

 proto_rune

 v0.1.2

 Table of contents

 	Guides

 	Getting Started with ProtoRune

 	Working with Records in ProtoRune

 	Understanding XRPC and Low-Level API Usage

 	Bot Development with ProtoRune

 	Identity Management

 	Development

 	README

 	Contributing to ProtoRune

 	LICENSE

 	RFC: ProtoRune Elixir SDK for AT Protocol

 	

 	Modules

 	ProtoRune.Bot

 	ProtoRune.Bot.Poller

 	ProtoRune.Bot.Server

 	ProtoRune.Lexicon

 	ProtoRune.Lexicon.Parser

 	ProtoRune.XRPC.Case

 	ProtoRune.XRPC.Client

 	ProtoRune.XRPC.DSL

 	ProtoRune.XRPC.Procedure

 	ProtoRune.XRPC.Query

 	ProtoRune.XRPC.Schema

 	Mix Tasks

 	mix gen_schemas

 	mix gen_schemas.generator

 	mix gen_schemas.parser

 	mix gen_schemas.type_mapper

Getting Started with ProtoRune

 Understanding AT Protocol and ProtoRune

The AT Protocol (Authenticated Transfer Protocol) is a social networking protocol that emphasizes account portability, algorithmic choice, and scalable interoperability. Unlike traditional social platforms where your data and identity are locked to a single provider, AT Protocol allows users to maintain ownership of their identity and move between providers while preserving their social graph and content.
Bluesky is the most well-known application built on AT Protocol, but the protocol itself is designed to support various social applications. ProtoRune provides Elixir developers with tools to build applications, bots, and services that interact with the AT Protocol ecosystem.

 Key Concepts

Personal Data Servers (PDS)
A PDS hosts user accounts and their data. Users can choose their PDS provider or self-host. ProtoRune connects to these servers to perform operations on behalf of users.
Decentralized Identity (DID)
Users have persistent identifiers called DIDs that remain stable even when changing providers. These DIDs can be resolved to find the current hosting location of an account. ProtoRune handles DID resolution and validation automatically.
Records and Repositories
User data in AT Protocol is stored in repositories as typed records (posts, likes, follows, etc.). Each record belongs to a collection and has a specific schema. ProtoRune provides type-safe structs and operations for working with records.
Lexicons
AT Protocol uses Lexicons to define schemas and APIs. ProtoRune generates Elixir code from these Lexicons, providing compile-time type checking and documentation.

 Getting Started

 Installation

Add ProtoRune to your dependencies:
def deps do
 [
 {:proto_rune, "~> 0.1.0"}
]
end

 Configuration

Configure your default service in config/config.exs:
config :proto_rune,
 default_service: "https://bsky.social",
 http_client: ProtoRune.HTTPClient.Adapters.Finch

 Authentication and Sessions

AT Protocol uses sessions for authentication. ProtoRune wraps this in a Session struct:
alias ProtoRune.Session

Create session with handle (recommended for most users)
{:ok, session} = ProtoRune.create_session("handle.bsky.social", "app-password")

Or with DID (for more advanced use cases)
{:ok, session} = ProtoRune.create_session("did:plc:1234", "app-password")

 Working with Records

Records are the core data structures in AT Protocol. Each record type is represented as an Elixir struct with proper typespecs:
alias ProtoRune.Bsky.Post
alias ProtoRune.Bsky.Profile

Create and publish a post
post = Post.new(text: "Hello from ProtoRune!")
{:ok, created} = Post.create(session, post)

Update a profile
profile = Profile.new(
 display_name: "Zoey",
 description: "Building with ProtoRune"
)
{:ok, updated} = Profile.update(session, profile)

 Rich Text Content

AT Protocol supports rich text with mentions, links, and formatting. ProtoRune provides both a pipeline API and a sigil for creating rich text:
import ProtoRune.RichText

Using the sigil for markdown-like syntax
text = ~R"""
Hello @alice.sky!
Check out this #elixir project at [ProtoRune](https://github.com/proto-rune)
"""

Or the pipeline API for programmatic construction
text = RichText.new()
 |> RichText.text("Hello ")
 |> RichText.mention("alice.sky")
 |> RichText.text("! Check out this ")
 |> RichText.hashtag("elixir")
 |> RichText.text(" project at ")
 |> RichText.link("ProtoRune", "https://github.com/proto-rune")

 Further Reading

	AT Protocol official documentation
	AT Protocol Specifications
	Lexicon Reference

Working with Records in ProtoRune

Records are the fundamental data structures in AT Protocol. They represent everything from posts and profiles to likes and follows. Let's explore how ProtoRune helps you work with records in a type-safe and intuitive way.

