

 property_table

 v0.2.4

 Table of contents

 	PropertyTable

 	Changelog

 	Modules

 	PropertyTable

 	PropertyTable.Event

 	PropertyTable.Matcher

 	PropertyTable.Matcher.StringPath

PropertyTable

[image: CircleCI]
[image: Hex version]
[image: Coverage Status]
In-memory key-value store with subscriptions
PropertyTable makes it easy to set up a key-value store where users can subscribe to changes based on patterns. PropertyTable refers to keys as
properties. Properties have values and are timestamped as to when they
received that value. Subscriptions make this library feel similar to Publish-Subscribe. Events, though, are only for changes to properties.
PropertyTable is useful when you want to expose a decent amount of state and
let consumers pick and choose what parts interest them.
PropertyTable consumers express their interest in properties using "patterns". A pattern could be as simple as the property of interest or it could contain
wildcards. This allows one to create hierarchical key-value stores, map-based
stores, or just simple key-value stores with notifications.
PropertyTable is optionally persistent to disk. Keys and values are backed by ETS.
Example
While configurable, the default property style for PropertyTable is a String list. This enables a hierarchical key-value store. One use case that is
roughly hierarchical is exposing network interface status to users. Imagine
a NetworkTable set up like the following:
NetworkTable
├── available_interfaces
│ └── [eth0, eth1]
└── interface
| ├── eth0
| │ ├── config
| | | └── %{ipv4: %{method: :dhcp}}
| │ └── connection
| | └── :internet
| └── eth1
| ├── config
| | └── %{ipv4: %{method: :static}}
| └── connection
| └── :disconnected
└── connection
 └── :internet

In this example, NetworkTable would be the name of the PropertyTable. The
connection status of "eth1" would be represented as ["interface", "eth1", "connection"] and have a value of :disconnected.
The library maintaining this table (the producer) creates the PropertyTable by
adding a child_spec to its supervision tree:
{PropertyTable, name: NetworkTable}
To run this example from the IEx prompt, start the PropertyTable manually by
calling PropertyTable.start_link/1:
PropertyTable.start_link(name: NetworkTable)
Inserting properties into the table looks like:
PropertyTable.put(NetworkTable, ["available_interfaces"], ["eth0", "eth1"])
PropertyTable.put(NetworkTable, ["connection"], :internet)
PropertyTable.put(NetworkTable, ["interface", "eth0", "config"], %{ipv4: %{method: :dhcp}})
PropertyTable.put(NetworkTable, ["interface", "eth0", "connection"], :internet)
Read one property by running:
PropertyTable.get(NetworkTable, ["interface", "eth0", "config"])
Since the format for properties is naturally hierarchical, you can get multiple
by matching on a pattern that contains the start of the property that you want:
PropertyTable.match(NetworkTable, ["interface"])
You can subscribe to changes to receive a message after each change
happens. For example, to receive a message when any property starting with
"interface" changes, run:
PropertyTable.subscribe(table, ["interface"])
Test with:
PropertyTable.put(NetworkTable, ["interface", "eth0", "connection"], :disconnected)
flush
Then when a property changes value, the Erlang process that called
PropertyTable.subscribe/2 will receive a %PropertyTable.Event{} message:
%PropertyTable.Event{
 table: NetworkTable,
 property: ["interface", "eth0", "connection"],
 value: :disconnected
 timestamp: 200,
 previous_value: :internet,
 previous_timestamp: 100
}
The timestamps in the event are from System.monotonic_time/0. In this example,
you could calculate the time that "eth0" was connected to the internet by
subtracting the timestamps.
String path properties and patterns
The default property format is a list of strings. Patterns are also list of
strings and are "prefix" matched. For example, the pattern ["a"] would match
the properties ["a"] and ["a", "b"] but not ["c"]. String path patterns
also support two positional wildcards:
	:"$" - do not match paths that have additional elements
	:_ - match any string in that location

