage = PropertyDamage.coverage(result, MyModel)
IO.puts(PropertyDamage.Coverage.format(coverage))
See PropertyDamage.Coverage for details.
Flakiness Detection
Detect non-deterministic behavior in your SUT:
PropertyDamage.check_determinism(Model, Adapter, seed, runs: 10)
flaky = PropertyDamage.discover_flaky_seeds(Model, Adapter, num_seeds: 20)
See PropertyDamage.Flakiness for details.
Architecture
The framework consists of several layers:
	Tier 0 (Core Types): Ref, Command, Projection, Model behaviours
	Tier 1 (Execution): Adapter, EventQueue, InjectorAdapter, Executor
	Tier 2 (Shrinking): Validator, Shrinker, dependency graph
	Tier 3 (Analysis): Analysis, Replay, Coverage, Flakiness
	Utilities: Persistence, SeedLibrary, mix tasks

See the individual module documentation for detailed information on each component.

      


      
        Summary


  
    Types
  


    
      
        failure_report()

      


        Failure report from a failed run.



    


    
      
        result()

      


        Result from run/1 - either success stats or a failure report.



    


    
      
        stats()

      


        Result statistics from a successful run.



    





  
    Functions
  


    
      
        add_to_seed_library(library, failure, opts \\ [])

      


        Add a failure to the seed library.



    


    
      
        check_determinism(model, adapter, seed, opts \\ [])

      


        Check if a seed produces deterministic results.



    


    
      
        coverage(result, model)

      


        Get coverage statistics from a test result.



    


    
      
        delete_failure(path)

      


        Delete a saved failure file.



    


    
      
        discover_flaky_seeds(model, adapter, opts \\ [])

      


        Discover flaky seeds by testing random seeds.



    


    
      
        explain(report)

      


        Explain why each command in a failure's shrunk sequence is needed.



    


    
      
        fail!(message, data \\ [])

      


        Convenience function to fail an assertion with a message and optional data.



    


    
      
        generate_test(report, opts \\ [])

      


        Generate a reproducible test case from a failure.



    


    
      
        isolate_trigger(report, opts \\ [])

      


        Find the minimal change that eliminates the failure.



    


    
      
        list_failures(directory, opts \\ [])

      


        List all saved failures in a directory.



    


    
      
        load_failure(path)

      


        Load a previously saved failure report.



    


    
      
        load_seed_library(path \\ "property_damage_seeds.json")

      


        Load a seed library from disk.



    


    
      
        replay(failure, opts \\ [])

      


        Replay a failure sequence step-by-step for debugging.



    


    
      
        run(opts)

      


        Run a property-based test.



    


    
      
        save_failure(report, directory, opts \\ [])

      


        Save a failure report to disk for later analysis or regression testing.



    


    
      
        save_seed_library(library, path \\ "property_damage_seeds.json")

      


        Save a seed library to disk.



    


    
      
        shrink_further(report, opts \\ [])

      


        Attempt further shrinking on an existing failure report.



    





      


      
        Types


        


  
    
      
    
    
      failure_report()



        
          
        

    

  


  

      

          @type failure_report() :: %{
  seed: integer(),
  run_number: non_neg_integer(),
  original_sequence: PropertyDamage.Sequence.t(),
  shrunk_sequence: PropertyDamage.Sequence.t(),
  failed_at_index: non_neg_integer(),
  failure_reason: term(),
  shrink_iterations: non_neg_integer(),
  shrink_time_ms: non_neg_integer()
}


      


Failure report from a failed run.

  



  
    
      
    
    
      result()



        
          
        

    

  


  

      

          @type result() :: {:ok, stats()} | {:error, failure_report()}


      


Result from run/1 - either success stats or a failure report.

  



  
    
      
    
    
      stats()



        
          
        

    

  


  

      

          @type stats() :: %{
  runs: non_neg_integer(),
  total_commands: non_neg_integer(),
  seed: integer()
}


      


Result statistics from a successful run.

  


        

      

      
        Functions


        


    

  
    
      
    
    
      add_to_seed_library(library, failure, opts \\ [])



        
          
        

    

  


  

      

          @spec add_to_seed_library(
  PropertyDamage.SeedLibrary.t(),
  PropertyDamage.FailureReport.t(),
  keyword()
) ::
  {:ok, PropertyDamage.SeedLibrary.t()} | {:error, term()}


      


Add a failure to the seed library.
Options
	:tags - Categorization tags (e.g., [:currency, :race_condition])
	:description - Human-readable description

Example
{:error, failure} = PropertyDamage.run(model: M, adapter: A)
{:ok, library} = PropertyDamage.add_to_seed_library(library, failure,
  tags: [:currency_mismatch],
  description: "Capture with different currency than authorization"
)

  



    

  
    
      
    
    
      check_determinism(model, adapter, seed, opts \\ [])



        
          
        

    

  


  

      

          @spec check_determinism(module(), module(), integer(), keyword()) ::
  PropertyDamage.Flakiness.result()


      


Check if a seed produces deterministic results.
Runs the same seed multiple times to detect non-deterministic behavior
in the system under test.
Options
	:runs - Number of times to run (default: 5)
	:adapter_config - Adapter configuration
	:max_commands - Maximum commands per run (default: 50)
	:verbose - Print progress (default: false)

Returns
	{:ok, :deterministic} - Same result every time
	{:ok, :flaky, stats} - Different results, with statistics
	{:error, reason} - Check failed

Example
case PropertyDamage.check_determinism(M, A, 512902757, runs: 10) do
  {:ok, :deterministic} ->
    IO.puts("Seed is deterministic")

  {:ok, :flaky, stats} ->
    IO.puts("FLAKY: passed #{stats.passes}/#{stats.runs} times")
end

  



  
    
      
    
    
      coverage(result, model)



        
          
        

    

  


  

      

          @spec coverage({:ok, map()} | {:error, PropertyDamage.FailureReport.t()}, module()) ::
  PropertyDamage.Coverage.t()


      


Get coverage statistics from a test result.
Example
result = PropertyDamage.run(model: M, adapter: A)
coverage = PropertyDamage.coverage(result, M)
IO.puts(PropertyDamage.Coverage.format(coverage))

  



  
    
      
    
    
      delete_failure(path)



        
          
        

    

  


  

      

          @spec delete_failure(Path.t()) :: :ok | {:error, term()}


      


Delete a saved failure file.

  



    

  
    
      
    
    
      discover_flaky_seeds(model, adapter, opts \\ [])



        
          
        

    

  


  

      

          @spec discover_flaky_seeds(module(), module(), keyword()) :: [
  {integer(), PropertyDamage.Flakiness.flaky_stats()}
]


      


Discover flaky seeds by testing random seeds.
Options
	:num_seeds - Number of random seeds to test (default: 10)
	:runs_per_seed - Runs per seed (default: 3)
	:verbose - Print progress (default: false)

Returns
List of {seed, flaky_stats} for seeds that are flaky.
Example
flaky_seeds = PropertyDamage.discover_flaky_seeds(M, A, num_seeds: 20)
IO.puts("Found #{length(flaky_seeds)} flaky seeds")

  



  
    
      
    
    
      explain(report)



        
          
        

    

  


  

      

          @spec explain(PropertyDamage.FailureReport.t()) :: map()


      


Explain why each command in a failure's shrunk sequence is needed.
Delegates to PropertyDamage.Analysis.explain/1.
See that module for detailed documentation.

  



    

  
    
      
    
    
      fail!(message, data \\ [])



        
          
        

    

  


  

      

          @spec fail!(
  String.t(),
  keyword()
) :: no_return()


      


Convenience function to fail an assertion with a message and optional data.
Use this in projection assertions when you don't need a custom exception type.
Examples
# Simple failure
PropertyDamage.fail!("balance is negative")

# With context data
PropertyDamage.fail!("balance is negative", balance: -50, account_id: "acc_123")

# In a projection assertion
@trigger every: 1
def assert_balance_positive(state, _cmd) do
  if state.balance < 0 do
    PropertyDamage.fail!("negative balance", balance: state.balance)
  end
end
Custom Exceptions
For richer error context, define your own exception types:
defmodule MyApp.BalanceViolation do
  defexception [:balance, :requirement]

  def message(%{balance: b}) do
    "Balance is negative: #{b}"
  end
end

# Then raise directly:
raise %MyApp.BalanceViolation{balance: -50, requirement: "REQ-001"}

  



    

  
    
      
    
    
      generate_test(report, opts \\ [])



        
          
        

    

  


  

      

          @spec generate_test(
  PropertyDamage.FailureReport.t(),
  keyword()
) :: String.t()


      


Generate a reproducible test case from a failure.
Delegates to PropertyDamage.Analysis.generate_test/2.
See that module for detailed documentation.

  



    

  
    
      
    
    
      isolate_trigger(report, opts \\ [])



        
          
        

    

  


  

      

          @spec isolate_trigger(
  PropertyDamage.FailureReport.t(),
  keyword()
) :: {:ok, map()} | {:error, term()}


      


Find the minimal change that eliminates the failure.
Delegates to PropertyDamage.Analysis.isolate_trigger/1.
See that module for detailed documentation.

  



    

  
    
      
    
    
      list_failures(directory, opts \\ [])



        
          
        

    

  


  

      

          @spec list_failures(
  Path.t(),
  keyword()
) :: [map()]


      


List all saved failures in a directory.
Options
	:sort - Sort order: :newest, :oldest, :seed (default: :newest)
	:filter - Filter function (metadata -> boolean)

Examples
failures = PropertyDamage.list_failures("failures/")

# Only check failures
failures = PropertyDamage.list_failures("failures/",
  filter: &(&1.failure_type == :check_failed))

  



  
    
      
    
    
      load_failure(path)



        
          
        

    

  


  

      

          @spec load_failure(Path.t()) ::
  {:ok, PropertyDamage.FailureReport.t()} | {:error, term()}


      


Load a previously saved failure report.
Examples
{:ok, failure} = PropertyDamage.load_failure("failures/currency-bug.pd")
PropertyDamage.replay(failure)

  



    

  
    
      
    
    
      load_seed_library(path \\ "property_damage_seeds.json")



        
          
        

    

  


  

      

          @spec load_seed_library(Path.t()) ::
  {:ok, PropertyDamage.SeedLibrary.t()} | {:error, term()}


      


Load a seed library from disk.
Returns an empty library if the file doesn't exist.
Example
{:ok, library} = PropertyDamage.load_seed_library("seeds.json")

  



    

  
    
      
    
    
      replay(failure, opts \\ [])



        
          
        

    

  


  

      

          @spec replay(
  PropertyDamage.FailureReport.t(),
  keyword()
) :: {:ok, [PropertyDamage.Replay.step()]} | {:error, term()}


      


Replay a failure sequence step-by-step for debugging.
Executes each command in the shrunk sequence and returns detailed
information about each step including events and projection states.
Options
	:adapter_config - Override adapter configuration
	:stop_on_failure - Stop at first failure (default: true)

Example
{:error, failure} = PropertyDamage.run(model: M, adapter: A)
{:ok, steps} = PropertyDamage.replay(failure)

Enum.each(steps, fn step ->
  IO.puts("[#{step.index}] #{step.command_name}")
  IO.inspect(step.projections)
end)
For interactive stepping, use PropertyDamage.Replay directly:
{:ok, session} = PropertyDamage.Replay.start(failure)
{:ok, session, step} = PropertyDamage.Replay.step(session)

  



  
    
      
    
    
      run(opts)



        
          
        

    

  


  

      

          @spec run(keyword()) :: {:ok, stats()} | {:error, failure_report()}


      


Run a property-based test.
This is the main entry point for PropertyDamage. It generates command sequences,
executes them against the SUT, and shrinks failures to minimal reproductions.
Required Options
	:model - Model module implementing PropertyDamage.Model
	:adapter - Adapter module implementing PropertyDamage.Adapter

Optional Options
	:max_commands - Maximum commands per sequence (default: 50)
	:max_runs - Number of test sequences to run (default: 100)
	:seed - Random seed for reproducibility (default: random)
	:injector_adapters - List of InjectorAdapter modules (default: [])
	:adapter_config - Config passed to adapter.setup/1 (default: %{})
	:shrink - Whether to shrink failing sequences (default: true)
	:shrinker_config - ShrinkerConfig struct for tuning shrinking
	:on_failure - Callback function receiving failure_report (default: nil)
	:regression - Keyword list for automatic regression test management (see below)
	:verbose - Print progress and configuration (default: false)
	:validate - Run configuration validation first (default: true)
	:branching - Keyword list for parallel branching (see below)
	:stutter - Map for idempotency testing (see below)

Branching Options
Pass branching: [...] to generate branching (parallel) sequences:
	:branch_probability - Probability of creating a branch point (default: 0.2)
	:max_branches - Maximum number of parallel branches (default: 3)
	:max_branch_length - Maximum commands per branch (default: 5)
	:min_prefix_length - Minimum commands before branching (default: 3)

Branching sequences enable detection of race conditions by executing
commands in parallel branches and checking linearizability.
Stutter Options (Idempotency Testing)
Pass stutter: %{...} to enable idempotency testing:
	:probability - Probability of stuttering each command (default: 0.1)
	:max_repeats - Maximum retry attempts per stuttered command (default: 2)
	:delay_ms - Delay between retries, {min, max} tuple or integer (default: {0, 100})
	:commands - :all or list of command modules to stutter (default: :all)
	:comparison - Event comparison mode (default: :strict)	:strict - Events must be exactly equal
	{:structural, fields} - Ignore specified fields when comparing
	{:custom, fun} - Custom comparison function fn(events1, events2) -> :match | {:mismatch, map()}




Stutter testing verifies that retrying commands produces consistent results
(idempotency). Retry events are captured but not applied to projections.
Regression Options
Pass regression: [...] to automatically save failures for regression testing:
	:save_failures - Directory to save failure files
	:seed_library - Path to seed library JSON file
	:generate_tests - Directory to generate ExUnit test files
	:tags - Tags to add to seed library entries (default: [:auto_detected])
	:dedup - Skip if similar failure exists (default: false)
	:dedup_threshold - Similarity threshold for dedup (default: 0.90)
	:verbose - Print regression actions (default: false)

This option integrates with :on_failure - both can be used together.
Returns
	{:ok, stats} - All runs passed
	{:error, failure_report} - A run failed

Examples
# Basic usage
PropertyDamage.run(model: MyModel, adapter: MyAdapter)

# With options
PropertyDamage.run(
  model: MyModel,
  adapter: MyAdapter,
  max_commands: 100,
  max_runs: 1000,
  seed: 12345
)

# With failure callback
PropertyDamage.run(
  model: MyModel,
  adapter: MyAdapter,
  on_failure: fn failure_report ->
    IO.puts("Failed at command #{failure_report.failed_at_index}")
  end
)

# With automatic regression management
PropertyDamage.run(
  model: MyModel,
  adapter: MyAdapter,
  regression: [
    save_failures: "failures/",
    seed_library: "seeds.json",
    generate_tests: "test/regressions/",
    dedup: true
  ]
)

  



    

  
    
      
    
    
      save_failure(report, directory, opts \\ [])



        
          
        

    

  


  

      

          @spec save_failure(PropertyDamage.FailureReport.t(), Path.t(), keyword()) ::
  {:ok, Path.t()} | {:error, term()}


      


Save a failure report to disk for later analysis or regression testing.
Options
	:filename - Custom filename (default: auto-generated from metadata)
	:overwrite - Whether to overwrite existing files (default: false)

Examples
{:error, failure} = PropertyDamage.run(model: M, adapter: A)

# Save with auto-generated name
{:ok, path} = PropertyDamage.save_failure(failure, "failures/")

# Save with custom name
{:ok, path} = PropertyDamage.save_failure(failure, "failures/", filename: "currency-bug.pd")

  



    

  
    
      
    
    
      save_seed_library(library, path \\ "property_damage_seeds.json")



        
          
        

    

  


  

      

          @spec save_seed_library(PropertyDamage.SeedLibrary.t(), Path.t()) ::
  :ok | {:error, term()}


      


Save a seed library to disk.
Example
:ok = PropertyDamage.save_seed_library(library, "seeds.json")

  



    

  
    
      
    
    
      shrink_further(report, opts \\ [])



        
          
        

    

  


  

      

          @spec shrink_further(
  PropertyDamage.FailureReport.t(),
  keyword()
) :: {:ok, PropertyDamage.FailureReport.t()} | {:error, term()}


      


Attempt further shrinking on an existing failure report.
Use this when the initial shrinking didn't produce a minimal enough sequence.
You can specify more aggressive time/iteration limits or different strategies.
Options
	:max_iterations - Maximum shrink attempts (default: 5000)
	:max_time_ms - Maximum time for shrinking in ms (default: 60000)
	:strategy - Shrinking strategy (default: :thorough)	:quick - Fast shrinking, may miss some reductions
	:thorough - Balanced approach (default)
	:exhaustive - Try all possible reductions (slow)


	:shrink_arguments - Whether to shrink argument values (default: true)
	:adapter_config - Adapter configuration (uses report's adapter if not specified)

Returns
	{:ok, new_failure_report} - Shrinking succeeded, possibly smaller sequence
	{:error, reason} - Shrinking failed (e.g., missing model/adapter)

Example
{:error, failure} = PropertyDamage.run(model: M, adapter: A)

# Try harder to shrink
{:ok, smaller} = PropertyDamage.shrink_further(failure,
  max_time_ms: 120_000,
  strategy: :exhaustive
)

IO.puts("Reduced from #{length(original)} to #{length(smaller)} commands")

  


        

      


  

    
PropertyDamage.Differential 
    



      
Differential testing for comparing multiple implementations.
Differential testing runs the same command sequences against multiple targets
(adapters) and compares results. This enables:
	Oracle testing: Compare SUT against a reference implementation
	Performance comparison: Compare latency/throughput across implementations
	Regression testing: Compare old vs new versions
	Migration validation: Compare legacy vs new systems

Basic Usage
# Oracle testing (correctness comparison)
PropertyDamage.Differential.run(
  model: MyModel,
  targets: [
    {OracleAdapter, role: :reference},
    {SUTAdapter, name: "new-impl"}
  ],
  compare: :correctness
)

# Performance comparison
PropertyDamage.Differential.run(
  model: MyModel,
  targets: [
    {ImplA, name: "redis-backend"},
    {ImplB, name: "postgres-backend"}
  ],
  compare: :performance
)
Same Adapter, Different Configurations
A key use case is comparing the same adapter with different configurations:
PropertyDamage.Differential.run(
  model: MyModel,
  targets: [
    {HTTPAdapter, role: :reference, opts: [base_url: "https://prod.example.com"]},
    {HTTPAdapter, name: "staging", opts: [base_url: "https://staging.example.com"]}
  ],
  compare: :correctness
)
Time-Separated Execution
Run against one system now, save results, compare later:
# Save baseline
PropertyDamage.Differential.run(
  model: MyModel,
  targets: [{ProdAdapter, name: "v2.3"}],
  compare: :performance,
  export_to: "baselines/v2.3.json"
)

# Later, compare against baseline
PropertyDamage.Differential.run(
  model: MyModel,
  targets: [{ProdAdapter, name: "v2.4"}],
  compare: :performance,
  baseline: "baselines/v2.3.json"
)
Execution Modes
	:interleaved - Execute commands round-robin across targets (default for correctness)
	:sequential - Execute full sequence on each target (default for performance)

When using baseline:, execution is implicitly sequential.
Equivalence Strategies
For correctness comparison:
	:exact - Results must be identical (default)
	:structural - Ignore common non-deterministic fields (id, timestamps)
	Custom function - fn ref_result, target_result -> boolean


      


      
        Summary


  
    Types
  


    
      
        compare_mode()

      


    


    
      
        equivalence_strategy()

      


    


    
      
        target_spec()

      


    





  
    Functions
  


    
      
        run(opts)

      


        Run differential testing against multiple targets.



    





      


      
        Types


        


  
    
      
    
    
      compare_mode()



        
          
        

    

  


  

      

          @type compare_mode() :: :correctness | :performance | :both


      



  



  
    
      
    
    
      equivalence_strategy()



        
          
        

    

  


  

      

          @type equivalence_strategy() :: :exact | :structural | (term(), term() -> boolean())


      



  



  
    
      
    
    
      target_spec()



        
          
        

    

  


  

      

          @type target_spec() :: {module()} | {module(), keyword()}


      



  


        

      

      
        Functions


        


  
    
      
    
    
      run(opts)



        
          
        

    

  


  

      

          @spec run(keyword()) ::
  {:ok, PropertyDamage.Differential.Result.t()} | {:error, term()}


      


Run differential testing against multiple targets.
Required Options
	:model - Model module implementing PropertyDamage.Model
	:targets - List of target specifications (see Target Specification below)
	:compare - Comparison mode: :correctness, :performance, or :both

Target Specification
Each target is a tuple of {AdapterModule} or {AdapterModule, opts}:
	name: - Display name for reporting (default: derived from module)
	role: - Set to :reference for oracle testing
	opts: - Options passed to adapter's setup/1

Examples:
{MyAdapter}
{MyAdapter, name: "staging"}
{MyAdapter, role: :reference, opts: [url: "http://prod"]}
Optional Options
	:max_commands - Maximum commands per sequence (default: 50)
	:max_runs - Number of test sequences to run (default: 100)
	:seed - Random seed for reproducibility
	:execution - :interleaved or :sequential
	:equivalence - Equivalence strategy (default: :exact)
	:baseline - Path to baseline file for comparison
	:export_to - Path to export results for future baseline
	:metrics - Performance metrics to collect (default: [:latency, :throughput])
	:percentiles - Latency percentiles (default: [50, 95, 99])
	:warmup_runs - Runs to discard before measuring (default: 0)
	:verbose - Print progress (default: false)

Returns
	{:ok, %Result{}} - Differential testing completed
	{:error, reason} - Setup or validation failed


  


        

      


  

    
PropertyDamage.Differential.Baseline 
    



      
Baseline file handling for time-separated differential testing.
Baselines store the results of a test run (command sequences and their results)
for later comparison against other implementations.
File Format
Baselines are stored as JSON files containing:
	Metadata (creation time, model, target info)
	Command sequences (as serialized structs)
	Results per command
	Timing data
	Aggregate metrics


      


      
        Summary


  
    Types
  


    
      
        run_data()

      


    


    
      
        t()

      


    





  
    Functions
  


    
      
        export(result, config, path)

      


        Export a differential testing result to a baseline file.



    


    
      
        export_run_data(run_data, config, path)

      


        Export run data directly to a baseline file.



    


    
      
        load(path)

      


        Load a baseline file for comparison.



    





      


      
        Types


        


  
    
      
    
    
      run_data()



        
          
        

    

  


  

      

          @type run_data() :: %{
  commands: [struct()],
  results: [term()],
  timings: [number()],
  event_log: [struct()]
}


      



  



  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %PropertyDamage.Differential.Baseline{
  aggregate_metrics: map(),
  created_at: DateTime.t(),
  model: String.t(),
  model_version: String.t() | nil,
  runs: [run_data()],
  seed: integer(),
  target_name: String.t()
}


      



  


        

      

      
        Functions


        


  
    
      
    
    
      export(result, config, path)



        
          
        

    

  


  

      

          @spec export(PropertyDamage.Differential.Result.t(), map(), Path.t()) ::
  :ok | {:error, term()}


      


Export a differential testing result to a baseline file.

  



  
    
      
    
    
      export_run_data(run_data, config, path)



        
          
        

    

  


  

      

          @spec export_run_data(map(), map(), Path.t()) :: :ok | {:error, term()}


      


Export run data directly to a baseline file.
This is called during sequential execution to capture actual run data.

  



  
    
      
    
    
      load(path)



        
          
        

    

  


  

      

          @spec load(Path.t()) :: {:ok, t()} | {:error, term()}


      


Load a baseline file for comparison.

  


        

      


  

    
PropertyDamage.Differential.Equivalence 
    



      
Equivalence strategies for comparing results between targets.
Provides different comparison modes for handling non-deterministic values
(IDs, timestamps) that may legitimately differ between implementations.
Strategies
	:exact - Results must be identical
	:structural - Ignore common non-deterministic fields
	Custom function - User-provided comparison logic


      


      
        Summary


  
    Types
  


    
      
        strategy()

      


    





  
    Functions
  


    
      
        equivalent?(result_a, result_b, strategy \\ :exact)

      


        Check if two results are equivalent according to the given strategy.



    


    
      
        ignore_fields(fields)

      


        Create a structural equivalence strategy that ignores specific fields.



    


    
      
        normalize(other)

      


        Normalize a result by removing non-deterministic fields.



    


    
      
        only_fields(fields)

      


        Create an equivalence strategy that only compares specific fields.



    





      


      
        Types


        


  
    
      
    
    
      strategy()



        
          
        

    

  


  

      

          @type strategy() :: :exact | :structural | (term(), term() -> boolean())


      



  


        

      

      
        Functions


        


    

  
    
      
    
    
      equivalent?(result_a, result_b, strategy \\ :exact)



        
          
        

    

  


  

      

          @spec equivalent?(term(), term(), strategy()) :: boolean()


      


Check if two results are equivalent according to the given strategy.

  



  
    
      
    
    
      ignore_fields(fields)



        
          
        

    

  


  

      

          @spec ignore_fields([atom()]) :: (term(), term() -> boolean())


      


Create a structural equivalence strategy that ignores specific fields.

  



  
    
      
    
    
      normalize(other)



        
          
        

    

  


  

      

          @spec normalize(term()) :: term()


      


Normalize a result by removing non-deterministic fields.
Used by the :structural strategy.

  



  
    
      
    
    
      only_fields(fields)



        
          
        

    

  


  

      

          @spec only_fields([atom()]) :: (term(), term() -> boolean())


      


Create an equivalence strategy that only compares specific fields.

  


        

      


  

    
PropertyDamage.Differential.Result 
    



      
Result from differential testing.
Contains comparison results, divergences, and performance metrics.

      


      
        Summary


  
    Types
  


    
      
        divergence()

      


    


    
      
        metrics()

      


    


    
      
        t()

      


    





  
    Functions
  


    
      
        divergence_count(result)

      


        Get the number of divergences found.



    


    
      
        divergent?(result)

      


        Check if the result indicates divergence was found.



    


    
      
        equivalent?(result)

      


        Check if the result indicates all targets are equivalent.



    


    
      
        format(result, opts \\ [])

      


        Format the result for display.



    


    
      
        metrics_for(result, target_name)

      


        Get metrics for a specific target.



    





      


      
        Types


        


  
    
      
    
    
      divergence()



        
          
        

    

  


  

      

          @type divergence() :: %{
  :seed => integer(),
  :command => struct(),
  :step => non_neg_integer(),
  :reference_result => term(),
  :results => map(),
  optional(:divergent_target) => String.t(),
  optional(:divergent_result) => term(),
  optional(:run_index) => non_neg_integer(),
  optional(:reference_name) => String.t()
}


      



  



  
    
      
    
    
      metrics()



        
          
        

    

  


  

      

          @type metrics() :: %{
  optional(:latency_p50) => float(),
  optional(:latency_p95) => float(),
  optional(:latency_p99) => float(),
  optional(:latency_mean) => float(),
  optional(:latency_min) => float(),
  optional(:latency_max) => float(),
  optional(:total_commands) => non_neg_integer(),
  optional(:error_count) => non_neg_integer(),
  optional(:error_rate) => float(),
  optional(:error) => atom(),
  optional(:reason) => term()
}


      



  



  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %PropertyDamage.Differential.Result{
  baseline: String.t() | nil,
  divergences: [divergence()],
  execution: :interleaved | :sequential,
  metrics: %{required(String.t()) => metrics()},
  mode: :correctness | :performance | :both,
  reference: String.t() | nil,
  runs: non_neg_integer(),
  seed: integer(),
  status: :equivalent | :divergent | :complete,
  targets: [String.t()]
}


      



  


        

      

      
        Functions


        


  
    
      
    
    
      divergence_count(result)



        
          
        

    

  


  

      

          @spec divergence_count(t()) :: non_neg_integer()


      


Get the number of divergences found.

  



  
    
      
    
    
      divergent?(result)



        
          
        

    

  


  

      

          @spec divergent?(t()) :: boolean()


      


Check if the result indicates divergence was found.

  



  
    
      
    
    
      equivalent?(result)



        
          
        

    

  


  

      

          @spec equivalent?(t()) :: boolean()


      


Check if the result indicates all targets are equivalent.

  



    

  
    
      
    
    
      format(result, opts \\ [])



        
          
        

    

  


  

      

          @spec format(
  t(),
  keyword()
) :: String.t()


      


Format the result for display.

  



  
    
      
    
    
      metrics_for(result, target_name)



        
          
        

    

  


  

      

          @spec metrics_for(t(), String.t()) :: metrics() | nil


      


Get metrics for a specific target.

  


        

      


  

    
PropertyDamage.Differential.Target 
    



      
Represents a target for differential testing.
A target wraps an adapter module with metadata for comparison.

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





  
    Functions
  


    
      
        parse(spec, index)

      


        Parse a target specification into a Target struct.



    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %PropertyDamage.Differential.Target{
  adapter: module(),
  name: String.t(),
  opts: map(),
  role: :reference | :candidate
}


      



  


        

      

      
        Functions


        


  
    
      
    
    
      parse(spec, index)



        
          
        

    

  


  

      

          @spec parse(tuple(), non_neg_integer()) :: t()


      


Parse a target specification into a Target struct.
Target Specification Formats
# Just adapter module
{MyAdapter}

# With name
{MyAdapter, name: "staging"}

# As reference
{MyAdapter, role: :reference}

# With adapter options
{MyAdapter, name: "prod", opts: [url: "https://prod.example.com"]}

# Full specification
{MyAdapter, name: "prod", role: :reference, opts: [pool_size: 10]}

  


        

      


  

    
PropertyDamage.Error 
    



      
User-friendly error formatting and common error types.
This module provides helpful error messages that guide users toward
fixing problems rather than just reporting them.

      


      
        Summary


  
    Types
  


    
      
        error_context()

      


    





  
    Functions
  


    
      
        format(reason, context \\ %{})

      


        Formats an error reason into a user-friendly message.



    


    
      
        format_config_error(type, value)

      


        Formats a configuration error with suggestions.



    


    
      
        format_warning(type, command)

      


        Formats a warning with context.



    





      


      
        Types


        


  
    
      
    
    
      error_context()



        
          
        

    

  


  

      

          @type error_context() :: %{
  optional(:command) => struct(),
  optional(:command_index) => non_neg_integer(),
  optional(:check_name) => atom(),
  optional(:projection) => module(),
  optional(:adapter) => module(),
  optional(:model) => module(),
  optional(:seed) => integer()
}


      



  


        

      

      
        Functions


        


    

  
    
      
    
    
      format(reason, context \\ %{})



        
          
        

    

  


  

      

          @spec format(term(), error_context()) :: String.t()


      


Formats an error reason into a user-friendly message.
Takes the raw error reason from execution and returns a formatted string
with context and suggestions for fixing the issue.

  



  
    
      
    
    
      format_config_error(type, value)



        
          
        

    

  


  

      

          @spec format_config_error(atom(), term()) :: String.t()


      


Formats a configuration error with suggestions.

  



  
    
      
    
    
      format_warning(type, command)



        
          
        

    

  


  

      

          @spec format_warning(atom(), term()) :: String.t()


      


Formats a warning with context.

  


        

      


  

    
PropertyDamage.Errors 
    



      
User-friendly error messages with hints for common mistakes.
This module provides clear, actionable error messages that help users
diagnose and fix configuration problems quickly.
Usage
These functions are called internally by PropertyDamage when errors occur.
They format errors with:
	Clear description of what went wrong
	Context about where/when it happened
	Hint suggesting how to fix it

Example Output
ERROR: Precondition returned false for Credit

Context: Generating command at position 3
State: %{accounts: %{}}

Hint: Credit requires at least one account to exist.
      The precondition checks: map_size(state.accounts) > 0

      Did you forget to include CreateAccount in your model's commands?

      


      
        Summary


  
    Functions
  


    
      
        adapter_setup_failed(adapter, reason)

      


        Format an error when adapter setup fails.



    


    
      
        callback_missing(module, callback, arity, role)

      


        Format an error when a required callback is missing.



    


    
      
        execution_failed(command, reason, context \\ %{})

      


        Format an error when command execution fails.



    


    
      
        invariant_violated(projection, message, context \\ %{})

      


        Format an error when an invariant is violated.



    


    
      
        module_not_found(module, role)

      


        Format an error when a required module doesn't exist.



    


    
      
        no_valid_commands(model, state)

      


        Format an error when no commands have valid preconditions.



    


    
      
        precondition_failed(command_module, state, context \\ %{})

      


        Format an error when a specific command's precondition fails unexpectedly.



    


    
      
        unresolved_ref(ref, available_refs)

      


        Format an error when a ref cannot be resolved.



    





      


      
        Functions


        


  
    
      
    
    
      adapter_setup_failed(adapter, reason)



        
          
        

    

  


  

Format an error when adapter setup fails.

  



  
    
      
    
    
      callback_missing(module, callback, arity, role)



        
          
        

    

  


  

Format an error when a required callback is missing.

  



    

  
    
      
    
    
      execution_failed(command, reason, context \\ %{})



        
          
        

    

  


  

Format an error when command execution fails.

  



    

  
    
      
    
    
      invariant_violated(projection, message, context \\ %{})



        
          
        

    

  


  

Format an error when an invariant is violated.

  



  
    
      
    
    
      module_not_found(module, role)



        
          
        

    

  


  

Format an error when a required module doesn't exist.

  



  
    
      
    
    
      no_valid_commands(model, state)



        
          
        

    

  


  

Format an error when no commands have valid preconditions.

  



    

  
    
      
    
    
      precondition_failed(command_module, state, context \\ %{})



        
          
        

    

  


  

Format an error when a specific command's precondition fails unexpectedly.

  



  
    
      
    
    
      unresolved_ref(ref, available_refs)



        
          
        

    

  


  

Format an error when a ref cannot be resolved.

  


        

      


  

    
PropertyDamage.EventLog.Entry 
    



      
Represents a single entry in the event log.
The event log records all events that occur during test execution,
wrapping each event with metadata for debugging and analysis.
Event Sources
Events can come from seven sources:
	Command events (:command source) - Events produced by executing
commands against the SUT. These have a command_index indicating
which command produced them.

	Injector events (:injector source) - Events received from the
SUT via injector adapters (webhooks, callbacks, etc.). These have
command_index: nil since they're not triggered by a specific command,
and include the injector_adapter module that received them.

	Nemesis events (:nemesis source) - Events produced by fault
injection commands. These have a command_index like command events,
plus the nemesis_module that produced them.

	Telemetry events (:telemetry source) - Events derived from
OpenTelemetry spans received from the SUT. These include the
telemetry_receiver module and optional trace_id/span_id.

	Stutter events (:stutter source) - Events from retry executions
during idempotency testing. These are captured but NOT applied to
projections. They include stutter_attempt and stutter_comparison.

	Mock events (:mock source) - Events injected by mock service
adapters when the SUT calls them. These have a command_index indicating
which command triggered the mock call.

	Injected events (:injected source) - Events emitted mid-execution
by adapters with :async semantics using ctx.inject.(event). These
update projections immediately when injected, unlike command events which
batch all events at the end. They have a command_index indicating
which command's adapter injected them.


Example Event Log
[
  %Entry{timestamp: 1, command_index: 0, event: %OrderCreated{...}, source: :command},
  %Entry{timestamp: 15, command_index: nil, event: %PaymentConfirmed{...}, source: :injector, injector_adapter: PaymentWebhook},
  %Entry{timestamp: 20, command_index: 1, event: %OrderCancelled{...}, source: :command}
]
Timestamp
The timestamp is monotonic time in milliseconds (via System.monotonic_time/1),
ensuring consistent ordering even if system clock changes.
System Events
System events (like CommandSequenceTerminated) are also recorded in the
event log but are metadata-only - projections do not receive them. They
exist for debugging and visualization purposes.

      


      
        Summary


  
    Types
  


    
      
        t()

      


        An event log entry.



    





  
    Functions
  


    
      
        command?(entry)

      


        Check if an entry is from a command.



    


    
      
        from_command(event, command_index, opts \\ [])

      


        Create a new entry for a command event.



    


    
      
        from_injected(event, command_index, opts \\ [])

      


        Create a new entry for an injected event.



    


    
      
        from_injector(event, injector_adapter, opts \\ [])

      


        Create a new entry for an injector event.



    


    
      
        from_mock(event, command_index, opts \\ [])

      


        Create a new entry for a mock-injected event.



    


    
      
        from_nemesis(event, command_index, nemesis_module, opts \\ [])

      


        Create a new entry for a nemesis event.



    


    
      
        from_stutter(event, command_index, attempt, comparison, opts \\ [])

      


        Create a new entry for a stutter (retry) event.



    


    
      
        from_telemetry(event, telemetry_receiver, opts \\ [])

      


        Create a new entry for a telemetry event.



    


    
      
        injected?(entry)

      


        Check if an entry was injected mid-execution by an adapter.



    


    
      
        injector?(entry)

      


        Check if an entry is from an injector.



    


    
      
        mock?(entry)

      


        Check if an entry is from a mock service adapter.



    


    
      
        nemesis?(entry)

      


        Check if an entry is from a nemesis.



    


    
      
        stutter?(entry)

      


        Check if an entry is from stutter (retry) testing.



    


    
      
        telemetry?(entry)

      


        Check if an entry is from telemetry.



    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %PropertyDamage.EventLog.Entry{
  branch_id: non_neg_integer() | nil,
  command_index: non_neg_integer() | nil,
  event: struct(),
  injector_adapter: module() | nil,
  nemesis_module: module() | nil,
  source:
    :command | :injector | :nemesis | :telemetry | :stutter | :mock | :injected,
  span_id: String.t() | nil,
  stutter_attempt: pos_integer() | nil,
  stutter_comparison: :match | {:mismatch, map()} | nil,
  telemetry_receiver: module() | nil,
  timestamp: integer(),
  trace_id: String.t() | nil
}


      


An event log entry.
	timestamp - Monotonic time in milliseconds when event was recorded
	command_index - Index of command that produced this event (nil for injected/telemetry events)
	event - The actual event struct
	source - One of :command, :injector, :nemesis, :telemetry, :stutter, :mock, or :injected
	injector_adapter - Module that received the event (only for :injector source)
	nemesis_module - Module that produced the event (only for :nemesis source)
	telemetry_receiver - Module that received the span (only for :telemetry source)
	trace_id - Distributed trace ID (only for :telemetry source)
	span_id - Span ID within the trace (only for :telemetry source)
	branch_id - Branch identifier for parallel execution (nil for linear sequences)
	stutter_attempt - Attempt number for stutter retries (only for :stutter source)
	stutter_comparison - Comparison result with original events (only for :stutter source)


  


        

      

      
        Functions


        


  
    
      
    
    
      command?(entry)



        
          
        

    

  


  

      

          @spec command?(t()) :: boolean()


      


Check if an entry is from a command.
Examples
iex> entry = PropertyDamage.EventLog.Entry.from_command(%SomeEvent{}, 0)
iex> PropertyDamage.EventLog.Entry.command?(entry)
true

  



    

  
    
      
    
    
      from_command(event, command_index, opts \\ [])



        
          
        

    

  


  

      

          @spec from_command(struct(), non_neg_integer(), keyword()) :: t()


      


Create a new entry for a command event.
Parameters
	event - The event struct
	command_index - Index of the command that produced this event

Options
	:timestamp - Override timestamp (default: current monotonic time)

Examples
iex> entry = PropertyDamage.EventLog.Entry.from_command(%SomeEvent{}, 0)
iex> entry.source
:command
iex> entry.command_index
0

  



    

  
    
      
    
    
      from_injected(event, command_index, opts \\ [])



        
          
        

    

  


  

      

          @spec from_injected(struct(), non_neg_integer(), keyword()) :: t()


      


Create a new entry for an injected event.
Injected events are emitted mid-execution by adapters using ctx.inject.(event).
Unlike command events which are batched at the end of execution, injected events
update projections immediately when they're emitted. This is useful for adapters
with :async semantics that need to emit events as they happen (e.g., emit
AuthorizationCreated immediately when the resource is created, rather than
waiting until polling completes).
Parameters
	event - The event struct
	command_index - Index of the command whose adapter is injecting the event

Options
	:timestamp - Override timestamp (default: current monotonic time)
	:branch_id - Branch identifier for parallel execution

Examples
iex> entry = PropertyDamage.EventLog.Entry.from_injected(%AuthCreated{}, 3)
iex> entry.source
:injected
iex> entry.command_index
3

  



    

  
    
      
    
    
      from_injector(event, injector_adapter, opts \\ [])



        
          
        

    

  


  

      

          @spec from_injector(struct(), module(), keyword()) :: t()


      


Create a new entry for an injector event.
Parameters
	event - The event struct
	injector_adapter - Module that received the event

Options
	:timestamp - Override timestamp (default: current monotonic time)

Examples
iex> entry = PropertyDamage.EventLog.Entry.from_injector(%PaymentEvent{}, PaymentWebhook)
iex> entry.source
:injector
iex> entry.command_index
nil

  



    

  
    
      
    
    
      from_mock(event, command_index, opts \\ [])



        
          
        

    

  


  

      

          @spec from_mock(struct(), non_neg_integer(), keyword()) :: t()


      


Create a new entry for a mock-injected event.
Mock events are injected by mock service adapters when the SUT calls them.
They are applied to projections like command events.
Parameters
	event - The event struct injected by the mock
	command_index - Index of the command that triggered the mock call

Options
	:timestamp - Override timestamp (default: current monotonic time)
	:branch_id - Branch identifier for parallel execution

Examples
iex> entry = PropertyDamage.EventLog.Entry.from_mock(%PaymentProcessed{}, 3)
iex> entry.source
:mock
iex> entry.command_index
3

  



    

  
    
      
    
    
      from_nemesis(event, command_index, nemesis_module, opts \\ [])



        
          
        

    

  


  

      

          @spec from_nemesis(struct(), non_neg_integer(), module(), keyword()) :: t()


      


Create a new entry for a nemesis event.
Parameters
	event - The event struct
	command_index - Index of the nemesis command that produced this event
	nemesis_module - Module that produced the event

Options
	:timestamp - Override timestamp (default: current monotonic time)
	:branch_id - Branch identifier for parallel execution

Examples
iex> entry = PropertyDamage.EventLog.Entry.from_nemesis(%PartitionEvent{}, 3, MyNemesis)
iex> entry.source
:nemesis
iex> entry.nemesis_module
MyNemesis

  



    

  
    
      
    
    
      from_stutter(event, command_index, attempt, comparison, opts \\ [])



        
          
        

    

  


  

      

          @spec from_stutter(struct(), non_neg_integer(), pos_integer(), term(), keyword()) ::
  t()


      


Create a new entry for a stutter (retry) event.
Stutter events are captured during idempotency testing but NOT applied
to projections. They record the result of retry executions for comparison.
Parameters
	event - The event struct from retry execution
	command_index - Index of the command being retried
	attempt - Attempt number (2, 3, etc. - first execution is attempt 1)
	comparison - Result of comparing with original events

Options
	:timestamp - Override timestamp (default: current monotonic time)
	:branch_id - Branch identifier for parallel execution

Examples
iex> entry = PropertyDamage.EventLog.Entry.from_stutter(%OrderCreated{}, 5, 2, :match)
iex> entry.source
:stutter
iex> entry.stutter_attempt
2

  



    

  
    
      
    
    
      from_telemetry(event, telemetry_receiver, opts \\ [])



        
          
        

    

  


  

      

          @spec from_telemetry(struct(), module(), keyword()) :: t()


      


Create a new entry for a telemetry event.
Parameters
	event - The event struct (derived from a telemetry span)
	telemetry_receiver - Module that received and converted the span

Options
	:timestamp - Override timestamp (default: current monotonic time)
	:trace_id - Distributed trace ID
	:span_id - Span ID within the trace
	:branch_id - Branch identifier for parallel execution

Examples
iex> entry = PropertyDamage.EventLog.Entry.from_telemetry(%SlowQuery{}, MyReceiver, trace_id: "abc123")
iex> entry.source
:telemetry
iex> entry.trace_id
"abc123"

  



  
    
      
    
    
      injected?(entry)



        
          
        

    

  


  

      

          @spec injected?(t()) :: boolean()


      


Check if an entry was injected mid-execution by an adapter.
Examples
iex> entry = PropertyDamage.EventLog.Entry.from_injected(%SomeEvent{}, 0)
iex> PropertyDamage.EventLog.Entry.injected?(entry)
true

  



  
    
      
    
    
      injector?(entry)



        
          
        

    

  


  

      

          @spec injector?(t()) :: boolean()


      


Check if an entry is from an injector.
Examples
iex> entry = PropertyDamage.EventLog.Entry.from_injector(%SomeEvent{}, SomeInjector)
iex> PropertyDamage.EventLog.Entry.injector?(entry)
true

  



  
    
      
    
    
      mock?(entry)



        
          
        

    

  


  

      

          @spec mock?(t()) :: boolean()


      


Check if an entry is from a mock service adapter.
Examples
iex> entry = PropertyDamage.EventLog.Entry.from_mock(%SomeEvent{}, 0)
iex> PropertyDamage.EventLog.Entry.mock?(entry)
true

  



  
    
      
    
    
      nemesis?(entry)



        
          
        

    

  


  

      

          @spec nemesis?(t()) :: boolean()


      


Check if an entry is from a nemesis.
Examples
iex> entry = PropertyDamage.EventLog.Entry.from_nemesis(%SomeEvent{}, 0, MyNemesis)
iex> PropertyDamage.EventLog.Entry.nemesis?(entry)
true

  



  
    
      
    
    
      stutter?(entry)



        
          
        

    

  


  

      

          @spec stutter?(t()) :: boolean()


      


Check if an entry is from stutter (retry) testing.
Examples
iex> entry = PropertyDamage.EventLog.Entry.from_stutter(%SomeEvent{}, 0, 2, :match)
iex> PropertyDamage.EventLog.Entry.stutter?(entry)
true

  



  
    
      
    
    
      telemetry?(entry)



        
          
        

    

  


  

      

          @spec telemetry?(t()) :: boolean()


      


Check if an entry is from telemetry.
Examples
iex> entry = PropertyDamage.EventLog.Entry.from_telemetry(%SomeEvent{}, MyReceiver)
iex> PropertyDamage.EventLog.Entry.telemetry?(entry)
true

  


        

      


  

    
PropertyDamage.Events.CommandSequenceTerminated 
    



      
System event marking the end of command generation.
This event is injected by the framework when command sequence generation
stops. It appears in the event log for debugging and visualization but
is NOT passed to projections.
Termination Reasons
	:model_terminated - Model's terminate?/3 returned true
	:max_commands - Reached the configured maximum commands limit
	:timeout - Execution timed out
	:injector_signal - Injector adapter signaled termination (future)

Important Semantics
	Not a shutdown signal: This event means "we stopped generating
new commands," NOT "shut everything down." Async events may still
arrive after termination and should be recorded.

	Metadata-only: Projections do not receive this event. It exists
purely for observability.

	Stripped during shrinking: The shrinker removes this event from
sequences. If termination still occurs after shrinking, a fresh
event is injected.


Example
%CommandSequenceTerminated{
  reason: :model_terminated,
  triggered_by: {5, CompletePayment},  # command index and module
  total_commands: 6,
  timestamp: ~U[2025-01-15 10:30:00Z]
}
Visualization
In failure reports, this is shown as a distinct marker:
╰─ ◆ TERMINATED (model) ─────│

      


      
        Summary


  
    Types
  


    
      
        reason()

      


        Termination reason.



    


    
      
        t()

      


    


    
      
        triggered_by()

      


        The command that triggered termination (index and module).



    





  
    Functions
  


    
      
        max_commands?(command_sequence_terminated)

      


        Check if termination was due to reaching max commands.



    


    
      
        model_terminated?(command_sequence_terminated)

      


        Check if termination was triggered by model logic.



    


    
      
        new(reason, opts \\ [])

      


        Create a new termination event.



    


    
      
        reason_description(command_sequence_terminated)

      


        Get a human-readable description of the termination reason.



    


    
      
        timeout?(command_sequence_terminated)

      


        Check if termination was due to timeout.



    





      


      
        Types


        


  
    
      
    
    
      reason()



        
          
        

    

  


  

      

          @type reason() :: :model_terminated | :max_commands | :timeout | :injector_signal


      


Termination reason.

  



  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %PropertyDamage.Events.CommandSequenceTerminated{
  reason: reason(),
  timestamp: DateTime.t() | integer(),
  total_commands: non_neg_integer(),
  triggered_by: triggered_by()
}


      



  



  
    
      
    
    
      triggered_by()



        
          
        

    

  


  

      

          @type triggered_by() :: {non_neg_integer(), module()} | nil


      


The command that triggered termination (index and module).

  


        

      

      
        Functions


        


  
    
      
    
    
      max_commands?(command_sequence_terminated)



        
          
        

    

  


  

      

          @spec max_commands?(t()) :: boolean()


      


Check if termination was due to reaching max commands.

  



  
    
      
    
    
      model_terminated?(command_sequence_terminated)



        
          
        

    

  


  

      

          @spec model_terminated?(t()) :: boolean()


      


Check if termination was triggered by model logic.

  



    

  
    
      
    
    
      new(reason, opts \\ [])



        
          
        

    

  


  

      

          @spec new(
  reason(),
  keyword()
) :: t()


      


Create a new termination event.
Parameters
	reason - Why command generation stopped
	opts - Additional fields

Options
	:triggered_by - {command_index, module} if a command triggered it
	:total_commands - Number of commands executed
	:timestamp - When termination occurred (default: current UTC time)

Examples
CommandSequenceTerminated.new(:max_commands, total_commands: 100)

CommandSequenceTerminated.new(:model_terminated,
  triggered_by: {5, CompletePayment},
  total_commands: 6
)

  



  
    
      
    
    
      reason_description(command_sequence_terminated)



        
          
        

    

  


  

      

          @spec reason_description(t()) :: String.t()


      


Get a human-readable description of the termination reason.

  



  
    
      
    
    
      timeout?(command_sequence_terminated)



        
          
        

    

  


  

      

          @spec timeout?(t()) :: boolean()


      


Check if termination was due to timeout.

  


        

      


  

    
PropertyDamage.ExUnit 
    



      
ExUnit integration for PropertyDamage property tests.
This module provides macros for writing property-based tests that integrate
seamlessly with ExUnit. Tests can be defined using module attributes for
configuration, with individual test overrides as needed.
Usage
defmodule MySystemTest do
  use ExUnit.Case
  use PropertyDamage.ExUnit

  property_damage "system maintains invariants",
    model: MyApp.TestModel,
    adapter: MyApp.TestAdapter,
    max_commands: 50,
    max_runs: 100

  property_damage "handles concurrent access",
    model: MyApp.TestModel,
    adapter: MyApp.ConcurrentAdapter,
    max_commands: 100
end
Test Options
Options passed to property_damage/2:
Required:
	:model - Model module (required)
	:adapter - Adapter module (required)

Optional:
	:max_commands - Max commands per sequence (default: 50)
	:max_runs - Number of test sequences (default: 100)
	:seed - Fixed seed for reproducibility
	:injector_adapters - List of injector adapter modules (default: [])
	:shrink - Whether to shrink failures (default: true)
	:validate - Whether to validate config (default: true)
	:adapter_config - Config passed to adapter.setup/1 (default: %{})

Failure Formatting
When a property test fails, the output includes:
	The seed for reproducing the failure
	The original command sequence
	The shrunk (minimal) command sequence
	The failure reason
	Instructions for reproducing with the same seed

Example Failure Output
1) property system maintains invariants
   Failure with seed: 12345

   Original sequence (5 commands):
     [%CreateItem{...}, %ViewItem{...}, ...]

   Shrunk sequence (2 commands):
     [%CreateItem{quantity: 101}]

   Failed at command #0:
     {:check_failed, :quantity_limit, "Quantity 101 exceeds limit"}

   Reproduce with: seed: 12345

      


      
        Summary


  
    Functions
  


    
      
        __using__(opts)

      


        Use this module to enable PropertyDamage test macros.



    


    
      
        format_failure(report)

      


        Format a failure report for ExUnit output.



    


    
      
        property_damage(name, opts \\ [])

      


        Define a property-based test.



    





      


      
        Functions


        


  
    
      
    
    
      __using__(opts)


        (macro)


        
          
        

    

  


  

Use this module to enable PropertyDamage test macros.
Requires use ExUnit.Case to be called first.
Example
defmodule MyTest do
  use ExUnit.Case
  use PropertyDamage.ExUnit

  @model MyModel
  @adapter MyAdapter

  property_damage "test name" do
    max_runs: 10
  end
end

  



  
    
      
    
    
      format_failure(report)



        
          
        

    

  


  

      

          @spec format_failure(map()) :: String.t()


      


Format a failure report for ExUnit output.
Produces human-readable output with all relevant information for
debugging and reproducing the failure.

  



    

  
    
      
    
    
      property_damage(name, opts \\ [])


        (macro)


        
          
        

    

  


  

Define a property-based test.
Creates an ExUnit test that generates and executes command sequences,
checking for invariant violations.
Parameters
	name - Test name (string)
	opts - Options keyword list (see module docs for available options)

Examples
# Basic usage
property_damage "basic test",
  model: MyModel,
  adapter: MyAdapter

# With options
property_damage "custom test",
  model: MyModel,
  adapter: MyAdapter,
  max_commands: 100,
  max_runs: 50

# With fixed seed for reproduction
property_damage "reproducible test",
  model: MyModel,
  adapter: MyAdapter,
  seed: 12345

  


        

      


  

    
PropertyDamage.Export.Common 
    



      
Shared utilities for export functionality.
Provides common functions for:
	Extracting commands from failure reports
	Serializing commands and values to various formats
	Extracting ref bindings from events
	Generating metadata (timestamps, headers, etc.)


      


      
        Summary


  
    Functions
  


    
      
        command_fields(command)

      


        Extracts command fields as a map (excluding struct).



    


    
      
        command_name(command)

      


        Extracts the command name (last part of module name).



    


    
      
        command_to_comment(command)

      


        Serializes a command to a readable string for comments.



    


    
      
        extract_commands(failure_report)

      


        Extracts the command list from a failure report.



    


    
      
        extract_metadata(report)

      


        Extracts metadata from a failure report for documentation headers.



    


    
      
        extract_ref_bindings(commands, events)

      


        Extracts ref bindings from events.



    


    
      
        generate_filename(failure_report, format)

      


        Generates a filename for the export based on seed and format.



    


    
      
        generate_header(metadata, opts \\ [])

      


        Generates a header comment for scripts.



    


    
      
        get_http_spec(command, adapter, context)

      


        Gets the HTTPSpec for a command from an adapter.



    


    
      
        serialize_value(value, opts \\ [])

      


        Serializes a value for use in scripts.



    





      


      
        Functions


        


  
    
      
    
    
      command_fields(command)



        
          
        

    

  


  

      

          @spec command_fields(struct()) :: map()


      


Extracts command fields as a map (excluding struct).

  



  
    
      
    
    
      command_name(command)



        
          
        

    

  


  

      

          @spec command_name(struct()) :: String.t()


      


Extracts the command name (last part of module name).

  



  
    
      
    
    
      command_to_comment(command)



        
          
        

    

  


  

      

          @spec command_to_comment(struct()) :: String.t()


      


Serializes a command to a readable string for comments.