 Understanding Records

In AT Protocol, a record is a piece of data that:
	Belongs to a specific collection (like "app.bsky.feed.post")
	Has a unique record key within that collection
	Follows a schema defined by a Lexicon
	Lives in a user's repository

ProtoRune represents records as Elixir structs with validation, basically a Ecto.Schema. For example:
typespecs are abbreviated since it're automatically generated and also for brevity

defmodule ProtoRune.Bsky.Post do
 use ProtoRune.Record, collection: "app.bsky.feed.post"

 @type t :: %__MODULE__{
 text: String.t(),
 created_at: DateTime.t(),
 langs: [String.t()] | nil,
 labels: [label()] | nil,
 embed: embed() | nil,
 reply_to: reference() | nil,
 facets: [facet()]
 }

 embedded_schema do
 field :text, :string
 field :langs, {:array, :string}
 field :created_at, :utc_datetime

 embeds_one :reply_to, Reference
 embeds_one :embed, Embed

 embeds_many :labels, Label
 embeds_many :facets, Facet
 end
end

 Record Operations

 Creating Records

Every record type provides a new/1 function for creating instances:
alias ProtoRune.Bsky.Post
alias ProtoRune.Bsky.Profile

Create a post instance
post = Post.new(text: "Hello world!")
Publish the post
{:ok, created} = Post.create(session, post)

Create a profile instance with options
profile = Profile.new(
 display_name: "Zoey",
 description: "Elixir developer",
 avatar: %{
 image: File.read!("avatar.jpg"),
 alt: "Profile picture"
 }
)
Create the profile record in the PDS
{:ok, created} = Profile.create(session, profile)

 Reading Records

Records can be fetched by their URI or by collection + record key:
Get by URI
{:ok, post} = Post.get(session, "at://did:plc:1234/app.bsky.feed.post/1234")

Get by record key
{:ok, post} = Post.get(session, did: "did:plc:1234", rkey: "1234")

List records from a collection
{:ok, posts} = Post.list(session, did: "did:plc:1234", limit: 50)

 Updating Records

Records are immutable in AT Protocol - an update creates a new version:
Update a profile
{:ok, _} = Profile.update(session, %{profile | description: "Updated bio"})

 Deleting Records

Delete by URI
{:ok, _} = Post.delete(session, "at://did:plc:1234/app.bsky.feed.post/1234")

Delete by record key
{:ok, _} = Post.delete(session, rkey: "1234")

 Working with Complex Records

 Embedded Media

Posts can contain embedded media like images:
Create post with image
Post.new(text: "Check out this photo!")
|> Post.with_image(binary: File.read!("photo.jpg"), alt: "A scenic mountain view")
|> Post.with_image(binary: File.read!("cat.png"), alt: "An adorable black cat")
|> then(fn post -> Post.create(session, post) end)

Create post instance with external link, cummulative
Post.new(text: "Interesting article")
|> Post.with_external_link(
 uri: "https://example.com/article",
 title: "Article Title",
 description: "Article description..."
)
|> then(fn post -> Post.create(session, post) end)

 Reply Threads

Posts can be replies to other posts:
Reply to a post
Post.new(text: "Great point!")
|> Post.with_reference(root: original_post, parent: parent_post)
|> then(fn post -> Post.create(session, post) end)

Get a thread
{:ok, thread} = Post.get_thread(session, post_uri)

 Record Validation

ProtoRune validates records before sending them to the server:
Validation happens automatically on create/update
case Post.create(session, Post.new(text: 123)) do
 {:error, %Ecto.Changeset{valid?: false}} ->
 # Handle validation error
 {:ok, post} ->
 # Post created successfully
end

Manual validation
case Post.validate(post) do
 {:ok, post} -> # Valid
 {:error, %Ecto.Changeset{valid?: false}} -> # Invalid
end

 Custom Record Types

You can define your own record types for custom lexicons:
defmodule MyApp.CustomRecord do
 use ProtoRune.Record,
 collection: "com.example.custom",
 lexicon: "custom_lexicon.json"

 embedded_schema do
 field :field_1, :string
 field :field_2, :map
 end

 # Define your schema and functions...
end

Understanding XRPC and Low-Level API Usage

 What is XRPC?

XRPC (Cross-server Remote Procedure Call) is AT Protocol's approach to HTTP APIs. While it follows RESTful principles, XRPC adds some protocol-specific features:
	Lexicon-defined endpoints: Each endpoint is defined by a Lexicon schema
	Strongly-typed parameters: Input and output are validated against schemas
	Namespaced methods: Endpoints follow a hierarchical naming (e.g., com.atproto.repo.createRecord)
	Session-based auth: Uses JWT tokens for authentication
	Consistent error handling: Standardized error responses across services

 XRPC in ProtoRune

While ProtoRune provides high-level abstractions like ProtoRune.create_session/2, understanding the XRPC layer helps when:
	Building custom features
	Working with new Lexicons
	Debugging issues
	Implementing advanced functionality

Here's how the layers connect:
{:ok, session} = ProtoRune.create_session("identifier", "password")

High-level API (recommended for most uses)
{:ok, post} = ProtoRune.ATProto.create_record(text: "Hello world!")