For example, if you want to match ["a", "b"] exactly, use the pattern ["a", "b", :"$"]. Likewise, if you don't care what's an a position in the string,
specify :_ like [:_, "b"].
Custom property types and patterns
It's possible to replace the string path pattern matching in PropertyTable by
providing an implementation for the PropertyTable.Matcher behaviour. The
important function is matches?:
@callback matches?(PropertyTable.pattern(), PropertyTable.property()) :: boolean()
PropertyTable calls this function when deciding whether to send a property
change event to a subscriber and when you call PropertyTable.match/2.
Pass your module that implements the PropertyTable.Matcher behaviour as an
option to PropertyTable:
{PropertyTable, name: NetworkTable, matcher: MyCustomMatcher}
Efficiency
PropertyTable has a sweet spot in what it supports. It's not intended for very
large datasets nor is it the most efficient solution for all patterns. As a
rough guide, the use cases we had in mind with PropertyTable have in the low
1000s of keys, a couple producers, a dozen consumers, and changes are bursty.
Optimization choices were made with that in mind. This means:
	Reads query ETS directly, but changes to properties are routed through one
GenServer. This reduces processing in the producer's thread context at the
cost of creating a potential bottleneck on multicore machines
	Publishing events iterates over all subscriber patterns. This adds a lot of
flexibility to patterns. Given the design target of a dozen or so consumers,
it seemed that any indexing or optimization to reduce the number of
subscribers looked at would be slower overall than just trying each pattern.
	Getting a specific property is very fast (one ETS looking on an indexed key),
but matching is slow. Matching iterates over every property. This allows for a
lot of flexibility in patterns. The expectation that matching is not a common
task, and that users will subscribe to changes over repeatedly calling match.

License
Copyright (C) 2022 Nerves Project Authors
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Changelog

v0.2.4
	Updates	Fix unintended exceptions being raised when the filesystem updates start
failing when table persistence is enabled
	Reduce time when an unexpected VM exit could result in a corrupt persisted
file. The backup would be usable, but now the critical steps only involve
renaming or deleting files.

v0.2.3
	Updates	Fix compiler warnings with Elixir 1.15

v0.2.2
	Updates	Fixed missing :crypto dependency warning.

v0.2.1
	New features	Automatic persistence and snapshots for PropertyTables. This makes it
possible to use PropertyTable for small key/value stores like those for
storing runtime settings especially for Nerves devices. PropertyTable
protects against corruption and unexpected reboots that happen mid-write.

v0.2.0
	Backwards incompatible changes
	nil no longer deletes a property from the table. In other words, it's ok to
for properties to be nil now.
	PropertyTable.clear/2 and PropertyTable.clear_all/2 were renamed to
PropertyTable.delete/2 and PropertyTable.delete_matches/2 respectively.
	PropertyTable.put/3 raises if you give it an invalid property rather than
returning an error tuple. Since these are usually programming errors anyway,
this change removes the need for a return value check for Dialyzer.

	New features
	Added PropertyTable.put_many/2. It's possible to add many properties to
the table atomically. Change notifications still only get sent for
properties that really changed.

v0.1.0
Initial release
This code was extracted from vintage_net, simplified and modified to support
more use cases.

PropertyTable

In-memory key-value store with subscriptions
PropertyTable makes it easy to set up a key-value store where users can subscribe to changes based on patterns. PropertyTable refers to keys as
properties. Properties have values and are timestamped as to when they
received that value. Subscriptions make this library feel similar to Publish-Subscribe. Events, though, are only for changes to properties.
PropertyTable is useful when you want to expose a decent amount of state and
let consumers pick and choose what parts interest them.
PropertyTable consumers express their interest in properties using "patterns". A pattern could be as simple as the property of interest or it could contain
wildcards. This allows one to create hierarchical key-value stores, map-based
stores, or just simple key-value stores with notifications.
PropertyTable is optionally persistent to disk. Keys and values are backed by ETS.

 Summary

 Types

 options()

 PropertyTable configuration options

 pattern()

 A match pattern

 property()

 A property

 property_value()

 A property/value tuple

 table_id()

 A table_id identifies a group of properties

 value()

 A properties value

 Functions

 child_spec(options)

 Returns a specification to start a property_table under a supervisor.
See Supervisor.

 delete(table, property)

 Delete the specified property

 delete_matches(table, pattern)

 Delete all properties that match a pattern

 fetch_with_timestamp(table, property)

 Fetch a property with the time that it was set

 flush_to_disk(table)

 Write any changes to disk

 get(table, property, default \\ nil)

 Get the current value of a property

 get_all(table)

 Get all properties

 get_snapshots(table)

 Return available snapshot IDs

 match(table, pattern)

 Get a list of all properties matching the specified property pattern

 put(table, property, value)

 Update a property and notify listeners

 put_many(table, properties)

 Update many properties

 restore_snapshot(table, snapshot_name)

 Restart a previously saved snapshot

 snapshot(table)

 Take a snapshot of the property table

 start_link(options)

 Start a PropertyTable's supervision tree

 subscribe(table, pattern)

 Subscribe to receive events

 unsubscribe(table, pattern)

 Stop subscribing to a property

Types

 Link to this type

 options()

 View Source

 @type options() :: [
 name: table_id(),
 properties: [property_value()],
 tuple_events: boolean()
]

PropertyTable configuration options
See start_link/1 for usage.