  



  
    
      
    
    
      extract_commands(failure_report)



        
          
        

    

  


  

      

          @spec extract_commands(PropertyDamage.FailureReport.t()) :: [struct()]


      


Extracts the command list from a failure report.
Returns the shrunk sequence as a list of command structs.

  



  
    
      
    
    
      extract_metadata(report)



        
          
        

    

  


  

      

          @spec extract_metadata(PropertyDamage.FailureReport.t()) :: map()


      


Extracts metadata from a failure report for documentation headers.

  



  
    
      
    
    
      extract_ref_bindings(commands, events)



        
          
        

    

  


  

      

          @spec extract_ref_bindings([struct()], [PropertyDamage.EventLog.Entry.t()]) :: map()


      


Extracts ref bindings from events.
Looks for fields ending in _ref or _id in events and builds a map
of command_index -> field_name -> value.
This is used to track which refs are bound by which commands.

  



  
    
      
    
    
      generate_filename(failure_report, format)



        
          
        

    

  


  

      

          @spec generate_filename(PropertyDamage.FailureReport.t(), atom()) :: String.t()


      


Generates a filename for the export based on seed and format.

  



    

  
    
      
    
    
      generate_header(metadata, opts \\ [])



        
          
        

    

  


  

      

          @spec generate_header(
  map(),
  keyword()
) :: String.t()


      


Generates a header comment for scripts.

  



  
    
      
    
    
      get_http_spec(command, adapter, context)



        
          
        

    

  


  

      

          @spec get_http_spec(struct(), module() | nil, map()) ::
  PropertyDamage.Export.HTTPSpec.t() | nil


      


Gets the HTTPSpec for a command from an adapter.
If the adapter implements http_spec/2, calls it.
Otherwise, returns nil (the script generator should handle this gracefully).

  



    

  
    
      
    
    
      serialize_value(value, opts \\ [])



        
          
        

    

  


  

      

          @spec serialize_value(
  term(),
  keyword()
) :: String.t()


      


Serializes a value for use in scripts.
Handles refs, atoms, strings, numbers, lists, and maps.

  


        

      


  

    
PropertyDamage.Export.ExUnit 
    



      
Generates ExUnit regression tests from failure reports.
The generated tests use PropertyDamage to reproduce the failure,
making them suitable for CI regression testing.
Usage
test_code = PropertyDamage.Export.ExUnit.generate(failure,
  module_name: MyApp.Regressions.Test,
  model: MyModel,
  adapter: MyAdapter
)

File.write!("test/regressions/seed_123_test.exs", test_code)

      


      
        Summary


  
    Functions
  


    
      
        generate(report, opts \\ [])

      


        Generates an ExUnit test module from a failure report.



    





      


      
        Functions


        


    

  
    
      
    
    
      generate(report, opts \\ [])



        
          
        

    

  


  

      

          @spec generate(
  PropertyDamage.FailureReport.t(),
  keyword()
) :: String.t()


      


Generates an ExUnit test module from a failure report.
Options
	:module_name - Module name for the test (optional, auto-generated)
	:model - Model module to use (falls back to report.model)
	:adapter - Adapter module to use (falls back to report.adapter)
	:adapter_config - Adapter configuration map (optional)
	:test_name - Custom test name (optional)
	:expect_fixed - If true, expect the test to pass (default: false)


  


        

      


  

    
PropertyDamage.Export.HTTPSpec 
    



      
Describes an HTTP call for export purposes.
This struct is used to map PropertyDamage commands to their HTTP representations,
enabling the export of failure reports to standalone scripts (curl, Python, Elixir)
that can reproduce the failure without the PropertyDamage framework.
Usage
Adapters can optionally implement http_spec/2 to provide HTTP specifications:
def http_spec(%CreateAccount{currency: currency}, _context) do
  %HTTPSpec{
    method: :post,
    path: "/api/accounts",
    body: %{currency: currency}
  }
end

def http_spec(%CreditAccount{account_ref: id, amount: amount}, _context) do
  %HTTPSpec{
    method: :post,
    path: "/api/accounts/:account_id/credit",
    path_params: %{account_id: id},
    body: %{amount: amount}
  }
end
Path Parameters
Use :param_name syntax in paths, with corresponding keys in path_params:
%HTTPSpec{
  path: "/api/accounts/:account_id/transactions/:tx_id",
  path_params: %{account_id: "acc_123", tx_id: "tx_456"}
}
This renders as: /api/accounts/acc_123/transactions/tx_456

      


      
        Summary


  
    Types
  


    
      
        method()

      


    


    
      
        t()

      


    





  
    Functions
  


    
      
        build_url(spec, base_url)

      


        Builds the full URL with resolved path and query parameters.



    


    
      
        has_body?(http_spec)

      


        Checks if the spec has a request body.



    


    
      
        method_string(http_spec)

      


        Returns the HTTP method as an uppercase string.



    


    
      
        new(opts)

      


        Creates a new HTTPSpec struct.



    


    
      
        resolve_path(http_spec)

      


        Resolves path parameters in the path string.



    





      


      
        Types


        


  
    
      
    
    
      method()



        
          
        

    

  


  

      

          @type method() :: :get | :post | :put | :patch | :delete | :head | :options


      



  



  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %PropertyDamage.Export.HTTPSpec{
  body: map() | nil,
  headers: [{String.t(), String.t()}],
  method: method(),
  path: String.t(),
  path_params: map(),
  query_params: map()
}


      



  


        

      

      
        Functions


        


  
    
      
    
    
      build_url(spec, base_url)



        
          
        

    

  


  

      

          @spec build_url(t(), String.t()) :: String.t()


      


Builds the full URL with resolved path and query parameters.
Examples
iex> spec = %HTTPSpec{path: "/accounts", query_params: %{page: 1, limit: 10}}
iex> HTTPSpec.build_url(spec, "http://localhost:4000")
"http://localhost:4000/accounts?limit=10&page=1"

  



  
    
      
    
    
      has_body?(http_spec)



        
          
        

    

  


  

      

          @spec has_body?(t()) :: boolean()


      


Checks if the spec has a request body.

  



  
    
      
    
    
      method_string(http_spec)



        
          
        

    

  


  

      

          @spec method_string(t()) :: String.t()


      


Returns the HTTP method as an uppercase string.

  



  
    
      
    
    
      new(opts)



        
          
        

    

  


  

      

          @spec new(keyword()) :: t()


      


Creates a new HTTPSpec struct.
Options
	:method - HTTP method (required)
	:path - URL path with optional :param placeholders (required)
	:body - Request body as a map (optional)
	:headers - Additional headers as keyword list or list of tuples (optional)
	:path_params - Map of path parameter values (optional)
	:query_params - Map of query string parameters (optional)


  



  
    
      
    
    
      resolve_path(http_spec)



        
          
        

    

  


  

      

          @spec resolve_path(t()) :: String.t()


      


Resolves path parameters in the path string.
Examples
iex> spec = %HTTPSpec{path: "/accounts/:id", path_params: %{id: "123"}}
iex> HTTPSpec.resolve_path(spec)
"/accounts/123"

iex> spec = %HTTPSpec{path: "/accounts/:id/tx/:tx_id", path_params: %{id: "a", tx_id: "b"}}
iex> HTTPSpec.resolve_path(spec)
"/accounts/a/tx/b"

  


        

      


  

    
PropertyDamage.Export.LiveBook 
    



      
Generates LiveBook notebooks for interactive failure exploration.
The generated notebooks:
	Use Req for HTTP calls
	Track state alongside execution
	Allow step-by-step execution
	Include an exploration section for "what-if" scenarios

Usage
notebook = PropertyDamage.Export.LiveBook.generate(failure,
  base_url: "http://localhost:4000",
  adapter: MyHTTPAdapter
)

File.write!("failure_investigation.livemd", notebook)

      


      
        Summary


  
    Functions
  


    
      
        generate(report, opts \\ [])

      


        Generates a LiveBook notebook from a failure report.



    





      


      
        Functions


        


    

  
    
      
    
    
      generate(report, opts \\ [])



        
          
        

    

  


  

      

          @spec generate(
  PropertyDamage.FailureReport.t(),
  keyword()
) :: String.t()


      


Generates a LiveBook notebook from a failure report.
Options
	:base_url - Base URL for HTTP calls (required)
	:adapter - Adapter module for HTTPSpec (optional)
	:include_exploration - Include exploration section (default: true)
	:include_state_tracking - Track model state (default: true)
	:title - Custom notebook title (optional)


  


        

      


  

    
PropertyDamage.Export.Script 
    



      
Script generation dispatcher.
Generates standalone reproduction scripts in multiple languages.
Scripts can be run without PropertyDamage installed.
Supported Languages
	:elixir - Elixir script with Req HTTP client
	:curl - Bash script with curl commands
	:python - Python script with requests library

Usage
script = PropertyDamage.Export.Script.generate(failure, :curl,
  base_url: "http://localhost:4000",
  adapter: MyHTTPAdapter
)

File.write!("reproduce.sh", script)

      


      
        Summary


  
    Types
  


    
      
        language()

      


    





  
    Functions
  


    
      
        extension(atom)

      


        Returns the file extension for a script language.



    


    
      
        generate(report, language, opts \\ [])

      


        Generates a standalone script from a failure report.



    


    
      
        languages()

      


        Returns all supported script languages.



    





      


      
        Types


        


  
    
      
    
    
      language()



        
          
        

    

  


  

      

          @type language() :: :elixir | :curl | :python


      



  


        

      

      
        Functions


        


  
    
      
    
    
      extension(atom)



        
          
        

    

  


  

      

          @spec extension(language()) :: String.t()


      


Returns the file extension for a script language.

  



    

  
    
      
    
    
      generate(report, language, opts \\ [])



        
          
        

    

  


  

      

          @spec generate(PropertyDamage.FailureReport.t(), language(), keyword()) :: String.t()


      


Generates a standalone script from a failure report.
Options
	:base_url - Base URL for HTTP calls (required)
	:adapter - Adapter module for HTTPSpec (optional)
	:env_var - Environment variable name for base URL (default: "BASE_URL")
	:verbose - Include extra comments (default: true)


  



  
    
      
    
    
      languages()



        
          
        

    

  


  

      

          @spec languages() :: [language()]


      


Returns all supported script languages.

  


        

      


  

    
PropertyDamage.Export.Script.Curl 
    



      
Generates Bash scripts with curl commands for failure reproduction.
The generated scripts:
	Use curl for HTTP requests
	Use jq for JSON parsing
	Support environment variable for base URL
	Track refs using shell variables


      


      
        Summary


  
    Functions
  


    
      
        generate(report, opts \\ [])

      


        Generates a Bash/curl script from a failure report.



    





      


      
        Functions


        


    

  
    
      
    
    
      generate(report, opts \\ [])



        
          
        

    

  


  

      

          @spec generate(
  PropertyDamage.FailureReport.t(),
  keyword()
) :: String.t()


      


Generates a Bash/curl script from a failure report.
Options
	:base_url - Base URL for HTTP calls (required)
	:adapter - Adapter module for HTTPSpec (optional)
	:env_var - Environment variable name (default: "BASE_URL")
	:verbose - Include extra comments (default: true)


  


        

      


  

    
PropertyDamage.Export.Script.Elixir 
    



      
Generates Elixir scripts with Req for failure reproduction.
The generated scripts:
	Use Mix.install for dependencies (Req, Jason)
	Support environment variable for base URL
	Track refs using a map
	Are self-contained and runnable with elixir script.exs


      


      
        Summary


  
    Functions
  


    
      
        generate(report, opts \\ [])

      


        Generates an Elixir script from a failure report.



    





      


      
        Functions


        


    

  
    
      
    
    
      generate(report, opts \\ [])



        
          
        

    

  


  

      

          @spec generate(
  PropertyDamage.FailureReport.t(),
  keyword()
) :: String.t()


      


Generates an Elixir script from a failure report.
Options
	:base_url - Base URL for HTTP calls (required)
	:adapter - Adapter module for HTTPSpec (optional)
	:env_var - Environment variable name (default: "BASE_URL")
	:verbose - Include extra comments (default: true)


  


        

      


  

    
PropertyDamage.Export.Script.Python 
    



      
Generates Python scripts with requests for failure reproduction.
The generated scripts:
	Use the requests library for HTTP calls
	Support environment variable for base URL
	Track refs using a dictionary
	Are self-contained and runnable with python script.py


      


      
        Summary


  
    Functions
  


    
      
        generate(report, opts \\ [])

      


        Generates a Python script from a failure report.



    





      


      
        Functions


        


    

  
    
      
    
    
      generate(report, opts \\ [])



        
          
        

    

  


  

      

          @spec generate(
  PropertyDamage.FailureReport.t(),
  keyword()
) :: String.t()


      


Generates a Python script from a failure report.
Options
	:base_url - Base URL for HTTP calls (required)
	:adapter - Adapter module for HTTPSpec (optional)
	:env_var - Environment variable name (default: "BASE_URL")
	:verbose - Include extra comments (default: true)


  


        

      


  

    
PropertyDamage.FailureIntelligence.Fingerprint 
    



      
Extracts comparable features from failures for similarity analysis.
A fingerprint captures the essential characteristics of a failure that can be
used to compare it with other failures. This enables pattern detection and
clustering of similar failures.

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





  
    Functions
  


    
      
        from_failure_report(report)

      


        Extracts a fingerprint from a FailureReport.



    


    
      
        from_raw_failure(failure)

      


        Extracts a fingerprint from a raw failure result (not yet a FailureReport).



    


    
      
        hash(fp)

      


        Returns a hash of the fingerprint for quick comparison.



    


    
      
        short_hash(fp)

      


        Returns a short hash for display purposes.



    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %PropertyDamage.FailureIntelligence.Fingerprint{
  check_name: atom() | nil,
  command_shape: map(),
  command_type: atom() | nil,
  error_category: atom(),
  error_pattern: String.t() | nil,
  event_count: non_neg_integer(),
  event_types: [atom()],
  failure_type: atom(),
  sequence_length: non_neg_integer(),
  sequence_shape: [atom()],
  state_keys: [atom()]
}


      



  


        

      

      
        Functions


        


  
    
      
    
    
      from_failure_report(report)



        
          
        

    

  


  

      

          @spec from_failure_report(PropertyDamage.FailureReport.t()) :: t()


      


Extracts a fingerprint from a FailureReport.
The fingerprint captures structural and semantic features that can be
compared across different failures.

  



  
    
      
    
    
      from_raw_failure(failure)



        
          
        

    

  


  

      

          @spec from_raw_failure(map()) :: t()


      


Extracts a fingerprint from a raw failure result (not yet a FailureReport).

  



  
    
      
    
    
      hash(fp)



        
          
        

    

  


  

      

          @spec hash(t()) :: binary()


      


Returns a hash of the fingerprint for quick comparison.
Two fingerprints with the same hash are likely (but not guaranteed) to be similar.

  



  
    
      
    
    
      short_hash(fp)



        
          
        

    

  


  

      

          @spec short_hash(t()) :: String.t()


      


Returns a short hash for display purposes.

  


        

      


  

    
PropertyDamage.FailureIntelligence.Patterns 
    



      
Pattern detection and clustering for failures.
Identifies groups of similar failures and extracts common patterns
that can help understand systemic issues.

      


      
        Summary


  
    Types
  


    
      
        analysis()

      


    


    
      
        cluster()

      


    


    
      
        pattern()

      


    





  
    Functions
  


    
      
        analyze(failures, opts \\ [])

      


        Analyzes a set of failures to identify patterns.



    


    
      
        cluster_failures(failures, opts \\ [])

      


        Clusters failures by similarity.



    


    
      
        cluster_fingerprints(fingerprints, threshold \\ 0.7)

      


        Clusters fingerprints by similarity.



    


    
      
        extract_common_traits(fingerprints)

      


        Extracts common traits from a cluster of fingerprints.



    


    
      
        find_best_match(failure, clusters)

      


        Finds the best matching cluster for a failure.



    


    
      
        match_pattern(failure, clusters, opts \\ [])

      


        Detects if a new failure matches an existing pattern.



    





      


      
        Types


        


  
    
      
    
    
      analysis()



        
          
        

    

  


  

      

          @type analysis() :: %{
  clusters: [cluster()],
  singleton_count: non_neg_integer(),
  total_failures: non_neg_integer(),
  most_common_pattern: pattern() | nil,
  pattern_summary: String.t()
}


      



  



  
    
      
    
    
      cluster()



        
          
        

    

  


  

      

          @type cluster() :: %{
  id: String.t(),
  fingerprints: [PropertyDamage.FailureIntelligence.Fingerprint.t()],
  representative: PropertyDamage.FailureIntelligence.Fingerprint.t(),
  size: non_neg_integer(),
  pattern: pattern()
}


      



  



  
    
      
    
    
      pattern()



        
          
        

    

  


  

      

          @type pattern() :: %{
  failure_type: atom(),
  check_name: atom() | nil,
  command_types: [atom()],
  event_types: [atom()],
  error_category: atom(),
  common_fields: [atom()],
  description: String.t()
}


      



  


        

      

      
        Functions


        


    

  
    
      
    
    
      analyze(failures, opts \\ [])



        
          
        

    

  


  

      

          @spec analyze(
  [PropertyDamage.FailureReport.t()],
  keyword()
) :: analysis()


      


Analyzes a set of failures to identify patterns.
Returns clustering information and pattern summaries.

  



    

  
    
      
    
    
      cluster_failures(failures, opts \\ [])



        
          
        

    

  


  

      

          @spec cluster_failures(
  [PropertyDamage.FailureReport.t()],
  keyword()
) :: [cluster()]


      


Clusters failures by similarity.
Uses a simple agglomerative clustering approach with the given threshold.

  



    

  
    
      
    
    
      cluster_fingerprints(fingerprints, threshold \\ 0.7)



        
          
        

    

  


  

      

          @spec cluster_fingerprints(
  [PropertyDamage.FailureIntelligence.Fingerprint.t()],
  float()
) :: [cluster()]


      


Clusters fingerprints by similarity.

  



  
    
      
    
    
      extract_common_traits(fingerprints)



        
          
        

    

  


  

      

          @spec extract_common_traits([PropertyDamage.FailureIntelligence.Fingerprint.t()]) ::
  map()


      


Extracts common traits from a cluster of fingerprints.

  



  
    
      
    
    
      find_best_match(failure, clusters)



        
          
        

    

  


  

      

          @spec find_best_match(PropertyDamage.FailureReport.t(), [cluster()]) ::
  {cluster(), float()} | nil


      


Finds the best matching cluster for a failure.
Returns {cluster, score} or nil if no clusters are provided.

  



    

  
    
      
    
    
      match_pattern(failure, clusters, opts \\ [])



        
          
        

    

  


  

      

          @spec match_pattern(PropertyDamage.FailureReport.t(), [cluster()], keyword()) ::
  cluster() | nil


      


Detects if a new failure matches an existing pattern.
Returns the matching cluster if found, nil otherwise.

  


        

      


  

    
PropertyDamage.FailureIntelligence.Similarity 
    



      
Computes similarity scores between failure fingerprints.
Uses multiple metrics to determine how similar two failures are,
enabling pattern detection and clustering.

      


      
        Summary


  
    Types
  


    
      
        comparison()

      


    


    
      
        score()

      


    





  
    Functions
  


    
      
        compare(fp1, fp2)

      


        Performs a detailed comparison between two fingerprints.



    


    
      
        find_most_similar(target, fingerprints)

      


        Finds the most similar fingerprint from a list.



    


    
      
        find_similar(target, fingerprints, opts \\ [])

      


        Finds all fingerprints similar to the target.



    


    
      
        score(fp1, fp2)

      


        Computes the similarity score between two fingerprints.



    


    
      
        similar?(fp1, fp2)

      


        Checks if two fingerprints are similar based on the threshold.



    


    
      
        similar?(fp1, fp2, threshold)

      


        Checks if two fingerprints are similar using a custom threshold.



    


    
      
        similarity_matrix(fingerprints)

      


        Computes a similarity matrix for a list of fingerprints.



    





      


      
        Types


        


  
    
      
    
    
      comparison()



        
          
        

    

  


  

      

          @type comparison() :: %{
  score: score(),
  breakdown: %{
    failure_type: score(),
    check_name: score(),
    command_type: score(),
    command_shape: score(),
    event_types: score(),
    sequence_shape: score(),
    error_category: score(),
    error_pattern: score()
  },
  is_similar: boolean()
}


      



  



  
    
      
    
    
      score()



        
          
        

    

  


  

      

          @type score() :: float()


      



  


        

      

      
        Functions


        


  
    
      
    
    
      compare(fp1, fp2)



        
          
        

    

  


  

      

          @spec compare(
  PropertyDamage.FailureIntelligence.Fingerprint.t(),
  PropertyDamage.FailureIntelligence.Fingerprint.t()
) :: comparison()


      


Performs a detailed comparison between two fingerprints.
Returns the overall score, per-component breakdown, and similarity determination.

  



  
    
      
    
    
      find_most_similar(target, fingerprints)



        
          
        

    

  


  

      

          @spec find_most_similar(PropertyDamage.FailureIntelligence.Fingerprint.t(), [
  PropertyDamage.FailureIntelligence.Fingerprint.t()
]) :: {PropertyDamage.FailureIntelligence.Fingerprint.t(), score()} | nil


      


Finds the most similar fingerprint from a list.
Returns {fingerprint, score} or nil if no fingerprints are provided.

  



    

  
    
      
    
    
      find_similar(target, fingerprints, opts \\ [])



        
          
        

    

  


  

      

          @spec find_similar(
  PropertyDamage.FailureIntelligence.Fingerprint.t(),
  [PropertyDamage.FailureIntelligence.Fingerprint.t()],
  keyword()
) :: [{PropertyDamage.FailureIntelligence.Fingerprint.t(), score()}]


      


Finds all fingerprints similar to the target.
Returns a list of {fingerprint, score} pairs, sorted by score descending.

  



  
    
      
    
    
      score(fp1, fp2)



        
          
        

    

  


  

      

          @spec score(
  PropertyDamage.FailureIntelligence.Fingerprint.t(),
  PropertyDamage.FailureIntelligence.Fingerprint.t()
) :: score()


      


Computes the similarity score between two fingerprints.
Returns a score between 0.0 (completely different) and 1.0 (identical).

  



  
    
      
    
    
      similar?(fp1, fp2)



        
          
        

    

  


  

      

          @spec similar?(
  PropertyDamage.FailureIntelligence.Fingerprint.t(),
  PropertyDamage.FailureIntelligence.Fingerprint.t()
) :: boolean()


      


Checks if two fingerprints are similar based on the threshold.

  



  
    
      
    
    
      similar?(fp1, fp2, threshold)



        
          
        

    

  


  

      

          @spec similar?(
  PropertyDamage.FailureIntelligence.Fingerprint.t(),
  PropertyDamage.FailureIntelligence.Fingerprint.t(),
  float()
) :: boolean()


      


Checks if two fingerprints are similar using a custom threshold.

  



  
    
      
    
    
      similarity_matrix(fingerprints)



        
          
        

    

  


  

      

          @spec similarity_matrix([PropertyDamage.FailureIntelligence.Fingerprint.t()]) :: %{
  required({non_neg_integer(), non_neg_integer()}) => score()
}


      


Computes a similarity matrix for a list of fingerprints.
Returns a map where keys are {index1, index2} and values are scores.
Only computes upper triangle (i < j) since similarity is symmetric.

  


        

      


  

    
PropertyDamage.FailureIntelligence.Verification 
    



      
Fix verification mode for confirming that fixes are robust.
Runs the original failing seed and variations to ensure:
	The original failure no longer reproduces
	Similar command sequences also pass
	The fix is robust across different conditions


      


      
        Summary


  
    Types
  


    
      
        options()

      


    


    
      
        verification_result()

      


    





  
    Functions
  


    
      
        format_result(result)

      


        Generates a verification report for display.



    


    
      
        still_fails?(seed, model, adapter, adapter_config \\ %{})

      


        Quick check if a single seed still fails.



    


    
      
        verify_cluster(cluster, model, opts)

      


        Runs verification against a cluster of similar failures.



    


    
      
        verify_fix(failure, model, opts \\ [])

      


        Verifies that a fix is robust by testing the original seed and variations.



    


    
      
        verify_fixes(failures, model, opts \\ [])

      


        Verifies multiple fixes at once, useful for batch verification.



    





      


      
        Types


        


  
    
      
    
    
      options()



        
          
        

    

  


  

      

          @type options() :: [
  adapter: module(),
  adapter_config: map(),
  max_variations: non_neg_integer(),
  variation_range: integer(),
  include_similar: boolean(),
  similar_threshold: float()
]


      



  



  
    
      
    
    
      verification_result()



        
          
        

    

  


  

      

          @type verification_result() :: %{
  status: :verified | :still_failing | :partially_fixed | :flaky,
  original_seed: integer(),
  original_passes: boolean(),
  variations_run: non_neg_integer(),
  variations_passed: non_neg_integer(),
  variations_failed: non_neg_integer(),
  failed_variations: [integer()],
  similar_failures: [PropertyDamage.FailureReport.t()],
  confidence: float(),
  summary: String.t()
}


      



  


        

      

      
        Functions


        


  
    
      
    
    
      format_result(result)



        
          
        

    

  


  

      

          @spec format_result(verification_result()) :: String.t()


      


Generates a verification report for display.

  



    

  
    
      
    
    
      still_fails?(seed, model, adapter, adapter_config \\ %{})



        
          
        

    

  


  

      

          @spec still_fails?(integer(), module(), module(), map()) :: boolean()


      


Quick check if a single seed still fails.

  



  
    
      
    
    
      verify_cluster(cluster, model, opts)



        
          
        

    

  


  

      

          @spec verify_cluster(
  PropertyDamage.FailureIntelligence.Patterns.cluster(),
  module(),
  options()
) :: %{
  cluster_id: String.t(),
  total: non_neg_integer(),
  fixed: non_neg_integer(),
  remaining: non_neg_integer(),
  status: :fully_fixed | :partially_fixed | :not_fixed,
  remaining_failures: [PropertyDamage.FailureIntelligence.Fingerprint.t()]
}


      


Runs verification against a cluster of similar failures.
If the fix addresses the root cause, all similar failures should pass.

  



    

  
    
      
    
    
      verify_fix(failure, model, opts \\ [])



        
          
        

    

  


  

      

          @spec verify_fix(PropertyDamage.FailureReport.t(), module(), options()) ::
  verification_result()


      


Verifies that a fix is robust by testing the original seed and variations.
Options
	:adapter - The adapter module to use (required)
	:adapter_config - Configuration for the adapter
	:max_variations - Maximum number of seed variations to test (default: 10)
	:variation_range - Range for generating seed variations (default: 1000)
	:include_similar - Whether to test similar failure patterns (default: true)
	:similar_threshold - Threshold for similarity matching (default: 0.80)


  



    

  
    
      
    
    
      verify_fixes(failures, model, opts \\ [])



        
          
        

    

  


  

      

          @spec verify_fixes([PropertyDamage.FailureReport.t()], module(), options()) :: [
  {PropertyDamage.FailureReport.t(), verification_result()}
]


      


Verifies multiple fixes at once, useful for batch verification.

  


        

      


  

    
PropertyDamage.FailureReport 
    



      
Rich failure report with comprehensive diagnostic information.
A FailureReport captures everything needed to understand, debug, and
reproduce a test failure:
	Location: Which run, command index, and seed
	Sequences: Original and shrunk command sequences
	State: Projection states before and at failure
	Events: Complete event trail leading to failure
	Reason: Structured failure reason with context

Creating Reports
Reports are created automatically by PropertyDamage when a test fails.
You can also create them manually for testing:
report = FailureReport.new(
  seed: 12345,
  run_number: 3,
  original_sequence: sequence,
  shrunk_sequence: shrunk,
  failed_at_index: 5,
  failure_reason: {:check_failed, :NonNegativeBalance, "..."}
)
Formatting Reports
Use FailureReport.Formatter to render reports in different formats:
# Terminal output (default)
FailureReport.Formatter.format(report, :terminal)

# Markdown for documentation
FailureReport.Formatter.format(report, :markdown)

# JSON for CI integration
FailureReport.Formatter.format(report, :json)
Failure Reasons
The failure_reason field contains structured data about what failed:
	{:check_failed, check_name, message} - Invariant violation
	{:idempotency_violation, %Stutter.Violation{}} - Idempotency failure
	{:adapter_error, reason} - Adapter execution failed
	{:linearization_failed, message} - No valid linearization (parallel)
	{:branch_failure, branch_id, reason} - Branch execution failed
	{:ref_resolution_error, reason} - Symbolic ref couldn't be resolved


      


      
        Summary


  
    Types
  


    
      
        failure_type()

      


    


    
      
        t()

      


    





  
    Functions
  


    
      
        failure_type_summary(failure_report)

      


        Get a summary string for the failure type.



    


    
      
        from_legacy(legacy_report, opts \\ [])

      


        Convert from the legacy failure_report map format.



    


    
      
        idempotency_failure?(arg1)

      


        Check if this is an idempotency failure.



    


    
      
        new(opts)

      


        Create a new failure report from execution results.



    


    
      
        parallel_failure?(failure_report)

      


        Check if this is a parallel execution failure.



    


    
      
        reproduction_command(failure_report)

      


        Get the reproduction command as a string.



    


    
      
        to_legacy(report)

      


        Convert to the legacy failure_report map format.



    





      


      
        Types


        


  
    
      
    
    
      failure_type()



        
          
        

    

  


  

      

          @type failure_type() ::
  :check_failed
  | :idempotency_violation
  | :adapter_error
  | :linearization_failed
  | :branch_failure
  | :ref_resolution_error
  | :unknown


      



  



  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %PropertyDamage.FailureReport{
  adapter: module() | nil,
  branch_events:
    %{required(non_neg_integer()) => [PropertyDamage.EventLog.Entry.t()]} | nil,
  branch_id: non_neg_integer() | nil,
  check_name: atom() | nil,
  command_at_failure: struct() | nil,
  event_log: [PropertyDamage.EventLog.Entry.t()],
  events_at_failure: [struct()],
  failed_at_index: non_neg_integer(),
  failure_message: String.t() | nil,
  failure_reason: term(),
  failure_type: failure_type(),
  idempotency_violation: map() | nil,
  linearization: [struct()] | nil,
  model: module() | nil,
  original_sequence: PropertyDamage.Sequence.t(),
  refs_at_failure: map() | nil,
  run_number: non_neg_integer(),
  seed: integer(),
  shrink_iterations: non_neg_integer(),
  shrink_time_ms: non_neg_integer(),
  shrunk_sequence: PropertyDamage.Sequence.t(),
  state_at_failure: %{required(atom()) => any()} | nil,
  state_before_failure: %{required(atom()) => any()} | nil,
  timestamp: DateTime.t()
}


      



  


        

      

      
        Functions


        


  
    
      
    
    
      failure_type_summary(failure_report)



        
          
        

    

  


  

      

          @spec failure_type_summary(t()) :: String.t()


      


Get a summary string for the failure type.

  



    

  
    
      
    
    
      from_legacy(legacy_report, opts \\ [])



        
          
        

    

  


  

      

          @spec from_legacy(
  map(),
  keyword()
) :: t()


      


Convert from the legacy failure_report map format.
This allows gradual migration from the old format.

  



  
    
      
    
    
      idempotency_failure?(arg1)



        
          
        

    

  


  

      

          @spec idempotency_failure?(t()) :: boolean()


      


Check if this is an idempotency failure.

  



  
    
      
    
    
      new(opts)



        
          
        

    

  


  

      

          @spec new(keyword()) :: t()


      


Create a new failure report from execution results.
Options
Required:
	:seed - Random seed for reproduction
	:run_number - Which test run failed
	:original_sequence - The sequence before shrinking
	:failed_at_index - Command index where failure occurred
	:failure_reason - Structured failure reason

Optional:
	:shrunk_sequence - Minimized sequence (defaults to original)
	:event_log - Complete event log
	:projections - Projection states at failure
	:projections_before - Projection states before failing command
	:refs - Ref resolution map at failure
	:shrink_iterations - Number of shrink attempts
	:shrink_time_ms - Time spent shrinking
	:model - Model module
	:adapter - Adapter module
	:linearization - Selected linearization (parallel)


  



  
    
      
    
    
      parallel_failure?(failure_report)



        
          
        

    

  


  

      

          @spec parallel_failure?(t()) :: boolean()


      


Check if this is a parallel execution failure.

  



  
    
      
    
    
      reproduction_command(failure_report)



        
          
        

    

  


  

      

          @spec reproduction_command(t()) :: String.t()


      


Get the reproduction command as a string.

  



  
    
      
    
    
      to_legacy(report)



        
          
        

    

  


  

      

          @spec to_legacy(t()) :: map()


      


Convert to the legacy failure_report map format.
For backwards compatibility with existing code.

  


        

      


  

    
PropertyDamage.FailureReport.Formatter 
    



      
Format failure reports for different output targets.
Supports multiple output formats:
	:terminal - ANSI-colored output for terminal display
	:markdown - GitHub-flavored markdown for documentation
	:json - Structured JSON for CI integration
	:compact - Single-line summary for logs

Usage
# Terminal output (default)
output = Formatter.format(report)
IO.puts(output)

# Markdown for GitHub issues
markdown = Formatter.format(report, :markdown)
File.write!("failure_report.md", markdown)

# JSON for CI
json = Formatter.format(report, :json)
File.write!("failure_report.json", json)
Customization
You can customize formatting with options:
Formatter.format(report, :terminal,
  show_event_log: true,
  show_state: true,
  max_events: 20,
  color: true
)

      


      
        Summary


  
    Types
  


    
      
        format()

      


    





  
    Functions
  


    
      
        format(report, format \\ :terminal, opts \\ [])

      


        Format a failure report.



    





      


      
        Types


        


  
    
      
    
    
      format()



        
          
        

    

  


  

      

          @type format() :: :terminal | :markdown | :json | :compact


      



  


        

      

      
        Functions


        


    

    

  
    
      
    
    
      format(report, format \\ :terminal, opts \\ [])



        
          
        

    

  


  

      

          @spec format(PropertyDamage.FailureReport.t(), format(), keyword()) :: String.t()


      


Format a failure report.
Options
	:show_event_log - Include full event log (default: true)
	:show_state - Include projection states (default: true)
	:max_events - Maximum events to show (default: 50)
	:max_commands - Maximum commands to show in sequence (default: 20)
	:color - Use ANSI colors for terminal (default: true)
	:indent - Indentation for JSON (default: 2)


  


        

      


  

    
PropertyDamage.FailureReport.Timeline 
    



      
Timeline visualization for parallel execution failures.
Renders branching command sequences as ASCII timeline diagrams,
showing how commands executed across different branches.
Example Output
Timeline for Parallel Execution
════════════════════════════════════════════════════

PREFIX (sequential)
├─[0] CreateAccount {account_ref: #Ref<...>}
└─[1] CreditAccount {account_ref: #Ref<...>, amount: 1000}

BRANCHES (parallel)
┌─────────────────┬─────────────────┬─────────────────┐
│ Branch 0        │ Branch 1        │ Branch 2        │
├─────────────────┼─────────────────┼─────────────────┤
│ [2] CreateAuth  │ [2] DebitAcct   │ [2] CreateAuth  │
│ [3] Capture     │                 │ [3] Release     │
│ [4] Capture ►   │                 │                 │
└─────────────────┴─────────────────┴─────────────────┘

SUFFIX (sequential)
└─[5] GetAccount {account_ref: #Ref<...>}

► = Failure point
Usage
alias PropertyDamage.FailureReport.Timeline

# From a FailureReport
timeline = Timeline.format(report)
IO.puts(timeline)

# With options
timeline = Timeline.format(report, color: true, column_width: 25)

      


      
        Summary


  
    Functions
  


    
      
        format(report, opts \\ [])

      


        Format a timeline visualization for a failure report.



    


    
      
        format_event_timeline(report, opts \\ [])

      


        Format an event timeline showing commands and their resulting events.



    


    
      
        format_sequence(sequence, opts \\ [])

      


        Format a timeline directly from a sequence.



    





      


      
        Functions


        


    

  
    
      
    
    
      format(report, opts \\ [])



        
          
        

    

  


  

      

          @spec format(
  PropertyDamage.FailureReport.t(),
  keyword()
) :: String.t()


      


Format a timeline visualization for a failure report.
Options
	:color - Use ANSI colors (default: true)
	:column_width - Width of each branch column (default: 20)
	:show_events - Show events alongside commands (default: false)


  



    

  
    
      
    
    
      format_event_timeline(report, opts \\ [])



        
          
        

    

  


  

      

          @spec format_event_timeline(
  PropertyDamage.FailureReport.t(),
  keyword()
) :: String.t()


      


Format an event timeline showing commands and their resulting events.
This is useful for understanding the causal relationship between
commands and the events they produced.
Options
	:color - Use ANSI colors (default: true)
	:max_events_per_command - Max events to show per command (default: 5)


  



    

  
    
      
    
    
      format_sequence(sequence, opts \\ [])



        
          
        

    

  


  

      

          @spec format_sequence(
  PropertyDamage.Sequence.t(),
  keyword()
) :: String.t()


      


Format a timeline directly from a sequence.
Useful for visualizing sequences without a full failure report.

  


        

      


  

    
PropertyDamage.Forensics.EventMapping behaviour
    



      
Behaviour for mapping production events to test event structs.
Production events often have different field names, structures, or formats
than the event structs used in your tests. Implement this behaviour to
translate between them.
Example
defmodule MyEventMapping do
  @behaviour PropertyDamage.Forensics.EventMapping

  @impl true
  def map(%{"type" => "order.created", "payload" => p}) do
    {:ok, %OrderCreated{
      order_ref: p["order_id"],
      amount: p["total_cents"],
      currency: p["currency"]
    }}
  end

  def map(%{"type" => "payment.confirmed", "payload" => p}) do
    {:ok, %PaymentConfirmed{
      order_ref: p["order_id"],
      amount: p["amount"],
      provider_tx_id: p["stripe_charge_id"]
    }}
  end

  def map(%{"type" => type}) do
    {:skip, "Unknown event type: #{type}"}
  end
end
Return Values
	{:ok, event} - Successfully mapped to a test event struct
	:skip - Skip this event (don't include in analysis)
	{:skip, reason} - Skip with a reason (logged as warning)

Tips
	Handle unknown events gracefully - Production logs may contain events
your model doesn't care about. Return :skip for those.

	Validate required fields - If production data is missing fields your
test events require, either provide defaults or return an error.

	Handle format differences - Production timestamps might be strings,
amounts might be floats instead of integers, etc.



      


      
        Summary


  
    Callbacks
  


    
      
        map(event)

      


        Map a production event to a test event struct.



    





      


      
        Callbacks


        


  
    
      
    
    
      map(event)



        
          
        

    

  


  

      

          @callback map(event :: map() | struct()) :: {:ok, struct()} | :skip | {:skip, String.t()}


      


Map a production event to a test event struct.
Parameters
	event - The production event (typically a map with string keys)

Returns
	{:ok, struct} - Successfully mapped event
	:skip - Event should be skipped
	{:skip, reason} - Event skipped with reason


  


        

      


  

    
PropertyDamage.Generator 
    



      
Generates command sequences for stateful property-based testing.
This module produces PropertyDamage.Sequence structs that can be either:
	Linear sequences: Commands executed sequentially
	Branching sequences: Commands with parallel execution branches

Linear Sequence Generation
Generator.generate_sequence(MyModel, max_commands: 20)
# => StreamData producing %Sequence{prefix: [...], branches: nil}
Branching Sequence Generation
Generator.generate_sequence(MyModel,
  max_commands: 20,
  branching: [
    branch_probability: 0.3,  # 30% chance to create branch point
    max_branches: 3,          # Up to 3 parallel branches
    max_branch_length: 5      # Each branch max 5 commands
  ]
)
# => StreamData producing %Sequence{prefix: [...], branches: [[...], [...]], suffix: [...]}
Ref Dependency Rules
When generating branching sequences, the generator enforces ref isolation:
	Refs created in prefix can be used in any branch
	Refs created in one branch CANNOT be used in another branch
	Refs created in branches CAN be used in suffix

Auto-Lifting
Raw values passed as overrides are automatically wrapped in StreamData.constant/1:
merge_overrides(base, %{currency: "USD"})
merge_overrides(base, %{currency: StreamData.member_of(["USD", "EUR"])})

      


      
        Summary


  
    Types
  


    
      
        command()

      


    


    
      
        state()

      


    


    
      
        weighted_command()

      


    





  
    Functions
  


    
      
        generate_sequence(model, opts \\ [])

      


        Generate a command sequence for a given model.



    


    
      
        merge_overrides(base, overrides)

      


        Merge overrides into base generators, auto-lifting raw values.



    


    
      
        stream_data?(arg1)

      


        Check if a value is a StreamData generator.



    





      


      
        Types


        


  
    
      
    
    
      command()



        
          
        

    

  


  

      

          @type command() :: struct()


      



  



  
    
      
    
    
      state()



        
          
        

    

  


  

      

          @type state() :: map()


      



  



  
    
      
    
    
      weighted_command()



        
          
        

    

  


  

      

          @type weighted_command() :: {pos_integer(), module()}


      



  


        

      

      
        Functions


        


    

  
    
      
    
    
      generate_sequence(model, opts \\ [])



        
          
        

    

  


  

      

          @spec generate_sequence(
  module(),
  keyword()
) :: StreamData.t()


      


Generate a command sequence for a given model.
Parameters
	model - Model module defining commands and state projection
	opts - Options:	:max_commands - Maximum total commands per sequence (default: 50)
	:seed - RNG seed for reproducibility
	:branching - Keyword list for branching configuration (see below)



Branching Options
Pass branching: [...] to generate branching sequences:
	:branch_probability - Probability of creating a branch point (default: 0.2)
	:max_branches - Maximum number of parallel branches (default: 3)
	:max_branch_length - Maximum commands per branch (default: 5)
	:min_prefix_length - Minimum commands before branching (default: 3)

If :branching is not provided, generates linear sequences.
Returns
A StreamData generator that produces PropertyDamage.Sequence structs.
Examples
# Linear sequence
Generator.generate_sequence(MyModel, max_commands: 20)

# Branching sequence with 30% branch probability
Generator.generate_sequence(MyModel,
  max_commands: 30,
  branching: [branch_probability: 0.3, max_branches: 2]
)

  



  
    
      
    
    
      merge_overrides(base, overrides)



        
          
        

    

  


  

      

          @spec merge_overrides(map(), map()) :: map()


      


Merge overrides into base generators, auto-lifting raw values.
Raw values are automatically wrapped in StreamData.constant/1.
StreamData generators are passed through unchanged.
Parameters
	base - Map of field names to StreamData generators
	overrides - Map of field names to values or generators to override

Returns
A map suitable for passing to StreamData.fixed_map/1.
Examples
iex> base = %{amount: StreamData.positive_integer(), currency: StreamData.constant("USD")}
iex> result = PropertyDamage.Generator.merge_overrides(base, %{currency: "EUR"})
iex> is_map(result)
true

  



  
    
      
    
    
      stream_data?(arg1)



        
          
        

    

  


  

      

          @spec stream_data?(any()) :: boolean()


      


Check if a value is a StreamData generator.
Examples
iex> PropertyDamage.Generator.stream_data?(StreamData.integer())
true

iex> PropertyDamage.Generator.stream_data?(42)
false

  


        

      


  

    
PropertyDamage.GuidedRunner 
    



      
Evolutionary algorithm runner for guided property-based testing.
The GuidedRunner uses a genetic algorithm approach to find command sequences
that reach interesting target states more quickly than random generation.
How It Works
	Initialize Population - Start with random seeds (or provided initial seeds)
	Evaluate Fitness - Run each seed, calculate fitness based on final state
	Select Best - Keep top performers based on fitness and target coverage
	Breed Next Generation - Mutate and crossover selected seeds
	Repeat - Continue for configured number of generations

Usage
result = PropertyDamage.GuidedRunner.run(
  model: MyModel,
  adapter: MyAdapter,
  generations: 10,
  population_size: 20,
  max_commands: 100
)

case result do
  {:ok, stats} ->
    IO.puts("Best fitness: #{stats.best_fitness}")
    IO.puts("Targets reached: #{inspect(stats.targets_reached)}")

  {:error, failure} ->
    IO.puts("Found bug with seed #{failure.seed}")
end
Configuration
	:generations - Number of evolutionary generations (default: 10)
	:population_size - Seeds per generation (default: 20)
	:elite_count - Top seeds to preserve unchanged (default: 2)
	:mutation_rate - Probability of seed mutation (default: 0.3)
	:crossover_rate - Probability of seed crossover (default: 0.5)
	:initial_seeds - Starting seeds (default: random)


      


      
        Summary


  
    Types
  


    
      
        result()

      


        Guided run result.



    


    
      
        stats()

      


        Result statistics from a guided run.



    





  
    Functions
  


    
      
        run(opts)

      


        Run guided generation with evolutionary algorithm.



    





      


      
        Types


        


  
    
      
    
    
      result()



        
          
        

    

  


  

      

          @type result() :: {:ok, stats()} | {:error, PropertyDamage.failure_report()}


      


Guided run result.

  



  
    
      
    
    
      stats()



        
          
        

    

  


  

      

          @type stats() :: %{
  generations_completed: non_neg_integer(),
  total_runs: non_neg_integer(),
  best_fitness: float(),
  best_seed: integer(),
  targets_reached: [atom()],
  all_targets: [atom()],
  fitness_history: [float()]
}


      


Result statistics from a guided run.

  


        

      

      
        Functions


        


  
    
      
    
    
      run(opts)



        
          
        

    

  


  

      

          @spec run(keyword()) :: result()


      


Run guided generation with evolutionary algorithm.
Required Options
	:model - Model module (must implement TargetedGeneration)
	:adapter - Adapter module

Optional Options
	:generations - Number of generations (default: 10)
	:population_size - Seeds per generation (default: 20)
	:elite_count - Top seeds preserved unchanged (default: 2)
	:mutation_rate - Mutation probability (default: 0.3)
	:max_commands - Commands per sequence (default: 50)
	:initial_seeds - Starting seed list (default: random)
	:verbose - Print progress (default: false)

Returns
	{:ok, stats} - All runs passed, returns best fitness and coverage
	{:error, failure} - A bug was found, returns failure details


  


        

      


  

    
PropertyDamage.IEx 
    



      
Interactive helpers for exploring and debugging PropertyDamage models in IEx.
These functions help you understand, test, and debug your models interactively.
Quick Start
iex> import PropertyDamage.IEx
iex> explain(MyModel)
iex> dry_run(MyModel, commands: 5)
iex> debug_command(%CreateUser{name: "test"}, MyAdapter)
Available Functions
	explain/1 - Show model structure (commands, projections, callbacks)
	dry_run/2 - Generate a command sequence without executing
	debug_command/3 - Execute a single command with detailed output
	inspect_state/2 - Show projection state after applying events
	check_preconditions/2 - See which commands are valid in a state


      


      
        Summary


  
    Functions
  


    
      
        check_preconditions(state, model)

      


        Check which commands have valid preconditions in a given state.



    


    
      
        debug_command(command, adapter, opts \\ [])

      


        Execute a single command against an adapter with detailed output.



    


    
      
        dry_run(model, opts \\ [])

      


        Generate a command sequence without executing it.



    


    
      
        explain(model)

      


        Display detailed information about a model.



    


    
      
        inspect_state(events, projection)

      


        Show the projection state after applying a list of events.



    





      


      
        Functions


        


  
    
      
    
    
      check_preconditions(state, model)



        
          
        

    

  


  

      

          @spec check_preconditions(map(), module()) :: :ok


      


Check which commands have valid preconditions in a given state.
Useful for debugging why certain commands aren't being generated.
Examples
iex> state = %{accounts: %{}}  # Empty state
iex> PropertyDamage.IEx.check_preconditions(state, MyModel)

PRECONDITION CHECK
─────────────────────────────────────────────────────────────────
  Command                    │ Precondition │ Reason
─────────────────────────────────────────────────────────────────
  CreateAccount              │ ✓ VALID      │ -
  Credit                     │ ✗ INVALID    │ No accounts exist
  Debit                      │ ✗ INVALID    │ No accounts exist
  GetBalance                 │ ✗ INVALID    │ No accounts exist

  



    

  
    
      
    
    
      debug_command(command, adapter, opts \\ [])



        
          
        

    

  


  

      

          @spec debug_command(struct(), module(), keyword()) :: :ok | {:error, term()}


      


Execute a single command against an adapter with detailed output.
Shows the command, request/response details, and resulting events.
Useful for testing individual commands before running full sequences.
Options
	:adapter_opts - Options passed to adapter.setup/1 (default: [])
	:refs - Map of ref atoms to resolved values (default: %{})

Examples
iex> PropertyDamage.IEx.debug_command(
...>   %CreateAccount{currency: "USD"},
...>   MyAdapter
...> )

═══════════════════════════════════════════════════════════════
                     COMMAND EXECUTION
═══════════════════════════════════════════════════════════════

COMMAND
─────────────────────────────────────────────────────────────────
CreateAccount
  currency: "USD"

EXECUTION
─────────────────────────────────────────────────────────────────
Status: OK
Time: 15ms

RESULT EVENT
─────────────────────────────────────────────────────────────────
AccountCreated
  account_id: "acc_abc123"
  currency: "USD"
  balance: 0

iex> PropertyDamage.IEx.debug_command(
...>   %Credit{account_ref: :ref0, amount: 500},
...>   MyAdapter,
...>   refs: %{ref0: "acc_abc123"}
...> )

  



    

  
    
      
    
    
      dry_run(model, opts \\ [])



        
          
        

    

  


  

      

          @spec dry_run(
  module(),
  keyword()
) :: :ok


      


Generate a command sequence without executing it.
Useful for seeing what commands would be generated given the model's
configuration.
Options
	:commands - Number of commands to generate (default: 10)
	:seed - Random seed for reproducibility
	:branching - Enable branching sequences (default: false)
	:verbose - Show detailed command fields (default: false)

Examples
iex> PropertyDamage.IEx.dry_run(MyModel, commands: 5)

Generated sequence (5 commands):
─────────────────────────────────────────────────────────────────
[0] CreateAccount{currency: "USD"}
[1] Credit{account_ref: :ref0, amount: 500}
[2] CreateAuthorization{account_ref: :ref0, amount: 200}
[3] Debit{account_ref: :ref0, amount: 100}
[4] GetBalance{account_ref: :ref0}

Refs created: [:ref0] → CreateAccount

Seed: 12345 (use this to reproduce)

iex> PropertyDamage.IEx.dry_run(MyModel, seed: 12345)
# Same sequence as above

  



  
    
      
    
    
      explain(model)



        
          
        

    

  


  

      

          @spec explain(module()) :: :ok


      


Display detailed information about a model.
Shows commands (with weights), projections, optional callbacks,
and helpful hints about the model's configuration.
Examples
iex> PropertyDamage.IEx.explain(ToyBankTest.Model)

═══════════════════════════════════════════════════════════════
                      ToyBankTest.Model
═══════════════════════════════════════════════════════════════

COMMANDS (6 total)
─────────────────────────────────────────────────────────────────
  Weight │ Command                    │ Role     │ Creates Ref
─────────────────────────────────────────────────────────────────
     5   │ CreateAccount              │ action   │ :account
     3   │ Credit                     │ action   │ -
     3   │ Debit                      │ action   │ -
     2   │ CreateAuthorization        │ action   │ :authorization
     2   │ CreateCapture              │ action   │ -
     1   │ CloseAccount               │ action   │ -
...

  



  
    
      
    
    
      inspect_state(events, projection)



        
          
        

    

  


  

      

          @spec inspect_state([struct()], module()) :: :ok


      


Show the projection state after applying a list of events.
Useful for understanding how events affect model state.
Examples
iex> events = [
...>   %AccountCreated{account_id: "acc_1", currency: "USD"},
...>   %Credited{account_id: "acc_1", amount: 500}
...> ]
iex> PropertyDamage.IEx.inspect_state(events, MyProjection)

STATE AFTER 2 EVENTS
─────────────────────────────────────────────────────────────────
%{
  accounts: %{
    "acc_1" => %{currency: "USD", balance: 500}
  }
}

  


        

      


  

    
PropertyDamage.LoadTest.Metrics 
    



      
Collects and aggregates load test metrics.
Uses ETS for lock-free, concurrent updates from multiple sessions.
Provides real-time throughput, latency percentiles, and error tracking.
What Gets Measured
Metrics are command-centric, not HTTP-centric:
	Request = one command execution (e.g., CreateAuthorization)
	Latency = wall-clock time for the entire command execution

This means:
	If CreateAuthorization internally does 1 POST + 15 polling GETs,
that counts as 1 request, not 16
	The latency includes the full polling duration, not just the initial call

Example for an async command with 3-second polling:
	POST /authorizations takes 50ms
	15 polling GETs take 3000ms total
	Reported: 1 request with ~3050ms latency

To measure actual HTTP throughput, use external monitoring (server metrics,
proxy logs) or add telemetry instrumentation inside your adapter.
Architecture
	Uses ETS tables for atomic counters and latency samples
	Reservoir sampling for memory-bounded percentile calculation
	Per-command breakdown for detailed analysis
	Time series history for graphing and trend analysis

Usage
{:ok, metrics} = Metrics.start_link()
Metrics.record_request(metrics, CreateAccount, 45, :ok)
Metrics.record_request(metrics, GetBalance, 12, :ok)
snapshot = Metrics.snapshot(metrics)

      


      
        Summary


  
    Types
  


    
      
        command_metrics()

      


    


    
      
        history_point()

      


    


    
      
        snapshot()

      


    


    
      
        t()

      


    





  
    Functions
  


    
      
        arrival_completed(pid)

      


        Record an arrival completing its sequence.



    


    
      
        arrival_dropped(pid)

      


        Record an arrival being dropped due to pool exhaustion.



    


    
      
        arrival_spawned(pid)

      


        Record an arrival being spawned.



    


    
      
        child_spec(init_arg)

      


        Returns a specification to start this module under a supervisor.



    


    
      
        record_assertion_failure(pid, exception_module, command_module, failure)

      


        Record an assertion failure.



    


    
      
        record_request(pid, command_module, latency_ms, result)

      


        Record a completed request.



    


    
      
        reset(pid)

      


        Reset all metrics.



    


    
      
        session_completed(pid)

      


        Record a session completing.



    


    
      
        session_started(pid)

      


        Record a session starting.



    


    
      
        snapshot(pid)

      


        Get a snapshot of current metrics.



    


    
      
        start_link(opts \\ [])

      


        Start a new metrics collector.



    


    
      
        stop(pid)

      


        Stop the metrics collector.