Is equivalent to:
ProtoRune.XRPC.procedure(session,
 "com.atproto.repo.createRecord",
 %{
 repo: session.did,
 collection: "app.bsky.feed.post",
 record: %{text: "Hello world!"}
 }
)

 Using XRPC Directly

 Queries (GET Requests)

Get a profile
{:ok, profile} = ProtoRune.XRPC.query(session,
 "app.bsky.actor.getProfile",
 %{actor: "alice.bsky.social"}
)

List records with parameters
{:ok, posts} = ProtoRune.XRPC.query(session,
 "app.bsky.feed.getAuthorFeed",
 %{
 actor: "bob.bsky.social",
 limit: 50,
 filter: "posts_with_media"
 }
)

 Procedures (POST Requests)

Create a record
{:ok, record} = ProtoRune.XRPC.procedure(session,
 "com.atproto.repo.createRecord",
 %{
 repo: session.did,
 collection: "app.bsky.feed.post",
 record: %{
 text: "Hello via XRPC!",
 createdAt: DateTime.utc_now() |> DateTime.to_iso8601()
 }
 }
)

Delete a record
{:ok, _} = ProtoRune.XRPC.procedure(session,
 "com.atproto.repo.deleteRecord",
 %{
 repo: session.did,
 collection: "app.bsky.feed.post",
 rkey: "1234"
 }
)

 Error Handling

XRPC provides structured errors:
case ProtoRune.XRPC.query(session, "app.bsky.feed.getPost", %{uri: invalid_uri}) do
 {:ok, post} ->
 # Handle success

 {:error, %ProtoRune.XRPC.Error{
 code: :not_found,
 message: "Post not found"
 }} ->
 # Handle specific error

 {:error, %ProtoRune.XRPC.Error{code: :rate_limit}} ->
 # Handle rate limiting
end

 Working with Lexicons

XRPC endpoints are defined by Lexicons. ProtoRune generates code from these definitions:
Generated module for an XRPC method
defmodule ProtoRune.Lexicons.ATProto.Repo.CreateRecord do
 @type params :: %{
 repo: String.t(),
 collection: String.t(),
 rkey: String.t() | nil,
 validate: boolean() | nil,
 record: map()
 }

 @type response :: %{
 uri: String.t(),
 cid: String.t()
 }

 def path, do: "com.atproto.repo.createRecord"
 def method, do: :post
end

 Custom XRPC Methods

For methods not covered by ProtoRune's high-level API:
Define your method
defmodule MyApp.CustomMethod do
 use ProtoRune.XRPC.Method,
 path: "com.example.customMethod",
 method: :post

 @type params :: %{
 customField: String.t()
 }

 @type response :: %{
 result: String.t()
 }
end

Use it
ProtoRune.XRPC.call(session, MyApp.CustomMethod, %{
 customField: "value"
})

 Advanced Usage

 Raw Requests

Access the underlying HTTP client:
Direct HTTP request
ProtoRune.XRPC.request(session,
 method: :post,
 path: "com.atproto.repo.createRecord",
 body: data,
 headers: [{"Content-Type", "application/json"}]
)

 Custom Response Handling

Process raw responses:
case ProtoRune.XRPC.raw_query(session, "app.bsky.feed.getTimeline") do
 {:ok, %{status: 200, body: body}} ->
 # Handle raw response

 {:ok, %{status: status}} when status in 400..499 ->
 # Handle client error

 {:error, _reason} ->
 # Handle network error
end

 Best Practices

	Use High-Level APIs First: Only drop to XRPC when needed
	Handle Rate Limits: Implement exponential backoff
	Validate Input: Check params match Lexicon schemas
	Type Everything: Use typespecs for custom methods

 Further Reading

	AT Protocol XRPC Spec
	Lexicon Reference
	XPRC HTTP Status Codes

Bot Development with ProtoRune

 Creating a Bot

A bot in ProtoRune is an OTP process that handles events from the ATProto network.
defmodule MyBot do
 use ProtoRune.Bot,
 name: :my_bot,
 strategy: :polling,
 service: "https://bsky.social" # defaults to the config service

 @impl true
 def get_identifier, do: System.fetch_env!("BOT_IDENTIFIER")
 def get_password, do: System.fetch_env!("BOT_PASSWORD")

 @impl true
 def handle_event(:like, %{uri: uri, user: user}) do
 Logger.info("Got like from #{user.handle}")
 end
end