 Link to this type

 pattern()

 View Source

 @type pattern() :: any()

A match pattern
Just like properties, these can be anything but they have to be compatible
with the PropertyTable.Matcher implementation.
The default is that patterns are string lists with the addition of wildcards
like :_.

 Link to this type

 property()

 View Source

 @type property() :: any()

A property
Properties can be anything, but in order to be useful, they need to be
compatible with the PropertyTable.Matcher implementation.
In is common for this to be a string list ([String.t()]) since the default
PropertyTable.Matcher works with those.

 Link to this type

 property_value()

 View Source

 @type property_value() :: {property(), value()}

A property/value tuple

 Link to this type

 table_id()

 View Source

 @type table_id() :: atom()

A table_id identifies a group of properties

 Link to this type

 value()

 View Source

 @type value() :: any()

A properties value
These can be whatever makes sense to the PropertyTable user. The only
constraint is that if you're using PropertyTable's persistence feature, it
needs to be possible to save and restore them. This means that pids and
references, for example, can't be used.

Functions

 Link to this function

 child_spec(options)

 View Source

 @spec child_spec(options()) :: Supervisor.child_spec()

Returns a specification to start a property_table under a supervisor.
See Supervisor.

 Link to this function

 delete(table, property)

 View Source

 @spec delete(table_id(), property()) :: :ok

Delete the specified property

 Link to this function

 delete_matches(table, pattern)

 View Source

 @spec delete_matches(table_id(), pattern()) :: :ok

Delete all properties that match a pattern

 Link to this function

 fetch_with_timestamp(table, property)

 View Source

 @spec fetch_with_timestamp(table_id(), property()) ::
 {:ok, value(), integer()} | :error

Fetch a property with the time that it was set
Timestamps come from System.monotonic_time()

 Link to this function

 flush_to_disk(table)

 View Source

 @spec flush_to_disk(table_id()) :: :ok | {:error, any()}

Write any changes to disk
If persistence is enabled for this property table, save the current state to
disk immediately. The table is already written every :persist_interval, but
this is avoid waiting after important changes.

 Link to this function

 get(table, property, default \\ nil)

 View Source

 @spec get(table_id(), property(), value()) :: value()

Get the current value of a property

 Link to this function

 get_all(table)

 View Source

 @spec get_all(table_id()) :: [{property(), value()}]

Get all properties
This function might return a really long list so it's mainly intended for
debug or convenience when you know that the table only contains a few
properties.

 Link to this function

 get_snapshots(table)

 View Source

 @spec get_snapshots(table_id()) :: [{String.t(), String.t()}]

Return available snapshot IDs
This scans the snapshots directory and returns a list of tuples containing
snapshot IDs and their full name.

 Link to this function

 match(table, pattern)

 View Source

 @spec match(table_id(), pattern()) :: [{property(), value()}]

Get a list of all properties matching the specified property pattern

 Link to this function

 put(table, property, value)

 View Source

 @spec put(table_id(), property(), value()) :: :ok

Update a property and notify listeners

 Link to this function

 put_many(table, properties)

 View Source

 @spec put_many(table_id(), [{property(), value()}]) :: :ok

Update many properties
This is similar to calling put/3 several times in a row, but atomically. It is
also slightly more efficient when updating more than one property.

 Link to this function

 restore_snapshot(table, snapshot_name)

 View Source

 @spec restore_snapshot(table_id(), String.t()) :: :ok | :noop

Restart a previously saved snapshot
If persistence is enabled for this property table, restore the current state
of the PropertyTable to that of a past named snapshot

 Link to this function

 snapshot(table)

 View Source

 @spec snapshot(table_id()) :: {:ok, String.t()} | :noop

Take a snapshot of the property table
If persistence is enabled for this property table, save the current state
and copy a snapshot of it into the /snapshots sub-directory of the set
data directory.
This returns an ID for the snapshot that can be passed restore_snapshot/2.

 Link to this function

 start_link(options)

 View Source

 @spec start_link(options()) :: Supervisor.on_start()

Start a PropertyTable's supervision tree
To create a PropertyTable for your application or library, add the following
child_spec to one of your supervision trees:
{PropertyTable, name: MyTableName}
The :name option is required. All calls to PropertyTable will need to
know it and the process will be registered under than name so be sure it's
unique.
Options for properties and events:
	:properties - a list of {property, value} tuples to initially populate
the PropertyTable
	:matcher - set the format for how properties and how they should be
matched for triggering events. See PropertyTable.Matcher.
	:tuple_events - set to true for change events to be in the old tuple
format. This is not recommended for new code and hopefully will be removed
in the future.