    





      


      
        Types


        


  
    
      
    
    
      command_metrics()



        
          
        

    

  


  

      

          @type command_metrics() :: %{
  count: non_neg_integer(),
  latency_p50: float(),
  latency_p95: float(),
  latency_mean: float(),
  error_count: non_neg_integer()
}


      



  



  
    
      
    
    
      history_point()



        
          
        

    

  


  

      

          @type history_point() :: %{
  timestamp: integer(),
  rps: float(),
  latency_p95: float(),
  active_sessions: non_neg_integer(),
  error_rate: float()
}


      



  



  
    
      
    
    
      snapshot()



        
          
        

    

  


  

      

          @type snapshot() :: %{
  total_requests: non_neg_integer(),
  requests_per_second: float(),
  latency_p50: float(),
  latency_p95: float(),
  latency_p99: float(),
  latency_max: float(),
  latency_mean: float(),
  latency_min: float(),
  total_errors: non_neg_integer(),
  error_rate: float(),
  errors_by_type: %{required(atom()) => non_neg_integer()},
  active_sessions: non_neg_integer(),
  completed_sessions: non_neg_integer(),
  by_command: %{required(module()) => command_metrics()},
  duration_ms: non_neg_integer(),
  history: [history_point()],
  assertion_failures: non_neg_integer(),
  assertion_failure_rate: float(),
  failures_by_exception: %{required(module()) => non_neg_integer()},
  recent_assertion_failures: [map()],
  arrivals_spawned: non_neg_integer(),
  arrivals_completed: non_neg_integer(),
  arrivals_dropped: non_neg_integer(),
  arrivals_per_second: float(),
  drop_rate: float()
}


      



  



  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %PropertyDamage.LoadTest.Metrics{
  assertion_failures_table: term(),
  command_metrics_table: term(),
  counters_table: term(),
  errors_table: term(),
  history: term(),
  last_snapshot_time: term(),
  last_total_requests: term(),
  latencies_table: term(),
  recent_failures: term(),
  start_time: term()
}


      



  


        

      

      
        Functions


        


  
    
      
    
    
      arrival_completed(pid)



        
          
        

    

  


  

      

          @spec arrival_completed(pid()) :: :ok


      


Record an arrival completing its sequence.

  



  
    
      
    
    
      arrival_dropped(pid)



        
          
        

    

  


  

      

          @spec arrival_dropped(pid()) :: :ok


      


Record an arrival being dropped due to pool exhaustion.

  



  
    
      
    
    
      arrival_spawned(pid)



        
          
        

    

  


  

      

          @spec arrival_spawned(pid()) :: :ok


      


Record an arrival being spawned.

  



  
    
      
    
    
      child_spec(init_arg)



        
          
        

    

  


  

Returns a specification to start this module under a supervisor.
See Supervisor.

  



  
    
      
    
    
      record_assertion_failure(pid, exception_module, command_module, failure)



        
          
        

    

  


  

      

          @spec record_assertion_failure(pid(), module(), module(), map()) :: :ok


      


Record an assertion failure.
Parameters
	pid - Metrics collector pid
	exception_module - Module of the exception that was raised
	command_module - The command that was being executed
	failure - Map with failure details (reason, command_index, etc.)


  



  
    
      
    
    
      record_request(pid, command_module, latency_ms, result)



        
          
        

    

  


  

      

          @spec record_request(pid(), module(), number(), :ok | {:error, atom()}) :: :ok


      


Record a completed request.
Parameters
	pid - Metrics collector pid
	command_module - The command module that was executed
	latency_ms - Request latency in milliseconds
	result - :ok for success, {:error, type} for errors


  



  
    
      
    
    
      reset(pid)



        
          
        

    

  


  

      

          @spec reset(pid()) :: :ok


      


Reset all metrics.

  



  
    
      
    
    
      session_completed(pid)



        
          
        

    

  


  

      

          @spec session_completed(pid()) :: :ok


      


Record a session completing.

  



  
    
      
    
    
      session_started(pid)



        
          
        

    

  


  

      

          @spec session_started(pid()) :: :ok


      


Record a session starting.

  



  
    
      
    
    
      snapshot(pid)



        
          
        

    

  


  

      

          @spec snapshot(pid()) :: snapshot()


      


Get a snapshot of current metrics.

  



    

  
    
      
    
    
      start_link(opts \\ [])



        
          
        

    

  


  

      

          @spec start_link(keyword()) :: {:ok, pid()} | {:error, term()}


      


Start a new metrics collector.

  



  
    
      
    
    
      stop(pid)



        
          
        

    

  


  

      

          @spec stop(pid()) :: :ok


      


Stop the metrics collector.

  


        

      


  

    
PropertyDamage.LoadTest.RampStrategy 
    



      
Controls how arrival rate is ramped up and down during a load test.
Strategies
	:immediate - Start at full rate immediately
	{:linear, duration} - Gradually increase rate over duration
	{:step, count, interval} - Increase rate in steps
	{:exponential, duration} - Exponential growth to target rate

Usage
# Immediate - start at 100 arrivals/sec immediately
plan = RampStrategy.plan(:immediate, {100, {1, :seconds}})

# Linear - ramp to 100/sec over 60 seconds
plan = RampStrategy.plan({:linear, {60, :seconds}}, {100, {1, :seconds}})

# Step - increase rate every 15 seconds in 4 steps
plan = RampStrategy.plan({:step, 4, {15, :seconds}}, {100, {1, :seconds}})

# Exponential - exponential growth to 100/sec over 2 minutes
plan = RampStrategy.plan({:exponential, {2, :minutes}}, {100, {1, :seconds}})
Plan Format
A plan is a list of {time_ms, rate_spec} tuples:
[
  {0, {25, {1, :seconds}}},
  {15000, {50, {1, :seconds}}},
  {30000, {75, {1, :seconds}}},
  {45000, {100, {1, :seconds}}}
]
The rate_spec is in the normalized form {count, {time, unit}}.

      


      
        Summary


  
    Types
  


    
      
        duration()

      


    


    
      
        plan()

      


    


    
      
        rate_spec()

      


    


    
      
        strategy()

      


    





  
    Functions
  


    
      
        duration_ms(plan)

      


        Get total duration of a plan in milliseconds.



    


    
      
        plan(arg1, target_rate)

      


        Generate a ramp plan for the given strategy and target rate.



    


    
      
        plan_down(arg1, current_rate)

      


        Generate a ramp-down plan.



    


    
      
        rate_at(plan, time_ms)

      


        Get the rate at a given time point from a plan.



    


    
      
        rate_to_interval_ms(rate_spec)

      


        Convert a rate spec to interval in milliseconds between arrivals.



    


    
      
        rate_to_per_second(arg)

      


        Convert a rate spec to arrivals per second.



    





      


      
        Types


        


  
    
      
    
    
      duration()



        
          
        

    

  


  

      

          @type duration() :: {pos_integer(), :milliseconds | :seconds | :minutes | :hours}


      



  



  
    
      
    
    
      plan()



        
          
        

    

  


  

      

          @type plan() :: [{non_neg_integer(), rate_spec()}]


      



  



  
    
      
    
    
      rate_spec()



        
          
        

    

  


  

      

          @type rate_spec() :: {pos_integer(), duration()}


      



  



  
    
      
    
    
      strategy()



        
          
        

    

  


  

      

          @type strategy() ::
  :immediate
  | {:linear, duration()}
  | {:step, pos_integer(), duration()}
  | {:exponential, duration()}


      



  


        

      

      
        Functions


        


  
    
      
    
    
      duration_ms(plan)



        
          
        

    

  


  

      

          @spec duration_ms(plan()) :: non_neg_integer()


      


Get total duration of a plan in milliseconds.

  



  
    
      
    
    
      plan(arg1, target_rate)



        
          
        

    

  


  

      

          @spec plan(strategy(), rate_spec()) :: plan()


      


Generate a ramp plan for the given strategy and target rate.
Parameters
	strategy - The ramping strategy to use
	target_rate - Target arrival rate as {count, {time, unit}}

Returns
A list of {time_ms, rate_spec} tuples indicating when to
adjust the arrival rate.

  



  
    
      
    
    
      plan_down(arg1, current_rate)



        
          
        

    

  


  

      

          @spec plan_down(strategy(), rate_spec()) :: plan()


      


Generate a ramp-down plan.
Similar to plan/2 but decreases from current rate to minimum (1/sec).
Parameters
	strategy - The ramping strategy to use
	current_rate - Current arrival rate as {count, {time, unit}}


  



  
    
      
    
    
      rate_at(plan, time_ms)



        
          
        

    

  


  

      

          @spec rate_at(plan(), non_neg_integer()) :: rate_spec() | nil


      


Get the rate at a given time point from a plan.

  



  
    
      
    
    
      rate_to_interval_ms(rate_spec)



        
          
        

    

  


  

      

          @spec rate_to_interval_ms(rate_spec()) :: float()


      


Convert a rate spec to interval in milliseconds between arrivals.

  



  
    
      
    
    
      rate_to_per_second(arg)



        
          
        

    

  


  

      

          @spec rate_to_per_second(rate_spec()) :: float()


      


Convert a rate spec to arrivals per second.

  


        

      


  

    
PropertyDamage.LoadTest.Report 
    



      
Generates load test reports in various formats.
Supported Formats
	:terminal - Colored terminal output with ASCII charts
	:markdown - Markdown formatted report
	:json - JSON format for programmatic processing

Usage
{:ok, report} = Runner.await(runner)
formatted = Report.format(report, :terminal)
IO.puts(formatted)

# Or save to file
Report.save(report, "load_test_report.md", :markdown)

      


      
        Summary


  
    Types
  


    
      
        format()

      


    


    
      
        report()

      


    





  
    Functions
  


    
      
        format(report, atom)

      


        Format a report for display.



    


    
      
        save(report, path, format \\ :markdown)

      


        Save a report to a file.



    


    
      
        summary(report)

      


        Generate a summary string for quick display.



    





      


      
        Types


        


  
    
      
    
    
      format()



        
          
        

    

  


  

      

          @type format() :: :terminal | :markdown | :json


      



  



  
    
      
    
    
      report()



        
          
        

    

  


  

      

          @type report() :: %{metrics: map(), config: map()}


      



  


        

      

      
        Functions


        


  
    
      
    
    
      format(report, atom)



        
          
        

    

  


  

      

          @spec format(report(), format()) :: String.t()


      


Format a report for display.
Parameters
	report - Report from Runner.await/1
	format - Output format (:terminal, :markdown, :json)

Returns
Formatted string.

  



    

  
    
      
    
    
      save(report, path, format \\ :markdown)



        
          
        

    

  


  

      

          @spec save(report(), Path.t(), format()) :: :ok | {:error, term()}


      


Save a report to a file.

  



  
    
      
    
    
      summary(report)



        
          
        

    

  


  

      

          @spec summary(report()) :: String.t()


      


Generate a summary string for quick display.

  


        

      


  

    
PropertyDamage.LoadTest.Runner 
    



      
Orchestrates a load test run using arrival rate scheduling.
The Runner manages:
	Worker pool with persistent adapter contexts
	Arrival scheduling at the configured rate
	Rate ramping up and down
	Metrics collection and periodic reporting
	Duration-based termination

Architecture
Runner (GenServer)
  ├── Metrics (GenServer) - Collects metrics from all workers
  ├── WorkerPool (GenServer) - Manages workers with persistent contexts
  │   ├── Worker 1 - Holds adapter context
  │   ├── Worker 2
  │   └── Worker N
  └── Arrivals (Tasks) - Spawned at configured rate
Usage
{:ok, runner} = Runner.start_link(
  model: MyModel,
  adapter: HTTPAdapter,
  adapter_config: %{base_url: "http://localhost:4000"},
  arrival_rate: 100,  # 100 arrivals per second
  duration: {5, :minutes},
  ramp_up: {:linear, {30, :seconds}}
)

# Wait for completion
{:ok, report} = Runner.await(runner)

# Or stop early
{:ok, report} = Runner.stop(runner)

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





  
    Functions
  


    
      
        await(pid, timeout \\ :infinity)

      


        Wait for the load test to complete.



    


    
      
        child_spec(init_arg)

      


        Returns a specification to start this module under a supervisor.



    


    
      
        get_metrics(pid)

      


        Get current metrics snapshot.



    


    
      
        start_link(opts)

      


        Start a new load test run.



    


    
      
        status(pid)

      


        Get current status.



    


    
      
        stop(pid)

      


        Stop a load test early and get the report.



    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %PropertyDamage.LoadTest.Runner{
  adapter: term(),
  adapter_config: term(),
  arrival_jitter: term(),
  arrival_rate: term(),
  assertion_mode: term(),
  awaiting: term(),
  current_rate: term(),
  duration_ms: term(),
  in_flight: term(),
  max_queue_size: term(),
  metrics: term(),
  metrics_interval_ms: term(),
  model: term(),
  on_complete: term(),
  on_metrics: term(),
  phase: term(),
  pool: term(),
  ramp_down_plan: term(),
  ramp_step_index: term(),
  ramp_up_plan: term(),
  start_time: term(),
  think_time_range: term()
}


      



  


        

      

      
        Functions


        


    

  
    
      
    
    
      await(pid, timeout \\ :infinity)



        
          
        

    

  


  

      

          @spec await(pid(), timeout()) :: {:ok, map()} | {:error, term()}


      


Wait for the load test to complete.
Returns the final report when the test finishes.

  



  
    
      
    
    
      child_spec(init_arg)



        
          
        

    

  


  

Returns a specification to start this module under a supervisor.
See Supervisor.

  



  
    
      
    
    
      get_metrics(pid)



        
          
        

    

  


  

      

          @spec get_metrics(pid()) :: map()


      


Get current metrics snapshot.

  



  
    
      
    
    
      start_link(opts)



        
          
        

    

  


  

      

          @spec start_link(keyword()) :: {:ok, pid()} | {:error, term()}


      


Start a new load test run.
Options
	:model - Model module (required)
	:adapter - Adapter module (required)
	:adapter_config - Adapter configuration (default: %{})
	:arrival_rate - Target arrival rate (required)	Integer: arrivals per second (e.g., 100)
	Tuple: {count, {time, unit}} (e.g., {2, {15, :milliseconds}})


	:duration - Test duration as {value, unit} (required)
	:arrival_jitter - {min, max} ms jitter per arrival (default: {0, 0})
	:max_queue_size - Max queued arrivals when pool exhausted (default: 100)
	:ramp_up - Ramp-up strategy (default: :immediate)
	:ramp_down - Ramp-down strategy (default: :immediate)
	:think_time - {min, max} ms between commands in sequence (default: {0, 0})
	:metrics_interval - Metrics callback interval (default: {1, :second})
	:on_metrics - Callback function for periodic metrics
	:on_complete - Callback function when test completes
	:assertion_mode - How to handle assertions (default: :disabled)


  



  
    
      
    
    
      status(pid)



        
          
        

    

  


  

      

          @spec status(pid()) :: map()


      


Get current status.

  



  
    
      
    
    
      stop(pid)



        
          
        

    

  


  

      

          @spec stop(pid()) :: {:ok, map()}


      


Stop a load test early and get the report.

  


        

      


  

    
PropertyDamage.LoadTest.Worker 
    



      
A load test worker with persistent adapter context.
Workers maintain a long-lived adapter context (connection pool, HTTP client, etc.)
and execute command sequences on behalf of arrivals. This eliminates the
setup/teardown bottleneck of the previous session-per-sequence model.
Architecture
Workers are managed by WorkerPool and are checked out for each arrival.
Once an arrival completes its sequence, the worker is returned to the pool
for reuse.
Usage
{:ok, worker} = Worker.start_link(
  model: MyModel,
  adapter: HTTPAdapter,
  adapter_config: %{base_url: "http://localhost:4000"},
  metrics: metrics_pid,
  worker_id: 1,
  think_time_range: {100, 500},
  assertion_mode: :disabled
)

# Execute a sequence (blocking)
{:ok, stats} = Worker.execute_sequence(worker)

# Shutdown worker (calls adapter.teardown)
Worker.stop(worker)

      


      
        Summary


  
    Types
  


    
      
        sequence_result()

      


    


    
      
        t()

      


    





  
    Functions
  


    
      
        child_spec(init_arg)

      


        Returns a specification to start this module under a supervisor.



    


    
      
        execute_sequence(pid)

      


        Execute a single command sequence.



    


    
      
        start_link(opts)

      


        Start a new worker with persistent adapter context.



    


    
      
        stats(pid)

      


        Get worker statistics.



    


    
      
        stop(pid)

      


        Stop the worker gracefully.



    





      


      
        Types


        


  
    
      
    
    
      sequence_result()



        
          
        

    

  


  

      

          @type sequence_result() :: %{
  commands_run: non_neg_integer(),
  errors: non_neg_integer(),
  assertion_failures: non_neg_integer()
}


      



  



  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %PropertyDamage.LoadTest.Worker{
  adapter: term(),
  adapter_config: term(),
  adapter_context: term(),
  assertion_failures: term(),
  assertion_mode: term(),
  commands_executed: term(),
  errors: term(),
  metrics: term(),
  model: term(),
  sequences_executed: term(),
  think_time_range: term(),
  worker_id: term()
}


      



  


        

      

      
        Functions


        


  
    
      
    
    
      child_spec(init_arg)



        
          
        

    

  


  

Returns a specification to start this module under a supervisor.
See Supervisor.

  



  
    
      
    
    
      execute_sequence(pid)



        
          
        

    

  


  

      

          @spec execute_sequence(pid()) :: {:ok, sequence_result()} | {:error, term()}


      


Execute a single command sequence.
Generates a random sequence using the model and executes it using the
worker's persistent adapter context. This is a blocking call.
Returns {:ok, stats} with execution statistics.

  



  
    
      
    
    
      start_link(opts)



        
          
        

    

  


  

      

          @spec start_link(keyword()) :: {:ok, pid()} | {:error, term()}


      


Start a new worker with persistent adapter context.
Options
	:worker_id - Unique worker ID (required)
	:model - Model module (required)
	:adapter - Adapter module (required)
	:adapter_config - Adapter configuration (default: %{})
	:metrics - Metrics collector pid (required)
	:think_time_range - {min, max} ms between commands (default: {0, 0})
	:assertion_mode - How to handle assertions (default: :disabled)

Returns {:ok, pid} or {:error, reason} if adapter setup fails.

  



  
    
      
    
    
      stats(pid)



        
          
        

    

  


  

      

          @spec stats(pid()) :: map()


      


Get worker statistics.

  



  
    
      
    
    
      stop(pid)



        
          
        

    

  


  

      

          @spec stop(pid()) :: :ok


      


Stop the worker gracefully.
Calls adapter.teardown/1 to clean up the adapter context.

  


        

      


  

    
PropertyDamage.LoadTest.WorkerPool 
    



      
Pool of workers with persistent adapter contexts for load testing.
The WorkerPool manages a fixed number of Worker processes, each holding
a persistent adapter context. Arrivals check out workers, execute sequences,
and check workers back in for reuse.
Features
	Persistent contexts: Workers call adapter.setup/1 once at pool init
	Bounded queue: When pool exhausted, arrivals queue up to max_queue_size
	Load shedding: Excess arrivals beyond queue capacity are dropped
	Stats tracking: Pool utilization, queue depth, checkout latency

Usage
{:ok, pool} = WorkerPool.start_link(
  size: 50,
  max_queue_size: 100,
  model: MyModel,
  adapter: HTTPAdapter,
  adapter_config: %{base_url: "http://localhost:4000"},
  metrics: metrics_pid,
  think_time_range: {50, 200},
  assertion_mode: :disabled
)

# Check out a worker (blocks if pool empty, queue has room)
case WorkerPool.checkout(pool) do
  {:ok, worker} ->
    Worker.execute_sequence(worker)
    WorkerPool.checkin(pool, worker)

  {:error, :pool_exhausted} ->
    # Queue full, arrival was dropped
    :dropped
end

WorkerPool.stop(pool)

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





  
    Functions
  


    
      
        checkin(pool, worker)

      


        Return a worker to the pool.



    


    
      
        checkout(pool, opts \\ [])

      


        Check out a worker from the pool.



    


    
      
        child_spec(init_arg)

      


        Returns a specification to start this module under a supervisor.



    


    
      
        start_link(opts)

      


        Start a new worker pool.



    


    
      
        stats(pool)

      


        Get pool statistics.



    


    
      
        stop(pool)

      


        Stop the pool and all workers.



    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %PropertyDamage.LoadTest.WorkerPool{
  adapter: term(),
  adapter_config: term(),
  assertion_mode: term(),
  available: term(),
  in_use: term(),
  max_queue_size: term(),
  metrics: term(),
  model: term(),
  peak_in_use: term(),
  size: term(),
  think_time_range: term(),
  total_checkins: term(),
  total_checkouts: term(),
  total_dropped: term(),
  total_queue_time_ms: term(),
  utilization_samples: term(),
  utilization_sum: term(),
  waiting: term()
}


      



  


        

      

      
        Functions


        


  
    
      
    
    
      checkin(pool, worker)



        
          
        

    

  


  

      

          @spec checkin(pid(), pid()) :: :ok


      


Return a worker to the pool.

  



    

  
    
      
    
    
      checkout(pool, opts \\ [])



        
          
        

    

  


  

      

          @spec checkout(
  pid(),
  keyword()
) :: {:ok, pid()} | {:error, :pool_exhausted | :timeout}


      


Check out a worker from the pool.
	If a worker is available, returns {:ok, worker_pid} immediately
	If pool is exhausted but queue has room, blocks until a worker is available
	If pool is exhausted and queue is full, returns {:error, :pool_exhausted}

Options
	:timeout - Maximum time to wait in queue (default: 5000ms)


  



  
    
      
    
    
      child_spec(init_arg)



        
          
        

    

  


  

Returns a specification to start this module under a supervisor.
See Supervisor.

  



  
    
      
    
    
      start_link(opts)



        
          
        

    

  


  

      

          @spec start_link(keyword()) :: {:ok, pid()} | {:error, term()}


      


Start a new worker pool.
Options
	:size - Number of workers in the pool (required)
	:max_queue_size - Maximum pending arrivals to queue (default: size * 2)
	:model - Model module (required)
	:adapter - Adapter module (required)
	:adapter_config - Adapter configuration (default: %{})
	:metrics - Metrics collector pid (required)
	:think_time_range - {min, max} ms between commands (default: {0, 0})
	:assertion_mode - How to handle assertions (default: :disabled)

Returns {:ok, pid} or {:error, reason} if worker setup fails.

  



  
    
      
    
    
      stats(pool)



        
          
        

    

  


  

      

          @spec stats(pid()) :: map()


      


Get pool statistics.

  



  
    
      
    
    
      stop(pool)



        
          
        

    

  


  

      

          @spec stop(pid()) :: :ok


      


Stop the pool and all workers.

  


        

      


  

    
PropertyDamage.MockServiceAdapter behaviour
    



      
Behaviour for mock services that simulate third-party APIs.
MockServiceAdapters intercept calls from the SUT to external services
and return controlled responses. They can also inject events into the
test framework based on those interactions.
The Problem
When testing a system that depends on external services (payment gateways,
email providers, etc.), you need to control what those services return.
MockServiceAdapter provides this capability:
┌─────────┐       ┌─────────┐       ┌───────────────────┐
│  Test   │──────▶│   SUT   │──────▶│ MockServiceAdapter│
│Framework│◀──────│         │◀──────│  (controlled)     │
└─────────┘       └─────────┘       └───────────────────┘
     │                                      │
     │◀─────────── injected events ─────────┘
Key Concepts
Stateful Mock Behavior
Mocks maintain state that evolves with the test. Commands can configure
mock behavior, and the mock can react to events:
defmodule PaymentGatewayMock do
  use PropertyDamage.MockServiceAdapter

  @impl true
  def init_state, do: %{behavior: :success}

  @impl true
  def on_command(%ConfigurePayment{behavior: b}, state) do
    %{state | behavior: b}
  end

  @impl true
  def handle_request(%{path: "/charge"}, state) do
    case state.behavior do
      :success -> {:ok, %{status: 200, body: %{id: "txn_123"}}}
      :decline -> {:ok, %{status: 402, body: %{error: "declined"}}}
    end
  end
end
Event Injection
When the SUT calls the mock, you can inject events into the test:
def handle_request(%{path: "/charge", body: body}, state) do
  response = %{status: 200, body: %{transaction_id: "txn_123"}}

  # These events are applied to projections
  events = [%PaymentProcessed{amount: body["amount"]}]

  {:ok, response, events}
end
Projection Awareness
Mock handlers receive projection state, enabling realistic responses:
def handle_request(%{path: "/balance"}, state) do
  balance = get_in(state.projections, [ModelState, :accounts, id, :balance])
  {:ok, %{status: 200, body: %{balance: balance}}}
end
Example
defmodule MyTest.PaymentMock do
  use PropertyDamage.MockServiceAdapter

  @emits [PaymentAuthorized, PaymentDeclined]

  @impl true
  def setup(config) do
    {:ok, pid} = MockServer.start_link(port: 4445, handler: __MODULE__)
    {:ok, %{server: pid}}
  end

  @impl true
  def teardown(%{server: pid}) do
    MockServer.stop(pid)
    :ok
  end

  @impl true
  def init_state do
    %{behavior: :success, decline_reason: nil}
  end

  @impl true
  def on_command(%ConfigurePayment{behavior: b, reason: r}, state) do
    %{state | behavior: b, decline_reason: r}
  end

  @impl true
  def on_command(_other, state), do: state

  @impl true
  def on_event(_event, state), do: state

  @impl true
  def handle_request(%{path: "/authorize", body: body}, state) do
    case state.behavior do
      :success ->
        resp = %{status: 200, body: %{auth_code: "AUTH123"}}
        events = [%PaymentAuthorized{amount: body["amount"]}]
        {:ok, resp, events}

      :decline ->
        resp = %{status: 402, body: %{error: state.decline_reason}}
        events = [%PaymentDeclined{reason: state.decline_reason}]
        {:ok, resp, events}
    end
  end

  @impl true
  def handle_request(_request, _state) do
    {:ok, %{status: 404, body: %{error: "not_found"}}}
  end
end
Configuration Commands
Define commands that configure mock behavior without interacting with the SUT:
defmodule ConfigurePayment do
  @behaviour PropertyDamage.Command

  defstruct [:behavior, :reason]

  @impl true
  def precondition(_state), do: true

  @impl true
  def semantics, do: :mock_config  # Signals this is mock configuration

  @impl true
  def new!(state, overrides \\ %{}) do
    StreamData.fixed_map(%{
      behavior: StreamData.member_of([:success, :decline]),
      reason: StreamData.member_of([nil, "insufficient_funds"])
    })
    |> StreamData.map(&struct!(__MODULE__, &1))
  end
end
Commands with semantics: :mock_config are executed by notifying mock adapters
rather than calling the SUT.

      


      
        Summary


  
    Callbacks
  


    
      
        handle_request(request, state)

      


        Handle a request from the SUT.



    


    
      
        init_state()

      


        Initialize the mock's internal state.



    


    
      
        on_command(command, state)

      


        React to a command being executed.



    


    
      
        on_event(event, state)

      


        React to an event being produced.



    


    
      
        setup config

      


        Called once per run to start the mock service.



    


    
      
        teardown(context)

      


        Called once per run to stop the mock service.



    





  
    Functions
  


    
      
        mock_config_command?(command)

      


        Check if a command is a mock configuration command.



    





      


      
        Callbacks


        


  
    
      
    
    
      handle_request(request, state)



        
          
        

    

  


  

      

          @callback handle_request(request :: map(), state :: map()) ::
  {:ok, response :: map()}
  | {:ok, response :: map(), events :: [struct()]}
  | {:error, term()}


      


Handle a request from the SUT.
Called when the SUT makes a request to the mock service. Return a
response and optionally events to inject.
Parameters
	request - The request from the SUT (format depends on protocol)
	state - Current mock state including :projections key with projection states

Returns
	{:ok, response} - Return response, no events
	{:ok, response, events} - Return response and inject events
	{:error, term()} - Simulate an error (timeout, network failure, etc.)


  



  
    
      
    
    
      init_state()



        
          
        

    

  


  

      

          @callback init_state() :: map()


      


Initialize the mock's internal state.
Called at the start of each test run. Return the initial state
that will be passed to other callbacks.

  



  
    
      
    
    
      on_command(command, state)



        
          
        

    

  


  

      

          @callback on_command(command :: struct(), state :: map()) :: map()


      


React to a command being executed.
Called before each command is executed against the SUT. Use this to
update mock behavior based on commands.
Commands with semantics: :mock_config are handled entirely by this callback
and are not sent to the SUT adapter.
Parameters
	command - The command struct being executed
	state - Current mock state

Returns
Updated mock state.

  



  
    
      
    
    
      on_event(event, state)


        (optional)


        
          
        

    

  


  

      

          @callback on_event(event :: struct(), state :: map()) :: map()


      


React to an event being produced.
Called after events are produced (from SUT or mock injection). Use this
to update mock state based on system events.
Parameters
	event - The event struct
	state - Current mock state

Returns
Updated mock state.

  



  
    
      
    
    
      setup config



        
          
        

    

  


  

      

          @callback setup(config :: map()) :: {:ok, context :: map()} | {:error, term()}


      


Called once per run to start the mock service.
The config includes:
	:event_queue - PID of the EventQueue for pushing events
	:registry - PID of the MockServiceRegistry
	Any adapter-specific config

Returns
	{:ok, context} - Mock started successfully
	{:error, reason} - Failed to start


  



  
    
      
    
    
      teardown(context)



        
          
        

    

  


  

      

          @callback teardown(context :: map()) :: :ok


      


Called once per run to stop the mock service.
Returns
Always returns :ok.

  


        

      

      
        Functions


        


  
    
      
    
    
      mock_config_command?(command)



        
          
        

    

  


  

      

          @spec mock_config_command?(struct()) :: boolean()


      


Check if a command is a mock configuration command.
Mock config commands have semantics: :mock_config and are handled by
mock adapters rather than the SUT adapter.

  


        

      


  

    
PropertyDamage.MockServiceRegistry 
    



      
Registry for managing mock service adapters and their state.
The MockServiceRegistry:
	Manages state for all active mock adapters
	Collects events injected by mocks
	Notifies mocks of commands and events
	Provides projection state to mocks for request handling

Lifecycle
	start_link/1 - Start the registry
	register/2 - Register mock adapters
	During execution:	notify_command/2 - Inform mocks of commands
	update_projections/2 - Share projection state
	push_event/3 - Mocks inject events
	flush_events/1 - Executor collects injected events
	notify_event/2 - Inform mocks of events


	stop/1 - Stop the registry

Usage
{:ok, registry} = MockServiceRegistry.start_link([])

# Register mock adapters
MockServiceRegistry.register(registry, PaymentMock)
MockServiceRegistry.register(registry, EmailMock)

# During test execution
MockServiceRegistry.notify_command(registry, command)
MockServiceRegistry.update_projections(registry, projections)

# Mock calls push_event when SUT calls them
MockServiceRegistry.push_event(registry, PaymentMock, %PaymentProcessed{})

# Executor collects injected events
events = MockServiceRegistry.flush_events(registry)

# Notify mocks of events
for event <- events do
  MockServiceRegistry.notify_event(registry, event)
end

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





  
    Functions
  


    
      
        child_spec(init_arg)

      


        Returns a specification to start this module under a supervisor.



    


    
      
        flush_events(registry)

      


        Flush all pending injected events.



    


    
      
        get_handler_state(registry, adapter_module)

      


        Get the combined state for request handling.



    


    
      
        get_state(registry, adapter_module)

      


        Get the current state for a mock adapter.



    


    
      
        notify_command(registry, command)

      


        Notify all mocks of a command being executed.



    


    
      
        notify_event(registry, event)

      


        Notify all mocks of an event.



    


    
      
        push_event(registry, adapter_module, event)

      


        Push an event from a mock adapter.



    


    
      
        push_events(registry, adapter_module, events)

      


        Push multiple events from a mock adapter.



    


    
      
        register(registry, adapter_module)

      


        Register a mock adapter with the registry.



    


    
      
        start_link(opts \\ [])

      


        Start the mock service registry.



    


    
      
        stop(registry)

      


        Stop the registry.



    


    
      
        unregister(registry, adapter_module)

      


        Unregister a mock adapter.



    


    
      
        update_projections(registry, projections)

      


        Update the projection state available to mocks.



    


    
      
        update_state(registry, adapter_module, new_state)

      


        Update the state for a mock adapter.



    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: pid()


      



  


        

      

      
        Functions


        


  
    
      
    
    
      child_spec(init_arg)



        
          
        

    

  


  

Returns a specification to start this module under a supervisor.
See Supervisor.

  



  
    
      
    
    
      flush_events(registry)



        
          
        

    

  


  

      

          @spec flush_events(t()) :: [struct()]


      


Flush all pending injected events.
Returns events in the order they were pushed. Events are cleared
from the registry after flushing.

  



  
    
      
    
    
      get_handler_state(registry, adapter_module)



        
          
        

    

  


  

      

          @spec get_handler_state(t(), module()) :: {:ok, map()} | {:error, :not_found}


      


Get the combined state for request handling.
Returns mock state merged with current projections.

  



  
    
      
    
    
      get_state(registry, adapter_module)



        
          
        

    

  


  

      

          @spec get_state(t(), module()) :: {:ok, map()} | {:error, :not_found}


      


Get the current state for a mock adapter.
Used by mock handlers to access their state during request handling.

  



  
    
      
    
    
      notify_command(registry, command)



        
          
        

    

  


  

      

          @spec notify_command(
  t(),
  struct()
) :: {:ok, boolean()}


      


Notify all mocks of a command being executed.
Each mock's on_command/2 is called with the command.
Returns true if any mock handles this as a config command.

  



  
    
      
    
    
      notify_event(registry, event)



        
          
        

    

  


  

      

          @spec notify_event(
  t(),
  struct()
) :: :ok


      


Notify all mocks of an event.
Each mock's on_event/2 is called with the event.

  



  
    
      
    
    
      push_event(registry, adapter_module, event)



        
          
        

    

  


  

      

          @spec push_event(t(), module(), struct()) :: :ok


      


Push an event from a mock adapter.
Called by mock adapters when they inject events.

  



  
    
      
    
    
      push_events(registry, adapter_module, events)



        
          
        

    

  


  

      

          @spec push_events(t(), module(), [struct()]) :: :ok


      


Push multiple events from a mock adapter.

  



  
    
      
    
    
      register(registry, adapter_module)



        
          
        

    

  


  

      

          @spec register(t(), module()) :: :ok


      


Register a mock adapter with the registry.
The adapter's init_state/0 is called to initialize its state.

  



    

  
    
      
    
    
      start_link(opts \\ [])



        
          
        

    

  


  

      

          @spec start_link(keyword()) :: {:ok, pid()} | {:error, term()}


      


Start the mock service registry.
Options
	:name - Optional name for the registry process


  



  
    
      
    
    
      stop(registry)



        
          
        

    

  


  

      

          @spec stop(t()) :: :ok


      


Stop the registry.

  



  
    
      
    
    
      unregister(registry, adapter_module)



        
          
        

    

  


  

      

          @spec unregister(t(), module()) :: :ok


      


Unregister a mock adapter.

  



  
    
      
    
    
      update_projections(registry, projections)



        
          
        

    

  


  

      

          @spec update_projections(t(), map()) :: :ok


      


Update the projection state available to mocks.
Called after each command execution so mocks have current state.

  



  
    
      
    
    
      update_state(registry, adapter_module, new_state)



        
          
        

    

  


  

      

          @spec update_state(t(), module(), map()) :: :ok


      


Update the state for a mock adapter.
Used by mock handlers if they need to update state during request handling.

  


        

      


  

    
PropertyDamage.Model.Projection.Liveness 
    



      
Projection that tracks pending operations and asserts progress (liveness).
Traditional SPBT focuses on safety properties - invariants that must never
be violated. Liveness properties are different: they guarantee that something
good eventually happens.
Safety vs Liveness
	Property Type	Example	Detection
	Safety	"Balance never goes negative"	State assertion
	Liveness	"Every request eventually completes"	Timeout on pending

What This Projection Detects
	Deadlock - System hangs forever, no invariant violated
	Livelock - System is busy but makes no useful progress
	Starvation - One client always succeeds, another never does
	Infinite retry loops - System keeps retrying without bound

How It Works
	Track commands that start operations (e.g., CreateTransfer)
	Track events that complete operations (e.g., TransferCompleted, TransferFailed)
	Periodically check for operations pending "too long"
	Report stuck operations as liveness violations

Configuration
defmodule MyModel do
  def extra_projections do
    [
      {PropertyDamage.Model.Projection.Liveness, [
        max_pending_duration_ms: 10_000,
        required_completions: %{
          CreateTransfer => [TransferCompleted, TransferFailed],
          CreateOrder => [OrderConfirmed, OrderRejected]
        }
      ]}
    ]
  end
end
Options
	:max_pending_duration_ms - How long before an operation is "stuck" (default: 10_000)
	:required_completions - Map of command module => list of completion event modules
	:check_interval - How often to check (in step count, default: 10)

Limitations
	Requires wall-clock time, complicating deterministic replay
	Timeout thresholds are arbitrary
	Can't detect "infinite but slow progress" (livelock with occasional success)


      


      
        Summary


  
    Types
  


    
      
        pending_operation()

      


    


    
      
        t()

      


    





  
    Functions
  


    
      
        check_liveness(state, ctx \\ %{})

      


        Check for stuck operations.



    


    
      
        operations_pending_longer_than(state, threshold_ms)

      


        Get operations that have been pending longer than the specified milliseconds.



    


    
      
        pending_count(state)

      


        Get count of currently pending operations.



    


    
      
        pending_operations(state)

      


        Get list of pending operation details.



    





      


      
        Types


        


  
    
      
    
    
      pending_operation()



        
          
        

    

  


  

      

          @type pending_operation() :: %{
  command_module: module(),
  started_at: integer(),
  command_index: non_neg_integer(),
  expected_completions: [module()]
}


      



  



  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %PropertyDamage.Model.Projection.Liveness{
  check_interval: pos_integer(),
  current_step: non_neg_integer(),
  max_pending_duration_ms: pos_integer(),
  pending_operations: %{required(reference()) => pending_operation()},
  required_completions: %{required(module()) => [module()]}
}


      



  


        

      

      
        Functions


        


    

  
    
      
    
    
      check_liveness(state, ctx \\ %{})



        
          
        

    

  


  

Check for stuck operations.
Returns :ok if no operations have been pending too long.
Returns {:error, reason} if operations appear stuck.

  



  
    
      
    
    
      operations_pending_longer_than(state, threshold_ms)



        
          
        

    

  


  

      

          @spec operations_pending_longer_than(t(), pos_integer()) :: [pending_operation()]


      


Get operations that have been pending longer than the specified milliseconds.

  



  
    
      
    
    
      pending_count(state)



        
          
        

    

  


  

      

          @spec pending_count(t()) :: non_neg_integer()


      


Get count of currently pending operations.

  



  
    
      
    
    
      pending_operations(state)



        
          
        

    

  


  

      

          @spec pending_operations(t()) :: [pending_operation()]


      


Get list of pending operation details.

  


        

      


  

    
PropertyDamage.Model.Projection.Statistics 
    



      
Projection that computes statistical properties over event streams.
Traditional assertions check exact conditions. Statistical projections enable
probabilistic assertions like:
	"p99 latency < 100ms"
	"error rate < 1%"
	"success rate > 99% over last 100 operations"

Why Statistical Projections?
Nemesis can inject latency, but we need statistical assertions to verify
the system handles it gracefully:
	A single slow request isn't a bug
	50% of requests being slow IS a bug
	1% error rate might be acceptable; 10% is not

Usage
defmodule MyModel do
  def extra_projections do
    [
      {PropertyDamage.Model.Projection.Statistics, [
        window_size: 100,
        assertions: [
          {:p99_latency_ms, :less_than, 500},
          {:error_rate, :less_than, 0.05},
          {:success_rate, :greater_than, 0.95}
        ]
      ]}
    ]
  end
end
Tracked Metrics
	:p50_latency_ms - Median latency
	:p95_latency_ms - 95th percentile latency
	:p99_latency_ms - 99th percentile latency
	:max_latency_ms - Maximum observed latency
	:mean_latency_ms - Average latency
	:success_rate - Ratio of successes to total
	:error_rate - Ratio of errors to total
	:throughput - Operations per second (requires time tracking)

Recording Metrics
Events should include latency information. The projection looks for:
	:latency_ms or :duration_ms fields for latency tracking
	Success events vs error events for rate calculation

You can also record metrics explicitly in your adapter.
Limitations
	Statistics only meaningful with sufficient sample size
	Shrinking statistical failures is problematic (minimal case may not reproduce)
	Thresholds are environment-dependent (CI vs production hardware)


      


      
        Summary


  
    Types
  


    
      
        assertion()

      


    


    
      
        comparator()

      


    


    
      
        metric()

      


    


    
      
        t()

      


    





  
    Functions
  


    
      
        check_assertions(state)

      


        Check all configured assertions against current metrics.



    


    
      
        compute_metrics(state)

      


        Compute all metrics from current state.



    


    
      
        format_summary(state)

      


        Format statistics as a human-readable string.



    


    
      
        record_error(state)

      


        Record an error/failure.



    


    
      
        record_latency(state, latency_ms)

      


        Record a latency sample.



    


    
      
        record_success(state)

      


        Record a successful operation.



    


    
      
        summary(state)

      


        Get a summary of current statistics.



    





      


      
        Types


        


  
    
      
    
    
      assertion()



        
          
        

    

  


  

      

          @type assertion() :: {metric(), comparator(), number()}


      



  



  
    
      
    
    
      comparator()



        
          
        

    

  


  

      

          @type comparator() :: :less_than | :greater_than | :equal_to


      



  



  
    
      
    
    
      metric()



        
          
        

    

  


  

      

          @type metric() ::
  :p50_latency_ms
  | :p95_latency_ms
  | :p99_latency_ms
  | :max_latency_ms
  | :mean_latency_ms
  | :success_rate
  | :error_rate
  | :total_count


      



  



  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %PropertyDamage.Model.Projection.Statistics{
  assertions: [assertion()],
  current_step: non_neg_integer(),
  error_count: non_neg_integer(),
  latency_samples: :queue.queue(float()),
  start_time: integer(),
  success_count: non_neg_integer(),
  window_size: pos_integer()
}


      



  


        

      

      
        Functions


        


  
    
      
    
    
      check_assertions(state)



        
          
        

    

  


  

Check all configured assertions against current metrics.

  



  
    
      
    
    
      compute_metrics(state)



        
          
        

    

  


  

      

          @spec compute_metrics(t()) :: %{required(metric()) => number()}


      


Compute all metrics from current state.

  



  
    
      
    
    
      format_summary(state)



        
          
        

    

  


  

      

          @spec format_summary(t()) :: String.t()


      


Format statistics as a human-readable string.

  



  
    
      
    
    
      record_error(state)



        
          
        

    

  


  

      

          @spec record_error(t()) :: t()


      


Record an error/failure.

  



  
    
      
    
    
      record_latency(state, latency_ms)



        
          
        

    

  


  

      

          @spec record_latency(t(), number()) :: t()


      


Record a latency sample.

  



  
    
      
    
    
      record_success(state)



        
          
        

    

  


  

      

          @spec record_success(t()) :: t()


      


Record a successful operation.

  



  
    
      
    
    
      summary(state)



        
          
        

    

  


  

      

          @spec summary(t()) :: map()


      


Get a summary of current statistics.

  


        

      


  

    
PropertyDamage.Mutation.Analysis 
    



      
Analyzes mutation testing results to identify weaknesses and generate suggestions.
Provides insights into:
	Which checks are weak (never caught mutations)
	Which fields aren't being validated
	Actionable suggestions for improvement


      


      
        Summary


  
    Types
  


    
      
        analysis()

      


    





  
    Functions
  


    
      
        analyze(report)

      


        Analyzes a mutation report and returns insights.



    


    
      
        format(analysis, format \\ :terminal)

      


        Formats an analysis for display.



    





      


      
        Types


        


  
    
      
    
    
      analysis()



        
          
        

    

  


  

      

          @type analysis() :: %{
  weak_commands: [{module(), float()}],
  weak_operators: [{atom(), float()}],
  unchecked_fields: [atom()],
  suggestions: [String.t()],
  summary: String.t()
}


      



  


        

      

      
        Functions


        


  
    
      
    
    
      analyze(report)



        
          
        

    

  


  

      

          @spec analyze(PropertyDamage.Mutation.Report.t()) :: analysis()


      


Analyzes a mutation report and returns insights.

  



    

  
    
      
    
    
      format(analysis, format \\ :terminal)



        
          
        

    

  


  

      

          @spec format(analysis(), atom()) :: String.t()


      


Formats an analysis for display.

  


        

      


  

    
PropertyDamage.Mutation.Formatter 
    



      
Formats mutation testing reports for various outputs.
Supports:
	:terminal - ASCII boxes for console output
	:markdown - Markdown tables for documentation
	:json - JSON for programmatic analysis


      


      
        Summary


  
    Functions
  


    
      
        format(report, format \\ :terminal)

      


        Formats a mutation report for the specified output format.



    





      


      
        Functions


        


    

  
    
      
    
    
      format(report, format \\ :terminal)



        
          
        

    

  


  

      

          @spec format(PropertyDamage.Mutation.Report.t(), atom()) :: String.t()


      


Formats a mutation report for the specified output format.

  


        

      


  

    
PropertyDamage.Mutation.MutatingAdapter 
    



      
An adapter wrapper that injects mutations into adapter responses.
The MutatingAdapter wraps a real adapter and intercepts its execute calls.
When the target command is executed, it applies a mutation to the response
to simulate a bug in the SUT.
Usage
# Create a mutating adapter
mutating = MutatingAdapter.new(
  inner_adapter: MyAdapter,
  target_command: CreateAccount,
  mutation: %{type: :value, target: :balance, mutated: -100},
  operator: ValueMutation
)

# Use with PropertyDamage.run
PropertyDamage.run(
  model: MyModel,
  adapter: mutating,
  ...
)

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





  
    Functions
  


    
      
        inner_adapter(mutating_adapter)

      


        Returns the inner adapter module.



    


    
      
        new(opts)

      


        Creates a new mutating adapter wrapper.



    


    
      
        wrap_config(adapter, base_config)

      


        Wraps an adapter module to use with PropertyDamage.run.



    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %PropertyDamage.Mutation.MutatingAdapter{
  apply_once: boolean(),
  inner_adapter: module(),
  inner_context: map() | nil,
  mutation: map(),
  mutation_applied: boolean(),
  operator: module(),
  target_command: module() | nil
}


      



  


        

      

      
        Functions


        


  
    
      
    
    
      inner_adapter(mutating_adapter)



        
          
        

    

  


  

      

          @spec inner_adapter(t()) :: module()


      


Returns the inner adapter module.

  



  
    
      
    
    
      new(opts)



        
          
        

    

  


  

      

          @spec new(keyword()) :: t()


      


Creates a new mutating adapter wrapper.
Options
	:inner_adapter - The real adapter to wrap (required)
	:target_command - Command module to mutate (nil = mutate all)
	:mutation - The mutation specification to apply
	:operator - The operator module that will apply the mutation
	:apply_once - Only apply mutation once (default: true)


  



  
    
      
    
    
      wrap_config(adapter, base_config)



        
          
        

    

  


  

      

          @spec wrap_config(t(), map()) :: map()


      


Wraps an adapter module to use with PropertyDamage.run.
Returns a configuration map that includes the mutating adapter.

  


        

      


  

    
PropertyDamage.Mutation.Operator behaviour
    



      
Behaviour for mutation operators.
Mutation operators define how to transform adapter responses to simulate bugs.
Each operator generates a set of mutations that can be applied to test if
the property-based checks would catch such bugs.
Implementing an Operator
defmodule MyOperator do
  @behaviour PropertyDamage.Mutation.Operator

  @impl true
  def name, do: :my_operator

  @impl true
  def description, do: "Applies custom mutations"

  @impl true
  def generate_mutations(events, _opts) do
    # Return list of mutations to try
    [
      %{type: :my_mutation, target: :some_field, ...}
    ]
  end

  @impl true
  def apply_mutation(events, mutation) do
    # Apply the mutation to events and return modified events
    mutated_events
  end

  @impl true
  def describe_mutation(mutation) do
    "Changed something"
  end
end

      


      
        Summary


  
    Types
  


    
      
        mutation()

      


        A mutation specification



    


    
      
        opts()

      


        Options passed to operators



    





  
    Callbacks
  


    
      
        apply_mutation(events, mutation)

      


        Applies a mutation to events, returning the mutated events.



    


    
      
        describe_mutation(mutation)

      


        Returns a human-readable description of a specific mutation.



    


    
      
        description()

      


        Returns a human-readable description of what this operator does.



    


    
      
        generate_mutations(events, opts)

      


        Generates a list of mutations that can be applied to the given events.



    


    
      
        name()

      


        Returns the operator's identifier atom.



    





  
    Functions
  


    
      
        built_in_operators()

      


        Returns all built-in mutation operators.



    


    
      
        new_mutation(operator, fields)

      


        Creates a mutation struct with standard fields.



    


    
      
        operators_by_name(names)

      


        Returns operators by their name atoms.



    





      


      
        Types


        


  
    
      
    
    
      mutation()



        
          
        

    

  


  

      

          @type mutation() :: %{
  type: atom(),
  operator: atom(),
  target: atom() | nil,
  original: term(),
  mutated: term(),
  description: String.t() | nil
}


      


A mutation specification

  



  
    
      
    
    
      opts()



        
          
        

    

  


  

      

          @type opts() :: keyword()


      


Options passed to operators

  


        

      

      
        Callbacks


        


  
    
      
    
    
      apply_mutation(events, mutation)



        
          
        

    

  


  

      

          @callback apply_mutation(events :: [struct()], mutation :: mutation()) ::
  [struct()] | {:error, term()}


      


Applies a mutation to events, returning the mutated events.
This is called during test execution to inject the fault.

  



  
    
      
    
    
      describe_mutation(mutation)



        
          
        

    

  


  

      

          @callback describe_mutation(mutation :: mutation()) :: String.t()


      


Returns a human-readable description of a specific mutation.
Used for reporting which mutations survived or were killed.

  



  
    
      
    
    
      description()



        
          
        

    

  


  

      

          @callback description() :: String.t()


      


Returns a human-readable description of what this operator does.

  



  
    
      
    
    
      generate_mutations(events, opts)



        
          
        

    

  


  

      

          @callback generate_mutations(events :: [struct()], opts :: opts()) :: [mutation()]


      


Generates a list of mutations that can be applied to the given events.
The operator examines the events and produces mutations that would
test if the checks can detect various types of faults.
Options
	:max_mutations - Maximum number of mutations to generate (default: 10)
	:seed - Random seed for deterministic mutation generation


  



  
    
      
    
    
      name()



        
          
        

    

  


  

      

          @callback name() :: atom()


      


Returns the operator's identifier atom.

  


        

      

      
        Functions


        


  
    
      
    
    
      built_in_operators()



        
          
        

    

  


  

      

          @spec built_in_operators() :: [module()]


      


Returns all built-in mutation operators.

  



  
    
      
    
    
      new_mutation(operator, fields)



        
          
        

    

  


  

      

          @spec new_mutation(
  atom(),
  keyword()
) :: mutation()


      


Creates a mutation struct with standard fields.

  



  
    
      
    
    
      operators_by_name(names)



        
          
        

    

  


  

      

          @spec operators_by_name([atom()]) :: [module()]


      


Returns operators by their name atoms.

  


        

      


  

    
PropertyDamage.Mutation.Operators.Boundary 
    



      
Mutation operator that pushes values to boundary cases.
Tests whether checks handle edge cases properly.
Mutation Types
	:zero - Set numeric value to 0
	:negative - Set numeric value to -1
	:max_int - Set to very large positive integer
	:min_int - Set to very large negative integer
	:empty_string - Set string to ""
	:whitespace - Set string to whitespace only
	:very_long - Set string to very long value
	:null - Set value to nil


      




  

    
PropertyDamage.Mutation.Operators.Event 
    



      
Mutation operator that modifies event contents.
Tests whether checks properly validate event data and relationships.
Mutation Types
	:wrong_ref - Replace a ref/id with a different value
	:duplicate_event - Duplicate an event
	:reorder_events - Swap order of two events
	:wrong_type - Change event type (if possible)


      




  

    
PropertyDamage.Mutation.Operators.Omission 
    



      
Mutation operator that removes fields from events.
Tests whether checks validate that required fields are present.
Mutation Types
	:remove_field - Remove a single field from an event
	:remove_event - Remove an entire event from the list


      




  

    
PropertyDamage.Mutation.Operators.Status 
    



      
Mutation operator that changes success/error outcomes.
Tests whether checks properly handle error cases and validate
expected success patterns.
Mutation Types
	:success_to_error - Change {:ok, events} to {:error, reason}
	:empty_events - Change {:ok, events} to {:ok, []}
	:error_to_success - Change {:error, reason} to {:ok, []}


      




  

    
PropertyDamage.Mutation.Operators.Value 
    



      
Mutation operator that mutates numeric and string values in events.
Mutation Types
For numbers:
	:zero - Replace with 0
	:negate - Negate the value
	:increment - Add 1
	:decrement - Subtract 1
	:double - Multiply by 2
	:halve - Divide by 2

For strings:
	:empty - Replace with empty string
	:swap_case - Swap case of first character
	:truncate - Remove last character
	:append - Append extra character

For atoms:
	:swap - Replace with a different common atom


      




  

    
PropertyDamage.Mutation.Report 
    



      
Report structure for mutation testing results.
The report aggregates results from running mutations and provides
statistics about test effectiveness.
Fields
	mutation_score - Ratio of killed to total mutations (0.0 to 1.0)
	killed - Number of mutations that were caught by tests
	survived - Number of mutations that tests failed to catch
	timeout - Number of mutations that timed out
	total - Total number of mutations tested
	by_command - Breakdown by command type
	by_operator - Breakdown by mutation operator
	survived_mutations - Details of mutations that survived
	killed_mutations - Details of mutations that were killed
	duration_ms - Total time taken
	started_at - When testing started
	completed_at - When testing completed


      


      
        Summary


  
    Types
  


    
      
        command_stats()

      


    


    
      
        mutation_result()

      


    


    
      
        t()

      


    





  
    Functions
  


    
      
        finalize(report, started_at, completed_at)

      


        Finalizes the report with timing information.



    


    
      
        new(opts \\ [])

      


        Creates a new empty report.



    


    
      
        passes?(report)

      


        Checks if the report passes the target score.



    


    
      
        record_result(report, result)

      


        Records a mutation result in the report.



    


    
      
        weakest_commands(report)

      


        Returns commands sorted by kill rate (weakest first).



    


    
      
        weakest_operators(report)

      


        Returns operators sorted by kill rate (weakest first).



    





      


      
        Types


        


  
    
      
    
    
      command_stats()



        
          
        

    

  


  

      

          @type command_stats() :: %{
  killed: non_neg_integer(),
  survived: non_neg_integer(),
  timeout: non_neg_integer(),
  total: non_neg_integer(),
  score: float()
}


      



  



  
    
      
    
    
      mutation_result()



        
          
        

    

  


  

      

          @type mutation_result() :: %{
  mutation: map(),
  command: module(),
  operator: atom(),
  result: :killed | :survived | :timeout,
  failure_message: String.t() | nil,
  duration_ms: non_neg_integer()
}


      



  



  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %PropertyDamage.Mutation.Report{
  adapter: module() | nil,
  by_command: %{required(module()) => command_stats()},
  by_operator: %{required(atom()) => command_stats()},
  completed_at: DateTime.t() | nil,
  duration_ms: non_neg_integer(),
  killed: non_neg_integer(),
  killed_mutations: [mutation_result()],
  model: module() | nil,
  mutation_score: float(),
  started_at: DateTime.t() | nil,
  survived: non_neg_integer(),
  survived_mutations: [mutation_result()],
  target_score: float(),
  timeout: non_neg_integer(),
  total: non_neg_integer()
}


      



  


        

      

      
        Functions


        


  
    
      
    
    
      finalize(report, started_at, completed_at)



        
          
        

    

  


  

      

          @spec finalize(t(), DateTime.t(), DateTime.t()) :: t()


      


Finalizes the report with timing information.

  



    

  
    
      
    
    
      new(opts \\ [])



        
          
        

    

  


  

      

          @spec new(keyword()) :: t()


      


Creates a new empty report.

  



  
    
      
    
    
      passes?(report)



        
          
        

    

  


  

      

          @spec passes?(t()) :: boolean()


      


Checks if the report passes the target score.

  



  
    
      
    
    
      record_result(report, result)



        
          
        

    

  


  

      

          @spec record_result(t(), mutation_result()) :: t()


      


Records a mutation result in the report.

  



  
    
      
    
    
      weakest_commands(report)



        
          
        

    

  


  

      

          @spec weakest_commands(t()) :: [{module(), command_stats()}]


      


Returns commands sorted by kill rate (weakest first).

  



  
    
      
    
    
      weakest_operators(report)



        
          
        

    

  


  

      

          @spec weakest_operators(t()) :: [{atom(), command_stats()}]


      


Returns operators sorted by kill rate (weakest first).

  


        

      


  

    
PropertyDamage.Mutation.Runner 
    



      
Orchestrates mutation testing runs.
The runner:
	Generates mutations for each command type
	Runs PropertyDamage tests with each mutation
	Records whether tests catch (kill) or miss (survive) each mutation
	Aggregates results into a report


      


      
        Summary


  
    Functions
  


    
      
        run(opts)

      


        Runs mutation testing against a model.



    





      


      
        Functions


        


  
    
      
    
    
      run(opts)



        
          
        

    

  


  

      

          @spec run(keyword()) :: {:ok, PropertyDamage.Mutation.Report.t()} | {:error, term()}


      


Runs mutation testing against a model.
Options
	:model - The model module (required)
	:adapter - The adapter module (required)
	:adapter_config - Configuration for the adapter
	:operators - List of operator names to use (default: all)
	:mutations_per_command - Max mutations per command type (default: 5)
	:max_runs - Property test runs per mutation (default: 10)
	:target_score - Target mutation score (default: 0.80)
	:timeout_ms - Timeout per mutation test (default: 30000)
	:verbose - Print progress (default: false)
	:on_progress - Callback for progress updates


  


        

      


  

    
PropertyDamage.Options 
    



      
NimbleOptions schemas for PropertyDamage configuration.
This module provides compile-time validated schemas for all public APIs.
It enables better error messages, auto-generated documentation, and
consistent option handling across the framework.
Usage
The schemas are used internally by PropertyDamage.run/1 and
PropertyDamage.LoadTest.run/1. Users don't need to interact with
this module directly.
Generated Documentation
Use run_docs/0 and load_test_docs/0 to get NimbleOptions-generated
documentation suitable for embedding in moduledocs.

      


      
        Summary


  
    Functions
  


    
      
        arrival_rate_to_interval_ms(arg)

      


        Converts a validated arrival rate to interval in milliseconds.



    


    
      
        duration_to_ms(arg)

      


        Converts a duration tuple to milliseconds.



    


    
      
        load_test_docs()

      


        Returns NimbleOptions-generated documentation for load test options.



    


    
      
        load_test_schema()

      


        Returns the compiled NimbleOptions schema for PropertyDamage.LoadTest.run/1.



    


    
      
        run_docs()

      


        Returns NimbleOptions-generated documentation for run options.



    


    
      
        run_schema()

      


        Returns the compiled NimbleOptions schema for PropertyDamage.run/1.



    


    
      
        validate_differential!(opts)

      


        Validates options for PropertyDamage.Differential.run/1.



    


    
      
        validate_export_exunit!(opts)

      


        Validates options for PropertyDamage.Export.to_exunit/2.



    


    
      
        validate_export_livebook!(opts)

      


        Validates options for PropertyDamage.Export.to_livebook/2.



    


    
      
        validate_export_script!(opts)

      


        Validates options for PropertyDamage.Export.to_script/3.



    


    
      
        validate_generate_test!(opts)

      


        Validates options for PropertyDamage.Analysis.generate_test/2.



    


    
      
        validate_guided_runner!(opts)

      


        Validates options for PropertyDamage.GuidedRunner.run/1.



    


    
      
        validate_load_test!(opts)

      


        Validates options for PropertyDamage.LoadTest.run/1.



    


    
      
        validate_mutation!(opts)

      


        Validates options for PropertyDamage.Mutation.run/1.



    


    
      
        validate_replay!(opts)

      


        Validates options for PropertyDamage.Replay.run/2 and start/2.



    


    
      
        validate_run!(opts)

      


        Validates options for PropertyDamage.run/1.



    





      


      
        Functions


        


  
    
      
    
    
      arrival_rate_to_interval_ms(arg)



        
          
        

    

  


  

      

          @spec arrival_rate_to_interval_ms({pos_integer(), {pos_integer(), atom()}}) :: float()


      


Converts a validated arrival rate to interval in milliseconds.
Examples
iex> arrival_rate_to_interval_ms({100, {1, :seconds}})
10.0

iex> arrival_rate_to_interval_ms({2, {15, :milliseconds}})
7.5

  



  
    
      
    
    
      duration_to_ms(arg)



        
          
        

    

  


  

      

          @spec duration_to_ms({pos_integer(), atom()}) :: non_neg_integer()


      


Converts a duration tuple to milliseconds.

  



  
    
      
    
    
      load_test_docs()



        
          
        

    

  


  

      

          @spec load_test_docs() :: String.t()


      


Returns NimbleOptions-generated documentation for load test options.
Suitable for embedding in moduledocs.

  



  
    
      
    
    
      load_test_schema()



        
          
        

    

  


  

      

          @spec load_test_schema() :: NimbleOptions.t()


      


Returns the compiled NimbleOptions schema for PropertyDamage.LoadTest.run/1.

  



  
    
      
    
    
      run_docs()



        
          
        

    

  


  

      

          @spec run_docs() :: String.t()


      


Returns NimbleOptions-generated documentation for run options.
Suitable for embedding in moduledocs.

  



  
    
      
    
    
      run_schema()



        
          
        

    

  


  

      

          @spec run_schema() :: NimbleOptions.t()


      


Returns the compiled NimbleOptions schema for PropertyDamage.run/1.

  



  
    
      
    
    
      validate_differential!(opts)



        
          
        

    

  


  

      

          @spec validate_differential!(keyword()) :: keyword()


      


Validates options for PropertyDamage.Differential.run/1.

  



  
    
      
    
    
      validate_export_exunit!(opts)



        
          
        

    

  


  

      

          @spec validate_export_exunit!(keyword()) :: keyword()


      


Validates options for PropertyDamage.Export.to_exunit/2.

  



  
    
      
    
    
      validate_export_livebook!(opts)



        
          
        

    

  


  

      

          @spec validate_export_livebook!(keyword()) :: keyword()


      


Validates options for PropertyDamage.Export.to_livebook/2.

  



  
    
      
    
    
      validate_export_script!(opts)



        
          
        

    

  


  

      

          @spec validate_export_script!(keyword()) :: keyword()


      


Validates options for PropertyDamage.Export.to_script/3.

  



  
    
      
    
    
      validate_generate_test!(opts)



        
          
        

    

  


  

      

          @spec validate_generate_test!(keyword()) :: keyword()


      


Validates options for PropertyDamage.Analysis.generate_test/2.

  



  
    
      
    
    
      validate_guided_runner!(opts)



        
          
        

    

  


  

      

          @spec validate_guided_runner!(keyword()) :: keyword()


      


Validates options for PropertyDamage.GuidedRunner.run/1.

  



  
    
      
    
    
      validate_load_test!(opts)



        
          
        

    

  


  

      

          @spec validate_load_test!(keyword()) :: keyword()


      


Validates options for PropertyDamage.LoadTest.run/1.
Returns validated options with defaults applied, or raises
NimbleOptions.ValidationError on invalid input.

  



  
    
      
    
    
      validate_mutation!(opts)



        
          
        

    

  


  

      

          @spec validate_mutation!(keyword()) :: keyword()


      


Validates options for PropertyDamage.Mutation.run/1.

  



  
    
      
    
    
      validate_replay!(opts)



        
          
        

    

  


  

      

          @spec validate_replay!(keyword()) :: keyword()


      


Validates options for PropertyDamage.Replay.run/2 and start/2.

  



  
    
      
    
    
      validate_run!(opts)



        
          
        

    

  


  

      

          @spec validate_run!(keyword()) :: keyword()


      


Validates options for PropertyDamage.run/1.
Returns validated options with defaults applied, or raises
NimbleOptions.ValidationError on invalid input.

  


        

      


  

    
PropertyDamage.Progress 
    



      
Progress reporting for PropertyDamage test runs.
Provides user-friendly output during test execution including:
	Run start headers
	Per-run progress updates
	Failure summaries
	Success summaries with statistics


      


      
        Summary


  
    Functions
  


    
      
        print_dot()

      


        Print a progress dot (compact mode).



    


    
      
        print_failure(report)

      


        Print a failure summary with helpful context.



    


    
      
        print_header(model, adapter, opts \\ [])

      


        Print the test run header showing what's being tested.



    


    
      
        print_run(run_number, max_runs, sequence)

      


        Print progress for the current run.



    


    
      
        print_success(stats)

      


        Print a success summary with statistics.



    


    
      
        print_x()

      


        Print a failure X (compact mode).



    





      


      
        Functions


        


  
    
      
    
    
      print_dot()



        
          
        

    

  


  

      

          @spec print_dot() :: :ok


      


Print a progress dot (compact mode).

  



  
    
      
    
    
      print_failure(report)



        
          
        

    

  


  

      

          @spec print_failure(PropertyDamage.FailureReport.t()) :: :ok


      


Print a failure summary with helpful context.

  



    

  
    
      
    
    
      print_header(model, adapter, opts \\ [])



        
          
        

    

  


  

      

          @spec print_header(module(), module(), keyword()) :: :ok


      


Print the test run header showing what's being tested.

  



  
    
      
    
    
      print_run(run_number, max_runs, sequence)



        
          
        

    

  


  

      

          @spec print_run(non_neg_integer(), non_neg_integer(), PropertyDamage.Sequence.t()) ::
  :ok


      


Print progress for the current run.
Shows run number, command count, and optional branch info.

  



  
    
      
    
    
      print_success(stats)



        
          
        

    

  


  

      

          @spec print_success(map()) :: :ok


      


Print a success summary with statistics.

  



  
    
      
    
    
      print_x()



        
          
        

    

  


  

      

          @spec print_x() :: :ok


      


Print a failure X (compact mode).

  


        

      


  

    
PropertyDamage.Ref.Unresolved 
    



      
Sentinel module used to indicate a Ref has not yet been resolved.
Why a Module Instead of an Atom?
Using a dedicated module atom avoids ambiguity with legitimate values.
The atom PropertyDamage.Ref.Unresolved cannot be a legitimate resolved
value from a System Under Test, whereas a simple atom like :unresolved
theoretically could be (e.g., if an API returns {:ok, :unresolved}).
Usage
This module is used internally by PropertyDamage.Ref as the default
value for the resolved field. You should not need to reference this
module directly - use Ref.resolved?/1 instead to check resolution status.

      




  

    
PropertyDamage.Sequence 
    



      
Represents a command sequence that may contain parallel branches.
A sequence consists of three parts:
	prefix: Commands executed sequentially before any branching
	branches: Optional list of parallel branches (each branch is a list of commands)
	suffix: Commands executed sequentially after branches merge

Linear Sequences
A linear (non-parallel) sequence has branches: nil and all commands in prefix:
%Sequence{prefix: [cmd1, cmd2, cmd3], branches: nil, suffix: []}
Use Sequence.linear/1 as a convenience constructor:
Sequence.linear([cmd1, cmd2, cmd3])
Branching Sequences
A branching sequence has commands before the branch point in prefix,
parallel branches in branches, and commands after merge in suffix:
%Sequence{
  prefix: [cmd1, cmd2],
  branches: [[cmd3a, cmd4a], [cmd3b, cmd4b]],
  suffix: [cmd5, cmd6]
}
Use Sequence.branching/3 as a convenience constructor:
Sequence.branching(
  [cmd1, cmd2],                       # prefix
  [[cmd3a, cmd4a], [cmd3b, cmd4b]],   # branches
  [cmd5, cmd6]                        # suffix
)
Execution Semantics
	Execute prefix commands sequentially
	If branches is not nil:
a. Fork projection state
b. Execute each branch in parallel (or interleaved)
c. Merge results and check for linearizability
	Execute suffix commands sequentially

Ref Constraints
	Refs created in prefix can be used in any branch
	Refs created in one branch CANNOT be used in another branch
	Refs created in branches CAN be used in suffix (after merge)


      


      
        Summary


  
    Types
  


    
      
        command()

      


    


    
      
        t()

      


    





  
    Functions
  


    
      
        add_branch(seq, branch_commands)

      


        Add a new branch to the sequence.



    


    
      
        append(seq, command)

      


        Append a command to the end of the sequence.



    


    
      
        branch_count(sequence)

      


        Get the number of branches (0 for linear sequences).



    


    
      
        branching(prefix, branches, suffix \\ [])

      


        Create a branching sequence with parallel execution.



    


    
      
        branching?(seq)

      


        Check if a sequence has parallel branches.



    


    
      
        command_count(sequence)

      


        Get the total number of commands in the sequence.



    


    
      
        filter(sequence, pred)

      


        Filter commands in the sequence, preserving structure.



    


    
      
        linear(commands)

      


        Create a linear (non-branching) sequence.



    


    
      
        linear?(sequence)

      


        Check if a sequence is linear (no parallel branches).



    


    
      
        linearizations(seq)

      


        Generate all possible linearizations of a branching sequence.



    


    
      
        map(sequence, fun)

      


        Map a function over all commands in the sequence, preserving structure.



    


    
      
        prepend(seq, command)

      


        Prepend a command to the beginning of the sequence.



    


    
      
        to_list(sequence)

      


        Convert a sequence to a flat list of commands.



    





      


      
        Types


        


  
    
      
    
    
      command()



        
          
        

    

  


  

      

          @type command() :: struct()


      



  



  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %PropertyDamage.Sequence{
  branches: [[command()]] | nil,
  prefix: [command()],
  suffix: [command()]
}


      



  


        

      

      
        Functions


        


  
    
      
    
    
      add_branch(seq, branch_commands)



        
          
        

    

  


  

      

          @spec add_branch(t(), [command()]) :: t()


      


Add a new branch to the sequence.
If the sequence is linear, converts it to branching with the existing
commands as prefix and the new branch.

  



  
    
      
    
    
      append(seq, command)



        
          
        

    

  


  

      

          @spec append(t(), command()) :: t()


      


Append a command to the end of the sequence.
For linear sequences, appends to prefix.
For branching sequences, appends to suffix.

  



  
    
      
    
    
      branch_count(sequence)



        
          
        

    

  


  

      

          @spec branch_count(t()) :: non_neg_integer()


      


Get the number of branches (0 for linear sequences).

  



    

  
    
      
    
    
      branching(prefix, branches, suffix \\ [])



        
          
        

    

  


  

      

          @spec branching([command()], [[command()]], [command()]) :: t()


      


Create a branching sequence with parallel execution.
Parameters
	prefix - Commands to execute before branching
	branches - List of branches, each branch is a list of commands
	suffix - Commands to execute after branches merge (optional)

Examples
iex> seq = PropertyDamage.Sequence.branching(
...>   [setup_cmd],
...>   [[branch_a_cmd1, branch_a_cmd2], [branch_b_cmd1]],
...>   [cleanup_cmd]
...> )
iex> length(seq.branches)
2

  



  
    
      
    
    
      branching?(seq)



        
          
        

    

  


  

      

          @spec branching?(t()) :: boolean()


      


Check if a sequence has parallel branches.

  



  
    
      
    
    
      command_count(sequence)



        
          
        

    

  


  

      

          @spec command_count(t()) :: non_neg_integer()


      


Get the total number of commands in the sequence.
Counts commands in prefix + all branches + suffix.
Examples
iex> seq = PropertyDamage.Sequence.branching([cmd1], [[cmd2, cmd3], [cmd4]], [cmd5])
iex> PropertyDamage.Sequence.command_count(seq)
5

  



  
    
      
    
    
      filter(sequence, pred)



        
          
        

    

  


  

      

          @spec filter(t(), (command() -> boolean())) :: t()


      


Filter commands in the sequence, preserving structure.
Empty branches are removed. If all branches become empty, converts to linear.

  



  
    
      
    
    
      linear(commands)



        
          
        

    

  


  

      

          @spec linear([command()]) :: t()


      


Create a linear (non-branching) sequence.
All commands are placed in the prefix with no branches.
Examples
iex> seq = PropertyDamage.Sequence.linear([cmd1, cmd2, cmd3])
iex> seq.prefix
[cmd1, cmd2, cmd3]
iex> seq.branches
nil

  



  
    
      
    
    
      linear?(sequence)



        
          
        

    

  


  

      

          @spec linear?(t()) :: boolean()


      


Check if a sequence is linear (no parallel branches).
Examples
iex> PropertyDamage.Sequence.linear?(%Sequence{branches: nil})
true

iex> PropertyDamage.Sequence.linear?(%Sequence{branches: [[cmd1], [cmd2]]})
false

  



  
    
      
    
    
      linearizations(seq)



        
          
        

    

  


  

      

          @spec linearizations(t()) :: [t()]


      


Generate all possible linearizations of a branching sequence.
For a sequence with N branches, generates all valid interleaving orderings
of the branch commands, preserving the order within each branch.
Returns a list of linear sequences, each representing one possible
sequential execution order.
For linear sequences, returns a list containing just that sequence.
Complexity
For K branches with N total commands, worst case is O(N! / (n1!  n2!  ... * nk!))
where ni is the length of branch i.

  



  
    
      
    
    
      map(sequence, fun)



        
          
        

    

  


  

      

          @spec map(t(), (command() -> command())) :: t()


      


Map a function over all commands in the sequence, preserving structure.
Examples
iex> seq = PropertyDamage.Sequence.linear([1, 2, 3])
iex> PropertyDamage.Sequence.map(seq, &(&1 * 2))
%PropertyDamage.Sequence{prefix: [2, 4, 6], branches: nil, suffix: []}

  



  
    
      
    
    
      prepend(seq, command)



        
          
        

    

  


  

      

          @spec prepend(t(), command()) :: t()


      


Prepend a command to the beginning of the sequence.

  



  
    
      
    
    
      to_list(sequence)



        
          
        

    

  


  

      

          @spec to_list(t()) :: [command()]


      


Convert a sequence to a flat list of commands.
For linear sequences, returns the prefix.
For branching sequences, returns prefix ++ (flattened branches) ++ suffix.
Note: This loses the parallel structure - use only for display/debugging.
Examples
iex> seq = PropertyDamage.Sequence.branching([cmd1], [[cmd2], [cmd3]], [cmd4])
iex> PropertyDamage.Sequence.to_list(seq)
[cmd1, cmd2, cmd3, cmd4]

  


        

      


  

    
PropertyDamage.Settle 
    



      
Settle logic for eventually consistent systems.
The Settle module provides retry logic for probe and async commands that need
to wait for eventual consistency. It supports configurable timeout, interval,
and backoff strategies.
Usage
Commands with semantics/0 returning :probe or :async can implement settle_config/0
to customize retry behavior. The Executor uses this module to repeatedly execute
the command until it succeeds or times out.
Example
defmodule MyProbe do
  @behaviour PropertyDamage.Command

  def semantics, do: :probe

  def settle_config do
    %{
      timeout_ms: 5_000,
      interval_ms: 200,
      backoff: :exponential
    }
  end
end
Backoff Strategies
	:linear - Constant interval between retries (default)
	:exponential - Double the interval after each retry (capped at timeout)


      


      
        Summary


  
    Types
  


    
      
        settle_result()

      


    





  
    Functions
  


    
      
        execute_with_settle(command, execute_fn, opts \\ [])

      


        Execute a command with settle logic if required.



    


    
      
        get_config(command)

      


        Get the settle configuration for a command.



    


    
      
        get_semantics(command)

      


        Get the semantics of a command.



    


    
      
        requires_settling?(command)

      


        Check if a command requires settling (is a probe or async).



    


    
      
        settle(fun, opts \\ [])

      


        Execute a function with settle/retry logic.



    





      


      
        Types


        


  
    
      
    
    
      settle_result()



        
          
        

    

  


  

      

          @type settle_result() ::
  {:ok, term()}
  | {:settled, term()}
  | {:retry, term()}
  | {:timeout, term()}
  | {:error, term()}


      



  


        

      

      
        Functions


        


    

  
    
      
    
    
      execute_with_settle(command, execute_fn, opts \\ [])



        
          
        

    

  


  

      

          @spec execute_with_settle(struct(), (-> term()), keyword()) :: term()


      


Execute a command with settle logic if required.
If the command is a probe or async, wraps execution with settle/retry logic.
For regular sync commands, executes directly.
Parameters
	command - The command struct
	execute_fn - Function that executes the command, should return settle-compatible result
	opts - Additional options (merged with command's settle_config)


  



  
    
      
    
    
      get_config(command)



        
          
        

    

  


  

      

          @spec get_config(module() | struct()) :: map()


      


Get the settle configuration for a command.
Returns the command's settle_config if implemented, otherwise returns defaults.

  



  
    
      
    
    
      get_semantics(command)



        
          
        

    

  


  

      

          @spec get_semantics(module() | struct() | map()) ::
  :sync | :probe | :async | :mock_config


      


Get the semantics of a command.
Returns the command's semantics if implemented, otherwise returns :sync (default).

  



  
    
      
    
    
      requires_settling?(command)



        
          
        

    

  


  

      

          @spec requires_settling?(module() | struct()) :: boolean()


      


Check if a command requires settling (is a probe or async).

  



    

  
    
      
    
    
      settle(fun, opts \\ [])



        
          
        

    

  


  

      

          @spec settle(
  (-> settle_result()),
  keyword()
) :: settle_result()


      


Execute a function with settle/retry logic.
The function should return:
	{:ok, result} - Success, stop retrying
	{:settled, result} - Successfully settled, stop retrying
	{:retry, reason} - Need to retry (will continue until timeout)
	{:error, reason} - Hard failure, stop retrying immediately

Options
	:timeout_ms - Maximum time to wait (default: 2000)
	:interval_ms - Time between retries (default: 100)
	:backoff - Backoff strategy, :linear or :exponential (default: :linear)

Returns
	{:ok, result} - Function succeeded
	{:settled, result} - Function settled successfully
	{:timeout, last_reason} - Timed out waiting for success
	{:error, reason} - Function returned hard error


  


        

      


  

    
PropertyDamage.Shrinker.Config 
    



      
Configuration for the shrinking process.
Controls shrinking behavior including thresholds, limits, and strategies.
Fields
	:granularity_threshold - Minimum sequence length before switching from
hierarchical to linear shrinking. Below this threshold, linear shrinking
is more efficient. Default: 8

	:max_iterations - Maximum number of shrink attempts before giving up.
Prevents infinite loops in edge cases. Default: 1000

	:max_time_ms - Maximum time in milliseconds for shrinking. Useful for
large failing sequences. Default: 30000 (30 seconds)

	:shrink_arguments - Whether to attempt argument shrinking after sequence
shrinking. Can make failures more minimal but takes longer. Default: true


Example
config = %Config{
  granularity_threshold: 4,
  max_iterations: 500,
  max_time_ms: 10_000,
  shrink_arguments: false
}

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





  
    Functions
  


    
      
        new()

      


        Create a new config with defaults.



    


    
      
        new(opts)

      


        Create a new config with custom options.



    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %PropertyDamage.Shrinker.Config{
  granularity_threshold: pos_integer(),
  max_iterations: pos_integer(),
  max_time_ms: pos_integer(),
  shrink_arguments: boolean()
}


      



  


        

      

      
        Functions


        


  
    
      
    
    
      new()



        
          
        

    

  


  

      

          @spec new() :: t()


      


Create a new config with defaults.
Examples
iex> config = PropertyDamage.Shrinker.Config.new()
iex> config.granularity_threshold
8

  



  
    
      
    
    
      new(opts)



        
          
        

    

  


  

      

          @spec new(keyword()) :: t()


      


Create a new config with custom options.
Options
See module documentation for available options.
Examples
iex> config = PropertyDamage.Shrinker.Config.new(max_iterations: 100)
iex> config.max_iterations
100

  


        

      


  

    
PropertyDamage.Shrinker.Graph 
    



      
Dependency graph for command sequences.
Builds and analyzes a directed acyclic graph (DAG) representing dependencies
between commands in a sequence. Commands that produce refs are connected to
commands that consume those refs.
Used by the shrinker to identify independent subgraphs that can be safely
removed without breaking ref resolution.
Graph Structure
	Nodes: Each command in the sequence is a node, identified by its index
	Edges: An edge from node A to node B means B depends on A (B consumes
a ref that A produces)
	Producers: Map from ref identity to producing node index
	Consumers: Map from node index to list of ref identities it consumes

Example
Given a sequence:
0: CreateOrder (produces order_ref)
1: AddItem (consumes order_ref, produces item_ref)
2: ViewOrder (consumes order_ref)
3: ProcessItem (consumes item_ref)
The graph has edges:
	0 → 1 (order_ref)
	0 → 2 (order_ref)
	1 → 3 (item_ref)

Node 3 cannot be kept without nodes 1 and 0.
Node 2 can be removed independently of nodes 1 and 3.

      


      
        Summary


  
    Types
  


    
      
        t()

      


        Dependency graph structure.



    





  
    Functions
  


    
      
        ancestors(graph, node)

      


        Get all ancestors of a node (transitive dependencies).



    


    
      
        build(commands)

      


        Build a dependency graph from a command sequence.



    


    
      
        compress(graph)

      


        Compress the graph into super-nodes grouped by depth from roots.



    


    
      
        expand_super_node(graph, nodes)

      


        Expand a super-node (list of indices) to include all required ancestors.



    


    
      
        topo_sort_by_distance(graph)

      


        Topologically sort nodes by distance from roots.



    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %PropertyDamage.Shrinker.Graph{
  consumers: %{required(non_neg_integer()) => [reference()]},
  edges: %{required(non_neg_integer()) => MapSet.t(non_neg_integer())},
  nodes: MapSet.t(non_neg_integer()),
  producers: %{required(reference()) => non_neg_integer()}
}


      


Dependency graph structure.

  


        

      

      
        Functions


        


  
    
      
    
    
      ancestors(graph, node)



        
          
        

    

  


  

      

          @spec ancestors(t(), non_neg_integer()) :: MapSet.t(non_neg_integer())


      


Get all ancestors of a node (transitive dependencies).
Returns all nodes that must exist for the given node to be valid.
This includes direct dependencies and their dependencies recursively.
Example
# If node 3 depends on 1, and 1 depends on 0
ancestors = Graph.ancestors(graph, 3)
# => MapSet.new([0, 1])

  



  
    
      
    
    
      build(commands)



        
          
        

    

  


  

      

          @spec build([struct()]) :: t()


      


Build a dependency graph from a command sequence.
Analyzes each command to find refs it produces (via creates_ref/0) and
refs it consumes (any Ref structs in its fields).
Parameters
	commands - List of command structs

Returns
A dependency graph with nodes, edges, producers, and consumers.
Example
commands = [%CreateOrder{ref: ref1}, %AddItem{order: ref1, ref: ref2}]
graph = Graph.build(commands)

  



  
    
      
    
    
      compress(graph)



        
          
        

    

  


  

      

          @spec compress(t()) :: [[non_neg_integer()]]


      


Compress the graph into super-nodes grouped by depth from roots.
Nodes at the same depth (same distance from root nodes) are grouped together.
This enables hierarchical delta debugging where we try removing groups at
the same level before drilling down.
Returns
List of lists, where each inner list contains node indices at that depth.
Index 0 is root nodes (no dependencies), index 1 is nodes depending only
on roots, etc.
Example
# Graph: 0 → 1 → 2, 0 → 3
levels = Graph.compress(graph)
# => [[0], [1, 3], [2]]

  



  
    
      
    
    
      expand_super_node(graph, nodes)



        
          
        

    

  


  

      

          @spec expand_super_node(t(), [non_neg_integer()]) :: [non_neg_integer()]


      


Expand a super-node (list of indices) to include all required ancestors.
Given a set of nodes to keep, returns the minimal set that includes
those nodes plus all their transitive dependencies.
Example
# Want to keep node 3, but it needs 1 and 0
expanded = Graph.expand_super_node(graph, [3])
# => [0, 1, 3]

  



  
    
      
    
    
      topo_sort_by_distance(graph)



        
          
        

    

  


  

      

          @spec topo_sort_by_distance(t()) :: [non_neg_integer()]


      


Topologically sort nodes by distance from roots.
Returns nodes in order such that dependencies come before dependents.
Ties are broken by original index.
Example
sorted = Graph.topo_sort_by_distance(graph)
# => [0, 1, 3, 2]  # roots first, then by depth

  


        

      


  

    
PropertyDamage.Stutter 
    



      
Stutter testing for idempotency verification.
Stutter testing automatically retries commands to verify that the SUT
behaves idempotently - that retrying a command produces the same result.
How It Works
When stutter testing is enabled, some commands are executed multiple times:
	First execution: Events applied to projections normally
	Retry executions: Events captured but NOT applied to projections
	Framework compares retry events to first execution
	Mismatch = idempotency violation

This approach tests SUT idempotency without requiring idempotent projections.
Configuration
PropertyDamage.run(
  model: MyModel,
  adapter: MyAdapter,
  stutter: %{
    probability: 0.1,      # 10% of commands stuttered
    max_repeats: 2,        # Up to 2 retries (3 total executions)
    delay_ms: {0, 100},    # Random delay between retries
    commands: :all,        # Or list of specific command modules
    comparison: :strict    # :strict, {:structural, fields}, {:custom, fn}
  }
)
Command Callbacks
Commands can opt into idempotency testing by implementing:
	idempotent?/0 - Return true if command should be stuttered (default: true)
	idempotency_key/1 - Return the idempotency key for requests
	acceptable_retry_events/0 - Event modules acceptable as retry responses

Comparison Modes
	:strict - Events must be exactly equal
	{:structural, ignore_fields} - Ignore specified fields when comparing
	{:custom, fun} - Custom comparison function


      


      
        Summary


  
    Functions
  


    
      
        build_context(attempt, is_retry, idempotency_key)

      


        Build the stutter context passed to adapters during execution.



    


    
      
        compare_events(original_events, retry_events, config, command)

      


        Compare events from first execution with retry execution.



    


    
      
        default_config()

      


        Default stutter configuration.



    


    
      
        get_idempotency_key(command)

      


        Get the idempotency key for a command if it provides one.



    


    
      
        parse_config(opts)

      


        Parse stutter configuration from options.



    


    
      
        retry_count(config)

      


        Get the number of retry attempts for a stuttered command.



    


    
      
        retry_delay_ms(config)

      


        Get the delay in milliseconds before a retry attempt.



    


    
      
        should_stutter?(command, config)

      


        Determine if a command should be stuttered based on configuration.



    





      


      
        Functions


        


  
    
      
    
    
      build_context(attempt, is_retry, idempotency_key)



        
          
        

    

  


  

      

          @spec build_context(pos_integer(), boolean(), String.t() | nil) :: map()


      


Build the stutter context passed to adapters during execution.

  



  
    
      
    
    
      compare_events(original_events, retry_events, config, command)



        
          
        

    

  


  

      

          @spec compare_events(
  [struct()],
  [struct()],
  PropertyDamage.Stutter.Config.t(),
  struct()
) ::
  :match | {:mismatch, map()}


      


Compare events from first execution with retry execution.
Returns :match if events are considered equivalent, or
{:mismatch, details} if they differ.

  



  
    
      
    
    
      default_config()



        
          
        

    

  


  

      

          @spec default_config() :: PropertyDamage.Stutter.Config.t()


      


Default stutter configuration.

  



  
    
      
    
    
      get_idempotency_key(command)



        
          
        

    

  


  

      

          @spec get_idempotency_key(struct()) :: String.t() | nil


      


Get the idempotency key for a command if it provides one.

  



  
    
      
    
    
      parse_config(opts)



        
          
        

    

  


  

      

          @spec parse_config(map() | false | nil) :: PropertyDamage.Stutter.Config.t() | nil


      


Parse stutter configuration from options.
Accepts either a map of options or false to disable.

  



  
    
      
    
    
      retry_count(config)



        
          
        

    

  


  

      

          @spec retry_count(PropertyDamage.Stutter.Config.t()) :: pos_integer()


      


Get the number of retry attempts for a stuttered command.
Returns a random number between 1 and max_repeats.

  



  
    
      
    
    
      retry_delay_ms(config)



        
          
        

    

  


  

      

          @spec retry_delay_ms(PropertyDamage.Stutter.Config.t()) :: non_neg_integer()


      


Get the delay in milliseconds before a retry attempt.

  



  
    
      
    
    
      should_stutter?(command, config)



        
          
        

    

  


  

      

          @spec should_stutter?(
  struct(),
  PropertyDamage.Stutter.Config.t()
) :: boolean()


      


Determine if a command should be stuttered based on configuration.
Uses the seeded PRNG for deterministic behavior.

  


        

      


  

    
PropertyDamage.Stutter.Config 
    



      
Configuration for stutter testing.

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %PropertyDamage.Stutter.Config{
  commands: :all | [module()],
  comparison: :strict | {:structural, [atom()]} | {:custom, function()},
  delay_ms: {non_neg_integer(), non_neg_integer()} | non_neg_integer(),
  enabled: boolean(),
  max_repeats: pos_integer(),
  probability: float()
}


      



  


        

      


  

    
PropertyDamage.Stutter.Violation 
    



      
Represents an idempotency violation detected during stutter testing.

      


      
        Summary


  
    Types
  


    
      
        attempt()

      


    


    
      
        t()

      


    





  
    Functions
  


    
      
        format(violation)

      


        Format violation for display.



    





      


      
        Types


        


  
    
      
    
    
      attempt()



        
          
        

    

  


  

      

          @type attempt() :: %{attempt: pos_integer(), events: [struct()], is_retry: boolean()}


      



  



  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %PropertyDamage.Stutter.Violation{
  attempts: [attempt()],
  command: struct(),
  command_index: non_neg_integer(),
  comparison_result: term()
}


      



  


        

      

      
        Functions


        


  
    
      
    
    
      format(violation)



        
          
        

    

  


  

      

          @spec format(t()) :: String.t()


      


Format violation for display.

  


        

      


  

    
PropertyDamage.Suggestions.Analyzer 
    



      
Core analyzer for property and invariant suggestions.
Examines a model's structure and generates suggestions for missing checks.

      


      
        Summary


  
    Functions
  


    
      
        analyze(model, opts \\ [])

      


        Analyzes a model and returns a comprehensive analysis with suggestions.



    





      


      
        Functions


        


    

  
    
      
    
    
      analyze(model, opts \\ [])



        
          
        

    

  


  

      

          @spec analyze(
  module(),
  keyword()
) :: map()


      


Analyzes a model and returns a comprehensive analysis with suggestions.

  


        

      


  

    
PropertyDamage.Suggestions.Formatter 
    



      
Formats suggestion analysis results for various output formats.

      


      
        Summary


  
    Functions
  


    
      
        format(analysis, format \\ :terminal)

      


        Formats analysis results for the specified output format.



    


    
      
        generate_example_code(suggestion)

      


        Generates example check code for a suggestion.



    





      


      
        Functions


        


    

  
    
      
    
    
      format(analysis, format \\ :terminal)



        
          
        

    

  


  

      

          @spec format(map(), atom()) :: String.t()


      


Formats analysis results for the specified output format.

  



  
    
      
    
    
      generate_example_code(suggestion)



        
          
        

    

  


  

      

          @spec generate_example_code(map()) :: String.t()


      


Generates example check code for a suggestion.

  


        

      


  

    
PropertyDamage.Suggestions.Patterns 
    



      
Pattern detection for property and invariant suggestions.
Identifies common patterns in events and commands that typically require
specific invariant checks.

      


      
        Summary


  
    Types
  


    
      
        pattern()

      


    





  
    Functions
  


    
      
        detect_patterns(event_module)

      


        Detects patterns in event struct fields.



    


    
      
        detect_patterns_multi(event_modules)

      


        Detects patterns across multiple event modules.



    


    
      
        field_pattern_type(field)

      


        Returns the pattern type for a field.



    


    
      
        find_cross_event_fields(event_modules)

      


        Identifies fields that appear across multiple events (cross-event fields).



    


    
      
        suggest_checks_for_field(field, opts \\ [])

      


        Analyzes a field and returns suggested check types.



    





      


      
        Types


        


  
    
      
    
    
      pattern()



        
          
        

    

  


  

      

          @type pattern() :: %{
  type: atom(),
  field: atom(),
  event: module() | nil,
  command: module() | nil,
  value_type: atom(),
  confidence: float()
}


      



  


        

      

      
        Functions


        


  
    
      
    
    
      detect_patterns(event_module)



        
          
        

    

  


  

      

          @spec detect_patterns(module()) :: [pattern()]


      


Detects patterns in event struct fields.
Returns a list of detected patterns with their types and confidence levels.

  



  
    
      
    
    
      detect_patterns_multi(event_modules)



        
          
        

    

  


  

      

          @spec detect_patterns_multi([module()]) :: [pattern()]


      


Detects patterns across multiple event modules.

  



  
    
      
    
    
      field_pattern_type(field)



        
          
        

    

  


  

      

          @spec field_pattern_type(atom()) :: atom() | nil


      


Returns the pattern type for a field.

  



  
    
      
    
    
      find_cross_event_fields(event_modules)



        
          
        

    

  


  

      

          @spec find_cross_event_fields([module()]) :: [{atom(), [module()]}]


      


Identifies fields that appear across multiple events (cross-event fields).
These are prime candidates for consistency checks.

  



    

  
    
      
    
    
      suggest_checks_for_field(field, opts \\ [])



        
          
        

    

  


  

      

          @spec suggest_checks_for_field(
  atom(),
  keyword()
) :: [atom()]


      


Analyzes a field and returns suggested check types.

  


        

      


  

    
PropertyDamage.TargetedGeneration behaviour
    



      
Behaviour for guiding command generation toward interesting target states.
Random generation spends too much time in "boring" states and rarely reaches
edge cases. Targeted generation solves this by:
	Defining target states - Conditions that represent interesting scenarios
	Using fitness functions - Scoring how close current state is to targets
	Evolutionary algorithms - Breeding successful seeds to explore faster

Why Targeted Generation?
Consider an order management system. Random generation might produce:
	90% of runs: 0-5 orders, no edge cases
	9% of runs: 5-20 orders, some complexity
	1% of runs: 20+ orders, potential edge cases

With targeted generation:
	Define target: "account with 50+ orders and pending refunds"
	Fitness rewards: order count, pending operations, balance near limits
	Evolutionary pressure: mutate seeds that get closer to targets

Usage
Implement this behaviour alongside your Model:
defmodule MyTest.OrderModel do
  @behaviour PropertyDamage.Model
  @behaviour PropertyDamage.TargetedGeneration

  @impl PropertyDamage.TargetedGeneration
  def targets do
    [
      %{
        name: :high_order_count,
        condition: fn state -> map_size(state.orders) >= 50 end,
        priority: 10
      },
      %{
        name: :pending_refunds,
        condition: fn state ->
          Enum.count(state.orders, fn {_, o} -> o.status == :refund_pending end) >= 3
        end,
        priority: 5
      }
    ]
  end

  @impl PropertyDamage.TargetedGeneration
  def fitness(state) do
    base = map_size(state.orders) / 50.0
    pending = Enum.count(state.orders, &match?({_, %{status: :pending}}, &1))
    base + pending * 0.1
  end
end
Then run with guided generation:
PropertyDamage.GuidedRunner.run(
  model: MyTest.OrderModel,
  adapter: MyAdapter,
  generations: 10,
  population_size: 20
)

      


      
        Summary


  
    Types
  


    
      
        target()

      


        A target state definition.



    





  
    Callbacks
  


    
      
        command_weights(state, unreached_targets)

      


        (Optional) Custom command weighting based on current state and targets.



    


    
      
        fitness(state)

      


        Calculate fitness score for a state.



    


    
      
        targets()

      


        Return the list of target states for guided generation.



    





  
    Functions
  


    
      
        calculate_fitness(model, state)

      


        Calculate fitness for a state using the model's fitness function.



    


    
      
        implements_behaviour?(module)

      


        Check if a module implements the TargetedGeneration behaviour.



    


    
      
        reached_targets(model, state)

      


        Check which targets have been reached in the given state.



    


    
      
        unreached_targets(model, state)

      


        Check which targets have NOT been reached in the given state.



    





      


      
        Types


        


  
    
      
    
    
      target()



        
          
        

    

  


  

      

          @type target() :: %{
  name: atom(),
  condition: (state :: map() -> boolean()),
  priority: pos_integer()
}


      


A target state definition.
	:name - Atom identifying this target (for reporting)
	:condition - Function that returns true when target is reached
	:priority - Higher priority targets are weighted more in fitness


  


        

      

      
        Callbacks


        


  
    
      
    
    
      command_weights(state, unreached_targets)


        (optional)


        
          
        

    

  


  

      

          @callback command_weights(state :: map(), unreached_targets :: [atom()]) :: %{
  required(module()) => pos_integer()
}


      


(Optional) Custom command weighting based on current state and targets.
Override this to dynamically adjust command probabilities based on
which targets haven't been reached yet.
Example
def command_weights(state, unreached_targets) do
  if :high_order_count in unreached_targets do
    # Increase weight of CreateOrder when trying to reach high count
    %{CreateOrder => 10, CancelOrder => 1}
  else
    %{}  # Use default weights
  end
end

  



  
    
      
    
    
      fitness(state)



        
          
        

    

  


  

      

          @callback fitness(state :: map()) :: float()


      


Calculate fitness score for a state.
Higher scores indicate states closer to interesting targets. The fitness
function guides the evolutionary algorithm toward better command sequences.
Parameters
	state - The current projection state

Returns
A float where higher values indicate more interesting states.
Example
def fitness(state) do
  # Score based on order count and complexity
  order_score = map_size(state.orders) / 50.0
  pending_score = count_pending(state) * 0.1
  order_score + pending_score
end

  



  
    
      
    
    
      targets()



        
          
        

    

  


  

      

          @callback targets() :: [target()]


      


Return the list of target states for guided generation.
Each target defines a "interesting" state that is more likely to expose bugs.
The generator will try to produce command sequences that reach these states.
Example
def targets do
  [
    %{
      name: :high_order_count,
      condition: fn state -> map_size(state.orders) >= 50 end,
      priority: 10
    }
  ]
end

  


        

      

      
        Functions


        


  
    
      
    
    
      calculate_fitness(model, state)



        
          
        

    

  


  

      

          @spec calculate_fitness(module(), map()) :: float()


      


Calculate fitness for a state using the model's fitness function.

  



  
    
      
    
    
      implements_behaviour?(module)



        
          
        

    

  


  

      

          @spec implements_behaviour?(module()) :: boolean()


      


Check if a module implements the TargetedGeneration behaviour.

  



  
    
      
    
    
      reached_targets(model, state)



        
          
        

    

  


  

      

          @spec reached_targets(module(), map()) :: [atom()]


      


Check which targets have been reached in the given state.

  



  
    
      
    
    
      unreached_targets(model, state)



        
          
        

    

  


  

      

          @spec unreached_targets(module(), map()) :: [atom()]


      


Check which targets have NOT been reached in the given state.

  


        

      


  

    
PropertyDamage.Telemetry.Events 
    



      
Common telemetry-derived events.
These event structs represent common patterns observed in telemetry data.
TelemetryReceiver implementations can convert spans to these events,
and projections can track them for performance assertions.
Example Usage
defmodule MyReceiver do
  @behaviour PropertyDamage.TelemetryReceiver

  alias PropertyDamage.Telemetry.Events

  def to_event(%{name: "db.query", duration_ns: dur, attributes: attrs}) do
    {:ok, %Events.DatabaseQuery{
      duration_ms: dur / 1_000_000,
      operation: attrs["db.operation"],
      table: attrs["db.sql.table"]
    }}
  end

  def to_event(%{name: "http.client", attributes: %{"http.status_code" => code}})
      when code >= 500 do
    {:ok, %Events.ServiceError{
      status_code: code,
      service: attrs["http.host"]
    }}
  end

  def to_event(_), do: :skip
end

      




  

    
PropertyDamage.Telemetry.Events.CacheOperation 
    



      
Event representing a cache operation observed via telemetry.

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %PropertyDamage.Telemetry.Events.CacheOperation{
  cache_name: String.t() | nil,
  duration_ms: float() | nil,
  hit: boolean() | nil,
  key_pattern: String.t() | nil,
  operation: :get | :set | :delete | :expire,
  span_id: String.t() | nil,
  trace_id: String.t() | nil
}


      



  


        

      


  

    
PropertyDamage.Telemetry.Events.ConnectionPoolExhausted 
    



      
Event indicating connection pool exhaustion.
This often manifests as increased latency rather than explicit errors,
making it invisible in business events.

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %PropertyDamage.Telemetry.Events.ConnectionPoolExhausted{
  active_connections: non_neg_integer() | nil,
  pool_name: String.t(),
  pool_size: non_neg_integer() | nil,
  span_id: String.t() | nil,
  trace_id: String.t() | nil,
  wait_time_ms: float()
}


      



  


        

      


  

    
PropertyDamage.Telemetry.Events.DatabaseQuery 
    



      
Event representing a database query observed via telemetry.

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %PropertyDamage.Telemetry.Events.DatabaseQuery{
  duration_ms: float(),
  operation: String.t() | nil,
  rows_affected: non_neg_integer() | nil,
  span_id: String.t() | nil,
  table: String.t() | nil,
  trace_id: String.t() | nil
}


      



  


        

      


  

    
PropertyDamage.Telemetry.Events.HTTPRequest 
    



      
Event representing an HTTP request observed via telemetry.

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %PropertyDamage.Telemetry.Events.HTTPRequest{
  duration_ms: float(),
  method: String.t(),
  path: String.t(),
  request_size: non_neg_integer() | nil,
  response_size: non_neg_integer() | nil,
  span_id: String.t() | nil,
  status_code: non_neg_integer(),
  trace_id: String.t() | nil
}


      



  


        

      


  

    
PropertyDamage.Telemetry.Events.QueueOperation 
    



      
Event representing a message queue operation observed via telemetry.

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %PropertyDamage.Telemetry.Events.QueueOperation{
  duration_ms: float() | nil,
  message_count: non_neg_integer(),
  operation: :publish | :consume | :ack | :nack,
  queue_name: String.t(),
  span_id: String.t() | nil,
  trace_id: String.t() | nil
}


      



  


        

      


  

    
PropertyDamage.Telemetry.Events.RetryAttempt 
    



      
Event representing a retry attempt observed via telemetry.
Useful for detecting retry storms that wouldn't be visible in business events.

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %PropertyDamage.Telemetry.Events.RetryAttempt{
  attempt_number: pos_integer(),
  delay_ms: non_neg_integer() | nil,
  max_attempts: pos_integer() | nil,
  operation: String.t(),
  reason: String.t() | nil,
  span_id: String.t() | nil,
  trace_id: String.t() | nil
}


      



  


        

      


  

    
PropertyDamage.Telemetry.Events.ServiceError 
    



      
Event representing an error response from an external service.

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %PropertyDamage.Telemetry.Events.ServiceError{
  error_type: String.t() | nil,
  message: String.t() | nil,
  service: String.t(),
  span_id: String.t() | nil,
  status_code: non_neg_integer() | nil,
  trace_id: String.t() | nil
}


      



  


        

      


  

    
PropertyDamage.Telemetry.Events.SlowOperation 
    



      
Generic event for operations exceeding a latency threshold.

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %PropertyDamage.Telemetry.Events.SlowOperation{
  attributes: map(),
  duration_ms: float(),
  operation_name: String.t(),
  span_id: String.t() | nil,
  threshold_ms: float(),
  trace_id: String.t() | nil
}


      



  


        

      


  

    
PropertyDamage.TelemetryReceiver behaviour
    



      
Behaviour for receiving OpenTelemetry spans from the SUT and converting them to events.
Business events tell you WHAT happened, but not HOW. Telemetry integration fills this gap
by capturing performance data, retry behavior, and causality information that would
otherwise be invisible to the test framework.
Why Telemetry?
	Retry storms - Business events don't show that a "successful" operation required 50 retries
	Performance degradation - An SLA violation isn't visible in business events alone
	Clock skew - Causality violations require distributed trace correlation
	Resource exhaustion - Connection pool exhaustion appears as latency, not errors

Architecture
┌─────────────────────────────────────────────────────────────────────┐
│                         TEST RUNNER                                  │
│                                                                     │
│  ┌─────────────┐      ┌─────────────┐      ┌─────────────┐        │
│  │   Command   │      │   Nemesis   │      │  Telemetry  │        │
│  │  Generator  │      │  Generator  │      │  Receiver   │        │
│  └──────┬──────┘      └──────┬──────┘      └──────┬──────┘        │
│         │                    │                    │                │
│         └────────────────────┴────────────────────┘                │
│                              │                                      │
│                              ▼                                      │
│                    ┌─────────────────┐                             │
│                    │   UNIFIED       │                             │
│                    │   EVENT STREAM  │                             │
│                    └────────┬────────┘                             │
└────────────────────────────────┼──────────────────────────────────────┘
Implementation Patterns
Pattern A: Direct OTLP Receiver
Test runner implements a minimal OTLP HTTP endpoint:
defmodule MyTest.OTLPReceiver do
  @behaviour PropertyDamage.TelemetryReceiver
  use Plug.Router

  @impl true
  def setup(config) do
    {:ok, server} = Plug.Cowboy.http(__MODULE__, [], port: config.port)
    {:ok, %{server: server, event_queue: config.event_queue}}
  end

  @impl true
  def teardown(%{server: server}) do
    Plug.Cowboy.shutdown(server)
    :ok
  end

  @impl true
  def to_event(%{name: "db.query", duration_ns: dur}) do
    {:ok, %SlowQuery{duration_ms: dur / 1_000_000}}
  end

  def to_event(_), do: :skip
end
Pattern B: Kafka Consumer
For production-like setups consuming from an OTEL collector:
defmodule MyTest.KafkaSpanConsumer do
  @behaviour PropertyDamage.TelemetryReceiver

  @impl true
  def setup(config) do
    {:ok, consumer} = KafkaConsumer.start_link(
      topic: "otel-spans",
      handler: &handle_span/2
    )
    {:ok, %{consumer: consumer}}
  end
end
Trace Correlation
To filter spans to your test's traffic, inject trace IDs into commands:
# In your Adapter
def execute(command, ctx) do
  trace_id = generate_trace_id()
  headers = [{"traceparent", format_trace_parent(trace_id)}]
  # ... execute with headers ...
end
Then filter incoming spans by trace_id in your TelemetryReceiver.

      


      
        Summary


  
    Callbacks
  


    
      
        setup config

      


        Setup the telemetry receiver.



    


    
      
        teardown(context)

      


        Teardown the telemetry receiver.



    


    
      
        to_event(span)

      


        Convert a telemetry span to a test event.



    





  
    Functions
  


    
      
        format_traceparent(trace_id, span_id, opts \\ [])

      


        Generate a W3C Trace Context traceparent header value.



    


    
      
        generate_span_id()

      


        Generate a random span ID (16 hex characters).



    


    
      
        generate_trace_id()

      


        Generate a random trace ID (32 hex characters).



    


    
      
        parse_traceparent(header)

      


        Parse a W3C Trace Context traceparent header value.



    





      


      
        Callbacks


        


  
    
      
    
    
      setup config



        
          
        

    

  


  

      

          @callback setup(config :: map()) :: {:ok, context :: map()} | {:error, term()}


      


Setup the telemetry receiver.
Called once before test execution begins. Should start any servers,
consumers, or connections needed to receive telemetry.
Parameters
	config - Configuration map, typically containing:	:event_queue - EventQueue pid to push events to
	:port - Port to listen on (for HTTP receivers)
	:run_id - Unique identifier for this test run



Returns
	{:ok, context} - Context map passed to teardown/1
	{:error, reason} - Setup failed


  



  
    
      
    
    
      teardown(context)



        
          
        

    

  


  

      

          @callback teardown(context :: map()) :: :ok


      


Teardown the telemetry receiver.
Called after test execution completes. Should clean up any resources.

  



  
    
      
    
    
      to_event(span)



        
          
        

    

  


  

      

          @callback to_event(span :: map()) :: {:ok, struct()} | :skip


      


Convert a telemetry span to a test event.
Called for each span received. Return :skip for spans that aren't
relevant to your test.
Parameters
	span - The telemetry span, typically containing:	:name - Span name (e.g., "db.query", "http.client")
	:duration_ns - Duration in nanoseconds
	:attributes - Map of span attributes
	:trace_id - Trace identifier
	:span_id - Span identifier
	:parent_span_id - Parent span (for causality)



Returns
	{:ok, event} - Convert to this event struct
	:skip - Ignore this span


  


        

      

      
        Functions


        


    

  
    
      
    
    
      format_traceparent(trace_id, span_id, opts \\ [])



        
          
        

    

  


  

      

          @spec format_traceparent(String.t(), String.t(), keyword()) :: String.t()


      


Generate a W3C Trace Context traceparent header value.
Example
traceparent = TelemetryReceiver.format_traceparent(trace_id, span_id)
# => "00-abc123...-def456...-01"

  



  
    
      
    
    
      generate_span_id()



        
          
        

    

  


  

      

          @spec generate_span_id() :: String.t()


      


Generate a random span ID (16 hex characters).

  



  
    
      
    
    
      generate_trace_id()



        
          
        

    

  


  

      

          @spec generate_trace_id() :: String.t()


      


Generate a random trace ID (32 hex characters).

  



  
    
      
    
    
      parse_traceparent(header)



        
          
        

    

  


  

      

          @spec parse_traceparent(String.t()) :: {:ok, map()} | {:error, :invalid_format}


      


Parse a W3C Trace Context traceparent header value.
Example
{:ok, %{trace_id: t, span_id: s}} = TelemetryReceiver.parse_traceparent(header)

  


        

      


  

    
PropertyDamage.Validation 
    



      
Validates test configuration before running.
Validation catches configuration errors early, before spending time on
property test execution. It checks that all modules exist, implement
required callbacks, and that event coverage is complete.
Validation Levels
	Errors: Fatal problems that prevent execution (raise exceptions)
	Warnings: Potential issues that may indicate bugs (logged)

What Gets Validated
Errors (cause validation to fail)
	Model module must exist and export required callbacks
	Adapter module must exist and export required callbacks
	All command modules referenced by model must exist
	All projection modules must exist
	Command weights must be positive integers
	Commands must have at least one entry
	Injectable events must be covered by InjectorAdapter @emits

Warnings (logged but don't fail)
	Commands missing downstream_observables/0 (hard to verify coverage)
	Events produced but not handled by any assertion projection
	Injectable events not covered by model's assertion projections

Usage
# In test setup or run initialization
Validation.validate!(model, adapter, injector_adapters: adapters)

# After validation
Validation.print_summary(model, adapter, result)

      


      
        Summary


  
    Functions
  


    
      
        print_summary(model, adapter, warnings, opts \\ [])

      


        Print a summary of the validated configuration.



    


    
      
        runtime_warnings(opts)

      


        Returns run-time warnings for the given configuration options.



    


    
      
        validate!(model, adapter, opts \\ [])

      


        Validate test configuration.