Options for persisting properties:
	:persist_data_path - set to a directory where PropertyTable will
persist the contents of the table to disk, snapshots will also be stored here.
	:persist_interval - if set PropertyTable will persist the contents of
tables to disk in intervals of the provided value (in milliseconds) automatically.
	:persist_max_snapshots - Maximum number of manual snapshots to keep on disk before they
are replaced - (oldest snapshots are replaced first.) Defaults to 25.
	:persist_compression - 0..9 range to compress the terms when written to disk, see :erlang.term_to_binary/2. Defaults to 6.

Important
Setting :persist_data_path enables persistence. On initialization, if
PropertyTable is able to load a snapshot, the data in the snapshot is used
instead of the :properties option.

 Link to this function

 subscribe(table, pattern)

 View Source

 @spec subscribe(table_id(), pattern()) :: :ok

Subscribe to receive events

 Link to this function

 unsubscribe(table, pattern)

 View Source

 @spec unsubscribe(table_id(), pattern()) :: :ok

Stop subscribing to a property

PropertyTable.Event

Struct sent to subscribers on property changes
	:table - the table generating this event
	:property - which property changed
	:value - the new value
	:timestamp - the timestamp (System.monotonic_time/0) when the changed
happened
	:previous_value - the previous value (nil if this property is new)
	:previous_timestamp - the timestamp when the property changed to
:previous_value. Use this to calculate how long the property was the
previous value.

 Summary

 Types

 t()

 Functions

 to_tuple(event)

 Convert event to the old tuple event format

Types

 Link to this type

 t()

 View Source

 @type t() :: %PropertyTable.Event{
 previous_timestamp: integer(),
 previous_value: PropertyTable.value(),
 property: PropertyTable.property(),
 table: PropertyTable.table_id(),
 timestamp: integer(),
 value: PropertyTable.value()
}

Functions

 Link to this function

 to_tuple(event)

 View Source

 @spec to_tuple(t()) ::
 {PropertyTable.table_id(), PropertyTable.property(), PropertyTable.value(),
 PropertyTable.value(), %{new_timestamp: integer(), old_timestamp: integer()}}

Convert event to the old tuple event format
This is only used for backwards compatibility. At some point, it hopefully
will be removed.

PropertyTable.Matcher behaviour

Behaviour for customizing the Matcher logic for filtering and dispatching events

 Summary

 Callbacks

 check_pattern(pattern)

 Check whether a pattern is valid

 check_property(property)

 Check whether a property is valid

 matches?(pattern, property)

 Returns true if the pattern matches the specified property

Callbacks

 Link to this callback

 check_pattern(pattern)

 View Source

 @callback check_pattern(PropertyTable.pattern()) :: :ok | {:error, Exception.t()}

Check whether a pattern is valid
Returns :ok on success or {:error, error} where error is an Exception struct with
information about the issue.

 Link to this callback

 check_property(property)

 View Source

 @callback check_property(PropertyTable.property()) :: :ok | {:error, Exception.t()}

Check whether a property is valid
Returns :ok on success or {:error, error} where error is an Exception struct with
information about the issue.

 Link to this callback

 matches?(pattern, property)

 View Source

 @callback matches?(PropertyTable.pattern(), PropertyTable.property()) :: boolean()

Returns true if the pattern matches the specified property

PropertyTable.Matcher.StringPath

Match logic using keys organized as hierarchical lists
Property keys that are lists look like ["first", "second", "third"].
These are intended to create a hierarchical organization of keys. Matching
patterns involves checking whether the pattern is at the beginning of the
key. This makes it possible to get notified on every property change where
the key begins with ["first", "second"]. This is a really common use case
when using hierarchically organized keys.
Two special atoms can be used:
	:_ - match anything at this part of the list
	:$ - match the end of the list

 Summary

 Functions

 check_pattern(arg1)

 Check whether a pattern is valid

 check_property(arg1)

 Check whether a property is valid

 matches?(arg1, arg2)

 Returns true if the pattern matches the specified property

Functions

 Link to this function

 check_pattern(arg1)

 View Source

Check whether a pattern is valid
Returns :ok on success or {:error, error} where error is an Exception struct with
information about the issue.

 Link to this function

 check_property(arg1)

 View Source

Check whether a property is valid
Returns :ok on success or {:error, error} where error is an Exception struct with
information about the issue.

 Link to this function

 matches?(arg1, arg2)

 View Source

Returns true if the pattern matches the specified property

 OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