    


    
      
        validate_command_callbacks!(cmd)

      


        Validates that a command module implements required callbacks.



    


    
      
        validate_command_list!(model)

      


        Validates command list from a model.



    





      


      
        Functions


        


    

  
    
      
    
    
      print_summary(model, adapter, warnings, opts \\ [])



        
          
        

    

  


  

      

          @spec print_summary(module(), module(), [String.t()], keyword()) :: :ok


      


Print a summary of the validated configuration.
Useful for verbose mode to show what will be tested.
Parameters
	model - Model module
	adapter - Adapter module
	warnings - List of warning strings from validate!/3
	opts - Options:	:io - IO device to write to (default: :stdio)




  



  
    
      
    
    
      runtime_warnings(opts)



        
          
        

    

  


  

      

          @spec runtime_warnings(keyword()) :: [String.t()]


      


Returns run-time warnings for the given configuration options.
These warnings don't fail validation but indicate potentially suboptimal
configurations that may reduce test effectiveness.
Parameters
	opts - Run options keyword list

Returns
List of warning strings (may be empty)

  



    

  
    
      
    
    
      validate!(model, adapter, opts \\ [])



        
          
        

    

  


  

      

          @spec validate!(module(), module(), keyword()) :: {:ok, [String.t()]}


      


Validate test configuration.
Raises ArgumentError for fatal configuration errors.
Returns {:ok, warnings} where warnings is a list of warning messages.
Parameters
	model - Model module
	adapter - Adapter module
	opts - Options:	:injector_adapters - List of InjectorAdapter modules



Returns
	{:ok, warnings} - Validation passed, warnings is list of strings
	Raises ArgumentError on fatal errors


  



  
    
      
    
    
      validate_command_callbacks!(cmd)



        
          
        

    

  


  

      

          @spec validate_command_callbacks!(module()) :: :ok


      


Validates that a command module implements required callbacks.

  



  
    
      
    
    
      validate_command_list!(model)



        
          
        

    

  


  

      

          @spec validate_command_list!(module()) :: :ok


      


Validates command list from a model.
Checks that:
	Command list is not empty
	All weights are positive integers
	All command modules exist and implement required callbacks


  


        

      


  

    
PropertyDamage.Validator 
    



      
Validates command sequences against model preconditions.
The Validator checks whether a command sequence is structurally valid
by simulating state transitions without actually executing commands.
This is used during shrinking to quickly filter out invalid candidates.
Validation Process
For each command in the sequence:
	Check Model's when: option for the command - returns false if invalid
	Apply Model's simulator().simulate/2 to get simulated events
	Update state projection with command and events

Usage
# Check if a shrunk sequence is still valid
if Validator.valid_sequence?(commands, model) do
  # Try executing it
else
  # Skip this shrink candidate
end
Notes
	Simulation uses Model's simulator().simulate/2 if defined, otherwise produces no events
	State projection is updated but assertion projections are not
	This is fast because no actual execution or check evaluation happens


      


      
        Summary


  
    Functions
  


    
      
        valid_sequence?(commands, model)

      


        Check if a command sequence is valid according to model preconditions.



    





      


      
        Functions


        


  
    
      
    
    
      valid_sequence?(commands, model)



        
          
        

    

  


  

      

          @spec valid_sequence?([struct()], module()) :: boolean()


      


Check if a command sequence is valid according to model preconditions.
Simulates the sequence by:
	Initializing state from model's state projection
	For each command, checking Model's when: option against current state
	Updating state via Model's simulator().simulate/2 (if defined)

Parameters
	commands - List of command structs to validate
	model - Model module defining state projection and command wiring

Returns
	true - All commands pass their preconditions
	false - At least one command fails its precondition

Example
commands = [
  %CreateItem{name: "A", quantity: 1},
  %ViewItem{item_ref: ref}  # Requires items to exist
]

# Invalid because ViewItem runs before any items exist
Validator.valid_sequence?(commands, MyModel)
# => false

  


        

      


  

    
ResourceExhausted 
    



      
Event emitted when resources are exhausted

      




  

    
ResourceReleased 
    



      
Event emitted when resources are released

      




  

    
SlowIOInjected 
    



      
Event emitted when slow I/O is injected

      




  

    
SlowIORestored 
    



      
Event emitted when slow I/O is restored

      




  

    
PropertyDamage.Adapter behaviour
    



      
Behaviour for adapters that execute commands against the System Under Test.
Adapters are the bridge between the test framework and the actual SUT.
They translate command structs into real operations (HTTP calls, function
calls, message sends, etc.) and return the resulting events.
Lifecycle
During each test run (including shrink attempts), the adapter lifecycle is:
	setup/1 - Establish connections, create clients
	execute/2 × N - Execute each command in the sequence
	teardown/1 - Cleanup connections

The full lifecycle with model hooks:
Property test run
├── Model.setup_once()           # Once at start
│
├── Run 1
│   ├── Model.setup_each()       # Reset SUT state
│   ├── Adapter.setup()          # Establish connections
│   ├── Adapter.execute() × N    # Execute each command
│   └── Adapter.teardown()       # Cleanup connections
│
├── Run 2 ... Run N              # Same as above
│
├── [On failure] Shrinking
│   ├── Shrink attempt 1
│   │   ├── Model.setup_each()
│   │   ├── Adapter.setup()
│   │   ├── Adapter.execute() × M
│   │   └── Adapter.teardown()
│   └── ...
│
└── Model.teardown_once()        # Once at end
Example
defmodule MyTest.APIAdapter do
  use PropertyDamage.Adapter

  @impl true
  def setup(config) do
    {:ok, client} = HTTPClient.start(base_url: config[:api_url])
    {:ok, %{client: client}}
  end

  @impl true
  def teardown(%{client: client}) do
    HTTPClient.stop(client)
    :ok
  end

  @impl true
  def execute(%CreateOrder{amount: amt}, %{client: client}) do
    case HTTPClient.post(client, "/orders", %{amount: amt}) do
      {:ok, %{status: 201, body: body}} ->
        {:ok, [%OrderCreated{order_id: body["id"], amount: amt}]}
      {:ok, %{status: 400}} ->
        {:ok, [%OrderRejected{reason: :invalid}]}
      {:error, reason} ->
        {:error, reason}
    end
  end
end
Delegation
For complex adapters, use delegate_execution/1 to route commands to
sub-adapter modules:
defmodule MyTest.MainAdapter do
  use PropertyDamage.Adapter

  delegate_execution for: [CreateOrder, ViewOrder], to: OrdersSubAdapter
  delegate_execution for: [CreatePayment], to: PaymentsSubAdapter

  @impl true
  def setup(config), do: {:ok, config}

  @impl true
  def teardown(_context), do: :ok
end
Stutter/Idempotency Testing
When stutter testing is enabled, the framework may execute commands multiple
times to verify idempotent behavior. During retry executions, the adapter
context includes a :stutter key with information the adapter can use:
%{
  stutter: %{
    attempt: 2,           # Current attempt (2, 3, etc. for retries)
    is_retry: true,       # Always true for retry executions
    idempotency_key: "abc123"  # From Command.idempotency_key/1, or nil
  }
}
Adapters can use this to include idempotency keys in HTTP headers:
def execute(%CreateOrder{} = cmd, context) do
  headers = build_headers(context)
  # headers will include "Idempotency-Key" if stutter context present
  HTTPClient.post(context.client, "/orders", body, headers)
end

defp build_headers(%{stutter: %{idempotency_key: key}}) when is_binary(key) do
  [{"Idempotency-Key", key}]
end
defp build_headers(_context), do: []
The first execution (attempt 1) does NOT include stutter context, only retries do.
This allows the adapter to behave normally for the initial execution.
Mid-Execution Event Injection
For commands with :async semantics that poll for completion, you may want to
emit events as they happen rather than batching all events at the end. The
adapter context includes an :inject function for this purpose:
%{
  inject: #Function<...>  # Call with event to inject it immediately
}
Use this to emit events at the correct time in the execution timeline:
def execute(%CreateAuthorization{} = cmd, ctx) do
  # Step 1: Create the authorization (T=0)
  {:ok, %{body: %{"id" => id, "status" => "processing"}}} =
    Req.post(ctx.client, url: "/authorizations", json: payload)

  # Inject immediately - projections update NOW at T=0
  ctx.inject.(%AuthorizationCreated{authorization_id: id})

  # Step 2: Poll until settled (T=5000)
  case poll_until_settled(ctx.client, id) do
    :approved ->
      # Return settlement event - recorded at T=5000
      {:ok, [%AuthorizationApproved{authorization_id: id}]}

    :declined ->
      {:ok, [%AuthorizationDeclined{authorization_id: id}]}
  end
end
Key behaviors:
	Injected events update projections immediately
	Injected events are recorded in the event log with source :injected
	If the command has creates_ref/0, refs are bound from the first injected event
	Adapters that don't use inject continue to work unchanged

This is particularly useful when your model needs to track intermediate states,
or when assertions depend on events appearing at the correct point in time.

      


      
        Summary


  
    Callbacks
  


    
      
        execute(command, context)

      


        Execute a command against the SUT and return resulting events.



    


    
      
        register_handler(command, context)

      


        Optional callback for commands that need to register injector handlers.



    


    
      
        setup config

      


        Called once per run to establish context.



    


    
      
        teardown(context)

      


        Called once per run after all commands have executed (or on failure).



    





  
    Functions
  


    
      
        delegate_execution(opts)

      


        Delegates command execution to a sub-adapter module.



    





      


      
        Callbacks


        


  
    
      
    
    
      execute(command, context)



        
          
        

    

  


  

      

          @callback execute(command :: struct(), context :: map()) ::
  {:ok, [event :: struct()]} | {:error, term()}


      


Execute a command against the SUT and return resulting events.
This is called once per command in the sequence. The command struct
has already had its Refs resolved to concrete values.
Returns
	{:ok, events} - Command succeeded, events to record
	{:error, reason} - Command failed, execution stops


  



  
    
      
    
    
      register_handler(command, context)


        (optional)


        
          
        

    

  


  

      

          @callback register_handler(command :: struct(), context :: map()) ::
  {:ok, handler_ref :: term()} | {:error, term()}


      


Optional callback for commands that need to register injector handlers.
Some commands may need to set up listeners for async responses before
execution. This callback allows registering handlers that will receive
events from injector adapters.

  



  
    
      
    
    
      setup config



        
          
        

    

  


  

      

          @callback setup(config :: map()) :: {:ok, context :: map()} | {:error, term()}


      


Called once per run to establish context.
Use for creating HTTP clients, connecting to databases, starting processes.
The returned context is passed to execute/2 and teardown/1.
Returns
	{:ok, context} - Setup succeeded, context passed to subsequent calls
	{:error, reason} - Setup failed, run aborted


  



  
    
      
    
    
      teardown(context)



        
          
        

    

  


  

      

          @callback teardown(context :: map()) :: :ok


      


Called once per run after all commands have executed (or on failure).
Use for closing connections, stopping processes, cleanup.
This is best-effort - the framework logs warnings if teardown raises
but does not fail the test.
Returns
Always returns :ok. Handle errors internally.

  


        

      

      
        Functions


        


  
    
      
    
    
      delegate_execution(opts)


        (macro)


        
          
        

    

  


  

Delegates command execution to a sub-adapter module.
Useful for organizing complex adapters by domain or resource.
Options
	:for - List of command modules to delegate
	:to - Module that handles these commands

Example
delegate_execution for: [CreateOrder, ViewOrder], to: OrdersSubAdapter
delegate_execution for: [CreatePayment], to: PaymentsSubAdapter
The target module should implement execute/2 with the same signature.

  


        

      


  

    
PropertyDamage.Adapter.Injector behaviour
    



      
Behaviour for adapters that receive and inject external events.
Adapter.Injector modules handle asynchronous event sources like webhooks, callbacks,
message queues, or any external system that pushes events into the test.
They transform incoming payloads into domain events and push them to the
shared EventQueue for processing.
Direction of Event Flow
Unlike Adapter (which executes commands → produces events), Adapter.Injector
receives external events → transforms → pushes to EventQueue:
External System → Adapter.Injector.to_event/1 → EventQueue → Executor
Lifecycle
Adapter.Injector modules follow a similar lifecycle to Adapters:
	setup/1 - Start listening (webhooks, subscriptions, etc.)
	External events arrive → to_event/1 → EventQueue.push/3
	teardown/1 - Stop listening, cleanup

The @emits Attribute
Declare which events this adapter can emit for validation:
@emits [PaymentConfirmed, PaymentDeclined]
The framework uses this for:
	Validating that Model.injectable_events/0 covers all possible injected events
	Detecting orphan events that no assertion projection handles

Example
defmodule MyTest.PaymentWebhookAdapter do
  use PropertyDamage.Adapter.Injector

  @emits [PaymentConfirmed, PaymentDeclined]

  @impl true
  def setup(config) do
    {:ok, server} = MockWebhookServer.start_link(
      port: config[:port],
      handler: &handle_webhook(&1, config.event_queue)
    )
    {:ok, %{server: server}}
  end

  @impl true
  def teardown(%{server: server}) do
    MockWebhookServer.stop(server)
    :ok
  end

  @impl true
  def to_event(%{"type" => "payment.success", "order_id" => id}) do
    {:ok, %PaymentConfirmed{order_id: id}}
  end

  def to_event(%{"type" => "payment.failed", "order_id" => id, "reason" => r}) do
    {:ok, %PaymentDeclined{order_id: id, reason: r}}
  end

  def to_event(_unknown), do: :skip

  defp handle_webhook(payload, queue) do
    case to_event(payload) do
      {:ok, event} -> EventQueue.push(queue, __MODULE__, event)
      :skip -> :ok
    end
  end
end
Optional Responses
Some systems expect responses to webhooks. Implement respond/2 to generate:
@impl true
def respond(%PaymentConfirmed{}, _context) do
  {:ok, %{status: 200, body: ~s({"ack": true})}}
end

      


      
        Summary


  
    Callbacks
  


    
      
        respond(event, context)

      


        Optional: Generate a response for the external system.



    


    
      
        setup config

      


        Called once per run to start listening for external events.



    


    
      
        teardown(context)

      


        Called once per run to stop listening and cleanup.



    


    
      
        to_event(payload)

      


        Transform an external payload into a domain event.



    





      


      
        Callbacks


        


  
    
      
    
    
      respond(event, context)


        (optional)


        
          
        

    

  


  

      

          @callback respond(event :: struct(), context :: map()) :: {:ok, term()} | :none


      


Optional: Generate a response for the external system.
Some webhook systems expect acknowledgment responses. Implement this
callback to generate appropriate responses based on the event.
Returns
	{:ok, response} - Response to send back
	:none - No response needed


  



  
    
      
    
    
      setup config



        
          
        

    

  


  

      

          @callback setup(config :: map()) :: {:ok, context :: map()} | {:error, term()}


      


Called once per run to start listening for external events.
The config will include:
	:event_queue - PID of the EventQueue for pushing events
	Any adapter-specific config from the test setup

Returns
	{:ok, context} - Setup succeeded
	{:error, reason} - Setup failed


  



  
    
      
    
    
      teardown(context)



        
          
        

    

  


  

      

          @callback teardown(context :: map()) :: :ok


      


Called once per run to stop listening and cleanup.
Returns
Always returns :ok. Handle errors internally.

  



  
    
      
    
    
      to_event(payload)



        
          
        

    

  


  

      

          @callback to_event(payload :: term()) :: {:ok, struct()} | :skip | {:error, term()}


      


Transform an external payload into a domain event.
Called when the adapter receives data from the external source.
The payload format depends on the source (JSON, protobuf, raw data, etc.).
Returns
	{:ok, event} - Successfully transformed to domain event
	:skip - Ignore this payload (not relevant to test)
	{:error, reason} - Transformation failed


  


        

      


  

    
PropertyDamage.Command behaviour
    



      
Behaviour for commands in stateful property-based testing.
Commands are semantic operations that can be executed against the System Under Test (SUT).
They are represented as structs containing their arguments, and define how to
generate valid field values.
Pure Generator Architecture
Commands define a pure generator/1 function that produces field maps. The generator
takes an overrides map and returns a StreamData generator of maps. The framework
wraps the result in the command struct automatically.
State-dependent concerns (preconditions, ref selection, expected events) are defined
in the Model, not the Command. This separation enables command reuse across
different Models with different state shapes.
Example
defmodule MyTest.Commands.CreateOrder do
  @behaviour PropertyDamage.Command
  import PropertyDamage.Generator, only: [merge_overrides: 2]

  defstruct [:amount, :currency]

  @impl true
  def generator(overrides \\ %{}) do
    %{
      amount: StreamData.positive_integer(),
      currency: StreamData.member_of(["USD", "EUR"])
    }
    |> merge_overrides(overrides)
    |> StreamData.fixed_map()
  end
end
The Model then wires this command with state-dependent configuration:
defmodule MyTest.OrderModel do
  def commands do
    [
      CreateOrder,  # Always enabled, weight 1
      {ViewOrder,
        when: fn s -> map_size(s.orders) > 0 end,
        with: fn s -> %{order_ref: StreamData.member_of(Map.keys(s.orders))} end}
    ]
  end

  def simulate(%CreateOrder{amount: amount}, _state) do
    [%OrderCreated{amount: amount, order_ref: nil}]
  end

  def simulate(%ViewOrder{order_ref: ref}, state) do
    if Map.has_key?(state.orders, ref) do
      [%OrderViewed{order_ref: ref}]
    else
      [%OrderNotFound{order_ref: ref}]
    end
  end
end
Design Principles
	Reusability: Commands are pure semantic definitions, decoupled from state shape.
Model-specific configuration (weights, preconditions, overrides) is declared in
the Model, not the Command.

	Composability: The generator/1 function enables composition.
A specialized command can call another command's generator and extend it.

	Separation of Concerns: Commands define WHAT operations exist and their fields.
Models define WHEN to use them and HOW to parameterize them.
Adapters define HOW to execute them against the SUT.


Optional Metadata Callbacks
Commands can implement optional callbacks to provide metadata used by
the framework for shrinking, validation, and debugging:
	creates_ref/0 - Field name for entity ref this command creates
	downstream_observables/0 - Event modules this command can produce
	read_only?/0 - Whether command only reads state (prioritized for removal during shrinking)
	label/2 - Human-readable label for debugging

The framework reads these via function_exported?/3, using sensible
defaults when not implemented.

      


      
        Summary


  
    Callbacks
  


    
      
        acceptable_retry_events()

      


        (Optional) Event modules that are acceptable as retry responses.



    


    
      
        creates_ref()

      


        (Optional) Returns the field name for the Ref this command creates.



    


    
      
        downstream_observables()

      


        (Optional) Returns the list of event modules this command can produce.



    


    
      
        generator(overrides)

      


        Pure generator for command fields, returns StreamData of maps.



    


    
      
        idempotency_key(command)

      


        (Optional) Returns the idempotency key for this command instance.



    


    
      
        idempotent?()

      


        (Optional) Whether this command should be included in stutter/idempotency testing.



    


    
      
        label(state, command)

      


        (Optional) Provides human-readable label for debugging output.



    


    
      
        read_only?()

      


        (Optional) Returns true if this command only reads state, never modifies it.



    


    
      
        semantics()

      


        (Optional) Returns the execution semantics of this command.



    


    
      
        settle_config()

      


        (Optional) Returns settle configuration for probes and async commands.



    





      


      
        Callbacks


        


  
    
      
    
    
      acceptable_retry_events()


        (optional)


        
          
        

    

  


  

      

          @callback acceptable_retry_events() :: [module()]


      


(Optional) Event modules that are acceptable as retry responses.
When stutter testing, a retry might return different events than the
original execution while still being correct (e.g., OrderCreated vs
OrderAlreadyExists). This callback declares which alternative event
types are acceptable.
If not implemented, only events matching the original execution are accepted.
Example
def acceptable_retry_events do
  [OrderCreated, OrderAlreadyExists]
end

  



  
    
      
    
    
      creates_ref()


        (optional)


        
          
        

    

  


  

      

          @callback creates_ref() :: atom() | nil


      


(Optional) Returns the field name for the Ref this command creates.
When a command creates a new entity (e.g., CreateOrder creates an order),
return the atom field name where the Ref should be stored (e.g., :order_ref).
The framework uses this to:
	Generate a symbolic Ref during command sequence generation
	Resolve the Ref to a concrete value from the resulting event

Return nil (or don't implement) if this command doesn't create a new entity.
Example
def creates_ref, do: :order_ref

  



  
    
      
    
    
      downstream_observables()


        (optional)


        
          
        

    

  


  

      

          @callback downstream_observables() :: [module()]


      


(Optional) Returns the list of event modules this command can produce.
Used for:
	Validation (ensuring all referenced events exist)
	Causality tracking during shrinking
	Documentation

Example
def downstream_observables, do: [OrderCreated, OrderRejected]

  



  
    
      
    
    
      generator(overrides)



        
          
        

    

  


  

      

          @callback generator(overrides :: map()) :: StreamData.t(map())


      


Pure generator for command fields, returns StreamData of maps.
This is the core building block. It takes overrides and returns a
generator of maps (not structs). The framework wraps the result in
the command struct automatically.
Use PropertyDamage.Generator.merge_overrides/2 to apply overrides with
auto-lifting of raw values to StreamData.constant/1.
Example
def generator(overrides \\ %{}) do
  %{
    amount: StreamData.positive_integer(),
    currency: StreamData.member_of(["USD", "EUR"])
  }
  |> PropertyDamage.Generator.merge_overrides(overrides)
  |> StreamData.fixed_map()
end

  



  
    
      
    
    
      idempotency_key(command)


        (optional)


        
          
        

    

  


  

      

          @callback idempotency_key(command :: struct()) :: String.t() | nil


      


(Optional) Returns the idempotency key for this command instance.
The idempotency key is passed to the adapter in the stutter context,
allowing it to include the key in HTTP headers or other request metadata.
If not implemented, no idempotency key is provided to the adapter.
Example
defstruct [:amount, :idempotency_key]

def idempotency_key(%__MODULE__{idempotency_key: key}), do: key

  



  
    
      
    
    
      idempotent?()


        (optional)


        
          
        

    

  


  

      

          @callback idempotent?() :: boolean()


      


(Optional) Whether this command should be included in stutter/idempotency testing.
Commands that are intentionally non-idempotent (like IncrementCounter) should
return false to be excluded from stutter testing.
Default: true (command is assumed idempotent and will be stuttered)
Example
# Non-idempotent command - exclude from stutter testing
def idempotent?, do: false

  



  
    
      
    
    
      label(state, command)


        (optional)


        
          
        

    

  


  

      

          @callback label(state :: map(), command :: struct()) :: String.t() | nil


      


(Optional) Provides human-readable label for debugging output.
Labels can be static or dynamic based on state and command fields.
Return nil for no special label.
Example
def label(_state, %__MODULE__{divisor: 0}), do: "divide by zero"
def label(_state, %__MODULE__{}), do: nil

  



  
    
      
    
    
      read_only?()


        (optional)


        
          
        

    

  


  

      

          @callback read_only?() :: boolean()


      


(Optional) Returns true if this command only reads state, never modifies it.
Read-only commands are prioritized for removal during shrinking since
they typically don't affect the failure.
Example
def read_only?, do: true

  



  
    
      
    
    
      semantics()


        (optional)


        
          
        

    

  


  

      

          @callback semantics() :: :sync | :probe | :async | :mock_config


      


(Optional) Returns the execution semantics of this command.
Semantics
	:sync - Synchronous operation. Mutates SUT state, completes immediately.
Postconditions are weak (check response codes). This is the default if not implemented.

	:probe - Queries SUT state without mutation. Contains settle/retry logic
for eventually consistent systems. Should also implement read_only?/0 returning true.

	:async - Asynchronous operation that creates a resource and waits for it to settle.
Used for operations that return "processing" status and require polling.
Async commands are protected during shrinking if their ref is used by other commands.

	:mock_config - Configures mock service behavior. Not sent to the SUT adapter.
Instead, mock adapters receive this command via on_command/2 to update
their behavior. Useful for testing different third-party service responses.


Examples
# Sync (default) - creates/modifies state synchronously
def semantics, do: :sync

# Probe - queries and settles
def semantics, do: :probe

# Async - waits for async completion
def semantics, do: :async

# Mock config - configures mock services
def semantics, do: :mock_config

  



  
    
      
    
    
      settle_config()


        (optional)


        
          
        

    

  


  

      

          @callback settle_config() :: %{
  timeout_ms: pos_integer(),
  interval_ms: pos_integer(),
  backoff: :linear | :exponential
}


      


(Optional) Returns settle configuration for probes and async commands.
When a command's semantics/0 is :probe or :async, this configuration
controls the retry behavior when waiting for eventual consistency.
Fields
	:timeout_ms - Maximum time to wait (default: 2000)
	:interval_ms - Time between retries (default: 100)
	:backoff - Backoff strategy, :linear or :exponential (default: :linear)

Example
def settle_config do
  %{
    timeout_ms: 5_000,
    interval_ms: 200,
    backoff: :exponential
  }
end

  


        

      


  

    
PropertyDamage.Model behaviour
    



      
Behaviour for models in stateful property-based testing.
A model ties together all the components needed for testing: which commands
can be generated, which projections track state and assertions, and the
test lifecycle hooks.
Required Callbacks
	commands/0 - List of command modules (optionally weighted)
	state_projection/0 - Projection module used for command preconditions

Optional Callbacks
	extra_projections/0 - Additional projections for state tracking and/or assertions
	injectable_events/0 - Events that can arrive from Adapter.Injector modules
	setup_once/1 - Setup that runs once at the start (not during shrinking)
	setup_each/1 - Setup that runs before each execution (including shrink attempts)
	teardown_each/1 - Cleanup after each execution
	teardown_once/1 - Final cleanup after all shrinking complete
	terminate?/3 - Control when command generation should stop

Example
defmodule MyTest.OrderModel do
  @behaviour PropertyDamage.Model

  alias MyTest.Commands.{CreateOrder, ViewOrder, CancelOrder}
  alias MyTest.Projections.{ModelState, OrderBalances}

  @impl true
  def commands, do: [CreateOrder, ViewOrder, CancelOrder]

  @impl true
  def state_projection, do: ModelState

  # Optional: additional projections for assertions or extra state tracking
  @impl true
  def extra_projections, do: [OrderBalances]

  # Terminate when order is deleted
  @impl true
  def terminate?(_state, %DeleteOrder{}, _events), do: true
  def terminate?(_state, _command, _events), do: false
end
Command Specification
Commands are specified with options controlling weight, preconditions, and parameterization:
def commands do
  [
    # Simple: just module (weight 1, always enabled, no overrides)
    CreateOrder,

    # Weighted: {module, weight: n}
    {ViewOrder, weight: 2},

    # Full options: {module, keyword_list}
    {CancelOrder,
      weight: 1,
      when: fn state -> map_size(state.orders) > 0 end,
      with: fn state -> %{order_ref: StreamData.member_of(Map.keys(state.orders))} end}
  ]
end
Options
	:weight - Relative selection frequency (default: 1)
	:when - Precondition function (state -> boolean) (default: always true)
	:with - Override function (state -> map) for command generation (default: %{})

Weights express relative frequency among valid commands. If CreateOrder
has weight 3 and CancelOrder has weight 1, and both pass their when: predicates,
CreateOrder will be selected ~75% of the time.
Simulator
Models can define a Simulator module that predicts expected events for each command.
See PropertyDamage.Model.Simulator for the behaviour definition.
defmodule MySimulator do
  @behaviour PropertyDamage.Model.Simulator

  @impl true
  def simulate(%CreateOrder{name: name}, _state) do
    [%OrderCreated{name: name, order_ref: nil}]
  end

  def simulate(%ViewOrder{order_ref: ref}, state) do
    if Map.has_key?(state.orders, ref) do
      [%OrderViewed{order_ref: ref}]
    else
      [%OrderNotFound{order_ref: ref}]
    end
  end
end
Then reference it in the model:
def simulator, do: MySimulator
For inline implementation, have the model implement both behaviours:
defmodule MyModel do
  @behaviour PropertyDamage.Model
  @behaviour PropertyDamage.Model.Simulator

  def simulator, do: __MODULE__

  @impl PropertyDamage.Model.Simulator
  def simulate(%CreateOrder{name: name}, _state), do: [%OrderCreated{name: name}]
  def simulate(_command, _state), do: []
end
This enables symbolic execution during sequence generation.
Lifecycle Diagram
┌─────────────────────────────────────────────────────────────┐
│                     Property Test Run                       │
│                                                             │
│  setup_once/1 ─────────────────────────────────────────┐    │
│                                                        │    │
│  ┌─ Run 1 ──────────────────────────────────────┐      │    │
│  │ setup_each/1                                 │      │    │
│  │ [execute commands against SUT]               │      │    │
│  │ teardown_each/1                              │      │    │
│  └──────────────────────────────────────────────┘      │    │
│                                                        │    │
│  ┌─ Run 2 ──────────────────────────────────────┐      │    │
│  │ setup_each/1                                 │      │    │
│  │ [execute commands against SUT]               │      │    │
│  │ teardown_each/1                              │      │    │
│  └──────────────────────────────────────────────┘      │    │
│                       ...                              │    │
│                                                        │    │
│  ┌─ If failure, shrinking ─────────────────────┐       │    │
│  │ ┌─ Shrink attempt ────────────────────┐     │       │    │
│  │ │ setup_each/1                        │     │       │    │
│  │ │ [execute shrunk sequence]           │     │       │    │
│  │ │ teardown_each/1                     │     │       │    │
│  │ └─────────────────────────────────────┘     │       │    │
│  │                   ...                       │       │    │
│  └─────────────────────────────────────────────┘       │    │
│                                                        │    │
│  teardown_once/1 ◀─────────────────────────────────────┘    │
│                                                             │
└─────────────────────────────────────────────────────────────┘
Terminal States
The terminate?/3 callback controls when command generation should stop.
This is more flexible than command-level attributes because the same
command may or may not be terminal depending on the test scenario.
Arguments:
	state - The current state after applying events from this command
	command - The command that just executed
	events - The events produced by that command

Examples:
	Terminate on specific command: def terminate?(_state, %Shutdown{}, _events), do: true
	Terminate on state: def terminate?(state, _, _), do: map_size(state.pending) == 0
	Terminate on event: def terminate?(_, _, events), do: Enum.any?(events, &is_complete?/1)

If not implemented, the framework runs until max_commands is reached.

      


      
        Summary


  
    Types
  


    
      
        command_opts()

      


        Command specification options.



    


    
      
        command_spec()

      


        Command specification - module, {module, weight}, or {module, opts}.



    


    
      
        normalized_command()

      


        Normalized command specification with weight, module, and options.



    





  
    Callbacks
  


    
      
        commands()

      


        Returns list of command specifications.



    


    
      
        extra_projections()

      


        Returns list of additional projection modules.



    


    
      
        injectable_events()

      


        Returns list of event modules that can be injected from outside.



    


    
      
        setup_each(config)

      


        Setup that runs BEFORE EACH execution.



    


    
      
        setup_once(config)

      


        Setup that runs ONCE at the start of the property test.



    


    
      
        simulator()

      


        Returns the module implementing the Simulator behaviour.



    


    
      
        state_projection()

      


        Returns the projection module used for state tracking.



    


    
      
        teardown_each(config)

      


        Teardown that runs after each execution.



    


    
      
        teardown_once(config)

      


        Final teardown after all shrinking complete.



    


    
      
        terminate?(state, command, events)

      


        Determines if the test should terminate after the given command/events.



    





  
    Functions
  


    
      
        normalize_command_spec(spec)

      


        Normalize a single command specification.



    


    
      
        normalize_commands(commands)

      


        Normalize command list to {weight, module, opts} format.



    





      


      
        Types


        


  
    
      
    
    
      command_opts()



        
          
        

    

  


  

      

          @type command_opts() :: [
  weight: pos_integer(),
  when: (map() -> boolean()),
  with: (map() -> map())
]


      


Command specification options.
	:weight - Relative selection frequency (default: 1)
	:when - Precondition function (state -> boolean) (default: always true)
	:with - Override function (state -> map) for command generation (default: %{})


  



  
    
      
    
    
      command_spec()



        
          
        

    

  


  

      

          @type command_spec() ::
  module() | {module(), pos_integer()} | {module(), command_opts()}


      


Command specification - module, {module, weight}, or {module, opts}.

  



  
    
      
    
    
      normalized_command()



        
          
        

    

  


  

      

          @type normalized_command() :: {pos_integer(), module(), command_opts()}


      


Normalized command specification with weight, module, and options.

  


        

      

      
        Callbacks


        


  
    
      
    
    
      commands()



        
          
        

    

  


  

      

          @callback commands() :: [command_spec()]


      


Returns list of command specifications.
Each command can be specified as:
	Module - Simple module, weight 1, always enabled
	{Module, weight} - Module with custom weight
	{Module, opts} - Module with full options (weight, when, with)

Examples
def commands do
  [
    CreateOrder,                           # Always enabled, weight 1
    {ViewOrder, weight: 2},                # Always enabled, weight 2
    {CancelOrder,
      weight: 1,
      when: fn s -> map_size(s.orders) > 0 end,
      with: fn s -> %{order_ref: StreamData.member_of(Map.keys(s.orders))} end}
  ]
end

  



  
    
      
    
    
      extra_projections()


        (optional)


        
          
        

    

  


  

      

          @callback extra_projections() :: [module()]


      


Returns list of additional projection modules.
These projections can track extra state and/or define assertions via
use PropertyDamage.Model.Projection. Their state is updated with each command
and event, and any assertions are run according to their trigger conditions.
Optional - defaults to [] if not implemented.

  



  
    
      
    
    
      injectable_events()


        (optional)


        
          
        

    

  


  

      

          @callback injectable_events() :: [module()]


      


Returns list of event modules that can be injected from outside.
These events arrive via Adapter.Injector modules (webhooks, callbacks, etc.),
not from command execution. Used for validation to ensure all injectable
events are covered by Adapter.Injector @emits declarations.
Optional - defaults to [] if not implemented.

  



  
    
      
    
    
      setup_each(config)


        (optional)


        
          
        

    

  


  

      

          @callback setup_each(config :: map()) :: :ok | {:error, term()}


      


Setup that runs BEFORE EACH execution.
This runs before every execution including every shrink attempt.
Use for resetting state that must be pristine (database, cache, etc.).
Returns
	:ok - Setup succeeded
	{:error, reason} - Setup failed, execution skipped


  



  
    
      
    
    
      setup_once(config)


        (optional)


        
          
        

    

  


  

      

          @callback setup_once(config :: map()) :: :ok | {:error, term()}


      


Setup that runs ONCE at the start of the property test.
This is NOT re-run during shrinking. Use for expensive one-time setup
like starting applications or external services.
Returns
	:ok - Setup succeeded
	{:error, reason} - Setup failed, test aborted


  



  
    
      
    
    
      simulator()


        (optional)


        
          
        

    

  


  

      

          @callback simulator() :: module()


      


Returns the module implementing the Simulator behaviour.
The simulator predicts expected events for each command during sequence
generation, enabling symbolic execution.
Example
# Reference an external simulator
def simulator, do: MyApp.OrderSimulator

# Or inline (module implements both Model and Simulator behaviours)
def simulator, do: __MODULE__
See PropertyDamage.Model.Simulator for implementing the behaviour.

  



  
    
      
    
    
      state_projection()



        
          
        

    

  


  

      

          @callback state_projection() :: module()


      


Returns the projection module used for state tracking.
This projection's state is passed to:
	when: predicates in command specs
	with: override functions in command specs
	simulate/2 for determining expected events


  



  
    
      
    
    
      teardown_each(config)


        (optional)


        
          
        

    

  


  

      

          @callback teardown_each(config :: map()) :: :ok


      


Teardown that runs after each execution.
This is best-effort cleanup. The framework logs warnings if teardowns
raise but does not fail the test.
Returns
Always returns :ok. Handle errors internally.

  



  
    
      
    
    
      teardown_once(config)


        (optional)


        
          
        

    

  


  

      

          @callback teardown_once(config :: map()) :: :ok


      


Final teardown after all shrinking complete.
This is best-effort cleanup. The framework logs warnings if teardowns
raise but does not fail the test.
Returns
Always returns :ok. Handle errors internally.

  



  
    
      
    
    
      terminate?(state, command, events)


        (optional)


        
          
        

    

  


  

      

          @callback terminate?(state :: map(), command :: struct(), events :: [struct()]) ::
  boolean()


      


Determines if the test should terminate after the given command/events.
Called after each command execution with the updated state.
Return true to stop generating further commands.
Arguments
	state - The current state after applying events from this command
	command - The command that just executed
	events - The events produced by that command

Examples
# Terminate on specific command type
def terminate?(_state, %Shutdown{}, _events), do: true
def terminate?(_state, _command, _events), do: false

# Terminate based on state
def terminate?(state, _command, _events) do
  map_size(state.pending_payments) == 0
end

# Terminate based on events
def terminate?(_state, _command, events) do
  Enum.any?(events, &match?(%PaymentCompleted{}, &1))
end

  


        

      

      
        Functions


        


  
    
      
    
    
      normalize_command_spec(spec)



        
          
        

    

  


  

      

          @spec normalize_command_spec(command_spec()) :: normalized_command()


      


Normalize a single command specification.

  



  
    
      
    
    
      normalize_commands(commands)



        
          
        

    

  


  

      

          @spec normalize_commands([command_spec()]) :: [normalized_command()]


      


Normalize command list to {weight, module, opts} format.
Handles all input formats:
	Module → {1, Module, []}
	{Module, weight} → {weight, Module, []}
	{Module, opts} → {weight, Module, opts} (weight from opts or default 1)

Examples
iex> PropertyDamage.Model.normalize_commands([CreateOrder])
[{1, CreateOrder, []}]

iex> PropertyDamage.Model.normalize_commands([{ViewOrder, 2}])
[{2, ViewOrder, []}]

iex> PropertyDamage.Model.normalize_commands([{CancelOrder, weight: 3, when: &some_fn/1}])
[{3, CancelOrder, [weight: 3, when: &some_fn/1]}]

  


        

      


  

    
PropertyDamage.Model.Projection behaviour
    



      
Behaviour for projections that track state and optionally define assertions.
Projections are the core building block for stateful property-based testing.
They serve two purposes:
	State tracking: Reduce commands and events into state via apply/2
	Invariant checking: Define assertions via assert_* functions

Basic Usage
defmodule MyProjection do
  use PropertyDamage.Model.Projection

  # Track state
  def init, do: %{orders: %{}, total: 0}

  def apply(state, %OrderCreated{id: id, amount: amt}) do
    state
    |> put_in([:orders, id], %{amount: amt})
    |> update_in([:total], &(&1 + amt))
  end

  def apply(state, _), do: state

  # Define assertions with @trigger and assert_* naming
  @trigger every: 1
  def assert_total_non_negative(state, _cmd_or_event) do
    if state.total < 0, do: PropertyDamage.fail!("total is negative", total: state.total)
  end

  @trigger every: CreateOrder
  def assert_order_tracked(state, %CreateOrder{id: id}) do
    unless Map.has_key?(state.orders, id) do
      PropertyDamage.fail!("order not tracked", order_id: id)
    end
  end
end
Defining Assertions
Assertions are functions that start with assert_ and take two arguments:
	state - The current projection state
	command_or_event - The command or event that triggered the assertion

Each assertion must be preceded by a @trigger attribute that specifies
when the assertion should run. The assertion name is derived from the function
name by removing the assert_ prefix.
# This creates an assertion named :balance_positive
@trigger every: 1
def assert_balance_positive(state, _cmd_or_event) do
  if state.balance < 0 do
    PropertyDamage.fail!("balance is negative", balance: state.balance)
  end
end
If an assertion fails, raise an exception (or use PropertyDamage.fail!/2).
If it returns without raising, the assertion passed.
Raising in apply/2
You can raise exceptions in apply/2 to catch transition invariants:
def apply(state, %Withdraw{amount: amt}) do
  new_balance = state.balance - amt
  if new_balance < 0 do
    raise %InsufficientFunds{balance: state.balance, requested: amt}
  end
  %{state | balance: new_balance}
end
Trigger Syntax
Use @trigger with every: to specify when an assertion runs:
	Syntax	Runs when...
	@trigger every: 1	After every step
	@trigger every: :command	After any command
	@trigger every: :event	After any event
	@trigger every: CreateOrder	After CreateOrder command/event
	@trigger every: [Cmd1, Cmd2]	After any listed command/event
	@trigger every: 10	Every 10th step (sampling)
	@trigger every: {5, :command}	Every 5th command
	@trigger every: {3, CreateOrder}	Every 3rd CreateOrder

Simplified Usage (No State)
For assertions that only inspect commands/events, skip init/0 and apply/2:
defmodule CommandValidator do
  use PropertyDamage.Model.Projection

  @trigger every: CreateOrder
  def assert_order_has_items(_state, %CreateOrder{items: items}) do
    if Enum.empty?(items), do: PropertyDamage.fail!("order must have items")
  end
end
Model Configuration
In your Model, specify projections:
def state_projection, do: MyStateProjection    # required
def extra_projections, do: [Validator, Audit]  # optional
All projections (state + extra) use the same Projection behaviour.

      


      
        Summary


  
    Callbacks
  


    
      
        apply(state, command_or_event)

      


        Apply a command or event to the state.



    


    
      
        init()

      


        Initialize the projection state.



    





  
    Functions
  


    
      
        __using__(opts)

      


        Execute an assertion.



    


    
      
        should_run?(trigger, step_type, module, counters)

      


        Check if an assertion should run given the current step context.



    





      


      
        Callbacks


        


  
    
      
    
    
      apply(state, command_or_event)


        (optional)


        
          
        

    

  


  

      

          @callback apply(state :: any(), command_or_event :: struct()) :: any()


      


Apply a command or event to the state.
Called for each command and event in the execution stream.
Can raise an exception to signal a transition invariant violation.
Default returns the state unchanged.

  



  
    
      
    
    
      init()


        (optional)


        
          
        

    

  


  

      

          @callback init() :: any()


      


Initialize the projection state.
Called once at the start of each test run. Default returns %{}.

  


        

      

      
        Functions


        


  
    
      
    
    
      __using__(opts)


        (macro)


        
          
        

    

  


  

Execute an assertion.
Assertions are defined as functions starting with assert_ followed by the assertion name.
Called when the assertion's trigger condition is met.
Should raise an exception if the assertion fails.
If the function returns without raising, the assertion passed.
Example
@trigger every: 1
def assert_total_non_negative(state, _cmd_or_event) do
  if state.total < 0, do: PropertyDamage.fail!("total is negative")
end
Parameters
	state - Current projection state
	command_or_event - The command or event that triggered this assertion


  



  
    
      
    
    
      should_run?(trigger, step_type, module, counters)



        
          
        

    

  


  

      

          @spec should_run?(map(), :command | :event, module(), map()) :: boolean()


      


Check if an assertion should run given the current step context.
Parameters
	trigger - Normalized trigger from assertion metadata
	step_type - :command or :event
	module - The command or event module
	counters - Map with :step, :command, :event, and per-module counts

Returns
true if the assertion should run, false otherwise.

  


        

      


  

    
PropertyDamage.Model.Simulator behaviour
    



      
Behaviour for simulating command execution to predict expected events.
Simulators enable symbolic execution during sequence generation. When generating
command sequences, PropertyDamage uses the simulator to predict what events each
command will produce, allowing coherent sequence generation.
Usage
Define a module implementing this behaviour:
defmodule MySimulator do
  @behaviour PropertyDamage.Model.Simulator

  @impl true
  def simulate(%CreateItem{name: name, quantity: qty}, _state) do
    [%ItemCreated{name: name, quantity: qty, item_ref: nil}]
  end

  def simulate(%ViewItem{item_ref: ref}, state) do
    if Map.has_key?(state.items, ref) do
      [%ItemViewed{item_ref: ref}]
    else
      [%ItemNotFound{item_ref: ref}]
    end
  end

  # Catch-all for commands with no predictable events
  def simulate(_command, _state), do: []
end
Then reference it in your Model:
defmodule MyModel do
  @behaviour PropertyDamage.Model

  def simulator, do: MySimulator
  # ... other callbacks
end
Inline Implementation
For simpler cases, you can implement the Simulator directly in your Model:
defmodule MyModel do
  @behaviour PropertyDamage.Model
  @behaviour PropertyDamage.Model.Simulator

  def simulator, do: __MODULE__

  @impl PropertyDamage.Model.Simulator
  def simulate(%CreateItem{name: name}, _state) do
    [%ItemCreated{name: name, item_ref: nil}]
  end

  def simulate(_command, _state), do: []
end
Return Value
The simulate/2 callback should return a list of event structs that the command
is expected to produce. For commands that create new entities, use nil for
the reference field - it will be resolved at execution time.
Return an empty list [] for commands with no predictable events.

      


      
        Summary


  
    Callbacks
  


    
      
        simulate(command, state)

      


        Simulate a command and return expected events.



    





      


      
        Callbacks


        


  
    
      
    
    
      simulate(command, state)



        
          
        

    

  


  

      

          @callback simulate(command :: struct(), state :: map()) :: [struct()]


      


Simulate a command and return expected events.
Parameters
	command - The command struct to simulate
	state - The current projection state

Returns
A list of event structs that the command is expected to produce.
Return [] for commands with no predictable events.

  


        

      


  

    
PropertyDamage.Nemesis behaviour
    



      
Behaviour for fault injection commands.
Nemesis commands represent faults that can be injected into the test environment
to verify system resilience. Unlike regular commands that interact with the SUT,
Nemesis commands modify the test environment itself (network conditions, proxies,
resource limits, etc.).
Why Nemesis Commands?
Testing resilience requires injecting faults (network partitions, latency spikes,
node crashes). These shouldn't "just happen" randomly - they should be:
	Tracked in the event log - For reproducibility and debugging
	Shrinkable - So we can find minimal fault scenarios
	Composable - Multiple faults can be active simultaneously
	Time-bounded - Faults should be restorable

Lifecycle
	Injection: The Nemesis command is generated and executed
	Active Period: The fault is active for some duration
	Restoration: The fault is removed (automatically or explicitly)

Example: Network Partition
defmodule MyTest.Nemesis.PartitionNetwork do
  @behaviour PropertyDamage.Nemesis

  defstruct [:partition_type, :duration_ms]

  @impl true
  def inject(%__MODULE__{partition_type: type, duration_ms: duration}, ctx) do
    :ok = Toxiproxy.partition(ctx.proxy, type)

    # Return events describing what happened
    {:ok, [%NetworkPartitioned{type: type, started_at: System.monotonic_time()}]}
  end

  @impl true
  def restore(%__MODULE__{partition_type: type}, ctx) do
    Toxiproxy.restore(ctx.proxy, type)
    {:ok, [%NetworkRestored{type: type, ended_at: System.monotonic_time()}]}
  end

  @impl true
  def precondition(_state), do: true
end
Events in Log
Nemesis events are recorded with source: :nemesis:
%PropertyDamage.EventLog.Entry{
  timestamp: 12345,
  command_index: 5,
  event: %NetworkPartitioned{type: :full, started_at: 12345},
  source: :nemesis,
  nemesis_module: MyTest.Nemesis.PartitionNetwork
}
Model Integration
Nemesis commands can be included in the model's command weights:
def commands do
  [
    {5, CreateOrder},       # Normal commands
    {3, ViewOrder},
    {1, PartitionNetwork},  # Nemesis commands (lower weight)
    {1, InjectLatency}
  ]
end
Assertion projections can adjust invariants during active faults:
def check(:latency_within_sla, state, ctx) do
  if Map.get(state.active_faults, :network_partition) do
    :ok  # Skip SLA check during partition
  else
    if state.last_latency_ms < 100, do: :ok, else: {:error, "SLA violation"}
  end
end

      


      
        Summary


  
    Callbacks
  


    
      
        auto_restore?()

      


        (Optional) Returns whether this nemesis command auto-restores after a duration.



    


    
      
        duration_ms(command)

      


        (Optional) Returns the duration in milliseconds before auto-restoration.



    


    
      
        inject(command, context)

      


        Inject the fault into the test environment.



    


    
      
        new!(state, overrides)

      


        (Optional) Generate a nemesis command struct from current state.



    


    
      
        precondition(state)

      


        Precondition: Can this nemesis command be generated in the current state?



    


    
      
        restore(command, context)

      


        Restore normal operation after a fault.



    





  
    Functions
  


    
      
        auto_restores?(command)

      


        Get whether a nemesis command auto-restores.



    


    
      
        get_duration_ms(command)

      


        Get the duration for a nemesis command.



    


    
      
        nemesis_command?(arg1)

      


        Check if a command struct is a Nemesis command.



    


    
      
        nemesis_module?(module)

      


        Check if a module implements the Nemesis behaviour.



    





      


      
        Callbacks


        


  
    
      
    
    
      auto_restore?()


        (optional)


        
          
        

    

  


  

      

          @callback auto_restore?() :: boolean()


      


(Optional) Returns whether this nemesis command auto-restores after a duration.
If true, the framework will automatically call restore/2 after the command's
duration expires. If false, restoration must be triggered by an explicit
RestoreFault command.
Default: true (faults auto-restore)

  



  
    
      
    
    
      duration_ms(command)


        (optional)


        
          
        

    

  


  

      

          @callback duration_ms(command :: struct()) :: non_neg_integer()


      


(Optional) Returns the duration in milliseconds before auto-restoration.
Only relevant if auto_restore?/0 returns true.

  



  
    
      
    
    
      inject(command, context)



        
          
        

    

  


  

      

          @callback inject(command :: struct(), context :: map()) ::
  {:ok, [struct()]} | {:error, term()}


      


Inject the fault into the test environment.
Parameters
	command - The nemesis command struct containing fault parameters
	context - Execution context with:	:adapter_context - From the adapter, may contain proxy info
	:event_queue - For publishing events
	:active_faults - Currently active faults



Returns
	{:ok, events} - Fault injected, returns events describing what happened
	{:error, reason} - Fault injection failed


  



  
    
      
    
    
      new!(state, overrides)


        (optional)


        
          
        

    

  


  

      

          @callback new!(state :: map(), overrides :: map()) :: StreamData.t(struct())


      


(Optional) Generate a nemesis command struct from current state.
If implemented, returns a StreamData generator for producing command instances.
If not implemented, the command must be instantiated directly.

  



  
    
      
    
    
      precondition(state)



        
          
        

    

  


  

      

          @callback precondition(state :: map()) :: boolean()


      


Precondition: Can this nemesis command be generated in the current state?
Similar to regular command preconditions, but may check for things like:
	No conflicting faults already active
	Required infrastructure available
	Test environment supports this fault type


  



  
    
      
    
    
      restore(command, context)



        
          
        

    

  


  

      

          @callback restore(command :: struct(), context :: map()) ::
  {:ok, [struct()]} | {:error, term()}


      


Restore normal operation after a fault.
Called automatically when:
	The fault's duration expires
	A RestoreFault command is executed
	Test sequence ends (cleanup)

Parameters
	command - The original nemesis command (to know what to restore)
	context - Execution context

Returns
	{:ok, events} - Fault restored, returns events describing what happened
	{:error, reason} - Restoration failed (this is problematic - may need manual cleanup)


  


        

      

      
        Functions


        


  
    
      
    
    
      auto_restores?(command)



        
          
        

    

  


  

      

          @spec auto_restores?(struct()) :: boolean()


      


Get whether a nemesis command auto-restores.

  



  
    
      
    
    
      get_duration_ms(command)



        
          
        

    

  


  

      

          @spec get_duration_ms(struct()) :: non_neg_integer() | nil


      


Get the duration for a nemesis command.

  



  
    
      
    
    
      nemesis_command?(arg1)



        
          
        

    

  


  

      

          @spec nemesis_command?(term()) :: boolean()


      


Check if a command struct is a Nemesis command.

  



  
    
      
    
    
      nemesis_module?(module)



        
          
        

    

  


  

      

          @spec nemesis_module?(module()) :: boolean()


      


Check if a module implements the Nemesis behaviour.

  


        

      


  

    
PropertyDamage.EventQueue 
    



      
Shared event queue for injector adapters.
The EventQueue is an Agent-based queue that collects events pushed by
injector adapters (webhooks, callbacks, etc.) and makes them available
to the executor for processing.
Usage Flow
	Framework starts the queue via start_link/0
	Injector adapters receive the queue reference in their config
	When events arrive (webhooks, callbacks), adapters push them via push/3
	After each command execution, the executor drains pending events via drain/1
	Framework stops the queue via stop/1 after the run completes

Event Entries
Each entry in the queue contains:
	event - The event struct
	adapter_module - The injector adapter that received it
	timestamp - Monotonic time when the event was pushed

Example
# In test setup
{:ok, queue} = EventQueue.start_link()

# In injector adapter callback
EventQueue.push(queue, __MODULE__, %PaymentConfirmed{...})

# In executor loop
pending_events = EventQueue.drain(queue)

# In test teardown
EventQueue.stop(queue)

      


      
        Summary


  
    Types
  


    
      
        entry()

      


        Event entry with metadata.



    





  
    Functions
  


    
      
        drain(queue)

      


        Drain all pending events.



    


    
      
        empty?(queue)

      


        Check if the queue is empty.



    


    
      
        peek(queue)

      


        Peek at pending events without removing them.



    


    
      
        push(queue, adapter_module, event)

      


        Push an event from an injector adapter.



    


    
      
        size(queue)

      


        Get the number of pending events.



    


    
      
        start_link()

      


        Start a new event queue.



    


    
      
        start_link(opts)

      


        Start a new event queue with options.



    


    
      
        stop(queue)

      


        Stop the event queue.



    





      


      
        Types


        


  
    
      
    
    
      entry()



        
          
        

    

  


  

      

          @type entry() :: %{event: struct(), adapter_module: module(), timestamp: integer()}


      


Event entry with metadata.

  


        

      

      
        Functions


        


  
    
      
    
    
      drain(queue)



        
          
        

    

  


  

      

          @spec drain(pid()) :: [entry()]


      


Drain all pending events.
Returns the list of events and clears the queue. Events are returned
in the order they were pushed.
Returns
List of event entries, each containing :event, :adapter_module,
and :timestamp.
Example
entries = EventQueue.drain(queue)
Enum.each(entries, fn %{event: event, adapter_module: adapter} ->
  IO.puts("Event from #{adapter}: #{inspect(event)}")
end)

  



  
    
      
    
    
      empty?(queue)



        
          
        

    

  


  

      

          @spec empty?(pid()) :: boolean()


      


Check if the queue is empty.
Example
if EventQueue.empty?(queue) do
  IO.puts("No pending events")
end

  



  
    
      
    
    
      peek(queue)



        
          
        

    

  


  

      

          @spec peek(pid()) :: [entry()]


      


Peek at pending events without removing them.
Useful for debugging or when you need to check without consuming.
Example
count = queue |> EventQueue.peek() |> length()

  



  
    
      
    
    
      push(queue, adapter_module, event)



        
          
        

    

  


  

      

          @spec push(pid(), module(), struct()) :: :ok


      


Push an event from an injector adapter.
Events are timestamped automatically with monotonic time.
Parameters
	queue - The event queue pid
	adapter_module - The injector adapter module pushing the event
	event - The event struct

Example
EventQueue.push(queue, MyInjectorAdapter, %PaymentConfirmed{order_id: "123"})

  



  
    
      
    
    
      size(queue)



        
          
        

    

  


  

      

          @spec size(pid()) :: non_neg_integer()


      


Get the number of pending events.
Example
count = EventQueue.size(queue)

  



  
    
      
    
    
      start_link()



        
          
        

    

  


  

      

          @spec start_link() :: {:ok, pid()} | {:error, term()}


      


Start a new event queue.
Returns
	{:ok, queue} - Queue started successfully
	{:error, reason} - Failed to start

Example
{:ok, queue} = EventQueue.start_link()

  



  
    
      
    
    
      start_link(opts)



        
          
        

    

  


  

      

          @spec start_link(keyword()) :: {:ok, pid()} | {:error, term()}


      


Start a new event queue with options.
Options
Accepts standard Agent options like :name.
Example
{:ok, queue} = EventQueue.start_link(name: :my_event_queue)

  



  
    
      
    
    
      stop(queue)



        
          
        

    

  


  

      

          @spec stop(pid()) :: :ok


      


Stop the event queue.
Example
:ok = EventQueue.stop(queue)

  


        

      


  

    
PropertyDamage.Executor 
    



      
Executes command sequences against the System Under Test.
The Executor is the core engine that runs command sequences, manages refs,
updates projections, runs checks, and collects events from both the adapter
and injector adapters.
Sequence Execution
The Executor handles both linear and branching sequences:
Linear Sequences
Commands are executed sequentially:
%Sequence{prefix: [cmd1, cmd2, cmd3], branches: nil, suffix: []}
Execution: cmd1 → cmd2 → cmd3
Branching Sequences
Commands with parallel branches:
%Sequence{
  prefix: [cmd1],
  branches: [[cmd2a, cmd3a], [cmd2b]],
  suffix: [cmd4]
}
Execution:
	Execute prefix: cmd1
	Fork state at branch point
	Execute branch A: cmd2a → cmd3a
	Execute branch B: cmd2b
	Verify linearizability of branch execution
	Merge state, execute suffix: cmd4

Execution Flow
For each command in the sequence:
	Resolve symbolic refs to concrete values
	Execute via adapter (command → events)
	If creates_ref/0 defined and events produced, bind new ref
	Update projections (command first, then events)
	Drain injector events and process them
	Run triggered checks
	Record events in event log

Ref Resolution
Commands may contain symbolic refs (created via Ref.symbolic/1). Before
execution, these are replaced with their concrete values. If a ref hasn't
been resolved yet (its producer hasn't run), execution fails.
Event Log
All events are recorded in the event log with metadata:
	Command events: source = :command, command_index set
	Injector events: source = :injector, injector_adapter set
	Branch ID for parallel execution tracking

Results
Returns a result struct containing:
	:success - Boolean indicating if all checks passed
	:event_log - Complete event log
	:projections - Final projection states
	:refs - Ref resolution map
	:failed_at_index - Index where check failed (nil if success)
	:failure_reason - Check failure reason (nil if success)
	:linearization - Selected linearization (for branching sequences)


      


      
        Summary


  
    Types
  


    
      
        assertion_mode()

      


        Assertion mode controls whether and how assertion failures are handled.



    


    
      
        result()

      


        Result of executing a command sequence.



    





  
    Functions
  


    
      
        execute_sequence(sequence_or_commands, model, adapter, adapter_context, event_queue \\ nil, stutter_config \\ nil, mock_registry \\ nil, assertion_mode \\ :halt)

      


        Execute a command sequence with pre-established contexts.



    


    
      
        run(sequence_or_commands, model, adapter, opts \\ [])

      


        Execute a command sequence using the given model and adapter.



    





      


      
        Types


        


  
    
      
    
    
      assertion_mode()



        
          
        

    

  


  

      

          @type assertion_mode() :: :disabled | :halt | :record | :log


      


Assertion mode controls whether and how assertion failures are handled.
	:disabled - Skip all assertions (useful for load testing focused on throughput)
	:halt (default) - Stop execution at first failure, return failure
	:record - Record failures and continue, return all failures at end
	:log - Log failures as warnings and continue


  



  
    
      
    
    
      result()



        
          
        

    

  


  

      

          @type result() :: %{
  success: boolean(),
  event_log: [PropertyDamage.EventLog.Entry.t()],
  projections: %{required(module()) => any()},
  refs: %{required(reference()) => any()},
  failed_at_index: non_neg_integer() | nil,
  failure_reason: term() | nil,
  linearization: [struct()] | nil,
  assertion_failures: [map()] | nil
}


      


Result of executing a command sequence.

  


        

      

      
        Functions


        


    

    

    

    

  
    
      
    
    
      execute_sequence(sequence_or_commands, model, adapter, adapter_context, event_queue \\ nil, stutter_config \\ nil, mock_registry \\ nil, assertion_mode \\ :halt)



        
          
        

    

  


  

      

          @spec execute_sequence(
  PropertyDamage.Sequence.t() | list(),
  module(),
  module(),
  map(),
  pid() | nil,
  PropertyDamage.Stutter.Config.t() | nil,
  pid() | nil,
  assertion_mode()
) :: result()


      


Execute a command sequence with pre-established contexts.
Lower-level API when you've already set up the adapter. Useful for shrinking
where you want to reuse contexts across multiple execution attempts.
Parameters
	sequence - Sequence struct to execute
	model - Model module
	adapter - Adapter module
	adapter_context - Pre-established adapter context
	event_queue - EventQueue pid (optional)
	stutter_config - Stutter.Config for idempotency testing (optional)
	mock_registry - MockServiceRegistry pid (optional)
	assertion_mode - How to handle assertion failures (optional, default: :halt)

Returns
Result struct directly (no wrapping tuple).

  



    

  
    
      
    
    
      run(sequence_or_commands, model, adapter, opts \\ [])



        
          
        

    

  


  

      

          @spec run(PropertyDamage.Sequence.t() | list(), module(), module(), keyword()) ::
  {:ok, result()} | {:error, term()}


      


Execute a command sequence using the given model and adapter.
This is the main entry point for execution. It handles the full lifecycle:
adapter setup, command execution, injector event draining, and cleanup.
Parameters
	sequence - Sequence struct to execute (linear or branching)
	model - Model module defining projections and checks
	adapter - Adapter module for SUT interaction
	opts - Options (see below)

Options
	:adapter_config - Config passed to adapter.setup/1
	:event_queue - EventQueue pid for injector events (optional)
	:injector_adapters - List of injector adapter modules (optional)
	:stutter_config - Stutter.Config for idempotency testing (optional)
	:mock_registry - MockServiceRegistry pid for mock service support (optional)
	:assertion_mode - How to handle assertions (:disabled, :halt, :record, :log). Default: :halt

Returns
	{:ok, result} - Execution completed (check result.success for pass/fail)
	{:error, reason} - Setup or execution infrastructure failed


  


        

      


  

    
PropertyDamage.Linearization 
    



      
Linearization checking for parallel execution results.
When commands execute in parallel branches, the Linearization module verifies
that the observed results can be explained by some sequential (linear) ordering
of the commands.
What is Linearizability?
A parallel execution is linearizable if there exists a sequential ordering of
the commands such that:
	The ordering respects the happens-before relationship within each branch
	Executing commands in that order produces the same final state

If no such ordering exists, the system has exhibited non-linearizable behavior,
which typically indicates a race condition or consistency bug.
Algorithm
Given branch execution results:
	Generate all valid interleavings (orderings that preserve intra-branch order)
	For each interleaving, simulate execution through the model's projections
	Compare the simulated final state with the actual observed state
	If any interleaving matches, the execution is linearizable

Optimizations
For sequences with many branches or long branches, the number of interleavings
can grow factorially. Optimizations include:
	Early termination when a valid linearization is found
	Pruning based on state hashing (skip orderings that can't reach observed state)
	Using happens-before constraints from command dependencies

Usage
case Linearization.check(branches, branch_events, projections, model) do
  {:ok, linearization} ->
    # Valid ordering found
    IO.inspect(linearization, label: "Linearization")

  :no_linearization ->
    # No valid ordering - race condition detected
    raise "Non-linearizable execution!"
end

      


      
        Summary


  
    Types
  


    
      
        branch_events()

      


    


    
      
        linearization()

      


    


    
      
        projection_state()

      


    





  
    Functions
  


    
      
        check(branch_commands, branch_events, projections, model)

      


        Check if branch execution results are linearizable.



    


    
      
        feasibility(branches)

      


        Check if linearization checking is feasible for given branches.



    


    
      
        generate_linearizations(branches)

      


        Generate all valid linearizations of branch commands.



    


    
      
        linearization_count(branches)

      


        Count the number of possible linearizations for given branches.



    


    
      
        verify(linearization, branch_events, initial_projections, model)

      


        Verify a specific linearization against observed events.



    





      


      
        Types


        


  
    
      
    
    
      branch_events()



        
          
        

    

  


  

      

          @type branch_events() :: %{
  required(non_neg_integer()) => [PropertyDamage.EventLog.Entry.t()]
}


      



  



  
    
      
    
    
      linearization()



        
          
        

    

  


  

      

          @type linearization() :: [struct()]


      



  



  
    
      
    
    
      projection_state()



        
          
        

    

  


  

      

          @type projection_state() :: map()


      



  


        

      

      
        Functions


        


  
    
      
    
    
      check(branch_commands, branch_events, projections, model)



        
          
        

    

  


  

      

          @spec check([[struct()]], branch_events(), projection_state(), module()) ::
  {:ok, linearization()} | :no_linearization


      


Check if branch execution results are linearizable.
Parameters
	branch_commands - List of command lists, one per branch
	branch_events - Map of branch_id to event log entries
	projections - Initial projection state (from prefix execution)
	model - Model module for projection application

Returns
	{:ok, linearization} - A valid sequential ordering
	:no_linearization - No valid ordering exists


  



  
    
      
    
    
      feasibility(branches)



        
          
        

    

  


  

      

          @spec feasibility([[struct()]]) :: :ok | {:warning, non_neg_integer()}


      


Check if linearization checking is feasible for given branches.
Returns :ok if the number of linearizations is manageable,
or {:warning, count} if it may be slow.

  



  
    
      
    
    
      generate_linearizations(branches)



        
          
        

    

  


  

      

          @spec generate_linearizations([[struct()]]) :: [[struct()]]


      


Generate all valid linearizations of branch commands.
Preserves the order within each branch while exploring all possible
interleavings between branches.

  



  
    
      
    
    
      linearization_count(branches)



        
          
        

    

  


  

      

          @spec linearization_count([[struct()]]) :: non_neg_integer()


      


Count the number of possible linearizations for given branches.
Useful for estimating complexity before attempting verification.
Formula
For branches of lengths n1, n2, ..., nk, the count is:
(n1 + n2 + ... + nk)! / (n1!  n2!  ... * nk!)

  



  
    
      
    
    
      verify(linearization, branch_events, initial_projections, model)



        
          
        

    

  


  

      

          @spec verify(linearization(), branch_events(), projection_state(), module()) ::
  boolean()


      


Verify a specific linearization against observed events.
Simulates executing the commands in the given order and compares
the resulting projection state with the observed events.

  


        

      


  

    
PropertyDamage.Ref 
    



      
Symbolic references for entity IDs in stateful property-based testing.
Refs are placeholders that represent entity identities before concrete
values are known. They enable the framework to generate command sequences
that refer to entities created by earlier commands, without needing to
know the actual IDs upfront.
Lifecycle
Refs have a three-phase lifecycle:
	Symbolic Phase - During command sequence generation, symbolic/1
creates a ref with a unique identity via make_ref/0. The ref has no
concrete value yet.

	Concrete Phase - During execution against the System Under Test (SUT),
the Adapter executes a command and gets a real ID back (e.g., "ord_abc123").
The framework calls resolve/2 to associate the ref with this value.

	Usage Phase - Subsequent commands that reference this entity use
the same ref. The framework automatically resolves refs to concrete
values when executing commands via value!/1.


Identity
Two refs are considered equal only if they have the same ref field (the
result of make_ref/0). The label field is purely for debugging/display
and does not affect identity - two refs with the same label are still distinct.
Example
# During command generation (symbolic phase)
order_ref = Ref.symbolic(label: "order")
# => %Ref{ref: #Reference<...>, label: "order", resolved: Unresolved}

# During execution (concrete phase)
resolved_ref = Ref.resolve(order_ref, "ord_abc123")
# => %Ref{ref: #Reference<...>, label: "order", resolved: "ord_abc123"}

# Getting the value
Ref.value!(resolved_ref)
# => "ord_abc123"
Framework Internals
The executor maintains a ref_table mapping ref identities to concrete values.
Commands and projections work with pure domain state - they don't need to
understand ref resolution. The framework handles resolution transparently.

      


      
        Summary


  
    Types
  


    
      
        t()

      


        A symbolic reference to an entity.



    





  
    Functions
  


    
      
        resolve(ref, value)

      


        Resolve a ref with a concrete value during execution.



    


    
      
        resolved?(ref)

      


        Check if a ref has been resolved to a concrete value.



    


    
      
        symbolic(opts \\ [])

      


        Create a symbolic ref during command generation.



    


    
      
        value!(ref)

      


        Get the resolved value from a ref.



    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %PropertyDamage.Ref{
  label: String.t() | nil,
  ref: reference(),
  resolved: any() | PropertyDamage.Ref.Unresolved
}


      


A symbolic reference to an entity.
	ref - Unique identity from make_ref/0
	label - Optional debug label (does not affect identity)
	resolved - Either Unresolved (sentinel) or the concrete value


  


        

      

      
        Functions


        


  
    
      
    
    
      resolve(ref, value)



        
          
        

    

  


  

      

          @spec resolve(t(), any()) :: t()


      


Resolve a ref with a concrete value during execution.
This is called by the framework after executing a command that creates
an entity. The returned ref has the same identity but now carries the
concrete value.
Examples
iex> ref = PropertyDamage.Ref.symbolic()
iex> resolved = PropertyDamage.Ref.resolve(ref, "ord_123")
iex> PropertyDamage.Ref.resolved?(resolved)
true
iex> PropertyDamage.Ref.value!(resolved)
"ord_123"

  



  
    
      
    
    
      resolved?(ref)



        
          
        

    

  


  

      

          @spec resolved?(t()) :: boolean()


      


Check if a ref has been resolved to a concrete value.
Examples
iex> ref = PropertyDamage.Ref.symbolic()
iex> PropertyDamage.Ref.resolved?(ref)
false

iex> ref = PropertyDamage.Ref.symbolic() |> PropertyDamage.Ref.resolve("123")
iex> PropertyDamage.Ref.resolved?(ref)
true

  



    

  
    
      
    
    
      symbolic(opts \\ [])



        
          
        

    

  


  

      

          @spec symbolic(keyword()) :: t()


      


Create a symbolic ref during command generation.
The optional label is for debugging/display purposes only (like IO.inspect's label).
It does not affect identity - two refs with the same label are still distinct.
Options
	:label - A string label for debugging (optional)

Examples
iex> ref = PropertyDamage.Ref.symbolic()
iex> PropertyDamage.Ref.resolved?(ref)
false

iex> ref = PropertyDamage.Ref.symbolic(label: "order")
iex> ref.label
"order"

  



  
    
      
    
    
      value!(ref)



        
          
        

    

  


  

      

          @spec value!(t()) :: any()


      


Get the resolved value from a ref.
Raises if the ref has not been resolved yet.
Examples
iex> ref = PropertyDamage.Ref.symbolic() |> PropertyDamage.Ref.resolve("abc")
iex> PropertyDamage.Ref.value!(ref)
"abc"
Raises
	RuntimeError - If the ref is not yet resolved


  


        

      


  

    
PropertyDamage.Analysis 
    



      
Advanced failure analysis tools for understanding and debugging test failures.
This module provides tools that go beyond basic shrinking to help users
understand why a failure occurs and what specifically triggers it.
Features
	Causal Explanation: Understand why each command in the shrunk sequence is needed
	Trigger Isolation: Find the minimal change that eliminates the failure
	Test Generation: Generate reproducible test code from failures

Usage
{:error, failure} = PropertyDamage.run(model: M, adapter: A)

# Understand why each command is needed
PropertyDamage.Analysis.explain(failure)

# Find what triggers the bug
PropertyDamage.Analysis.isolate_trigger(failure)

# Generate a test case
PropertyDamage.Analysis.generate_test(failure, format: :exunit)

      


      
        Summary


  
    Functions
  


    
      
        explain(report)

      


        Explain why each command in the shrunk sequence is needed for the failure.



    


    
      
        format_explanation(explanation)

      


        Format an explanation as a human-readable string.



    


    
      
        generate_test(report, opts \\ [])

      


        Generate a reproducible test case from a failure.



    


    
      
        isolate_trigger(report, opts \\ [])

      


        Find the minimal change that eliminates the failure.



    





      


      
        Functions


        


  
    
      
    
    
      explain(report)



        
          
        

    

  


  

      

          @spec explain(PropertyDamage.FailureReport.t()) :: map()


      


Explain why each command in the shrunk sequence is needed for the failure.
Returns a structured explanation showing:
	The dependency graph between commands
	Which command triggers the failure
	Why each other command must be present

Example
PropertyDamage.Analysis.explain(failure)
# Returns:
# %{
#   commands: [
#     %{index: 0, command: "CreateAccount", role: :dependency,
#       reason: "Creates account used by command 2"},
#     %{index: 1, command: "CreateAuthorization", role: :dependency,
#       reason: "Creates pending hold affecting available balance"},
#     %{index: 2, command: "CreditAccount", role: :trigger,
#       reason: "Causes currency_consistency check to fail"}
#   ],
#   failure: %{type: :check_failed, check: :currency_consistency, ...}
# }

  



  
    
      
    
    
      format_explanation(explanation)



        
          
        

    

  


  

      

          @spec format_explanation(map()) :: String.t()


      


Format an explanation as a human-readable string.

  



    

  
    
      
    
    
      generate_test(report, opts \\ [])



        
          
        

    

  


  

      

          @spec generate_test(
  PropertyDamage.FailureReport.t(),
  keyword()
) :: String.t()


      


Generate a reproducible test case from a failure.
Creates runnable code that reproduces the failure, suitable for adding
to a test suite or sharing with colleagues.
Options
	:format - Output format (:exunit, :script, :markdown). Default: :exunit
	:module_name - Module name for ExUnit tests. Default: "ReproductionTest"
	:include_setup - Include model/adapter setup code. Default: true

Example
PropertyDamage.Analysis.generate_test(failure, format: :exunit)
# Generates ExUnit test code

  



    

  
    
      
    
    
      isolate_trigger(report, opts \\ [])



        
          
        

    

  


  

      

          @spec isolate_trigger(
  PropertyDamage.FailureReport.t(),
  keyword()
) :: {:ok, map()} | {:error, term()}


      


Find the minimal change that eliminates the failure.
This performs differential analysis to identify exactly what triggers the bug.
It tries variations of the failing command to find the smallest change that
makes the failure disappear.
Returns
A map containing:
	:trigger_command - The command that triggers the failure
	:changes - List of changes that eliminate the failure
	:likely_cause - Inferred cause based on the changes

Example
PropertyDamage.Analysis.isolate_trigger(failure)
# %{
#   trigger_command: %CreditAccount{...},
#   changes: [
#     %{field: :currency, original: "EUR", fixed: "USD",
#       description: "Changing currency from EUR to USD eliminates failure"}
#   ],
#   likely_cause: "Currency mismatch: account currency (USD) differs from operation currency (EUR)"
# }

  


        

      


  

    
PropertyDamage.Coverage 
    



      
Track and report coverage metrics for property-based tests.
Coverage helps you understand how thoroughly your model is being exercised:
	Command coverage: Which commands have been tested?
	Transition coverage: Which command sequences have been tested?
	State coverage: Which projection states have been reached?

Usage
# Enable coverage tracking
{:ok, result} = PropertyDamage.run(model: M, adapter: A, coverage: true)

# Get coverage report
coverage = PropertyDamage.Coverage.from_result(result)
IO.puts(PropertyDamage.Coverage.format(coverage))

# Or track across multiple runs
tracker = Coverage.new(M)
tracker = Coverage.record(tracker, result1)
tracker = Coverage.record(tracker, result2)
IO.puts(Coverage.format(tracker))
Coverage Metrics
	Command coverage: Percentage of commands that were executed at least once
	Command frequency: How often each command was executed
	Transition coverage: Which command pairs (A → B) have been tested
	State coverage: Unique projection states reached (by hash)
	Check coverage: Which checks have been exercised

CI Integration
Use Coverage.meets_threshold?/2 to fail CI if coverage is too low:
coverage = Coverage.from_result(result)
unless Coverage.meets_threshold?(coverage, command: 80, transition: 50) do
  raise "Coverage threshold not met"
end

      


      
        Summary


  
    Types
  


    
      
        state_classifier()

      


    


    
      
        t()

      


    





  
    Functions
  


    
      
        bottom_commands(coverage, n \\ 10)

      


        Get the least frequently executed commands (excluding untested).



    


    
      
        command_coverage(coverage)

      


        Get command coverage percentage.



    


    
      
        format(tracker, format \\ :summary)

      


        Format coverage report for display.



    


    
      
        format_state_class_matrix(tracker)

      


        Format state class coverage as ASCII art.



    


    
      
        format_transition_matrix(tracker)

      


        Format the transition matrix as ASCII art.



    


    
      
        from_result(result, model)

      


        Build coverage from a single result (convenience function).



    


    
      
        meets_threshold?(tracker, opts \\ [])

      


        Check if coverage meets specified thresholds.



    


    
      
        merge(tracker1, tracker2)

      


        Merge two coverage trackers.



    


    
      
        new(model, opts \\ [])

      


        Create a new coverage tracker for a model.



    


    
      
        record(tracker, arg)

      


        Record coverage from a test run result.



    


    
      
        state_class_counts(coverage)

      


        Get state class counts (requires state_classifier to be set).



    


    
      
        state_class_matrix(coverage)

      


        Get the state class transition matrix.



    


    
      
        state_class_transitions(coverage)

      


        Get state class transition counts (requires state_classifier to be set).



    


    
      
        stats(tracker)

      


        Get detailed statistics.



    


    
      
        to_json(tracker)

      


        Export coverage data to JSON for CI integration.



    


    
      
        top_commands(coverage, n \\ 10)

      


        Get the most frequently executed commands.



    


    
      
        top_transitions(coverage, n \\ 10)

      


        Get most frequently tested transitions.



    


    
      
        transition_coverage(coverage)

      


        Get transition coverage percentage.



    


    
      
        transition_matrix(coverage)

      


        Get the transition matrix as a map.



    


    
      
        unique_states(coverage)

      


        Get the number of unique states observed.



    


    
      
        untested_commands(coverage)

      


        Get commands that haven't been tested yet.



    


    
      
        untested_transitions(coverage)

      


        Get transitions (command pairs) that haven't been tested yet.



    





      


      
        Types


        


  
    
      
    
    
      state_classifier()



        
          
        

    

  


  

      

          @type state_classifier() :: (map() -> atom() | String.t()) | nil


      



  



  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %PropertyDamage.Coverage{
  check_hits: %{required(module()) => non_neg_integer()},
  command_counts: %{required(module()) => non_neg_integer()},
  command_modules: MapSet.t(module()),
  failures_found: non_neg_integer(),
  last_state_class: atom() | nil,
  model: module(),
  state_class_counts: %{required(atom()) => non_neg_integer()},
  state_class_transitions: %{required({atom(), atom()}) => non_neg_integer()},
  state_classifier: state_classifier(),
  state_hashes: MapSet.t(integer()),
  total_commands: non_neg_integer(),
  total_runs: non_neg_integer(),
  transition_counts: %{required({module(), module()}) => non_neg_integer()}
}


      



  


        

      

      
        Functions


        


    

  
    
      
    
    
      bottom_commands(coverage, n \\ 10)



        
          
        

    

  


  

      

          @spec bottom_commands(t(), non_neg_integer()) :: [{module(), non_neg_integer()}]


      


Get the least frequently executed commands (excluding untested).

  



  
    
      
    
    
      command_coverage(coverage)



        
          
        

    

  


  

      

          @spec command_coverage(t()) :: float()


      


Get command coverage percentage.
Returns the percentage of defined commands that were executed at least once.

  



    

  
    
      
    
    
      format(tracker, format \\ :summary)



        
          
        

    

  


  

      

          @spec format(t(), atom()) :: String.t()


      


Format coverage report for display.
Format Options
	:summary - Brief summary (default)
	:matrix - Transition matrix showing command pairs
	:full - Complete report with matrix and untested transitions
	:state_classes - State class transition matrix (requires state_classifier)

Examples
Coverage.format(tracker)                # summary
Coverage.format(tracker, :matrix)       # transition matrix only
Coverage.format(tracker, :full)         # everything
Coverage.format(tracker, :state_classes) # state class matrix only

  



  
    
      
    
    
      format_state_class_matrix(tracker)



        
          
        

    

  


  

      

          @spec format_state_class_matrix(t()) :: String.t()


      


Format state class coverage as ASCII art.
Shows which state class transitions have been tested.

  



  
    
      
    
    
      format_transition_matrix(tracker)



        
          
        

    

  


  

      

          @spec format_transition_matrix(t()) :: String.t()


      


Format the transition matrix as ASCII art.
Shows which command pairs have been tested:
	████ = well-tested (>10 occurrences)
	▓▓▓▓ = tested (>5 occurrences)
	░░░░ = lightly tested (1-5 occurrences)
	 = untested

Example
Transition Matrix
───────────────────────────────────────
              → Create  Credit  Debit
Create           ·      ████    ████
Credit         ████       ·     ▓▓▓▓
Debit          ░░░░    ████       ·

  



  
    
      
    
    
      from_result(result, model)



        
          
        

    

  


  

      

          @spec from_result({:ok, map()} | {:error, PropertyDamage.FailureReport.t()}, module()) ::
  t()


      


Build coverage from a single result (convenience function).

  



    

  
    
      
    
    
      meets_threshold?(tracker, opts \\ [])



        
          
        

    

  


  

      

          @spec meets_threshold?(
  t(),
  keyword()
) :: boolean()


      


Check if coverage meets specified thresholds.
Options
	:command - Minimum command coverage percentage (default: 0)
	:transition - Minimum transition coverage percentage (default: 0)
	:min_commands - Minimum total commands executed (default: 0)

Example
Coverage.meets_threshold?(coverage, command: 80, transition: 50)

  



  
    
      
    
    
      merge(tracker1, tracker2)



        
          
        

    

  


  

      

          @spec merge(t(), t()) :: t()


      


Merge two coverage trackers.
Useful for combining coverage from parallel test runs.

  



    

  
    
      
    
    
      new(model, opts \\ [])



        
          
        

    

  


  

      

          @spec new(
  module(),
  keyword()
) :: t()


      


Create a new coverage tracker for a model.
Options
	:state_classifier - Function to classify states into abstract classes.
The function receives the projection state map and returns an atom or string
identifying the state class.

Example
# Track coverage with state classes
classifier = fn state ->
  cond do
    state.balance == 0 -> :zero_balance
    state.balance > 0 -> :positive_balance
    state.balance < 0 -> :negative_balance
  end
end

tracker = Coverage.new(MyModel, state_classifier: classifier)

  



  
    
      
    
    
      record(tracker, arg)



        
          
        

    

  


  

      

          @spec record(t(), {:ok, map()} | {:error, PropertyDamage.FailureReport.t()}) :: t()


      


Record coverage from a test run result.
Works with both success and failure results.

  



  
    
      
    
    
      state_class_counts(coverage)



        
          
        

    

  


  

      

          @spec state_class_counts(t()) :: %{required(atom()) => non_neg_integer()}


      


Get state class counts (requires state_classifier to be set).
Returns a map of %{state_class => count}.

  



  
    
      
    
    
      state_class_matrix(coverage)



        
          
        

    

  


  

      

          @spec state_class_matrix(t()) :: %{
  required(atom()) => %{required(atom()) => non_neg_integer()}
}


      


Get the state class transition matrix.
Returns %{from_class => %{to_class => count}}.

  



  
    
      
    
    
      state_class_transitions(coverage)



        
          
        

    

  


  

      

          @spec state_class_transitions(t()) :: %{
  required({atom(), atom()}) => non_neg_integer()
}


      


Get state class transition counts (requires state_classifier to be set).
Returns a map of %{{from_class, to_class} => count}.

  



  
    
      
    
    
      stats(tracker)



        
          
        

    

  


  

      

          @spec stats(t()) :: map()


      


Get detailed statistics.

  



  
    
      
    
    
      to_json(tracker)



        
          
        

    

  


  

      

          @spec to_json(t()) :: String.t()


      


Export coverage data to JSON for CI integration.

  



    

  
    
      
    
    
      top_commands(coverage, n \\ 10)



        
          
        

    

  


  

      

          @spec top_commands(t(), non_neg_integer()) :: [{module(), non_neg_integer()}]


      


Get the most frequently executed commands.

  



    

  
    
      
    
    
      top_transitions(coverage, n \\ 10)



        
          
        

    

  


  

      

          @spec top_transitions(t(), non_neg_integer()) :: [
  {{module(), module()}, non_neg_integer()}
]


      


Get most frequently tested transitions.

  



  
    
      
    
    
      transition_coverage(coverage)



        
          
        

    

  


  

      

          @spec transition_coverage(t()) :: float()


      


Get transition coverage percentage.
Returns the percentage of possible command pairs that were tested.

  



  
    
      
    
    
      transition_matrix(coverage)



        
          
        

    

  


  

      

          @spec transition_matrix(t()) :: %{
  required(module()) => %{required(module()) => non_neg_integer()}
}


      


Get the transition matrix as a map.
Returns %{from_command => %{to_command => count}}.

  



  
    
      
    
    
      unique_states(coverage)



        
          
        

    

  


  

      

          @spec unique_states(t()) :: non_neg_integer()


      


Get the number of unique states observed.

  



  
    
      
    
    
      untested_commands(coverage)



        
          
        

    

  


  

      

          @spec untested_commands(t()) :: [module()]


      


Get commands that haven't been tested yet.

  



  
    
      
    
    
      untested_transitions(coverage)



        
          
        

    

  


  

      

          @spec untested_transitions(t()) :: [{module(), module()}]


      


Get transitions (command pairs) that haven't been tested yet.
Returns list of {from_command, to_command} tuples.

  


        

      


  

    
PropertyDamage.Flakiness 
    



      
Detect non-deterministic behavior in the system under test.
Flaky tests are tests that sometimes pass and sometimes fail with the same
input. This is often caused by:
	Race conditions in the SUT
	External dependencies (time, network, etc.)
	Uninitialized state between runs
	Non-deterministic SUT behavior

Usage
# Check if a specific seed is flaky
result = PropertyDamage.check_determinism(
  model: M,
  adapter: A,
  seed: 512902757,
  runs: 10
)

case result do
  {:ok, :deterministic} ->
    IO.puts("Seed is deterministic")

  {:ok, :flaky, stats} ->
    IO.puts("Seed is FLAKY: passed #{stats.passes}/#{stats.runs} times")

  {:error, reason} ->
    IO.puts("Check failed: #{inspect(reason)}")
end
Batch Checking
# Check multiple seeds at once
results = PropertyDamage.check_determinism_batch(
  model: M,
  adapter: A,
  seeds: [123, 456, 789],
  runs_per_seed: 5
)
Understanding Results
The checker reports:
	Deterministic: Same result every run
	Flaky: Different results across runs
	Variance: What varies (pass/fail, failure type, shrunk size)


      


      
        Summary


  
    Types
  


    
      
        check_opts()

      


    


    
      
        flaky_stats()

      


    


    
      
        result()

      


    





  
    Functions
  


    
      
        check(model, adapter, seed, opts \\ [])

      


        Check if a seed produces deterministic results.



    


    
      
        check_batch(model, adapter, seeds, opts \\ [])

      


        Check multiple seeds for flakiness.



    


    
      
        discover_flaky(model, adapter, opts \\ [])

      


        Run random seeds and identify flaky ones.



    


    
      
        format_batch(results)

      


        Format batch results for display.



    


    
      
        format_result(arg)

      


        Format flakiness check results for display.



    





      


      
        Types


        


  
    
      
    
    
      check_opts()



        
          
        

    

  


  

      

          @type check_opts() :: [
  runs: non_neg_integer(),
  adapter_config: map(),
  max_commands: non_neg_integer(),
  verbose: boolean()
]


      



  



  
    
      
    
    
      flaky_stats()



        
          
        

    

  


  

      

          @type flaky_stats() :: %{
  runs: non_neg_integer(),
  passes: non_neg_integer(),
  failures: non_neg_integer(),
  failure_types: %{required(atom()) => non_neg_integer()},
  shrunk_sizes: [non_neg_integer()],
  variance_type: :pass_fail | :failure_type | :shrunk_size | :multiple
}


      



  



  
    
      
    
    
      result()



        
          
        

    

  


  

      

          @type result() ::
  {:ok, :deterministic} | {:ok, :flaky, flaky_stats()} | {:error, term()}


      



  


        

      

      
        Functions


        


    

  
    
      
    
    
      check(model, adapter, seed, opts \\ [])



        
          
        

    

  


  

      

          @spec check(module(), module(), integer(), check_opts()) :: result()


      


Check if a seed produces deterministic results.
Runs the same seed multiple times and compares outcomes.
Options
	:runs - Number of times to run (default: 5)
	:adapter_config - Adapter configuration
	:max_commands - Maximum commands per run (default: 50)
	:verbose - Print progress (default: false)

Returns
	{:ok, :deterministic} - Same result every time
	{:ok, :flaky, stats} - Different results, with statistics
	{:error, reason} - Check failed


  



    

  
    
      
    
    
      check_batch(model, adapter, seeds, opts \\ [])



        
          
        

    

  


  

      

          @spec check_batch(module(), module(), [integer()], keyword()) :: %{
  required(integer()) => result()
}


      


Check multiple seeds for flakiness.
Options
Same as check/4, plus:
	:runs_per_seed - Runs per seed (default: 5)
	:parallel - Run seeds in parallel (default: false)

Returns
Map from seed to result.

  



    

  
    
      
    
    
      discover_flaky(model, adapter, opts \\ [])



        
          
        

    

  


  

      

          @spec discover_flaky(module(), module(), keyword()) :: [{integer(), flaky_stats()}]


      


Run random seeds and identify flaky ones.
This is useful for discovering non-determinism in your SUT without
knowing specific problematic seeds.
Options
	:num_seeds - Number of random seeds to test (default: 10)
	:runs_per_seed - Runs per seed (default: 3)
	Other options passed to check/4

Returns
List of {seed, flaky_stats} for seeds that are flaky.

  



  
    
      
    
    
      format_batch(results)



        
          
        

    

  


  

      

          @spec format_batch(%{required(integer()) => result()}) :: String.t()


      


Format batch results for display.

  



  
    
      
    
    
      format_result(arg)



        
          
        

    

  


  

      

          @spec format_result(result()) :: String.t()


      


Format flakiness check results for display.

  


        

      


  

    
PropertyDamage.Replay 
    



      
Step-by-step replay of failure sequences for debugging.
Replay mode lets you execute a failing sequence one command at a time,
inspecting the state after each step. This is invaluable for understanding
exactly how the system reached the failure state.
Usage Modes
Functional Mode (Recommended for scripts)
# Get all steps at once
{:ok, steps} = PropertyDamage.replay(failure)
for step <- steps do
  IO.puts("Command #{step.index}: #{step.command_name}")
  IO.inspect(step.projections, label: "State")
end
Interactive Mode (For LiveBook/IEx)
{:ok, session} = Replay.start(failure)
{:ok, session, step} = Replay.step(session)  # Execute first command
IO.inspect(step.projections)                  # Inspect state
{:ok, session, step} = Replay.step(session)  # Next command
# ...continue stepping...
Jump to Failure Point
{:ok, session} = Replay.start(failure)
{:ok, session, steps} = Replay.step_to(session, failure.failed_at_index)
# Now at the exact point where the failure occurred
Step Information
Each step returns:
	index - Command index in sequence
	command - The command struct
	command_name - Short name for display
	events - Events produced by this command
	projections - Projection states after this command
	refs - Ref resolution map
	result - :ok, {:check_failed, ...}, or error


      


      
        Summary


  
    Types
  


    
      
        step()

      


    


    
      
        t()

      


    





  
    Functions
  


    
      
        current_state(replay)

      


        Get the current state of projections.



    


    
      
        format_history(steps)

      


        Format all steps for display.



    


    
      
        format_step(step)

      


        Format a step for display.



    


    
      
        history(replay)

      


        Get all executed steps so far.



    


    
      
        peek(replay, index)

      


        Get the command at a specific index (without executing).



    


    
      
        run(failure, opts \\ [])

      


        Replay an entire failure sequence, returning all steps.



    


    
      
        start(failure, opts \\ [])

      


        Start an interactive replay session.



    


    
      
        step(session)

      


        Execute the next command in the sequence.



    


    
      
        step_to(session, target_index)

      


        Execute commands up to (and including) the specified index.



    


    
      
        stop(arg1)

      


        Clean up session resources.



    





      


      
        Types


        


  
    
      
    
    
      step()



        
          
        

    

  


  

      

          @type step() :: %{
  index: non_neg_integer(),
  command: struct(),
  command_name: String.t(),
  events: [struct()],
  projections: map(),
  projections_before: map(),
  refs: map(),
  result: :ok | {:check_failed, atom(), String.t()} | {:error, term()}
}


      



  



  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %PropertyDamage.Replay{
  adapter: module(),
  adapter_config: map(),
  commands: [struct()],
  current_index: integer(),
  event_log: [term()],
  event_queue: pid(),
  failure: PropertyDamage.FailureReport.t(),
  model: module(),
  projections: map(),
  refs: map(),
  status: :ready | :in_progress | :completed | :failed,
  steps: [step()]
}


      



  


        

      

      
        Functions


        


  
    
      
    
    
      current_state(replay)



        
          
        

    

  


  

      

          @spec current_state(t()) :: map()


      


Get the current state of projections.

  



  
    
      
    
    
      format_history(steps)



        
          
        

    

  


  

      

          @spec format_history(t() | [step()]) :: String.t()


      


Format all steps for display.

  



  
    
      
    
    
      format_step(step)



        
          
        

    

  


  

      

          @spec format_step(step()) :: String.t()


      


Format a step for display.

  



  
    
      
    
    
      history(replay)



        
          
        

    

  


  

      

          @spec history(t()) :: [step()]


      


Get all executed steps so far.

  



  
    
      
    
    
      peek(replay, index)



        
          
        

    

  


  

      

          @spec peek(t(), non_neg_integer()) :: {:ok, struct()} | {:error, :out_of_bounds}


      


Get the command at a specific index (without executing).

  



    

  
    
      
    
    
      run(failure, opts \\ [])



        
          
        

    

  


  

      

          @spec run(
  PropertyDamage.FailureReport.t(),
  keyword()
) :: {:ok, [step()]} | {:error, term()}


      


Replay an entire failure sequence, returning all steps.
This is the simplest way to replay - it executes all commands and
returns structured information about each step.
Options
	:adapter_config - Override adapter configuration
	:stop_on_failure - Stop at first failure (default: true)
	:include_projections - Include projection states (default: true)

Returns
{:ok, [step]} where each step contains command, events, and state info.
Example
{:ok, steps} = PropertyDamage.replay(failure)

# Find where things went wrong
Enum.each(steps, fn step ->
  IO.puts("[#{step.index}] #{step.command_name}")
  case step.result do
    :ok -> IO.puts("  -> OK")
    {:check_failed, check, msg} -> IO.puts("  -> FAILED: #{check} - #{msg}")
  end
end)

  



    

  
    
      
    
    
      start(failure, opts \\ [])



        
          
        

    

  


  

      

          @spec start(
  PropertyDamage.FailureReport.t(),
  keyword()
) :: {:ok, t()} | {:error, term()}


      


Start an interactive replay session.
Use step/1 to advance through commands one at a time.
Options
	:adapter_config - Override adapter configuration

Example
{:ok, session} = Replay.start(failure)
{:ok, session, step1} = Replay.step(session)
{:ok, session, step2} = Replay.step(session)

  



  
    
      
    
    
      step(session)



        
          
        

    

  


  

      

          @spec step(t()) :: {:ok, t(), step()} | {:done, t()} | {:error, term()}


      


Execute the next command in the sequence.
Returns
	{:ok, session, step} - Command executed, step contains results
	{:done, session} - No more commands to execute
	{:error, reason} - Execution failed


  



  
    
      
    
    
      step_to(session, target_index)



        
          
        

    

  


  

      

          @spec step_to(t(), non_neg_integer()) :: {:ok, t(), [step()]} | {:error, term()}


      


Execute commands up to (and including) the specified index.
Returns
	{:ok, session, [step]} - Commands executed
	{:error, reason} - Execution failed


  



  
    
      
    
    
      stop(arg1)



        
          
        

    

  


  

      

          @spec stop(t()) :: :ok


      


Clean up session resources.
Call this when done with an interactive session.

  


        

      


  

    
PropertyDamage.Shrinker 
    



      
Shrinks failing command sequences to minimal reproductions.
When a property test fails, the Shrinker attempts to find the smallest
sequence that still reproduces the failure. This makes debugging easier
by removing irrelevant commands and simplifying arguments.
Failure Equivalence
The shrinker preserves failure equivalence - a shrunk sequence is only
accepted if it produces the same type of failure as the original.
This ensures the minimal reproduction demonstrates the same bug, not
a different one.
Failure equivalence is determined by:
	Same failure type (:check_failed, :idempotency_violation, etc.)
	Same check name (for invariant violations)
	Failure at the same or earlier command index

Determinism
Shrinking is fully deterministic given:
	The same seed (which determines the command sequence)
	The same initial failure
	Deterministic SUT behavior

This ensures reproducibility: the same seed always produces the same
shrunk sequence, making CI failures reliably reproducible locally.
Sequence Types
The Shrinker handles both linear and branching sequences:
Linear Sequences
Traditional shrinking: remove commands and simplify arguments.
Branching Sequences
Additional strategies:
	Remove entire branches (if failure persists)
	Shrink individual branches
	Convert to linear (if race not required for failure)
	Reduce branch count

Two-Phase Shrinking
Phase 1: Sequence Shrinking
Removes unnecessary commands while preserving the failure:
	Drop unexecuted: Remove commands after the failure point
	Hierarchical shrink: Remove commands grouped by dependency depth
	Linear shrink: Try removing each remaining command individually

Phase 2: Argument Shrinking (optional)
Simplifies values in remaining commands:
	Integers shrink toward 0
	Strings shrink toward empty
	Lists shrink toward empty
	Refs are never shrunk (would break dependencies)

Configuration
See PropertyDamage.Shrinker.Config for tuning options:
	granularity_threshold - When to switch from hierarchical to linear
	max_iterations - Limit total shrink attempts
	max_time_ms - Time budget for shrinking
	shrink_arguments - Whether to attempt argument shrinking

Usage
# After a failure at index 5
shrunk = Shrinker.shrink(
  sequence,
  failed_at_index: 5,
  failure_reason: {:check_failed, :balance_invariant, "..."},
  model: MyModel,
  adapter: MyAdapter,
  config: config
)

      


      
        Summary


  
    Types
  


    
      
        failure_signature()

      


        Failure signature for equivalence checking.



    


    
      
        shrink_result()

      


        Result of shrinking.



    





  
    Functions
  


    
      
        equivalent_failures?(reason1, reason2)

      


        Check if two failure reasons are equivalent.



    


    
      
        failure_signature(other)

      


        Extract a failure signature from a failure reason.



    


    
      
        shrink(sequence_or_commands, opts)

      


        Shrink a failing command sequence.



    





      


      
        Types


        


  
    
      
    
    
      failure_signature()



        
          
        

    

  


  

      

          @type failure_signature() :: %{type: atom(), check_name: atom() | nil}


      


Failure signature for equivalence checking.
Contains the essential properties that must match for a shrunk
sequence to be considered as reproducing the "same" failure.

  



  
    
      
    
    
      shrink_result()



        
          
        

    

  


  

      

          @type shrink_result() :: %{
  sequence: PropertyDamage.Sequence.t(),
  iterations: non_neg_integer(),
  time_ms: non_neg_integer()
}


      


Result of shrinking.

  


        

      

      
        Functions


        


  
    
      
    
    
      equivalent_failures?(reason1, reason2)



        
          
        

    

  


  

      

          @spec equivalent_failures?(term(), term()) :: boolean()


      


Check if two failure reasons are equivalent.
Two failures are equivalent if they have the same type and
(for check failures) the same check name.

  



  
    
      
    
    
      failure_signature(other)



        
          
        

    

  


  

      

          @spec failure_signature(term()) :: failure_signature()


      


Extract a failure signature from a failure reason.
The signature captures the essential properties for equivalence checking.

  



  
    
      
    
    
      shrink(sequence_or_commands, opts)



        
          
        

    

  


  

      

          @spec shrink(
  PropertyDamage.Sequence.t() | [struct()],
  keyword()
) :: shrink_result()


      


Shrink a failing command sequence.
Parameters
	sequence - The original failing sequence (or list for backwards compatibility)
	opts - Shrinking options:	:failed_at_index - Index where the failure occurred (required)
	:failure_reason - Original failure reason for equivalence checking (optional but recommended)
	:model - Model module (required)
	:adapter - Adapter module (required)
	:adapter_config - Config for adapter setup (default: %{})
	:config - Shrinker.Config struct (default: Config.new())
	:event_queue - EventQueue pid for injector events (optional)



Returns
A shrink_result map containing the minimal failing sequence.

  


        

      


  

    
PropertyDamage.Nemesis.CPUStress 
    



      
Create CPU stress in the BEAM VM.
Spawns processes that consume CPU cycles, useful for testing behavior
under high load, scheduler contention, and timeout handling.
Configuration
	:intensity - Load level from 1-10 (default: 5)
	:schedulers - Number of schedulers to stress (default: all)
	:duration_ms - How long to stress (default: 5000ms)

Warning
This operation spawns busy-loop processes. It will affect system
responsiveness during the stress period.
Example
def commands do
  [
    {5, HandleRequest},
    {1, PropertyDamage.Nemesis.CPUStress}
  ]
end
Testing Behavior
Under CPU stress, your system should:
	Maintain responsiveness (or gracefully degrade)
	Handle timeouts appropriately
	Not lose data during high load


      




  

    
PropertyDamage.Nemesis.CertificateExpiry 
    



      
Simulate TLS/SSL certificate expiry and validation failures.
Tests how your system handles certificate-related failures, useful for
verifying certificate rotation, expiry handling, and TLS error recovery.
Configuration
	:failure_type - Type of certificate failure to simulate:	:expired - Certificate has expired
	:not_yet_valid - Certificate not yet valid (future start date)
	:wrong_host - Certificate hostname mismatch
	:self_signed - Untrusted self-signed certificate
	:revoked - Certificate has been revoked


	:duration_ms - How long the failure persists (default: 5000ms)
	:target - Specific service/endpoint to affect (default: :all)

Usage
This nemesis sets a flag that your adapter should check when making TLS connections:
defmodule MyAdapter do
  alias PropertyDamage.Nemesis.CertificateExpiry

  def connect(host, port) do
    if CertificateExpiry.should_fail?() do
      {:error, CertificateExpiry.get_failure()}
    else
      :ssl.connect(host, port, opts)
    end
  end
end
Example
def commands do
  [
    {5, SecureAPICall},
    {1, PropertyDamage.Nemesis.CertificateExpiry}
  ]
end
Testing Behavior
With certificate failures, your system should:
	Detect and report the specific certificate error
	Not proceed with insecure connections
	Retry with backoff for transient issues
	Alert operators for persistent failures


      


      
        Summary


  
    Functions
  


    
      
        active?()

      


        Check if certificate failure simulation is currently active.



    


    
      
        failure_description()

      


        Get a human-readable description of the current failure.



    


    
      
        get_failure()

      


        Get the current certificate failure configuration.



    


    
      
        get_ssl_error()

      


        Get the SSL/TLS error tuple for the current failure type.



    


    
      
        should_fail?(target \\ :all)

      


        Check if certificate failure should be simulated.



    





      


      
        Functions


        


  
    
      
    
    
      active?()



        
          
        

    

  


  

      

          @spec active?() :: boolean()


      


Check if certificate failure simulation is currently active.

  



  
    
      
    
    
      failure_description()



        
          
        

    

  


  

      

          @spec failure_description() :: String.t() | nil


      


Get a human-readable description of the current failure.

  



  
    
      
    
    
      get_failure()



        
          
        

    

  


  

      

          @spec get_failure() :: map() | nil


      


Get the current certificate failure configuration.
Returns a map with :failure_type and :error that can be used
to simulate the appropriate TLS error.

  



  
    
      
    
    
      get_ssl_error()



        
          
        

    

  


  

      

          @spec get_ssl_error() :: {:error, term()} | nil


      


Get the SSL/TLS error tuple for the current failure type.
Useful for returning realistic error tuples from mocked connections.

  



    

  
    
      
    
    
      should_fail?(target \\ :all)



        
          
        

    

  


  

      

          @spec should_fail?(atom()) :: boolean()


      


Check if certificate failure should be simulated.

  


        

      


  

    
PropertyDamage.Nemesis.ClockSkew 
    



      
Simulate clock skew and time anomalies.
Provides a virtual clock that can be skewed forward or backward,
useful for testing time-sensitive logic like TTLs, rate limiting,
scheduling, and expiration handling.
Configuration
	:skew_ms - Amount to shift time by (positive = future, negative = past)
	:drift_rate - Clock drift rate (1.0 = normal, 1.1 = 10% fast, 0.9 = 10% slow)
	:duration_ms - How long the skew persists (default: 5000ms)
	:mode - :instant (jump) or :gradual (drift)

Virtual Clock
This nemesis provides a virtual clock via PropertyDamage.Nemesis.ClockSkew.now/0.
Your adapter should use this instead of System.system_time/0 to be testable:
defmodule MyAdapter do
  def get_current_time do
    PropertyDamage.Nemesis.ClockSkew.now()
  end
end
Example
def commands do
  [
    {5, CreateSession},
    {5, CheckSessionExpiry},
    {1, PropertyDamage.Nemesis.ClockSkew}
  ]
end
Testing Behavior
With clock skew, your system should:
	Handle time going "backward" gracefully
	Not break when time jumps forward
	Tolerate clock drift between nodes


      


      
        Summary


  
    Functions
  


    
      
        active?()

      


        Check if clock skew is currently active.



    


    
      
        current_skew()

      


        Get the current skew configuration, if any.



    


    
      
        now()

      


        Get the current virtual time.



    





      


      
        Functions


        


  
    
      
    
    
      active?()



        
          
        

    

  


  

      

          @spec active?() :: boolean()


      


Check if clock skew is currently active.

  



  
    
      
    
    
      current_skew()



        
          
        

    

  


  

      

          @spec current_skew() :: map() | nil


      


Get the current skew configuration, if any.

  



  
    
      
    
    
      now()



        
          
        

    

  


  

      

          @spec now() :: integer()


      


Get the current virtual time.
If clock skew is active, returns adjusted time. Otherwise returns real time.
Use this in your adapter instead of System.system_time/0.

  


        

      


  

    
PropertyDamage.Nemesis.MemoryPressure 
    



      
Create memory pressure in the BEAM VM.
Allocates memory to simulate low-memory conditions, useful for testing
memory-sensitive code paths, garbage collection behavior, and OOM handling.
Configuration
	:megabytes - Amount of memory to allocate (default: 100MB)
	:duration_ms - How long to hold the memory (default: 5000ms)
	:allocation_pattern - How to allocate: :bulk, :fragmented (default: :bulk)

Warning
This operation actually allocates memory in the BEAM. Use with caution
and ensure your test environment has sufficient resources.
Example
def commands do
  [
    {5, ProcessData},
    {1, PropertyDamage.Nemesis.MemoryPressure}
  ]
end
Testing Behavior
Under memory pressure, your system should:
	Handle allocation failures gracefully
	Trigger appropriate cleanup/GC
	Maintain functionality with reduced caching


      




  

    
PropertyDamage.Nemesis.NetworkLatency 
    



      
Inject network latency into the test environment.
Simulates slow network conditions by adding delay to network operations.
Useful for testing timeout handling, retry logic, and degraded performance.
Configuration
	:latency_ms - Base latency to add (default: 100ms)
	:jitter_ms - Random jitter ± this value (default: 0)
	:duration_ms - How long the latency persists (default: 5000ms)
	:target - What to affect: :all, :upstream, :downstream, or specific host

Usage with Toxiproxy
When using Toxiproxy, set :toxiproxy in the adapter context:
context = %{toxiproxy: %{proxy_name: "my_service", api_url: "http://localhost:8474"}}
Simulated Mode
Without Toxiproxy, operates in simulated mode where latency is tracked
in state but not actually injected. Useful for testing nemesis logic.
Example
defmodule MyModel do
  def commands do
    [
      {5, CreateOrder},
      {1, PropertyDamage.Nemesis.NetworkLatency}  # Low weight for chaos
    ]
  end
end
Events
Emits %NetworkLatencyInjected{} on inject and %NetworkLatencyRestored{} on restore.

      




  

    
PropertyDamage.Nemesis.NetworkPartition 
    



      
Simulate network partitions between components.
Creates a network partition that blocks traffic between services,
useful for testing split-brain scenarios, failover behavior, and
partition tolerance.
Partition Types
	:full - Complete bidirectional partition (no traffic in either direction)
	:upstream - Block traffic from client to server
	:downstream - Block traffic from server to client
	:asymmetric - Requests go through, responses blocked

Configuration
	:partition_type - Type of partition (default: :full)
	:duration_ms - How long the partition lasts (default: 5000ms)
	:target - Specific service/host to partition (default: :all)

Usage with Toxiproxy
context = %{toxiproxy: %{proxy_name: "database", api_url: "http://localhost:8474"}}
Example
# In your model
def commands do
  [
    {5, QueryDatabase},
    {1, PropertyDamage.Nemesis.NetworkPartition}
  ]
end
Testing Behavior
During a partition, your system should:
	Detect the failure (timeouts, connection refused)
	Handle gracefully (retry, failover, queue)
	Recover when partition heals


      




  

    
PropertyDamage.Nemesis.PacketLoss 
    



      
Simulate packet loss in network communication.
Randomly drops a percentage of network packets, useful for testing
retry logic, idempotency, and message delivery guarantees.
Configuration
	:loss_percent - Percentage of packets to drop (0-100, default: 10)
	:duration_ms - How long packet loss persists (default: 5000ms)
	:target - Specific service/host to affect (default: :all)

Usage with Toxiproxy
context = %{toxiproxy: %{proxy_name: "api", api_url: "http://localhost:8474"}}
Example
def commands do
  [
    {5, SendMessage},
    {1, PropertyDamage.Nemesis.PacketLoss}
  ]
end
Testing Behavior
With packet loss, your system should:
	Retry failed requests appropriately
	Handle partial failures gracefully
	Maintain consistency despite lost messages


      




  

    
PropertyDamage.Nemesis.ProcessKill 
    



      
Kill or crash processes to test fault tolerance.
Terminates processes by name or pattern, useful for testing supervision
trees, process restart behavior, and system resilience.
Configuration
	:target - What to kill: {:name, atom}, {:pattern, regex}, or {:random, count}
	:signal - Kill signal: :kill, :shutdown, :normal, or custom reason
	:restart_delay_ms - Wait before allowing restart (default: 0)
	:duration_ms - For random kills, how long to keep killing (default: 0, one-shot)

Example
def commands do
  [
    {5, ProcessData},
    {1, PropertyDamage.Nemesis.ProcessKill}
  ]
end
Targets
	{:name, :my_genserver} - Kill a specific named process
	{:pattern, ~r/Worker/} - Kill processes matching pattern
	{:random, 3} - Kill 3 random processes from the group
	{:pid, pid} - Kill a specific PID (for testing)

Testing Behavior
After process kills, your system should:
	Restart via supervisors
	Maintain consistency during restarts
	Not lose critical state


      




  

    
PropertyDamage.Nemesis.ResourceExhaustion 
    



      
Exhaust system resources to test resilience.
Consumes various system resources (file descriptors, ports, ETS tables,
atoms) to test how the system behaves under resource pressure.
Configuration
	:resource - What to exhaust: :file_descriptors, :ports, :ets_tables, :processes
	:count - How many resources to consume (default varies by type)
	:duration_ms - How long to hold resources (default: 5000ms)

Warning
This operation actually exhausts system resources. Use with caution:
	:file_descriptors - Opens files, may hit ulimit
	:ports - Opens ports, consumes system resources
	:ets_tables - Creates ETS tables, consumes memory
	:processes - Spawns processes, may hit process limit

Example
def commands do
  [
    {5, OpenConnection},
    {1, PropertyDamage.Nemesis.ResourceExhaustion}
  ]
end
Testing Behavior
Under resource exhaustion, your system should:
	Handle resource allocation failures
	Clean up resources appropriately
	Degrade gracefully when limits are reached


      




  

    
PropertyDamage.Nemesis.SlowIO 
    



      
Simulate slow I/O operations.
Intercepts I/O operations and adds artificial delay, useful for testing
behavior under slow disk, database, or external service conditions.
Configuration
	:delay_ms - Delay to add to each I/O operation (default: 100ms)
	:jitter_ms - Random jitter ± this value (default: 0)
	:target - What to slow: :all, :reads, :writes (default: :all)
	:duration_ms - How long the slowdown persists (default: 5000ms)

Usage
This nemesis sets a flag that your adapter should check:
defmodule MyAdapter do
  def read_file(path) do
    # Check for slow I/O nemesis
    if PropertyDamage.Nemesis.SlowIO.should_delay?(:reads) do
      PropertyDamage.Nemesis.SlowIO.apply_delay()
    end

    File.read(path)
  end
end
Example
def commands do
  [
    {5, ReadDocument},
    {5, WriteDocument},
    {1, PropertyDamage.Nemesis.SlowIO}
  ]
end
Testing Behavior
With slow I/O, your system should:
	Handle timeouts appropriately
	Not block user-facing operations
	Maintain consistency despite delays


      


      
        Summary


  
    Functions
  


    
      
        active?()

      


        Check if slow I/O is currently active.



    


    
      
        apply_delay()

      


        Apply the configured I/O delay. Call this in your adapter when performing I/O.



    


    
      
        current_config()

      


        Get the current I/O delay configuration, if any.



    


    
      
        should_delay?(operation_type \\ :all)

      


        Check if I/O delay should be applied for the given operation type.



    





      


      
        Functions


        


  
    
      
    
    
      active?()



        
          
        

    

  


  

      

          @spec active?() :: boolean()


      


Check if slow I/O is currently active.

  



  
    
      
    
    
      apply_delay()



        
          
        

    

  


  

      

          @spec apply_delay() :: :ok


      


Apply the configured I/O delay. Call this in your adapter when performing I/O.

  



  
    
      
    
    
      current_config()



        
          
        

    

  


  

      

          @spec current_config() :: map() | nil


      


Get the current I/O delay configuration, if any.

  



    

  
    
      
    
    
      should_delay?(operation_type \\ :all)



        
          
        

    

  


  

      

          @spec should_delay?(atom()) :: boolean()


      


Check if I/O delay should be applied for the given operation type.

  


        

      


  

    
PropertyDamage.FailureIntelligence 
    



      
Failure Intelligence - Pattern detection and fix verification for failures.
This module provides tools for:
	Fingerprinting: Extract comparable features from failures
	Similarity: Compare failures and identify duplicates
	Pattern Detection: Cluster similar failures to find root causes
	Fix Verification: Confirm fixes are robust with seed variations

Quick Start
# Analyze a set of failures
failures = [failure1, failure2, failure3]
analysis = PropertyDamage.FailureIntelligence.analyze(failures)

# Check if two failures are similar
similar? = PropertyDamage.FailureIntelligence.similar?(failure1, failure2)

# Verify a fix is robust
result = PropertyDamage.FailureIntelligence.verify_fix(failure, MyModel,
  adapter: MyAdapter,
  adapter_config: %{}
)
Pattern Detection
The system uses fingerprinting to extract key characteristics:
	Failure type (check failure, exception, timeout, etc.)
	Check name that failed
	Command type that triggered the failure
	Event types produced
	Error category and pattern

Similar failures are clustered together to identify systemic issues.
Fix Verification
When you believe a bug is fixed, verify it:
result = PropertyDamage.FailureIntelligence.verify_fix(failure, MyModel,
  adapter: MyAdapter,
  max_variations: 20
)

case result.status do
  :verified -> "Fix confirmed with high confidence"
  :still_failing -> "Original failure still reproduces"
  :partially_fixed -> "Some variations still fail"
  :flaky -> "Intermittent failures detected"
end

      


      
        Summary


  
    Types
  


    
      
        analysis()

      


    


    
      
        verification_result()

      


    





  
    Functions
  


    
      
        analyze(failures, opts \\ [])

      


        Analyzes a set of failures to identify patterns.



    


    
      
        cluster(failures, opts \\ [])

      


        Clusters failures by similarity.



    


    
      
        compare(f1, f2)

      


        Performs a detailed comparison between two failures.



    


    
      
        find_duplicates(failures)

      


        Finds potential duplicate failures (similarity > 0.90).



    


    
      
        find_similar(target, failures, opts \\ [])

      


        Finds failures similar to the target from a list.



    


    
      
        fingerprint(failure)

      


        Creates a fingerprint from a failure report.



    


    
      
        fingerprint_hash(failure)

      


        Returns a short hash of a fingerprint for display.



    


    
      
        format_verification(result)

      


        Formats a verification result for display.



    


    
      
        group_by_fingerprint(failures)

      


        Groups failures by their fingerprint hash for quick deduplication.



    


    
      
        match_pattern(failure, clusters, opts \\ [])

      


        Checks if a failure matches an existing pattern cluster.



    


    
      
        similar?(f1, f2)

      


        Checks if two failures are similar (score >= 0.70).



    


    
      
        similar?(f1, f2, threshold)

      


        Checks if two failures are similar using a custom threshold.



    


    
      
        similarity_score(f1, f2)

      


        Computes the similarity score between two failures.



    


    
      
        still_fails?(seed, model, adapter, adapter_config \\ %{})

      


        Quick check if a single seed still fails.



    


    
      
        summary(failures)

      


        Returns a summary of failure intelligence analysis.



    


    
      
        verify_fix(failure, model, opts \\ [])

      


        Verifies that a fix is robust by testing the original seed and variations.



    


    
      
        verify_fixes(failures, model, opts \\ [])

      


        Verifies multiple fixes at once.



    





      


      
        Types


        


  
    
      
    
    
      analysis()



        
          
        

    

  


  

      

          @type analysis() :: PropertyDamage.FailureIntelligence.Patterns.analysis()


      



  



  
    
      
    
    
      verification_result()



        
          
        

    

  


  

      

          @type verification_result() ::
  PropertyDamage.FailureIntelligence.Verification.verification_result()


      



  


        

      

      
        Functions


        


    

  
    
      
    
    
      analyze(failures, opts \\ [])



        
          
        

    

  


  

      

          @spec analyze(
  [PropertyDamage.FailureReport.t()],
  keyword()
) :: analysis()


      


Analyzes a set of failures to identify patterns.
Returns clustering information and pattern summaries.
Options
	:threshold - Similarity threshold for clustering (default: 0.70)
	:min_cluster_size - Minimum size for a pattern cluster (default: 2)

Example
analysis = PropertyDamage.FailureIntelligence.analyze(failures)

IO.puts(analysis.pattern_summary)
# => "Analyzed 15 failures:
#     - 3 distinct patterns (12 failures)
#     - 3 unique failures (no pattern match)
#
#     Top patterns:
#       - Check failure in :balance_valid during DebitAccount (5 occurrences)
#       - Invariant violation during CreditAccount (4 occurrences)"

# Get specific patterns
Enum.each(analysis.clusters, fn cluster ->
  IO.puts("Pattern: #{cluster.pattern.description}")
  IO.puts("Occurrences: #{cluster.size}")
end)

  



    

  
    
      
    
    
      cluster(failures, opts \\ [])



        
          
        

    

  


  

      

          @spec cluster(
  [PropertyDamage.FailureReport.t()],
  keyword()
) :: [PropertyDamage.FailureIntelligence.Patterns.cluster()]


      


Clusters failures by similarity.
Returns a list of clusters, each containing similar failures.
Example
clusters = PropertyDamage.FailureIntelligence.cluster(failures)
Enum.each(clusters, fn c ->
  IO.puts("Cluster #{c.id}: #{c.size} failures")
end)

  



  
    
      
    
    
      compare(f1, f2)



        
          
        

    

  


  

      

          @spec compare(PropertyDamage.FailureReport.t(), PropertyDamage.FailureReport.t()) ::
  PropertyDamage.FailureIntelligence.Similarity.comparison()


      


Performs a detailed comparison between two failures.
Returns the overall score, per-component breakdown, and similarity determination.
Example
comparison = PropertyDamage.FailureIntelligence.compare(failure1, failure2)
# => %{
#   score: 0.85,
#   breakdown: %{failure_type: 1.0, check_name: 1.0, command_type: 0.8, ...},
#   is_similar: true
# }

  



  
    
      
    
    
      find_duplicates(failures)



        
          
        

    

  


  

      

          @spec find_duplicates([PropertyDamage.FailureReport.t()]) :: [
  {PropertyDamage.FailureReport.t(), PropertyDamage.FailureReport.t(), float()}
]


      


Finds potential duplicate failures (similarity > 0.90).
Example
dupes = PropertyDamage.FailureIntelligence.find_duplicates(failures)
Enum.each(dupes, fn {f1, f2, score} ->
  IO.puts("Seeds #{f1.seed} and #{f2.seed} are #{score * 100}% similar")
end)

  



    

  
    
      
    
    
      find_similar(target, failures, opts \\ [])



        
          
        

    

  


  

      

          @spec find_similar(
  PropertyDamage.FailureReport.t(),
  [PropertyDamage.FailureReport.t()],
  keyword()
) :: [
  {PropertyDamage.FailureReport.t(), float()}
]


      


Finds failures similar to the target from a list.
Options
	:threshold - Minimum similarity score (default: 0.70)
	:limit - Maximum number of results (default: unlimited)

Example
similar = PropertyDamage.FailureIntelligence.find_similar(failure, all_failures,
  threshold: 0.80,
  limit: 5
)
# => [{similar_failure1, 0.92}, {similar_failure2, 0.85}, ...]

  



  
    
      
    
    
      fingerprint(failure)



        
          
        

    

  


  

      

          @spec fingerprint(PropertyDamage.FailureReport.t()) ::
  PropertyDamage.FailureIntelligence.Fingerprint.t()


      


Creates a fingerprint from a failure report.
A fingerprint captures the essential characteristics of a failure for comparison.
Example
fingerprint = PropertyDamage.FailureIntelligence.fingerprint(failure)
# => %Fingerprint{failure_type: :check_failed, check_name: :balance_valid, ...}

  



  
    
      
    
    
      fingerprint_hash(failure)



        
          
        

    

  


  

      

          @spec fingerprint_hash(PropertyDamage.FailureReport.t()) :: String.t()


      


Returns a short hash of a fingerprint for display.
Example
hash = PropertyDamage.FailureIntelligence.fingerprint_hash(failure)
# => "a1b2c3d4"

  



  
    
      
    
    
      format_verification(result)



        
          
        

    

  


  

      

          @spec format_verification(verification_result()) :: String.t()


      


Formats a verification result for display.
Example
result = PropertyDamage.FailureIntelligence.verify_fix(failure, model, opts)
IO.puts(PropertyDamage.FailureIntelligence.format_verification(result))

  



  
    
      
    
    
      group_by_fingerprint(failures)



        
          
        

    

  


  

      

          @spec group_by_fingerprint([PropertyDamage.FailureReport.t()]) :: %{
  required(String.t()) => [PropertyDamage.FailureReport.t()]
}


      


Groups failures by their fingerprint hash for quick deduplication.
Example
groups = PropertyDamage.FailureIntelligence.group_by_fingerprint(failures)
Enum.each(groups, fn {hash, group} ->
  IO.puts("Hash #{hash}: #{length(group)} failures")
end)

  



    

  
    
      
    
    
      match_pattern(failure, clusters, opts \\ [])



        
          
        

    

  


  

      

          @spec match_pattern(
  PropertyDamage.FailureReport.t(),
  [PropertyDamage.FailureIntelligence.Patterns.cluster()],
  keyword()
) :: PropertyDamage.FailureIntelligence.Patterns.cluster() | nil


      


Checks if a failure matches an existing pattern cluster.
Example
case PropertyDamage.FailureIntelligence.match_pattern(new_failure, clusters) do
  nil -> IO.puts("New unique failure")
  cluster -> IO.puts("Matches pattern: #{cluster.pattern.description}")
end

  



  
    
      
    
    
      similar?(f1, f2)



        
          
        

    

  


  

      

          @spec similar?(PropertyDamage.FailureReport.t(), PropertyDamage.FailureReport.t()) ::
  boolean()


      


Checks if two failures are similar (score >= 0.70).
Example
if PropertyDamage.FailureIntelligence.similar?(failure1, failure2) do
  IO.puts("These failures likely have the same root cause")
end

  



  
    
      
    
    
      similar?(f1, f2, threshold)



        
          
        

    

  


  

      

          @spec similar?(
  PropertyDamage.FailureReport.t(),
  PropertyDamage.FailureReport.t(),
  float()
) :: boolean()


      


Checks if two failures are similar using a custom threshold.

  



  
    
      
    
    
      similarity_score(f1, f2)



        
          
        

    

  


  

      

          @spec similarity_score(
  PropertyDamage.FailureReport.t(),
  PropertyDamage.FailureReport.t()
) :: float()


      


Computes the similarity score between two failures.
Returns a score between 0.0 (completely different) and 1.0 (identical).
Example
score = PropertyDamage.FailureIntelligence.similarity_score(failure1, failure2)
# => 0.85

  



    

  
    
      
    
    
      still_fails?(seed, model, adapter, adapter_config \\ %{})



        
          
        

    

  


  

      

          @spec still_fails?(integer(), module(), module(), map()) :: boolean()


      


Quick check if a single seed still fails.
Example
if PropertyDamage.FailureIntelligence.still_fails?(12345, MyModel, MyAdapter) do
  IO.puts("Bug not fixed yet!")
end

  



  
    
      
    
    
      summary(failures)



        
          
        

    

  


  

      

          @spec summary([PropertyDamage.FailureReport.t()]) :: String.t()


      


Returns a summary of failure intelligence analysis.
Combines pattern detection with fix suggestions.
Example
summary = PropertyDamage.FailureIntelligence.summary(failures)
IO.puts(summary)

  



    

  
    
      
    
    
      verify_fix(failure, model, opts \\ [])



        
          
        

    

  


  

      

          @spec verify_fix(PropertyDamage.FailureReport.t(), module(), keyword()) ::
  verification_result()


      


Verifies that a fix is robust by testing the original seed and variations.
This helps ensure that:
	The original failure no longer reproduces
	Similar command sequences also pass
	The fix is robust across different conditions

Options
	:adapter - The adapter module to use (required)
	:adapter_config - Configuration for the adapter
	:max_variations - Maximum number of seed variations to test (default: 10)
	:variation_range - Range for generating seed variations (default: 1000)

Example
result = PropertyDamage.FailureIntelligence.verify_fix(failure, MyModel,
  adapter: MyAdapter,
  adapter_config: %{base_url: "http://localhost:4000"},
  max_variations: 20
)

case result.status do
  :verified ->
    IO.puts("Fix verified with #{result.confidence * 100}% confidence")

  :still_failing ->
    IO.puts("Original failure still reproduces!")

  :partially_fixed ->
    IO.puts("Fix incomplete. #{result.variations_failed} variations still fail")

  :flaky ->
    IO.puts("Intermittent failures detected. May be timing-related.")
end
Return Value
%{
  status: :verified | :still_failing | :partially_fixed | :flaky,
  original_seed: 12345,
  original_passes: true,
  variations_run: 20,
  variations_passed: 18,
  variations_failed: 2,
  failed_variations: [12346, 12400],
  confidence: 0.95,
  summary: "Fix verified! Original seed and all 18 variations pass."
}

  



    

  
    
      
    
    
      verify_fixes(failures, model, opts \\ [])



        
          
        

    

  


  

      

          @spec verify_fixes([PropertyDamage.FailureReport.t()], module(), keyword()) :: [
  {PropertyDamage.FailureReport.t(), verification_result()}
]


      


Verifies multiple fixes at once.
Useful for batch verification after a series of bug fixes.
Example
results = PropertyDamage.FailureIntelligence.verify_fixes(failures, MyModel,
  adapter: MyAdapter
)

Enum.each(results, fn {failure, result} ->
  IO.puts("Seed #{failure.seed}: #{result.status}")
end)

  


        

      


  

    
PropertyDamage.LoadTest 
    



      
Load testing with realistic SPBT-generated traffic.
PropertyDamage.LoadTest leverages the stateful property-based testing
infrastructure to generate realistic load against a system. Unlike
synthetic benchmarks, each simulated user session follows valid state
transitions with command weights that model real usage patterns.
Key Benefits
	Realistic Traffic: Commands respect preconditions and state
	Model-Based: Same model used for correctness testing
	Metrics Collection: Latency percentiles, throughput, errors
	Ramping Strategies: Linear, step, exponential load curves
	Live Reporting: Periodic metrics callbacks

Quick Start
# Run a 2-minute load test with 50 concurrent users
{:ok, report} = PropertyDamage.LoadTest.run(
  model: MyApp.TestModel,
  adapter: MyApp.HTTPAdapter,
  adapter_config: %{base_url: "http://localhost:4000"},
  concurrent_users: 50,
  duration: {2, :minutes}
)

# Print the report
IO.puts(PropertyDamage.LoadTest.Report.format(report, :terminal))
Advanced Usage
{:ok, report} = PropertyDamage.LoadTest.run(
  model: MyApp.TestModel,
  adapter: MyApp.HTTPAdapter,
  adapter_config: %{base_url: "http://localhost:4000"},

  # Load configuration
  concurrent_users: 100,
  duration: {5, :minutes},

  # Ramp strategy - gradually increase load
  ramp_up: {:linear, {30, :seconds}},
  ramp_down: {:linear, {10, :seconds}},

  # Session behavior
  commands_per_session: {10, 50},
  think_time: {100, 500},

  # Live metrics (called every second)
  on_metrics: fn metrics ->
    IO.puts("RPS: #{metrics.requests_per_second}, p95: #{metrics.latency_p95}ms")
  end,

  # Called when test completes
  on_complete: fn report ->
    PropertyDamage.LoadTest.Report.save(report, "load_test.md", :markdown)
  end
)
Ramp Strategies
Control how load is applied over time:
	:immediate - All users start at once
	{:linear, duration} - Gradual linear ramp
	{:step, count, interval} - Add users in steps
	{:exponential, duration} - Exponential growth curve

Metrics Collected
	Throughput: Total requests, requests/second
	Latency: p50, p95, p99, min, max, mean
	Errors: Total count, error rate, by type
	Assertions: Failures count, rate, by assertion name (when enabled)
	Per-Command: Breakdown by command type
	History: Time series for trend analysis

Architecture
PropertyDamage.LoadTest
├── Runner         # Orchestrates concurrent sessions
├── Session        # Single user session (sequence execution)
├── Metrics        # Collects latency, throughput, errors
├── RampStrategy   # Controls load ramping
└── Report         # Generates load test reports

      


      
        Summary


  
    Types
  


    
      
        duration()

      


    


    
      
        ramp_strategy()

      


    


    
      
        report()

      


    





  
    Functions
  


    
      
        await(runner, timeout \\ :infinity)

      


        Wait for a running load test to complete.



    


    
      
        format(report, format \\ :terminal)

      


        Format a report for display.



    


    
      
        get_metrics(runner)

      


        Get current metrics from a running load test.



    


    
      
        run(opts)

      


        Run a load test.



    


    
      
        save(report, path, format \\ :markdown)

      


        Save a report to a file.



    


    
      
        start(opts)

      


        Run a load test asynchronously.



    


    
      
        status(runner)

      


        Get status of a running load test.



    


    
      
        stop(runner)

      


        Stop a running load test and get the report.



    


    
      
        summary(report)

      


        Generate a quick summary of a report.



    





      


      
        Types


        


  
    
      
    
    
      duration()



        
          
        

    

  


  

      

          @type duration() :: {pos_integer(), :milliseconds | :seconds | :minutes}


      



  



  
    
      
    
    
      ramp_strategy()



        
          
        

    

  


  

      

          @type ramp_strategy() ::
  :immediate
  | {:linear, duration()}
  | {:step, pos_integer(), duration()}
  | {:exponential, duration()}


      



  



  
    
      
    
    
      report()



        
          
        

    

  


  

      

          @type report() :: %{metrics: map(), config: map()}


      



  


        

      

      
        Functions


        


    

  
    
      
    
    
      await(runner, timeout \\ :infinity)



        
          
        

    

  


  

      

          @spec await(pid(), timeout()) :: {:ok, report()} | {:error, term()}


      


Wait for a running load test to complete.

  



    

  
    
      
    
    
      format(report, format \\ :terminal)



        
          
        

    

  


  

      

          @spec format(report(), :terminal | :markdown | :json) :: String.t()


      


Format a report for display.
Formats
	:terminal - Colored terminal output with ASCII charts
	:markdown - Markdown formatted report
	:json - JSON format

Examples
{:ok, report} = PropertyDamage.LoadTest.run(opts)
IO.puts(PropertyDamage.LoadTest.format(report, :terminal))

  



  
    
      
    
    
      get_metrics(runner)



        
          
        

    

  


  

      

          @spec get_metrics(pid()) :: map()


      


Get current metrics from a running load test.

  



  
    
      
    
    
      run(opts)



        
          
        

    

  


  

      

          @spec run(keyword()) :: {:ok, report()} | {:error, term()}


      


Run a load test.
This is the main entry point for load testing. It starts concurrent
user sessions that generate and execute command sequences against
the system under test.
Required Options
	:model - Model module implementing PropertyDamage.Model
	:adapter - Adapter module implementing PropertyDamage.Adapter
	:concurrent_users - Target number of concurrent user sessions
	:duration - Test duration as {value, unit} tuple

Optional Options
	:adapter_config - Configuration passed to adapter.setup/1 (default: %{})
	:ramp_up - Strategy for ramping up load (default: :immediate)
	:ramp_down - Strategy for ramping down load (default: :immediate)
	:commands_per_session - {min, max} commands per sequence (default: {10, 50})
	:think_time - {min, max} ms delay between commands (default: {0, 0})
	:metrics_interval - Callback interval (default: {1, :seconds})
	:on_metrics - Callback receiving metrics snapshot each interval
	:on_complete - Callback receiving final report
	:assertion_mode - How to handle assertions (default: :disabled):	:disabled - Skip all assertions (maximum throughput)
	:record - Run assertions and record failures in metrics
	:log - Run assertions and log failures as warnings



Returns
	{:ok, report} - Test completed successfully
	{:error, reason} - Test failed to start

Examples
# Basic load test
{:ok, report} = PropertyDamage.LoadTest.run(
  model: ToyBankTest.Model,
  adapter: ToyBankTest.HTTPAdapter,
  adapter_config: %{base_url: "http://localhost:4444"},
  concurrent_users: 50,
  duration: {2, :minutes}
)

# With ramping and callbacks
{:ok, report} = PropertyDamage.LoadTest.run(
  model: TravelBookingTest.Model,
  adapter: TravelBookingTest.HTTPAdapter,
  adapter_config: %{base_url: "http://localhost:4445"},
  concurrent_users: 100,
  duration: {5, :minutes},
  ramp_up: {:linear, {60, :seconds}},
  on_metrics: fn m ->
    IO.puts("RPS: #{m.requests_per_second}, P95: #{m.latency_p95}ms")
  end
)

  



    

  
    
      
    
    
      save(report, path, format \\ :markdown)



        
          
        

    

  


  

      

          @spec save(report(), Path.t(), :terminal | :markdown | :json) ::
  :ok | {:error, term()}


      


Save a report to a file.
Examples
{:ok, report} = PropertyDamage.LoadTest.run(opts)
:ok = PropertyDamage.LoadTest.save(report, "load_test.md", :markdown)

  



  
    
      
    
    
      start(opts)



        
          
        

    

  


  

      

          @spec start(keyword()) :: {:ok, pid()} | {:error, term()}


      


Run a load test asynchronously.
Returns a runner pid that can be used to monitor progress and
stop the test early.
Returns
	{:ok, runner_pid} - Runner started successfully
	{:error, reason} - Failed to start

Examples
{:ok, runner} = PropertyDamage.LoadTest.start(opts)

# Check status
status = PropertyDamage.LoadTest.status(runner)

# Get current metrics
metrics = PropertyDamage.LoadTest.get_metrics(runner)

# Wait for completion
{:ok, report} = PropertyDamage.LoadTest.await(runner)

# Or stop early
{:ok, report} = PropertyDamage.LoadTest.stop(runner)

  



  
    
      
    
    
      status(runner)



        
          
        

    

  


  

      

          @spec status(pid()) :: map()


      


Get status of a running load test.

  



  
    
      
    
    
      stop(runner)



        
          
        

    

  


  

      

          @spec stop(pid()) :: {:ok, report()}


      


Stop a running load test and get the report.

  



  
    
      
    
    
      summary(report)



        
          
        

    

  


  

      

          @spec summary(report()) :: String.t()


      


Generate a quick summary of a report.
Returns a brief one-line summary suitable for logging.

  


        

      


  

    
PropertyDamage.Mutation 
    



      
Mutation testing for PropertyDamage.
Mutation testing verifies that your property-based tests are effective by:
	Injecting faults (mutations) into adapter responses
	Running tests against the mutated responses
	Checking if tests catch (kill) the mutations

A killed mutant means your tests detected the simulated bug (good).
A survived mutant means your tests missed the bug (bad - weak tests).
Usage
# Run mutation testing
{:ok, report} = PropertyDamage.Mutation.run(
  model: MyModel,
  adapter: MyAdapter,
  adapter_config: %{base_url: "http://localhost:4000"},
  target_score: 0.80
)

# Check if tests are effective
if PropertyDamage.Mutation.passes?(report) do
  IO.puts("Tests are effective!")
else
  IO.puts("Tests need improvement")
  IO.puts(PropertyDamage.Mutation.format(report))
end

# Get detailed analysis
analysis = PropertyDamage.Mutation.analyze(report)
IO.puts(PropertyDamage.Mutation.Analysis.format(analysis))
Mutation Operators
	:value - Mutates numeric and string values (zero, negate, off-by-one)
	:omission - Removes fields from events
	:status - Changes success/error outcomes
	:event - Modifies event contents and structure
	:boundary - Pushes values to edge cases (0, -1, max, nil)

Options
	:model - The model module (required)
	:adapter - The adapter module (required)
	:adapter_config - Configuration for the adapter
	:operators - List of operator names (default: all)
	:mutations_per_command - Max mutations per command (default: 5)
	:max_runs - Property test runs per mutation (default: 10)
	:target_score - Target mutation score (default: 0.80)
	:timeout_ms - Timeout per mutation test (default: 30000)
	:verbose - Print progress (default: false)


      


      
        Summary


  
    Functions
  


    
      
        analyze(report)

      


        Analyzes a mutation report to identify weaknesses.



    


    
      
        available_operators()

      


        Returns all available mutation operator names.



    


    
      
        format(report, format \\ :terminal)

      


        Formats a mutation report for display.



    


    
      
        passes?(report)

      


        Checks if a mutation report passes the target score.



    


    
      
        run(opts)

      


        Runs mutation testing against a model.



    


    
      
        weakest_commands(report)

      


        Returns the weakest commands from a report, sorted by kill rate.



    


    
      
        weakest_operators(report)

      


        Returns the weakest operators from a report, sorted by kill rate.



    





      


      
        Functions


        


  
    
      
    
    
      analyze(report)



        
          
        

    

  


  

      

          @spec analyze(PropertyDamage.Mutation.Report.t()) ::
  PropertyDamage.Mutation.Analysis.analysis()


      


Analyzes a mutation report to identify weaknesses.
Returns insights about:
	Weak commands (low kill rates)
	Weak operators (types of mutations that survive)
	Unchecked fields
	Actionable suggestions

Examples
analysis = PropertyDamage.Mutation.analyze(report)
IO.puts(analysis.summary)
Enum.each(analysis.suggestions, &IO.puts/1)

  



  
    
      
    
    
      available_operators()



        
          
        

    

  


  

      

          @spec available_operators() :: [atom()]


      


Returns all available mutation operator names.
Examples
PropertyDamage.Mutation.available_operators()
# => [:value, :omission, :status, :event, :boundary]

  



    

  
    
      
    
    
      format(report, format \\ :terminal)



        
          
        

    

  


  

      

          @spec format(PropertyDamage.Mutation.Report.t(), atom()) :: String.t()


      


Formats a mutation report for display.
Formats
	:terminal - ASCII boxes for console output (default)
	:markdown - Markdown tables for documentation
	:json - JSON for programmatic analysis

Examples
IO.puts(PropertyDamage.Mutation.format(report))
IO.puts(PropertyDamage.Mutation.format(report, :markdown))

  



  
    
      
    
    
      passes?(report)



        
          
        

    

  


  

      

          @spec passes?(PropertyDamage.Mutation.Report.t()) :: boolean()


      


Checks if a mutation report passes the target score.
Examples
if PropertyDamage.Mutation.passes?(report) do
  IO.puts("Tests are effective!")
end

  



  
    
      
    
    
      run(opts)



        
          
        

    

  


  

      

          @spec run(keyword()) :: {:ok, PropertyDamage.Mutation.Report.t()} | {:error, term()}


      


Runs mutation testing against a model.
Returns {:ok, report} with mutation testing results.
Examples
{:ok, report} = PropertyDamage.Mutation.run(
  model: MyModel,
  adapter: MyAdapter,
  operators: [:value, :omission],
  target_score: 0.80
)

report.mutation_score  # => 0.85
report.killed          # => 17
report.survived        # => 3

  



  
    
      
    
    
      weakest_commands(report)



        
          
        

    

  


  

      

          @spec weakest_commands(PropertyDamage.Mutation.Report.t()) :: [
  {module(), PropertyDamage.Mutation.Report.command_stats()}
]


      


Returns the weakest commands from a report, sorted by kill rate.
Examples
for {cmd, stats} <- PropertyDamage.Mutation.weakest_commands(report) do
  IO.puts("#{cmd}: #{stats.score * 100}%")
end

  



  
    
      
    
    
      weakest_operators(report)



        
          
        

    

  


  

      

          @spec weakest_operators(PropertyDamage.Mutation.Report.t()) :: [
  {atom(), PropertyDamage.Mutation.Report.command_stats()}
]


      


Returns the weakest operators from a report, sorted by kill rate.

  


        

      


  

    
PropertyDamage.Suggestions 
    



      
Property and invariant suggestions for PropertyDamage models.
Analyzes a model's commands, events, and projections to suggest missing
checks and invariants that would improve test coverage.
Overview
This module helps answer the question: "What invariants should my model check?"
It examines:
	Event fields: Numeric fields that should be non-negative, currency fields
that should be consistent, reference fields that should exist, etc.
	Command patterns: Operations that commonly need specific checks
	Existing checks: What's already covered vs what's missing

Usage
# Analyze a model and get suggestions
suggestions = PropertyDamage.Suggestions.analyze(MyModel)

# Print suggestions
IO.puts(PropertyDamage.Suggestions.format(suggestions))

# Get suggestions as structured data
suggestions.missing_checks      # List of suggested checks
suggestions.unchecked_fields    # Fields with no apparent validation
suggestions.coverage_gaps       # Areas lacking coverage
How It Works
	Event Analysis: Extracts all events produced by commands and analyzes
their field types to suggest appropriate checks.

	Pattern Detection: Identifies common patterns that warrant invariants:
	Numeric fields (balance, amount, count) → non-negative checks
	Currency/type fields → consistency checks across operations
	Reference fields (account_ref, user_id) → existence checks
	Status fields → valid state transition checks
	Timestamp fields → ordering checks


	Check Coverage: Compares detected patterns against existing checks
to find gaps in test coverage.

	Suggestion Generation: Produces actionable suggestions with example
code for implementing missing checks.



      


      
        Summary


  
    Types
  


    
      
        analysis()

      


    


    
      
        suggestion()

      


    





  
    Functions
  


    
      
        analyze(model, opts \\ [])

      


        Analyzes a model and returns suggestions for missing checks.



    


    
      
        for_event(analysis, event_module)

      


        Returns suggestions for a specific event type.



    


    
      
        for_field(analysis, field)

      


        Returns suggestions for a specific field.



    


    
      
        format(analysis, format \\ :terminal)

      


        Formats suggestions for display.



    


    
      
        generate_check_code(suggestion)

      


        Generates example check code for a suggestion.



    


    
      
        high_priority(analysis)

      


        Returns only high-priority suggestions.



    


    
      
        summary(analysis)

      


        Returns a quick summary of the analysis.



    





      


      
        Types


        


  
    
      
    
    
      analysis()



        
          
        

    

  


  

      

          @type analysis() :: %{
  model: module(),
  suggestions: [suggestion()],
  detected_patterns: [PropertyDamage.Suggestions.Patterns.pattern()],
  existing_checks: [map()],
  field_coverage: map(),
  summary: String.t()
}


      



  



  
    
      
    
    
      suggestion()



        
          
        

    

  


  

      

          @type suggestion() :: %{
  type: atom(),
  priority: :high | :medium | :low,
  field: atom() | nil,
  event: module() | nil,
  command: module() | nil,
  description: String.t(),
  rationale: String.t(),
  example_code: String.t() | nil
}


      



  


        

      

      
        Functions


        


    

  
    
      
    
    
      analyze(model, opts \\ [])



        
          
        

    

  


  

      

          @spec analyze(
  module(),
  keyword()
) :: analysis()


      


Analyzes a model and returns suggestions for missing checks.
Options
	:include_low_priority - Include low priority suggestions (default: true)
	:max_suggestions - Maximum suggestions to return (default: 20)
	:focus - Focus on specific areas: :all, :numeric, :references, :consistency (default: :all)

Example
suggestions = PropertyDamage.Suggestions.analyze(MyModel)
IO.puts(PropertyDamage.Suggestions.format(suggestions))

  



  
    
      
    
    
      for_event(analysis, event_module)



        
          
        

    

  


  

      

          @spec for_event(analysis(), module()) :: [suggestion()]


      


Returns suggestions for a specific event type.

  



  
    
      
    
    
      for_field(analysis, field)



        
          
        

    

  


  

      

          @spec for_field(analysis(), atom()) :: [suggestion()]


      


Returns suggestions for a specific field.

  



    

  
    
      
    
    
      format(analysis, format \\ :terminal)



        
          
        

    

  


  

      

          @spec format(analysis(), atom()) :: String.t()


      


Formats suggestions for display.
Formats
	:terminal - ASCII box output for console (default)
	:markdown - Markdown tables for documentation
	:json - JSON for programmatic analysis

Example
suggestions = PropertyDamage.Suggestions.analyze(MyModel)
IO.puts(PropertyDamage.Suggestions.format(suggestions, :terminal))

  



  
    
      
    
    
      generate_check_code(suggestion)



        
          
        

    

  


  

      

          @spec generate_check_code(suggestion()) :: String.t()


      


Generates example check code for a suggestion.

  



  
    
      
    
    
      high_priority(analysis)



        
          
        

    

  


  

      

          @spec high_priority(analysis()) :: [suggestion()]


      


Returns only high-priority suggestions.

  



  
    
      
    
    
      summary(analysis)



        
          
        

    

  


  

      

          @spec summary(analysis()) :: String.t()


      


Returns a quick summary of the analysis.

  


        

      


  

    
PropertyDamage.Diagram 
    



      
Generate visual sequence diagrams from test executions.
Transforms command sequences and event logs into sequence diagrams
in multiple formats for documentation, debugging, and visualization.
Supported Formats
	:mermaid - Mermaid sequence diagrams (GitHub, GitLab, Notion compatible)
	:plantuml - PlantUML sequence diagrams
	:websequence - sequencediagram.org format

Usage
From a Failure Report
report = PropertyDamage.run(...) |> elem(1)
diagram = PropertyDamage.Diagram.from_failure_report(report, :mermaid)
IO.puts(diagram)
From a Sequence and Event Log
diagram = PropertyDamage.Diagram.generate(
  sequence,
  event_log,
  format: :plantuml,
  title: "Account Creation Flow",
  show_state: true
)
Example Output (Mermaid)
```mermaid
sequenceDiagram
    participant Test
    participant SUT
    participant State

    Test->>SUT: CreateAccount(name: "Alice")
    SUT-->>Test: AccountCreated(id: "acc_123")
    Test->>State: balance: 0

    Test->>SUT: Deposit(amount: 100)
    SUT-->>Test: DepositSucceeded(new_balance: 100)
    Test->>State: balance: 100

    Note over Test,SUT: ❌ FAILURE at command 2
    Test-xSUT: Withdraw(amount: 200)
    Note right of SUT: NonNegativeBalance violated
```
Options
	:title - Diagram title (default: "PropertyDamage Sequence")
	:show_state - Include state changes (default: false)
	:show_timestamps - Include timestamps (default: false)
	:max_value_length - Truncate long values (default: 50)
	:highlight_failure - Highlight failure point (default: true)
	:show_branches - Show parallel branches (default: true)


      


      
        Summary


  
    Types
  


    
      
        format()

      


    


    
      
        options()

      


    





  
    Functions
  


    
      
        from_failure_report(report, format, opts \\ [])

      


        Generate a sequence diagram from a failure report.



    


    
      
        generate(sequence, event_log, format, opts \\ [])

      


        Generate a sequence diagram from a sequence and event log.



    


    
      
        generate_all(sequence, event_log, opts \\ [])

      


        Generate diagrams in all supported formats.



    


    
      
        save(diagram, path, format)

      


        Save a diagram to a file.



    





      


      
        Types


        


  
    
      
    
    
      format()



        
          
        

    

  


  

      

          @type format() :: :mermaid | :plantuml | :websequence


      



  



  
    
      
    
    
      options()



        
          
        

    

  


  

      

          @type options() :: [
  title: String.t(),
  show_state: boolean(),
  show_timestamps: boolean(),
  max_value_length: pos_integer(),
  highlight_failure: boolean(),
  show_branches: boolean()
]


      



  


        

      

      
        Functions


        


    

  
    
      
    
    
      from_failure_report(report, format, opts \\ [])



        
          
        

    

  


  

      

          @spec from_failure_report(PropertyDamage.FailureReport.t(), format(), options()) ::
  String.t()


      


Generate a sequence diagram from a failure report.
Parameters
	report - A PropertyDamage.FailureReport struct
	format - Output format (:mermaid, :plantuml, :websequence)
	opts - Options (see module docs)

Returns
A string containing the diagram in the specified format.

  



    

  
    
      
    
    
      generate(sequence, event_log, format, opts \\ [])



        
          
        

    

  


  

      

          @spec generate(
  PropertyDamage.Sequence.t(),
  [PropertyDamage.EventLog.Entry.t()],
  format(),
  options()
) ::
  String.t()


      


Generate a sequence diagram from a sequence and event log.
Parameters
	sequence - A PropertyDamage.Sequence struct
	event_log - List of PropertyDamage.EventLog.Entry structs
	format - Output format (:mermaid, :plantuml, :websequence)
	opts - Options (see module docs)

Returns
A string containing the diagram in the specified format.

  



    

  
    
      
    
    
      generate_all(sequence, event_log, opts \\ [])



        
          
        

    

  


  

      

          @spec generate_all(
  PropertyDamage.Sequence.t(),
  [PropertyDamage.EventLog.Entry.t()],
  options()
) :: %{
  required(format()) => String.t()
}


      


Generate diagrams in all supported formats.
Returns a map with format keys and diagram strings as values.

  



  
    
      
    
    
      save(diagram, path, format)



        
          
        

    

  


  

      

          @spec save(String.t(), Path.t(), format()) :: :ok | {:error, term()}


      


Save a diagram to a file.
Automatically adds the appropriate file extension if not present.

  


        

      


  

    
PropertyDamage.Diff 
    



      
Diff-based debugging for comparing passing and failing test runs.
When a test fails intermittently or after code changes, understanding
exactly what changed between a passing and failing run is crucial.
This module provides tools to capture execution traces and compare them.
Workflow
	Capture traces during execution (passing and failing)
	Compare traces to find divergence points
	Display differences in a clear, actionable format

Usage
Compare Two Failure Reports
passing_report = PropertyDamage.run(model: M, adapter: A, seed: 123)
failing_report = PropertyDamage.run(model: M, adapter: A, seed: 456)

diff = PropertyDamage.Diff.compare_reports(passing_report, failing_report)
IO.puts(PropertyDamage.Diff.format(diff))
Compare Event Logs
diff = PropertyDamage.Diff.compare_events(passing_events, failing_events)
Compare States
diff = PropertyDamage.Diff.compare_states(state_before, state_after)
Output Example
╔══════════════════════════════════════════════════════════════╗
║                    EXECUTION DIFF                            ║
╚══════════════════════════════════════════════════════════════╝

Divergence at command 3: Withdraw(amount: 150)

┌─ Events ──────────────────────────────────────────────────────┐
│ PASS: [WithdrawSucceeded(balance: 50)]                        │
│ FAIL: [WithdrawFailed(reason: :insufficient_funds)]           │
└───────────────────────────────────────────────────────────────┘

┌─ State Before Command 3 ──────────────────────────────────────┐
│   balance: 200 → 50                                           │
│   + pending_withdrawals: 150                                  │
└───────────────────────────────────────────────────────────────┘

      


      
        Summary


  
    Types
  


    
      
        command_diff()

      


    


    
      
        diff_result()

      


    


    
      
        event_diff()

      


    


    
      
        state_diff()

      


    


    
      
        trace()

      


    





  
    Functions
  


    
      
        compare_events(left_events, right_events)

      


        Compare two event logs.



    


    
      
        compare_reports(left, right)

      


        Compare two failure reports to find differences.



    


    
      
        compare_states(left_state, right_state)

      


        Compare two state maps.



    


    
      
        compare_traces(left, right)

      


        Compare two execution traces.



    


    
      
        create_trace(commands, events, states, result)

      


        Create a trace from execution results.



    


    
      
        format(diff, opts \\ [])

      


        Format a diff result for display.



    





      


      
        Types


        


  
    
      
    
    
      command_diff()



        
          
        

    

  


  

      

          @type command_diff() :: %{
  index: non_neg_integer(),
  left: struct() | nil,
  right: struct() | nil,
  status: :same | :different | :missing_left | :missing_right
}


      



  



  
    
      
    
    
      diff_result()



        
          
        

    

  


  

      

          @type diff_result() :: %{
  divergence_index: non_neg_integer() | nil,
  divergence_command: struct() | nil,
  command_diffs: [command_diff()],
  event_diffs: [event_diff()],
  state_diffs: [state_diff()],
  summary: String.t()
}


      



  



  
    
      
    
    
      event_diff()



        
          
        

    

  


  

      

          @type event_diff() :: %{
  command_index: non_neg_integer(),
  left_events: [struct()],
  right_events: [struct()],
  status: :same | :different | :extra_left | :extra_right
}


      



  



  
    
      
    
    
      state_diff()



        
          
        

    

  


  

      

          @type state_diff() :: %{
  command_index: non_neg_integer(),
  field: atom(),
  left_value: term(),
  right_value: term(),
  status: :same | :changed | :added | :removed
}


      



  



  
    
      
    
    
      trace()



        
          
        

    

  


  

      

          @type trace() :: %{
  commands: [struct()],
  events: [PropertyDamage.EventLog.Entry.t()],
  states: [map()],
  result: :pass | {:fail, term()}
}


      



  


        

      

      
        Functions


        


  
    
      
    
    
      compare_events(left_events, right_events)



        
          
        

    

  


  

      

          @spec compare_events([PropertyDamage.EventLog.Entry.t()], [
  PropertyDamage.EventLog.Entry.t()
]) :: [
  event_diff()
]


      


Compare two event logs.
Groups events by command index and compares each group.

  



  
    
      
    
    
      compare_reports(left, right)



        
          
        

    

  


  

      

          @spec compare_reports(
  PropertyDamage.FailureReport.t() | map(),
  PropertyDamage.FailureReport.t() | map()
) :: diff_result()


      


Compare two failure reports to find differences.
Parameters
	left - First report (typically passing or earlier)
	right - Second report (typically failing or later)

Returns
A diff_result map with divergence information.

  



  
    
      
    
    
      compare_states(left_state, right_state)



        
          
        

    

  


  

      

          @spec compare_states(map(), map()) :: [state_diff()]


      


Compare two state maps.
Returns a list of field-level differences.

  



  
    
      
    
    
      compare_traces(left, right)



        
          
        

    

  


  

      

          @spec compare_traces(trace(), trace()) :: diff_result()


      


Compare two execution traces.
Parameters
	left - First trace
	right - Second trace

Returns
A diff_result map.

  



  
    
      
    
    
      create_trace(commands, events, states, result)



        
          
        

    

  


  

      

          @spec create_trace(
  [struct()],
  [PropertyDamage.EventLog.Entry.t()],
  [map()],
  :pass | {:fail, term()}
) ::
  trace()


      


Create a trace from execution results.
Parameters
	commands - List of executed commands
	events - Event log entries
	states - List of state snapshots (one per command)
	result - :pass or {:fail, reason}


  



    

  
    
      
    
    
      format(diff, opts \\ [])



        
          
        

    

  


  

      

          @spec format(
  diff_result(),
  keyword()
) :: String.t()


      


Format a diff result for display.
Options
	:format - Output format (:terminal, :markdown, :json)
	:max_value_length - Truncate values longer than this (default: 60)
	:show_same - Show identical items (default: false)


  


        

      


  

    
PropertyDamage.Export 
    



      
Export failure reports to various portable formats.
The Export module converts PropertyDamage failure reports into artifacts that can be
shared, executed, and used for regression testing without requiring the full framework.
Export Formats
	ExUnit (:exunit) - Regression tests using PropertyDamage
	Scripts - Standalone scripts in multiple languages:	:elixir - Elixir with Req HTTP client
	:curl - Bash with curl commands
	:python - Python with requests library


	LiveBook (:livebook) - Interactive notebooks for exploration

Usage
Export to String
# Generate ExUnit regression test
test_code = PropertyDamage.Export.to_exunit(failure,
  model: MyModel,
  adapter: MyHTTPAdapter
)

# Generate standalone scripts
curl_script = PropertyDamage.Export.to_script(failure, :curl,
  base_url: "http://localhost:4000",
  adapter: MyHTTPAdapter
)

python_script = PropertyDamage.Export.to_script(failure, :python,
  base_url: "http://localhost:4000",
  adapter: MyHTTPAdapter
)

# Generate LiveBook notebook
notebook = PropertyDamage.Export.to_livebook(failure,
  base_url: "http://localhost:4000",
  adapter: MyHTTPAdapter
)
Export to File
# Save individual format
{:ok, path} = PropertyDamage.Export.save(failure, "exports/", :exunit)
{:ok, path} = PropertyDamage.Export.save(failure, "exports/", {:script, :curl})
{:ok, path} = PropertyDamage.Export.save(failure, "exports/", :livebook)

# Save all formats at once
{:ok, paths} = PropertyDamage.Export.save_all(failure, "exports/",
  base_url: "http://localhost:4000",
  adapter: MyHTTPAdapter
)
HTTPSpec for Script Generation
For standalone scripts to work, the adapter should implement the optional http_spec/2
callback that describes how commands map to HTTP calls. See PropertyDamage.Export.HTTPSpec
for details.

      


      
        Summary


  
    Types
  


    
      
        format()

      


    





  
    Functions
  


    
      
        save(report, directory, format, opts \\ [])

      


        Saves an export to a file.



    


    
      
        save_all(report, directory, opts \\ [])

      


        Saves exports in all formats to a directory.



    


    
      
        to_exunit(report, opts \\ [])

      


        Generates an ExUnit regression test from a failure report.



    


    
      
        to_livebook(report, opts \\ [])

      


        Generates a LiveBook notebook for interactive failure exploration.



    


    
      
        to_script(report, language, opts \\ [])

      


        Generates a standalone script in the specified language.



    





      


      
        Types


        


  
    
      
    
    
      format()



        
          
        

    

  


  

      

          @type format() ::
  :exunit | :livebook | {:script, PropertyDamage.Export.Script.language()}


      



  


        

      

      
        Functions


        


    

  
    
      
    
    
      save(report, directory, format, opts \\ [])



        
          
        

    

  


  

      

          @spec save(PropertyDamage.FailureReport.t(), Path.t(), format(), keyword()) ::
  {:ok, Path.t()} | {:error, term()}


      


Saves an export to a file.
The filename is automatically generated based on the seed and format.
Parameters
	report - The failure report to export
	directory - Directory to save the file in
	format - Export format (:exunit, {:script, :curl}, :livebook, etc.)
	opts - Format-specific options

Example
{:ok, path} = PropertyDamage.Export.save(failure, "exports/", :exunit)
# => {:ok, "exports/reproduce_512902757.exs"}

{:ok, path} = PropertyDamage.Export.save(failure, "scripts/", {:script, :curl},
  base_url: "http://localhost:4000"
)
# => {:ok, "scripts/reproduce_512902757.sh"}

  



    

  
    
      
    
    
      save_all(report, directory, opts \\ [])



        
          
        

    

  


  

      

          @spec save_all(PropertyDamage.FailureReport.t(), Path.t(), keyword()) ::
  {:ok, map()} | {:error, term()}


      


Saves exports in all formats to a directory.
Options
	:base_url - Base URL for HTTP calls (required for scripts/livebook)
	:adapter - Adapter module for HTTPSpec
	:script_languages - Languages for scripts (default: [:elixir, :curl])
	All other options are passed to individual generators

Example
{:ok, paths} = PropertyDamage.Export.save_all(failure, "exports/",
  base_url: "http://localhost:4000",
  adapter: MyHTTPAdapter,
  script_languages: [:elixir, :curl, :python]
)

# => {:ok, %{
#   exunit: "exports/reproduce_512902757.exs",
#   livebook: "exports/reproduce_512902757.livemd",
#   script_elixir: "exports/reproduce_512902757.exs",
#   script_curl: "exports/reproduce_512902757.sh",
#   script_python: "exports/reproduce_512902757.py"
# }}

  



    

  
    
      
    
    
      to_exunit(report, opts \\ [])



        
          
        

    

  


  

      

          @spec to_exunit(
  PropertyDamage.FailureReport.t(),
  keyword()
) :: String.t()


      


Generates an ExUnit regression test from a failure report.
Options
	:model - Model module (defaults to report.model)
	:adapter - Adapter module (defaults to report.adapter)
	:module_name - Module name for the test
	:test_name - Custom test name
	:adapter_config - Adapter configuration map
	:expect_fixed - If true, expect the test to pass (default: false)

Example
test_code = PropertyDamage.Export.to_exunit(failure,
  model: MyModel,
  adapter: MyHTTPAdapter
)

File.write!("test/regressions/seed_123_test.exs", test_code)

  



    

  
    
      
    
    
      to_livebook(report, opts \\ [])



        
          
        

    

  


  

      

          @spec to_livebook(
  PropertyDamage.FailureReport.t(),
  keyword()
) :: String.t()


      


Generates a LiveBook notebook for interactive failure exploration.
The notebook includes:
	Setup with Mix.install for dependencies
	Step-by-step command execution with state tracking
	Exploration section for "what-if" experiments

Options
	:base_url - Base URL for HTTP calls (required)
	:adapter - Adapter module for HTTPSpec mapping (recommended)
	:title - Custom notebook title
	:include_exploration - Include exploration section (default: true)
	:include_state_tracking - Track model state (default: true)

Example
notebook = PropertyDamage.Export.to_livebook(failure,
  base_url: "http://localhost:4000",
  adapter: MyHTTPAdapter,
  title: "Investigating Balance Bug"
)

File.write!("investigation.livemd", notebook)

  



    

  
    
      
    
    
      to_script(report, language, opts \\ [])



        
          
        

    

  


  

      

          @spec to_script(
  PropertyDamage.FailureReport.t(),
  PropertyDamage.Export.Script.language(),
  keyword()
) ::
  String.t()


      


Generates a standalone script in the specified language.
Supported Languages
	:elixir - Elixir script with Req (runnable with elixir script.exs)
	:curl - Bash script with curl (runnable with bash script.sh)
	:python - Python script with requests (runnable with python script.py)

Options
	:base_url - Base URL for HTTP calls (required)
	:adapter - Adapter module for HTTPSpec mapping (recommended)
	:env_var - Environment variable name for base URL (default: "BASE_URL")
	:verbose - Include extra comments (default: true)

Example
script = PropertyDamage.Export.to_script(failure, :curl,
  base_url: "http://localhost:4000",
  adapter: MyHTTPAdapter
)

File.write!("reproduce.sh", script)

  


        

      


  

    
PropertyDamage.Forensics 
    



      
Replay production event logs through model projections for incident analysis.
When a production incident occurs, you can use Forensics to replay the actual
events through your test projections. This reuses all your invariant checks
and state tracking to pinpoint exactly when and how something went wrong.
Why Forensics?
Instead of manually tracing through logs, let the same models and projections
that verify correctness during testing analyze production behavior:
	Same invariant checks - Production events are verified against the same
assertions used in property tests
	State reconstruction - See exactly what state the system was in at each step
	Failure localization - Pinpoint the exact event that violated an invariant
	Reusable models - No need to write separate incident analysis code

Usage
# Fetch events from your observability system
{:ok, events} = ProductionLogs.fetch(trace_id: "abc123")

# Replay through model projections
result = PropertyDamage.Forensics.analyze(
  events: events,
  model: OrderModel,
  event_mapping: MyEventMapping  # Optional: translate production format
)

case result do
  {:ok, %{final_state: state}} ->
    IO.puts("No invariant violations detected")

  {:error, failure} ->
    IO.puts("Found violation at step #{failure.failure_step}")
    IO.puts(PropertyDamage.Forensics.format_report(failure))
end
Event Mapping
Production events often have different field names or structures. Implement
an event mapping module to translate them:
defmodule MyEventMapping do
  @behaviour PropertyDamage.Forensics.EventMapping

  @impl true
  def map(%{"type" => "order.created", "payload" => p}) do
    {:ok, %OrderCreated{order_ref: p["order_id"], amount: p["total"]}}
  end

  def map(_), do: :skip
end
Limitations
	Events must be self-describing (contain enough context to reconstruct state)
	Assertions using every: :command won't trigger (forensics has no commands)
	Event ordering must match production ordering


      


      
        Summary


  
    Types
  


    
      
        analysis_result()

      


        Analysis result - either success or failure.



    


    
      
        failure_result()

      


        Failed analysis result.



    


    
      
        success_result()

      


        Successful analysis result.



    





  
    Functions
  


    
      
        analyze(opts)

      


        Analyze a sequence of production events against a model.



    


    
      
        format_report(failure)

      


        Format a failure report as a human-readable string.



    


    
      
        generate_regression_test(failure, model)

      


        Generate a regression test from a forensic failure.



    





      


      
        Types


        


  
    
      
    
    
      analysis_result()



        
          
        

    

  


  

      

          @type analysis_result() :: {:ok, success_result()} | {:error, failure_result()}


      


Analysis result - either success or failure.

  



  
    
      
    
    
      failure_result()



        
          
        

    

  


  

      

          @type failure_result() :: %{
  failure_reason: term(),
  failure_step: non_neg_integer(),
  event_at_failure: struct() | map(),
  state_before: map(),
  state_after: map(),
  events_leading_to_failure: [struct() | map()]
}


      


Failed analysis result.

  



  
    
      
    
    
      success_result()



        
          
        

    

  


  

      

          @type success_result() :: %{
  final_state: map(),
  events_processed: non_neg_integer(),
  projections: %{required(module()) => term()}
}


      


Successful analysis result.

  


        

      

      
        Functions


        


  
    
      
    
    
      analyze(opts)



        
          
        

    

  


  

      

          @spec analyze(keyword()) :: analysis_result()


      


Analyze a sequence of production events against a model.
Replays events through the model's projections, running assertion checks
after each event. Stops at the first invariant violation (by default).
Options
	:model - The model module (required)
	:event_mapping - Module to translate production events (optional)
	:stop_on_first_failure - Stop at first invariant violation (default: true)
	:projections - Override which assertion projections to use (default: model's)

Returns
	{:ok, success_result} - All events processed without violations
	{:error, failure_result} - An invariant was violated

Examples
# Basic usage
Forensics.analyze(events: events, model: MyModel)

# With event mapping
Forensics.analyze(
  events: production_events,
  model: MyModel,
  event_mapping: MyMapper
)

# Continue past failures
Forensics.analyze(
  events: events,
  model: MyModel,
  stop_on_first_failure: false
)

  



  
    
      
    
    
      format_report(failure)



        
          
        

    

  


  

      

          @spec format_report(failure_result()) :: String.t()


      


Format a failure report as a human-readable string.
Example
{:error, failure} = Forensics.analyze(events: events, model: MyModel)
IO.puts(Forensics.format_report(failure))

# Output:
# ═══════════════════════════════════════════════════════════════════
# FORENSIC ANALYSIS: INVARIANT VIOLATION DETECTED
# ═══════════════════════════════════════════════════════════════════
#
# FAILURE OCCURRED AT: Event #47
# ...

  



  
    
      
    
    
      generate_regression_test(failure, model)



        
          
        

    

  


  

      

          @spec generate_regression_test(failure_result(), module()) :: String.t()


      


Generate a regression test from a forensic failure.
Creates Elixir code that can be added to your test suite to reproduce
the failure scenario with the exact events from production.
Example
{:error, failure} = Forensics.analyze(events: events, model: MyModel)
test_code = Forensics.generate_regression_test(failure, MyModel)
File.write!("test/regressions/incident_2025_01_15_test.exs", test_code)

  


        

      


  

    
PropertyDamage.Integration 
    



      
Integration testing utilities for running PropertyDamage against live services.
This module provides helpers for running property-based tests against real
systems, with support for:
	Health checks before testing
	Database reset between runs
	Report generation (terminal, markdown, JUnit XML)
	Bug hunting mode (run until N unique bugs found)
	Chaos testing with Toxiproxy

Usage
# Basic integration test
{:ok, result} = PropertyDamage.Integration.run(
  model: MyModel,
  adapter: MyAdapter,
  adapter_config: %{base_url: "http://localhost:4000"},
  max_runs: 100
)

# Bug hunting mode
{:ok, bugs} = PropertyDamage.Integration.hunt_bugs(
  model: MyModel,
  adapter: MyAdapter,
  adapter_config: %{base_url: "http://localhost:4000"},
  stop_after: 10  # Stop after 10 unique bugs
)
Health Checks
Before running tests, the integration runner can verify the service is healthy:
PropertyDamage.Integration.run(
  # ...
  health_check: %{
    url: "http://localhost:4000/api/health",
    timeout_ms: 5000,
    retries: 10
  }
)
Reports
Generate reports in various formats:
PropertyDamage.Integration.run(
  # ...
  report: %{
    format: :junit,
    path: "reports/integration.xml"
  }
)
Supported formats: :terminal, :markdown, :junit, :json

      


      
        Summary


  
    Functions
  


    
      
        generate_report(result, opts)

      


        Generate a test report from integration results.



    


    
      
        health_check(opts)

      


        Perform a health check against a service.



    


    
      
        hunt_bugs(opts)

      


        Run tests until a specified number of unique bugs are found.



    


    
      
        run(opts)

      


        Run integration tests against a live service.



    





      


      
        Functions


        


  
    
      
    
    
      generate_report(result, opts)



        
          
        

    

  


  

      

          @spec generate_report(map(), keyword() | map()) :: :ok


      


Generate a test report from integration results.
Formats
	:terminal - Print to console
	:markdown - Generate markdown file
	:junit - Generate JUnit XML for CI
	:json - Generate JSON report

Options
	:format - Report format (required)
	:path - Output file path (required for file formats)


  



  
    
      
    
    
      health_check(opts)



        
          
        

    

  


  

      

          @spec health_check(keyword()) :: :ok | {:error, term()}


      


Perform a health check against a service.
Options
	:url - Health check URL (required)
	:timeout_ms - Total timeout (default: 30000)
	:retries - Number of retries (default: 30)
	:interval_ms - Interval between retries (default: 1000)

Returns
	:ok - Service is healthy
	{:error, reason} - Health check failed


  



  
    
      
    
    
      hunt_bugs(opts)



        
          
        

    

  


  

      

          @spec hunt_bugs(keyword()) :: {:ok, [map()]}


      


Run tests until a specified number of unique bugs are found.
Options
	:model - The model module (required)
	:adapter - The adapter module (required)
	:adapter_config - Configuration for the adapter (required)
	:stop_after - Stop after finding this many unique bugs (default: 10)
	:max_runs - Maximum runs before giving up (default: :unlimited)
	:save_to - Directory to save discovered bugs (optional)
	:verbose - Print progress (default: true)

Returns
	{:ok, bugs} - List of unique bugs found


  



  
    
      
    
    
      run(opts)



        
          
        

    

  


  

      

          @spec run(keyword()) :: {:ok, map()} | {:error, map()}


      


Run integration tests against a live service.
Options
	:model - The model module (required)
	:adapter - The adapter module (required)
	:adapter_config - Configuration for the adapter (required)
	:max_runs - Number of test runs (default: 100)
	:max_commands - Max commands per run (default: 50)
	:health_check - Health check configuration (optional)
	:reset_fn - Function to reset state between runs (optional)
	:report - Report configuration (optional)
	:verbose - Print progress (default: true)
	:stop_on_failure - Stop on first failure (default: false)
	:save_failures - Directory to save failures (optional)

Returns
	{:ok, result} - All tests passed
	{:error, result} - Tests failed with failure details


  


        

      


  

    
PropertyDamage.Livebook 
    



      
Livebook integration for PropertyDamage with rich visualizations.
Provides interactive widgets and visualizations for exploring PropertyDamage
test runs in Livebook notebooks.
Requirements
Add kino to your dependencies:
{:kino, "~> 0.12"}
Quick Start
In a Livebook cell:
alias PropertyDamage.Livebook

# Run tests and visualize results
result = PropertyDamage.run(
  model: MyModel,
  adapter: MyAdapter,
  max_runs: 100
)

Livebook.visualize(result)
Available Widgets
	visualize/1 - Main dashboard with all visualizations
	results_table/1 - DataTable of run results
	command_stats/1 - Command execution statistics
	state_timeline/1 - Visual state progression
	failure_details/1 - Detailed failure analysis
	live_monitor/0 - Real-time telemetry streaming

Interactive Exploration
# Explore a specific failure
Livebook.explore_failure(result)

# Step through commands
Livebook.command_stepper(result)

# Compare model vs actual state
Livebook.state_diff(result)

      


      
        Summary


  
    Functions
  


    
      
        command_stats(result)

      


        Create command execution statistics visualization.



    


    
      
        command_stepper(result)

      


        Create an interactive command stepper for exploring execution.



    


    
      
        explore_failure(result)

      


        Create an interactive failure explorer.



    


    
      
        failure_details(result)

      


        Create detailed failure analysis visualization.



    


    
      
        kino_available?()

      


        Check if Kino is available.



    


    
      
        live_monitor()

      


        Create a live telemetry monitor that streams updates.



    


    
      
        results_table(result)

      


        Create a DataTable showing run results.



    


    
      
        run_with_visualization(opts)

      


        Run PropertyDamage with live visualization.



    


    
      
        state_diff(result)

      


        Create a state diff visualization comparing model vs actual state.



    


    
      
        state_timeline(result)

      


        Create a state timeline visualization showing state progression.



    


    
      
        visualize(result)

      


        Create the main visualization dashboard for a test result.



    





      


      
        Functions


        


  
    
      
    
    
      command_stats(result)



        
          
        

    

  


  

      

          @spec command_stats(PropertyDamage.result()) :: struct()


      


Create command execution statistics visualization.

  



  
    
      
    
    
      command_stepper(result)



        
          
        

    

  


  

      

          @spec command_stepper(PropertyDamage.result()) :: struct()


      


Create an interactive command stepper for exploring execution.

  



  
    
      
    
    
      explore_failure(result)



        
          
        

    

  


  

      

          @spec explore_failure(PropertyDamage.result()) :: struct()


      


Create an interactive failure explorer.

  



  
    
      
    
    
      failure_details(result)



        
          
        

    

  


  

      

          @spec failure_details(PropertyDamage.result()) :: struct()


      


Create detailed failure analysis visualization.

  



  
    
      
    
    
      kino_available?()



        
          
        

    

  


  

Check if Kino is available.

  



  
    
      
    
    
      live_monitor()



        
          
        

    

  


  

      

          @spec live_monitor() :: struct()


      


Create a live telemetry monitor that streams updates.
Returns a Kino.Frame that updates in real-time as tests run.

  



  
    
      
    
    
      results_table(result)



        
          
        

    

  


  

      

          @spec results_table(PropertyDamage.result()) :: struct()


      


Create a DataTable showing run results.

  



  
    
      
    
    
      run_with_visualization(opts)



        
          
        

    

  


  

      

          @spec run_with_visualization(keyword()) :: PropertyDamage.result()


      


Run PropertyDamage with live visualization.
Starts a test run and displays live progress in a Kino.Frame.

  



  
    
      
    
    
      state_diff(result)



        
          
        

    

  


  

      

          @spec state_diff(PropertyDamage.result()) :: struct()


      


Create a state diff visualization comparing model vs actual state.

  



  
    
      
    
    
      state_timeline(result)



        
          
        

    

  


  

      

          @spec state_timeline(PropertyDamage.result()) :: struct()


      


Create a state timeline visualization showing state progression.

  



  
    
      
    
    
      visualize(result)



        
          
        

    

  


  

      

          @spec visualize(PropertyDamage.result()) :: struct()


      


Create the main visualization dashboard for a test result.
Returns a Kino.Layout with tabs for different views:
	Overview: Summary statistics
	Commands: Command execution details
	State: State progression timeline
	Failures: Failure analysis (if any)


  


        

      


  

    
PropertyDamage.Livebook.Charts 
    



      
Chart visualizations for PropertyDamage results using VegaLite.
Provides rich data visualizations for test results, command statistics,
timing distributions, and more.
Requirements
Add VegaLite to your dependencies:
{:vega_lite, "~> 0.1"}
{:kino_vega_lite, "~> 0.1"}
Usage
alias PropertyDamage.Livebook.Charts

# Command execution bar chart
Charts.command_bar_chart(result)

# Timing distribution
Charts.timing_histogram(result)

# Success rate pie chart
Charts.success_pie_chart(result)

      


      
        Summary


  
    Functions
  


    
      
        check_results_chart(result)

      


        Create a stacked bar chart for check results.



    


    
      
        command_bar_chart(result)

      


        Create a bar chart showing command execution counts.



    


    
      
        command_transition_heatmap(result)

      


        Create a heatmap showing command transitions.



    


    
      
        execution_timeline(result)

      


        Create a timeline chart showing command execution over time.



    


    
      
        success_pie_chart(result)

      


        Create a pie chart showing success vs failure rates.



    


    
      
        timing_histogram(result)

      


        Create a histogram of command execution times.



    


    
      
        vega_lite_available?()

      


        Check if VegaLite is available.



    





      


      
        Functions


        


  
    
      
    
    
      check_results_chart(result)



        
          
        

    

  


  

      

          @spec check_results_chart(PropertyDamage.result()) :: struct()


      


Create a stacked bar chart for check results.

  



  
    
      
    
    
      command_bar_chart(result)



        
          
        

    

  


  

      

          @spec command_bar_chart(PropertyDamage.result()) :: struct()


      


Create a bar chart showing command execution counts.

  



  
    
      
    
    
      command_transition_heatmap(result)



        
          
        

    

  


  

      

          @spec command_transition_heatmap(PropertyDamage.result()) :: struct()


      


Create a heatmap showing command transitions.

  



  
    
      
    
    
      execution_timeline(result)



        
          
        

    

  


  

      

          @spec execution_timeline(PropertyDamage.result()) :: struct()


      


Create a timeline chart showing command execution over time.

  



  
    
      
    
    
      success_pie_chart(result)



        
          
        

    

  


  

      

          @spec success_pie_chart(PropertyDamage.result()) :: struct()


      


Create a pie chart showing success vs failure rates.

  



  
    
      
    
    
      timing_histogram(result)



        
          
        

    

  


  

      

          @spec timing_histogram(PropertyDamage.result()) :: struct()


      


Create a histogram of command execution times.

  



  
    
      
    
    
      vega_lite_available?()



        
          
        

    

  


  

Check if VegaLite is available.

  


        

      


  

    
PropertyDamage.Telemetry 
    



      
Telemetry events for PropertyDamage test runs.
PropertyDamage emits telemetry events during test execution that can be
used for monitoring, dashboards, and observability.
Events
All events are prefixed with [:property_damage, ...].
Run Lifecycle
	[:property_damage, :run, :start] - Test run started
	Measurements: %{system_time: integer()}
	Metadata: %{model: module(), adapter: module(), max_runs: integer(), max_commands: integer(), seed: integer()}


	[:property_damage, :run, :stop] - Test run completed
	Measurements: %{duration: integer(), total_commands: integer()}
	Metadata: %{model: module(), adapter: module(), result: :ok | :error, runs_completed: integer()}



	[:property_damage, :run, :exception] - Test run crashed
	Measurements: %{duration: integer()}
	Metadata: %{model: module(), adapter: module(), kind: atom(), reason: term(), stacktrace: list()}



Sequence Execution
	[:property_damage, :sequence, :start] - Sequence execution started
	Measurements: %{system_time: integer()}
	Metadata: %{run_number: integer(), command_count: integer(), branching: boolean()}


	[:property_damage, :sequence, :stop] - Sequence execution completed
	Measurements: %{duration: integer()}
	Metadata: %{run_number: integer(), success: boolean(), commands_executed: integer()}



Command Execution
	[:property_damage, :command, :start] - Command execution started
	Measurements: %{system_time: integer()}
	Metadata: %{command: module(), index: integer(), run_number: integer()}


	[:property_damage, :command, :stop] - Command execution completed
	Measurements: %{duration: integer()}
	Metadata: %{command: module(), index: integer(), success: boolean(), events_count: integer()}



Check Execution
	[:property_damage, :check, :start] - Check evaluation started
	Measurements: %{system_time: integer()}
	Metadata: %{check_name: atom(), projection: module()}


	[:property_damage, :check, :stop] - Check evaluation completed
	Measurements: %{duration: integer()}
	Metadata: %{check_name: atom(), passed: boolean(), message: String.t() | nil}




Shrinking
	[:property_damage, :shrink, :start] - Shrinking started
	Measurements: %{system_time: integer()}
	Metadata: %{original_length: integer()}


	[:property_damage, :shrink, :iteration] - Shrink iteration completed
	Measurements: %{iteration: integer()}
	Metadata: %{current_length: integer(), success: boolean()}


	[:property_damage, :shrink, :stop] - Shrinking completed
	Measurements: %{duration: integer(), iterations: integer()}
	Metadata: %{original_length: integer(), shrunk_length: integer()}



Usage
Attach handlers using :telemetry.attach/4:
:telemetry.attach(
  "my-handler",
  [:property_damage, :run, :stop],
  &MyModule.handle_event/4,
  nil
)
Or use PropertyDamage.Telemetry.Dashboard for a pre-built LiveView dashboard.

      


      
        Summary


  
    Functions
  


    
      
        check_start(metadata)

      


        Emit a check start event.



    


    
      
        check_stop(start_time, metadata)

      


        Emit a check stop event.



    


    
      
        command_start(metadata)

      


        Emit a command start event.



    


    
      
        command_stop(start_time, metadata)

      


        Emit a command stop event.



    


    
      
        run_exception(start_time, kind, reason, stacktrace, metadata)

      


        Emit a run exception event.



    


    
      
        run_start(metadata)

      


        Emit a run start event.



    


    
      
        run_stop(start_time, metadata)

      


        Emit a run stop event.



    


    
      
        sequence_start(metadata)

      


        Emit a sequence start event.



    


    
      
        sequence_stop(start_time, metadata)

      


        Emit a sequence stop event.



    


    
      
        shrink_iteration(iteration, metadata)

      


        Emit a shrink iteration event.



    


    
      
        shrink_start(metadata)

      


        Emit a shrink start event.



    


    
      
        shrink_stop(start_time, metadata)

      


        Emit a shrink stop event.



    


    
      
        span(event_type, metadata, fun)

      


        Execute a function with telemetry span instrumentation.



    





      


      
        Functions


        


  
    
      
    
    
      check_start(metadata)



        
          
        

    

  


  

      

          @spec check_start(map()) :: :ok


      


Emit a check start event.

  



  
    
      
    
    
      check_stop(start_time, metadata)



        
          
        

    

  


  

      

          @spec check_stop(integer(), map()) :: :ok


      


Emit a check stop event.

  



  
    
      
    
    
      command_start(metadata)



        
          
        

    

  


  

      

          @spec command_start(map()) :: :ok


      


Emit a command start event.

  



  
    
      
    
    
      command_stop(start_time, metadata)



        
          
        

    

  


  

      

          @spec command_stop(integer(), map()) :: :ok


      


Emit a command stop event.

  



  
    
      
    
    
      run_exception(start_time, kind, reason, stacktrace, metadata)



        
          
        

    

  


  

      

          @spec run_exception(integer(), atom(), term(), list(), map()) :: :ok


      


Emit a run exception event.

  



  
    
      
    
    
      run_start(metadata)



        
          
        

    

  


  

      

          @spec run_start(map()) :: :ok


      


Emit a run start event.

  



  
    
      
    
    
      run_stop(start_time, metadata)



        
          
        

    

  


  

      

          @spec run_stop(integer(), map()) :: :ok


      


Emit a run stop event.

  



  
    
      
    
    
      sequence_start(metadata)



        
          
        

    

  


  

      

          @spec sequence_start(map()) :: :ok


      


Emit a sequence start event.

  



  
    
      
    
    
      sequence_stop(start_time, metadata)



        
          
        

    

  


  

      

          @spec sequence_stop(integer(), map()) :: :ok


      


Emit a sequence stop event.

  



  
    
      
    
    
      shrink_iteration(iteration, metadata)



        
          
        

    

  


  

      

          @spec shrink_iteration(integer(), map()) :: :ok


      


Emit a shrink iteration event.

  



  
    
      
    
    
      shrink_start(metadata)



        
          
        

    

  


  

      

          @spec shrink_start(map()) :: :ok


      


Emit a shrink start event.

  



  
    
      
    
    
      shrink_stop(start_time, metadata)



        
          
        

    

  


  

      

          @spec shrink_stop(integer(), map()) :: :ok


      


Emit a shrink stop event.

  



  
    
      
    
    
      span(event_type, metadata, fun)



        
          
        

    

  


  

      

          @spec span(atom(), map(), (-> result)) :: result when result: term()


      


Execute a function with telemetry span instrumentation.
Emits start and stop (or exception) events around the function.
Examples
Telemetry.span(:run, %{model: MyModel}, fn ->
  # run logic
  {:ok, result}
end)

  


        

      


  

    
PropertyDamage.Telemetry.Collector 
    



      
Collects and aggregates telemetry events for the dashboard.
The Collector is a GenServer that:
	Attaches to PropertyDamage telemetry events
	Aggregates metrics (counts, timings, pass/fail rates)
	Maintains a sliding window of recent events
	Broadcasts updates to subscribers (LiveView processes)

Usage
# Start the collector (typically in your application supervisor)
{:ok, pid} = PropertyDamage.Telemetry.Collector.start_link()

# Subscribe to updates (from a LiveView)
PropertyDamage.Telemetry.Collector.subscribe()

# Get current state
state = PropertyDamage.Telemetry.Collector.get_state()
State Structure
The collector maintains:
	runs - Total runs started
	runs_completed - Successful runs
	runs_failed - Failed runs
	commands_executed - Total commands executed
	checks_passed - Total checks passed
	checks_failed - Total checks failed
	current_run - Current run info (if running)
	recent_events - Last N events (sliding window)
	command_stats - Per-command timing stats
	check_stats - Per-check pass/fail stats


      


      
        Summary


  
    Functions
  


    
      
        child_spec(init_arg)

      


        Returns a specification to start this module under a supervisor.



    


    
      
        get_state(server \\ __MODULE__)

      


        Get the current aggregated state.



    


    
      
        pubsub_topic()

      


        Get the PubSub topic for broadcasts.



    


    
      
        reset(server \\ __MODULE__)

      


        Reset all collected metrics.



    


    
      
        start_link(opts \\ [])

      


        Start the collector.



    


    
      
        subscribe(server \\ __MODULE__)

      


        Subscribe to telemetry updates.



    


    
      
        unsubscribe(server \\ __MODULE__)

      


        Unsubscribe from telemetry updates.



    





      


      
        Functions


        


  
    
      
    
    
      child_spec(init_arg)



        
          
        

    

  


  

Returns a specification to start this module under a supervisor.
See Supervisor.

  



    

  
    
      
    
    
      get_state(server \\ __MODULE__)



        
          
        

    

  


  

      

          @spec get_state(GenServer.server()) :: map()


      


Get the current aggregated state.

  



  
    
      
    
    
      pubsub_topic()



        
          
        

    

  


  

      

          @spec pubsub_topic() :: String.t()


      


Get the PubSub topic for broadcasts.

  



    

  
    
      
    
    
      reset(server \\ __MODULE__)



        
          
        

    

  


  

      

          @spec reset(GenServer.server()) :: :ok


      


Reset all collected metrics.

  



    

  
    
      
    
    
      start_link(opts \\ [])



        
          
        

    

  


  

Start the collector.

  



    

  
    
      
    
    
      subscribe(server \\ __MODULE__)



        
          
        

    

  


  

      

          @spec subscribe(GenServer.server()) :: :ok


      


Subscribe to telemetry updates.
The calling process will receive messages of the form:
{:telemetry_update, event_type, data}

  



    

  
    
      
    
    
      unsubscribe(server \\ __MODULE__)



        
          
        

    

  


  

      

          @spec unsubscribe(GenServer.server()) :: :ok


      


Unsubscribe from telemetry updates.

  


        

      


  

    
PropertyDamage.Telemetry.Dashboard 
    



      
LiveView dashboard for monitoring PropertyDamage test runs.
This module provides a real-time dashboard that displays:
	Run progress and statistics
	Command execution metrics
	Check pass/fail rates
	Shrinking progress
	Recent events timeline

Setup
1. Create a LiveView in your application
defmodule MyAppWeb.PropertyDamageDashboardLive do
  use MyAppWeb, :live_view

  alias PropertyDamage.Telemetry.{Collector, Dashboard}

  def mount(_params, _session, socket) do
    if connected?(socket) do
      Collector.subscribe()
    end

    state = Collector.get_state()

    {:ok,
     assign(socket,
       page_title: "PropertyDamage Dashboard",
       state: state,
       view_mode: :overview
     )}
  end

  def handle_info({:telemetry_update, _event_type, _data, state}, socket) do
    {:noreply, assign(socket, :state, state)}
  end

  def handle_event("reset", _params, socket) do
    Collector.reset()
    {:noreply, socket}
  end

  def handle_event("set_view_mode", %{"mode" => mode}, socket) do
    {:noreply, assign(socket, :view_mode, String.to_existing_atom(mode))}
  end

  def render(assigns) do
    Dashboard.render(assigns)
  end
end
2. Add route in your router
live "/property-damage", PropertyDamageDashboardLive
3. Start the collector in your application
# In your application.ex
children = [
  # ...
  PropertyDamage.Telemetry.Collector
]
Requirements
	Phoenix LiveView must be installed in your application
	The Collector must be running to receive events


      


      
        Summary


  
    Functions
  


    
      
        css()

      


        Returns the CSS styles for the dashboard.



    


    
      
        initial_assigns()

      


        Returns the initial assigns for the dashboard.



    


    
      
        render(assigns)

      


        Render the dashboard HTML.



    





      


      
        Functions


        


  
    
      
    
    
      css()



        
          
        

    

  


  

Returns the CSS styles for the dashboard.

  



  
    
      
    
    
      initial_assigns()



        
          
        

    

  


  

      

          @spec initial_assigns() :: keyword()


      


Returns the initial assigns for the dashboard.

  



  
    
      
    
    
      render(assigns)



        
          
        

    

  


  

Render the dashboard HTML.
Returns a Phoenix.LiveView.Rendered struct if Phoenix is available,
otherwise returns an HTML string.

  


        

      


  

    
PropertyDamage.Persistence 
    



      
Save and load failure reports for later analysis and regression testing.
Failures are saved in Erlang term format (.pd files) which preserves
all struct information losslessly. This enables:
	Debugging failures later without re-running tests
	Building regression test suites from discovered bugs
	Sharing failures across team members
	Tracking which bugs have been fixed

Usage
# Save a failure
{:error, failure} = PropertyDamage.run(model: M, adapter: A)
{:ok, path} = PropertyDamage.save_failure(failure, "failures/")

# Load and replay later
{:ok, failure} = PropertyDamage.load_failure(path)
PropertyDamage.replay(failure)

# List all saved failures
failures = PropertyDamage.list_failures("failures/")
File Format
Files use the .pd extension and contain:
	Version header for forward compatibility
	Erlang term-encoded FailureReport struct
	Checksum for integrity verification

Naming Convention
Auto-generated filenames follow the pattern:
{timestamp}-{failure_type}-{check_name}-seed{seed}.pd
Example: 2025-12-26T14-30-00-check_failed-NonNegativeBalance-seed512902757.pd

      


      
        Summary


  
    Types
  


    
      
        save_opts()

      


    





  
    Functions
  


    
      
        delete(path)

      


        Delete a saved failure.



    


    
      
        export_json(report)

      


        Export a failure to JSON format for external tools.



    


    
      
        list(directory, opts \\ [])

      


        List all saved failures in a directory.



    


    
      
        load(path)

      


        Load a failure report from disk.



    


    
      
        save(report, directory, opts \\ [])

      


        Save a failure report to disk.



    


    
      
        valid?(path)

      


        Check if a failure file is valid and loadable.



    





      


      
        Types


        


  
    
      
    
    
      save_opts()



        
          
        

    

  


  

      

          @type save_opts() :: [filename: String.t(), overwrite: boolean()]


      



  


        

      

      
        Functions


        


  
    
      
    
    
      delete(path)



        
          
        

    

  


  

      

          @spec delete(Path.t()) :: :ok | {:error, term()}


      


Delete a saved failure.
Returns
	:ok - File deleted
	{:error, reason} - File not found, permission denied, etc.


  



  
    
      
    
    
      export_json(report)



        
          
        

    

  


  

      

          @spec export_json(PropertyDamage.FailureReport.t()) :: String.t()


      


Export a failure to JSON format for external tools.
Note: JSON export is lossy - some Elixir-specific data may be simplified.
Use save/3 for lossless storage.

  



    

  
    
      
    
    
      list(directory, opts \\ [])



        
          
        

    

  


  

      

          @spec list(
  Path.t(),
  keyword()
) :: [map()]


      


List all saved failures in a directory.
Returns a list of maps with failure metadata (without loading full reports).
Options
	:sort - Sort order: :newest, :oldest, :seed (default: :newest)
	:filter - Filter function (metadata -> boolean)

Examples
# List all failures
failures = Persistence.list("failures/")
# => [%{path: "...", seed: 123, failure_type: :check_failed, ...}, ...]

# List only check failures
failures = Persistence.list("failures/", filter: &(&1.failure_type == :check_failed))

  



  
    
      
    
    
      load(path)



        
          
        

    

  


  

      

          @spec load(Path.t()) :: {:ok, PropertyDamage.FailureReport.t()} | {:error, term()}


      


Load a failure report from disk.
Returns
	{:ok, report} - Successfully loaded FailureReport
	{:error, reason} - File not found, corrupted, incompatible version, etc.

Examples
{:ok, failure} = Persistence.load("failures/currency-bug.pd")
PropertyDamage.replay(failure)

  



    

  
    
      
    
    
      save(report, directory, opts \\ [])



        
          
        

    

  


  

      

          @spec save(PropertyDamage.FailureReport.t(), Path.t(), save_opts()) ::
  {:ok, Path.t()} | {:error, term()}


      


Save a failure report to disk.
Options
	:filename - Custom filename (default: auto-generated from failure metadata)
	:overwrite - Whether to overwrite existing files (default: false)

Returns
	{:ok, path} - Full path to saved file
	{:error, reason} - File already exists, directory doesn't exist, etc.

Examples
# Save with auto-generated name
{:ok, path} = Persistence.save(failure, "failures/")
# => {:ok, "failures/2025-12-26T14-30-00-check_failed-NonNegativeBalance-seed512902757.pd"}

# Save with custom name
{:ok, path} = Persistence.save(failure, "failures/", filename: "currency-bug.pd")

  



  
    
      
    
    
      valid?(path)



        
          
        

    

  


  

      

          @spec valid?(Path.t()) :: boolean()


      


Check if a failure file is valid and loadable.
Performs integrity check without fully loading the report.

  


        

      


  

    
PropertyDamage.Regression 
    



      
Automatic regression test management for PropertyDamage.
When PropertyDamage discovers a failure, this module can automatically:
	Save failure files for later analysis
	Add seeds to a seed library for regression testing
	Generate ExUnit tests for CI/CD
	Deduplicate similar failures to avoid noise

Usage with run/1
The simplest way to use regression management is via the :regression option:
PropertyDamage.run(
  model: MyModel,
  adapter: MyAdapter,
  regression: [
    save_failures: "failures/",
    seed_library: "seeds.json",
    generate_tests: "test/regressions/",
    tags: [:auto_detected],
    dedup: true
  ]
)
Using on_failure Callback
You can also use the handler/1 function with :on_failure:
PropertyDamage.run(
  model: MyModel,
  adapter: MyAdapter,
  on_failure: PropertyDamage.Regression.handler([
    save_failures: "failures/",
    seed_library: "seeds.json"
  ])
)
Composing Handlers
For custom behavior, compose multiple handlers:
PropertyDamage.run(
  model: MyModel,
  adapter: MyAdapter,
  on_failure: PropertyDamage.Regression.compose([
    PropertyDamage.Regression.save_failure("failures/"),
    PropertyDamage.Regression.add_to_library("seeds.json"),
    fn report -> Logger.warning("Failure: #{report.seed}") end
  ])
)
Deduplication
When dedup: true is set, failures are checked against existing failures
before being added. This prevents noise from multiple runs finding the
same underlying bug.
regression: [
  save_failures: "failures/",
  dedup: true,
  dedup_threshold: 0.90  # 90% similarity threshold
]

      


      
        Summary


  
    Types
  


    
      
        handler()

      


    


    
      
        regression_opts()

      


    





  
    Functions
  


    
      
        add_to_library(path, opts \\ [])

      


        Creates a handler that adds failures to a seed library.



    


    
      
        batch_summary(results)

      


        Generates a summary report for batch processing results.



    


    
      
        check_duplicate(failure, opts)

      


        Checks if a failure is a duplicate of an existing failure.



    


    
      
        compose(handlers)

      


        Composes multiple handlers into a single handler.



    


    
      
        find_duplicate(failure, existing, threshold)

      


        Finds a duplicate failure from a list.



    


    
      
        format_batch_summary(summary)

      


        Formats batch summary for display.



    


    
      
        generate_test(directory, opts \\ [])

      


        Creates a handler that generates ExUnit regression tests.



    


    
      
        handle_failure(failure, opts \\ [])

      


        Processes a failure according to regression options.



    


    
      
        handler(opts \\ [])

      


        Creates a handler function from regression options.



    


    
      
        process_batch(failures, opts \\ [])

      


        Processes multiple failures, deduplicating across the batch.



    


    
      
        save_failure(directory, opts \\ [])

      


        Creates a handler that saves failures to a directory.



    





      


      
        Types


        


  
    
      
    
    
      handler()



        
          
        

    

  


  

      

          @type handler() :: (PropertyDamage.FailureReport.t() -> any())


      



  



  
    
      
    
    
      regression_opts()



        
          
        

    

  


  

      

          @type regression_opts() :: [
  save_failures: Path.t(),
  seed_library: Path.t(),
  generate_tests: Path.t(),
  tags: [atom()],
  description: String.t() | nil,
  dedup: boolean(),
  dedup_threshold: float(),
  dedup_source: :failures | :library | :both,
  verbose: boolean(),
  adapter: module() | nil,
  base_url: String.t() | nil
]


      



  


        

      

      
        Functions


        


    

  
    
      
    
    
      add_to_library(path, opts \\ [])



        
          
        

    

  


  

      

          @spec add_to_library(
  Path.t(),
  keyword()
) :: handler()


      


Creates a handler that adds failures to a seed library.
Options
	:tags - Tags to add to the entry (default: [:auto_detected])
	:description - Optional description

Example
PropertyDamage.run(
  model: M,
  adapter: A,
  on_failure: PropertyDamage.Regression.add_to_library("seeds.json",
    tags: [:balance_bug]
  )
)

  



  
    
      
    
    
      batch_summary(results)



        
          
        

    

  


  

      

          @spec batch_summary([map()]) :: map()


      


Generates a summary report for batch processing results.

  



  
    
      
    
    
      check_duplicate(failure, opts)



        
          
        

    

  


  

      

          @spec check_duplicate(
  PropertyDamage.FailureReport.t(),
  keyword()
) :: {boolean(), term()}


      


Checks if a failure is a duplicate of an existing failure.
Returns {true, reason} if duplicate, {false, nil} otherwise.
Options
	:dedup_threshold - Similarity threshold (default: 0.90)
	:dedup_source - Where to check: :failures, :library, or :both
	:save_failures - Directory containing saved failures (for :failures source)
	:seed_library - Path to seed library (for :library source)


  



  
    
      
    
    
      compose(handlers)



        
          
        

    

  


  

      

          @spec compose([handler()]) :: handler()


      


Composes multiple handlers into a single handler.
All handlers are called in order. Errors in one handler don't prevent
subsequent handlers from running.
Example
PropertyDamage.run(
  model: M,
  adapter: A,
  on_failure: PropertyDamage.Regression.compose([
    PropertyDamage.Regression.save_failure("failures/"),
    PropertyDamage.Regression.add_to_library("seeds.json"),
    fn report -> IO.puts("Found: #{report.seed}") end
  ])
)

  



  
    
      
    
    
      find_duplicate(failure, existing, threshold)



        
          
        

    

  


  

      

          @spec find_duplicate(
  PropertyDamage.FailureReport.t(),
  [PropertyDamage.FailureReport.t()],
  float()
) ::
  {PropertyDamage.FailureReport.t(), float()} | nil


      


Finds a duplicate failure from a list.
Returns {similar_failure, score} if found, nil otherwise.

  



  
    
      
    
    
      format_batch_summary(summary)



        
          
        

    

  


  

      

          @spec format_batch_summary(map()) :: String.t()


      


Formats batch summary for display.

  



    

  
    
      
    
    
      generate_test(directory, opts \\ [])



        
          
        

    

  


  

      

          @spec generate_test(
  Path.t(),
  keyword()
) :: handler()


      


Creates a handler that generates ExUnit regression tests.
Options
	:adapter - Adapter module (for HTTP spec generation)
	:base_url - Base URL for HTTP calls

Example
PropertyDamage.run(
  model: M,
  adapter: A,
  on_failure: PropertyDamage.Regression.generate_test("test/regressions/",
    adapter: MyHTTPAdapter
  )
)

  



    

  
    
      
    
    
      handle_failure(failure, opts \\ [])



        
          
        

    

  


  

      

          @spec handle_failure(PropertyDamage.FailureReport.t(), regression_opts()) :: map()


      


Processes a failure according to regression options.
Returns a summary of actions taken.
Example
result = PropertyDamage.Regression.handle_failure(failure, [
  save_failures: "failures/",
  seed_library: "seeds.json"
])

# => %{
#   saved_failure: {:ok, "failures/..."},
#   added_to_library: {:ok, "seeds.json"},
#   generated_test: nil,
#   skipped: false,
#   skip_reason: nil
# }

  



  
    
      
    
    
      handler(opts \\ [])



        
          
        

    

  


  

      

          @spec handler(regression_opts()) :: handler()


      


Creates a handler function from regression options.
This is the main entry point for creating regression handlers.
The returned function can be passed to :on_failure in PropertyDamage.run/1.
Options
	:save_failures - Directory to save failure files
	:seed_library - Path to seed library JSON file
	:generate_tests - Directory to generate ExUnit test files
	:tags - Tags to add to seed library entries (default: [:auto_detected])
	:description - Optional description for seed library entries
	:dedup - Enable deduplication (default: false)
	:dedup_threshold - Similarity threshold for dedup (default: 0.90)
	:dedup_source - Where to check for duplicates: :failures, :library, or :both
	:verbose - Print actions taken (default: false)
	:adapter - Adapter module for script generation (required for generate_tests with scripts)
	:base_url - Base URL for script generation

Example
handler = PropertyDamage.Regression.handler(
  save_failures: "failures/",
  seed_library: "seeds.json",
  dedup: true,
  verbose: true
)

PropertyDamage.run(model: M, adapter: A, on_failure: handler)

  



    

  
    
      
    
    
      process_batch(failures, opts \\ [])



        
          
        

    

  


  

      

          @spec process_batch([PropertyDamage.FailureReport.t()], regression_opts()) :: [map()]


      


Processes multiple failures, deduplicating across the batch.
Useful when you have accumulated failures and want to add only unique ones.
Example
failures = [failure1, failure2, failure3]
results = PropertyDamage.Regression.process_batch(failures, [
  seed_library: "seeds.json",
  dedup: true
])

  



    

  
    
      
    
    
      save_failure(directory, opts \\ [])



        
          
        

    

  


  

      

          @spec save_failure(
  Path.t(),
  keyword()
) :: handler()


      


Creates a handler that saves failures to a directory.
Example
PropertyDamage.run(
  model: M,
  adapter: A,
  on_failure: PropertyDamage.Regression.save_failure("failures/")
)

  


        

      


  

    
PropertyDamage.SeedLibrary 
    



      
Manage a collection of interesting seeds for regression testing and sharing.
The Seed Library tracks seeds that have found bugs, allowing you to:
	Run known-interesting seeds first before random exploration
	Share discovered seeds across team members
	Build a regression suite that catches known bug patterns
	Track which seeds have been fixed vs still failing

Usage
# Add a seed when you find a bug
{:error, failure} = PropertyDamage.run(model: M, adapter: A)
SeedLibrary.add(failure, tags: [:currency, :capture])

# Run all library seeds first, then continue with random
PropertyDamage.run(model: M, adapter: A, seed_library: "seeds.json")

# Export for CI/sharing
SeedLibrary.export("seeds.json")
Seed Entry Structure
Each entry contains:
	seed - The random seed value
	model - Model module name (for filtering)
	failure_type - What kind of failure it found
	check_name - Which check failed (if applicable)
	tags - User-provided categorization tags
	description - Human-readable description
	discovered_at - When the seed was added
	last_run - When the seed was last tested
	status - :failing, :fixed, :flaky
	run_count - How many times this seed has been run
	fail_count - How many times it has failed

Integration with PropertyDamage.run
When a seed library is provided, PropertyDamage.run will:
	Run all :failing seeds from the library first
	Update seed status based on results
	Continue with random seed exploration


      


      
        Summary


  
    Types
  


    
      
        seed_entry()

      


    


    
      
        t()

      


    





  
    Functions
  


    
      
        add(library, failure, opts \\ [])

      


        Add a seed from a failure report to the library.



    


    
      
        add_seed(library, seed, opts \\ [])

      


        Add a seed directly (without a failure report).



    


    
      
        export(library, path)

      


        Export library to a portable format (for sharing).



    


    
      
        format(library)

      


        Format library for display.



    


    
      
        get_seeds(library, opts \\ [])

      


        Get all seeds matching certain criteria.



    


    
      
        import(library, path)

      


        Import seeds from an exported file.



    


    
      
        load(path \\ "property_damage_seeds.json")

      


        Load a seed library from a JSON file.



    


    
      
        new()

      


        Create a new empty seed library.



    


    
      
        record_run(library, seed, opts \\ [])

      


        Update a seed's status after a test run.



    


    
      
        remove(library, seed)

      


        Remove a seed from the library.



    


    
      
        save(library, path \\ "property_damage_seeds.json")

      


        Save a seed library to a JSON file.



    


    
      
        seed_values(library, opts \\ [])

      


        Get just the seed values (for passing to PropertyDamage.run).



    


    
      
        stats(library)

      


        Get statistics about the library.



    





      


      
        Types


        


  
    
      
    
    
      seed_entry()



        
          
        

    

  


  

      

          @type seed_entry() :: %{
  seed: integer(),
  model: String.t(),
  failure_type: atom(),
  check_name: atom() | nil,
  tags: [atom()],
  description: String.t() | nil,
  discovered_at: String.t(),
  last_run: String.t() | nil,
  status: :failing | :fixed | :flaky | :unknown,
  run_count: non_neg_integer(),
  fail_count: non_neg_integer()
}


      



  



  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %{version: integer(), entries: [seed_entry()]}


      



  


        

      

      
        Functions


        


    

  
    
      
    
    
      add(library, failure, opts \\ [])



        
          
        

    

  


  

      

          @spec add(t(), PropertyDamage.FailureReport.t(), keyword()) ::
  {:ok, t()} | {:error, term()}


      


Add a seed from a failure report to the library.
Options
	:tags - List of categorization tags (e.g., [:currency, :race_condition])
	:description - Human-readable description of what this seed tests

Example
{:error, failure} = PropertyDamage.run(model: M, adapter: A)
{:ok, library} = SeedLibrary.add(library, failure, tags: [:currency])

  



    

  
    
      
    
    
      add_seed(library, seed, opts \\ [])



        
          
        

    

  


  

      

          @spec add_seed(t(), integer(), keyword()) :: {:ok, t()} | {:error, term()}


      


Add a seed directly (without a failure report).
Useful for importing seeds from external sources or manual entry.
Example
{:ok, library} = SeedLibrary.add_seed(library, 512902757,
  model: "ToyBankTest.Model",
  tags: [:currency_mismatch],
  description: "Captures with mismatched currencies"
)

  



  
    
      
    
    
      export(library, path)



        
          
        

    

  


  

      

          @spec export(t(), Path.t()) :: :ok | {:error, term()}


      


Export library to a portable format (for sharing).
Unlike save/2, this includes only essential fields and uses strings
for module names to avoid atom table issues across systems.

  



  
    
      
    
    
      format(library)



        
          
        

    

  


  

      

          @spec format(t()) :: String.t()


      


Format library for display.

  



    

  
    
      
    
    
      get_seeds(library, opts \\ [])



        
          
        

    

  


  

      

          @spec get_seeds(
  t(),
  keyword()
) :: [seed_entry()]


      


Get all seeds matching certain criteria.
Options
	:status - Filter by status (:failing, :fixed, :flaky)
	:tags - Filter by tags (entries must have ALL specified tags)
	:model - Filter by model name (string match)

Example
# Get all failing seeds
failing = SeedLibrary.get_seeds(library, status: :failing)

# Get currency-related seeds
currency_seeds = SeedLibrary.get_seeds(library, tags: [:currency])

  



  
    
      
    
    
      import(library, path)



        
          
        

    

  


  

      

          @spec import(t(), Path.t()) :: {:ok, t(), non_neg_integer()} | {:error, term()}


      


Import seeds from an exported file.
Merges with existing library, skipping duplicates.

  



    

  
    
      
    
    
      load(path \\ "property_damage_seeds.json")



        
          
        

    

  


  

      

          @spec load(Path.t()) :: {:ok, t()} | {:error, term()}


      


Load a seed library from a JSON file.

  



  
    
      
    
    
      new()



        
          
        

    

  


  

      

          @spec new() :: t()


      


Create a new empty seed library.

  



    

  
    
      
    
    
      record_run(library, seed, opts \\ [])



        
          
        

    

  


  

      

          @spec record_run(t(), integer(), keyword()) :: t()


      


Update a seed's status after a test run.
Example
# After running a seed
library = SeedLibrary.record_run(library, seed, failed: true)

  



  
    
      
    
    
      remove(library, seed)



        
          
        

    

  


  

      

          @spec remove(t(), integer()) :: {:ok, t()} | {:error, :not_found}


      


Remove a seed from the library.

  



    

  
    
      
    
    
      save(library, path \\ "property_damage_seeds.json")



        
          
        

    

  


  

      

          @spec save(t(), Path.t()) :: :ok | {:error, term()}


      


Save a seed library to a JSON file.

  



    

  
    
      
    
    
      seed_values(library, opts \\ [])



        
          
        

    

  


  

      

          @spec seed_values(
  t(),
  keyword()
) :: [integer()]


      


Get just the seed values (for passing to PropertyDamage.run).
Example
seeds = SeedLibrary.seed_values(library, status: :failing)
# => [512902757, 123456789, ...]

  



  
    
      
    
    
      stats(library)



        
          
        

    

  


  

      

          @spec stats(t()) :: map()


      


Get statistics about the library.

  


        

      


  

    
PropertyDamage.AssertionFailed exception
    



      
Simple exception for assertion failures.
This exception is raised by PropertyDamage.fail!/2 and provides a
convenient way to fail assertions with a message and optional data.
Usage
PropertyDamage.fail!("balance is negative")
PropertyDamage.fail!("balance is negative", balance: -50, account_id: "acc_123")
Custom Exceptions
For richer error context, define your own exception types:
defmodule MyApp.BalanceViolation do
  defexception [:balance, :account_id, :requirement]

  def message(%{balance: b, account_id: id}) do
    "Account #{id} has negative balance: #{b}"
  end
end

# In your projection:
raise %MyApp.BalanceViolation{balance: -50, account_id: "acc_123", requirement: "REQ-001"}
The framework is exception-agnostic - it will catch and report any exception type.

      




  

    
mix pd.gen.adapter 
    



      
Generate a PropertyDamage adapter module.
Usage
mix pd.gen.adapter MyApp.HTTPAdapter
Options
--type TYPE    Adapter type: http, grpc, or direct (default: http)
Examples
# HTTP adapter
mix pd.gen.adapter MyApp.HTTPAdapter

# gRPC adapter
mix pd.gen.adapter MyApp.GRPCAdapter --type grpc

# Direct adapter (for in-process testing)
mix pd.gen.adapter MyApp.DirectAdapter --type direct

      




  

    
mix pd.gen.command 
    



      
Generate a PropertyDamage command module.
Usage
mix pd.gen.command MyApp.Commands.CreateUser
Options
--creates-ref NAME    Field name for ref this command creates
--semantics SEM       Command semantics (sync, probe, async, mock_config)
--fields FIELDS       Comma-separated field names
Examples
# Basic command
mix pd.gen.command MyApp.Commands.CreateUser

# Command that creates a ref
mix pd.gen.command MyApp.Commands.CreateUser --creates-ref user

# Probe command with fields
mix pd.gen.command MyApp.Commands.GetUser --semantics probe --fields user_ref

# Command with multiple fields
mix pd.gen.command MyApp.Commands.UpdateUser --fields user_ref,name,email

      




  

    
mix pd.gen.model 
    



      
Generate a PropertyDamage model module.
Usage
mix pd.gen.model MyApp.TestModel
Options
--commands COMMANDS    Comma-separated list of command module names
--projection NAME      State projection module name
--assertions NAMES     Comma-separated list of assertion projection names
Examples
# Basic model
mix pd.gen.model MyApp.TestModel

# Model with commands specified
mix pd.gen.model MyApp.TestModel --commands CreateUser,UpdateUser,DeleteUser

# Full specification
mix pd.gen.model MyApp.TestModel \
  --commands CreateUser,UpdateUser,DeleteUser \
  --projection MyApp.Projections.ModelState \
  --assertions BalanceInvariant,ConsistencyInvariant

      




  

    
mix pd.gen.projection 
    



      
Generate a PropertyDamage projection module.
Usage
mix pd.gen.projection MyApp.Projections.ModelState
Options
--type TYPE    Projection type: state or assertion (default: state)
Examples
# State projection
mix pd.gen.projection MyApp.Projections.ModelState

# Assertion projection (invariant checker)
mix pd.gen.projection MyApp.Projections.BalanceInvariant --type assertion

      




  

    
mix pd.integration 
    



      
Run PropertyDamage integration tests against a live service.
This task runs stateful property-based tests against a running service,
with support for health checks, reporting, and failure persistence.
Usage
mix pd.integration --model MyModel --adapter MyAdapter --url http://localhost:4000
Required Options
--model     The model module (e.g., ToyBankTest.Model)
--adapter   The adapter module (e.g., ToyBankTest.Adapters.HTTPAdapter)
--url       Base URL of the service under test
Optional Options
--runs          Number of test runs (default: 100)
--commands      Max commands per run (default: 50)
--health        Health check URL (default: {url}/health or {url}/api/health)
--report        Report format: terminal, markdown, junit, json
--report-path   Path for report file (required for non-terminal formats)
--save-failures Directory to save failure files
--stop-on-fail  Stop on first failure
--hunt          Bug hunt mode: stop after finding N unique bugs
--verbose       Show detailed progress (default: true)
--quiet         Suppress progress output
Examples
# Basic integration test
mix pd.integration \
  --model ToyBankTest.Model \
  --adapter ToyBankTest.Adapters.HTTPAdapter \
  --url http://localhost:4555

# With JUnit report for CI
mix pd.integration \
  --model ToyBankTest.Model \
  --adapter ToyBankTest.Adapters.HTTPAdapter \
  --url http://localhost:4555 \
  --runs 500 \
  --report junit \
  --report-path reports/integration.xml

# Bug hunting mode
mix pd.integration \
  --model ToyBankTest.Model \
  --adapter ToyBankTest.Adapters.HTTPAdapter \
  --url http://localhost:4555 \
  --hunt 10 \
  --save-failures discovered_bugs/

# Quick smoke test
mix pd.integration \
  --model ToyBankTest.Model \
  --adapter ToyBankTest.Adapters.HTTPAdapter \
  --url http://localhost:4555 \
  --runs 10 \
  --stop-on-fail
Exit Codes
0  - All tests passed
1  - One or more tests failed
2  - Configuration or setup error
Environment Variables
PROPERTYDAMAGE_BASE_URL  - Default base URL if --url not provided
PROPERTYDAMAGE_RUNS      - Default number of runs

      




  

    
mix pd.scaffold 
    



      
Generate a complete PropertyDamage test suite from an OpenAPI specification.
This dramatically reduces setup time for testing REST APIs by automatically
generating:
	Command modules with generators
	Event structs from response schemas
	HTTP adapter with execute clauses
	Model module with command weights
	Authentication support

Usage
# Generate everything from an OpenAPI spec
mix pd.scaffold --from openapi.json --output lib/my_app_test/

# From a URL
mix pd.scaffold --from https://api.example.com/openapi.json --output lib/

# Only specific operations
mix pd.scaffold --from openapi.json --operations createUser,updateUser

# Generate only commands (skip adapter/model)
mix pd.scaffold --from openapi.json --commands-only

# Preview without writing files
mix pd.scaffold --from openapi.json --dry-run
Options
	--from - Path or URL to OpenAPI spec (JSON or YAML)
	--output - Output directory for generated files (default: lib/generated/)
	--operations - Comma-separated list of operationIds to generate
	--namespace - Module namespace prefix (e.g., MyAppTest)
	--commands-only - Only generate command modules
	--dry-run - Print what would be generated without writing files
	--base-url - Base URL for the API (overrides spec's servers)

What Gets Generated
Commands (one per operation)
defmodule MyAppTest.Commands.CreateUser do
  use PropertyDamage.Command
  defstruct [:name, :email, :role]

  @impl true
  def new!(_state, _generators) do
    %__MODULE__{
      name: Faker.Person.name(),
      email: Faker.Internet.email(),
      role: Enum.random(["admin", "user", "guest"])
    }
  end
  # ...
end
Events (from response schemas)
defmodule MyAppTest.Events.UserCreated do
  defstruct [:id, :name, :email, :role, :created_at]
end
Adapter
defmodule MyAppTest.Adapter do
  @behaviour PropertyDamage.Adapter

  def execute(%Commands.CreateUser{} = cmd, ctx) do
    Req.post!(ctx.base_url <> "/users", json: Map.from_struct(cmd)).body
  end
  # ...
end
Model
defmodule MyAppTest.Model do
  @behaviour PropertyDamage.Model

  def commands do
    [
      {5, Commands.CreateUser},
      {3, Commands.GetUser},
      # ...
    ]
  end

  def state_projection, do: MyAppTest.Projections.State
  def extra_projections, do: [MyAppTest.Assertions.UniqueUsers]
end
YAML Support
YAML files (.yaml, .yml) are supported if yaml_elixir is installed:
{:yaml_elixir, "~> 2.9"}
After Generation
	Review and customize generators in command generator/1 callbacks
	Define events/2 to map responses to your event structs
	Add preconditions (when:) and overrides (with:) in the Model's commands()
	Implement simulate/2 in the Model for expected events
	Configure authentication in the adapter
	Add invariants/projections to the model


      




  

    
mix pd.validate 
    



      
Validates a PropertyDamage model and adapter configuration.
This task checks that your model is correctly configured before running tests,
catching common mistakes early.
Usage
mix pd.validate MyApp.TestModel MyApp.TestAdapter
What Gets Checked
Errors (validation fails)
	Model module exists and implements required callbacks
	Adapter module exists and implements required callbacks
	All command modules exist and implement required callbacks
	All projection modules exist
	Injectable events are covered by injector adapters

Warnings (validation passes with warnings)
	Commands missing downstream_observables/0
	Events produced but not handled by assertion projections
	Missing optional callbacks that may be useful

Options
--verbose    Show detailed information about the model
--strict     Treat warnings as errors
Examples
# Basic validation
mix pd.validate MyApp.TestModel MyApp.TestAdapter

# With verbose output
mix pd.validate MyApp.TestModel MyApp.TestAdapter --verbose

# Fail on warnings
mix pd.validate MyApp.TestModel MyApp.TestAdapter --strict

      




  OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();