 Event Types

Bots receive these event types:
@type event ::
 :like | # Someone liked bot's post
 :reply | # Reply to bot's post
 :mention | # Bot was mentioned
 :repost | # Bot's post was reposted
 :quote | # Bot's post was quoted
 :follow # Bot gained a follower

 Event Payloads

Each event receives relevant data:
 @type user :: %{
 did: String.t(),
 handle: String.t(),
 display_name: String.t() | nil,
 avatar_url: String.t() | nil
 }

 @type like_payload :: %{
 uri: String.t(), # URI of the liked post
 user: user(), # User who liked the post
 post: ProtoRune.Bsky.Post.t(), # The post that was liked
 created_at: DateTime.t() # When the like happened
 }

 @type reply_payload :: %{
 uri: String.t(), # URI of the reply post
 user: user(), # User who replied
 post: ProtoRune.Bsky.Post.t(), # The reply post
 reply_to: ProtoRune.Bsky.Post.t(), # Original post being replied to
 created_at: DateTime.t() # When the reply happened
 }

 @type mention_payload :: %{
 uri: String.t(), # URI of post containing mention
 user: user(), # User who mentioned the bot
 post: ProtoRune.Bsky.Post.t(), # Post containing the mention
 created_at: DateTime.t() # When the mention happened
 }

 @type repost_payload :: %{
 uri: String.t(), # URI of the repost
 user: user(), # User who reposted
 post: ProtoRune.Bsky.Post.t(), # Original post that was reposted
 created_at: DateTime.t() # When the repost happened
 }

 @type quote_payload :: %{
 uri: String.t(), # URI of the quote post
 user: user(), # User who quoted
 post: ProtoRune.Bsky.Post.t(), # The quote post
 quoted_post: ProtoRune.Bsky.Post.t(), # Original post being quoted
 created_at: DateTime.t() # When the quote happened
 }

 @type follow_payload :: %{
 uri: String.t(), # URI of the follow
 user: user(), # User who followed
 created_at: DateTime.t() # When the follow happened
 }

 Strategies

ProtoRune bots can use one of two strategies to receive events and notifications:
	Polling
<!-- 2. Firehose (real-time subscription) -->

Let's dive into each of these in more depth.

 Polling Strategy

The polling strategy periodically checks the AT Proto notifications endpoint for new events and notifications. You can specify the polling interval in miliseconds.
Here's an example of configuring a bot to use the polling strategy:
use ProtoRune.Bot,
 strategy: :polling,
 polling: %{
 interval: :timer.seconds(30), # Poll every 30 seconds
 process_from: DateTime.utc_now() # Start processing events from the current time
 }
Some key things to understand about the polling strategy:
	It allows you to control the frequency of checking for new events via the interval parameter. A shorter interval means more "real-time"-like behavior but also more requests to the server. A longer interval is easier on server resources but means a delay in processing events.

	The process_from parameter lets you specify a start time for event processing. This is useful if you want to ignore old events when first starting the bot. By default it will process all historical events.

	Polling is a simple approach to implement and reason about. However, for high volume bots or cases where minimizing latency is critical, the firehose strategy may be a better fit.

	If the AT Proto server being used is experiencing issues or slow to respond, a polling bot will just keep retrying on its regular interval. Make sure your polling frequency isn't too aggressive.

<!-- relay_uri: "wss://bsky.network", -->
<!-- filters: ["app.bsky.feed.*"], -->
<!-- cursor: "latest" -->

 Which Strategy to Choose?

The choice between polling and firehose depends on your bot's specific needs:
	For bots that don't require immediate event processing and aim to be very simple, polling is a good choice. It's also a good starting point when developing a new bot.

	For bots that need low latency processing, handle a high volume of events, or implement any real-time features, firehose is the way to go. Examples could be chat bots, moderation bots, or notification bots.

 Bot State

Store state in the bot process:
defmodule StatefulBot do
 use ProtoRune.Bot

 @impl true
 def init(_opts) do
 {:ok, %{replies: 0}}
 end

 @impl true
 def handle_event(:reply, _payload, state) do
 new_state = Map.update!(state, :replies, & &1 + 1)
 {:ok, new_state}
 end
end

 Running Multiple Bots

Each bot is a supervised process so you can manage multiple of them with a Supervisor:
defmodule MyApp.Application do
 use Application

 def start(_type, _args) do
 children = [
 GreeterBot,
 ModeratorBot,
 AnalyticsBot
]

 Supervisor.start_link(children, strategy: :one_for_one)
 end
end

 Error Handling

The bot will automatically:
	Retry on rate limits with backoff
	Refresh expired sessions
	Reconnect on connection loss
	Log errors

Handle specific errors in events:
def handle_event(:reply, payload, state) do
 case reply_to_mention(payload) do
 {:ok, _} -> {:ok, state}
 {:error, :rate_limited} -> {:retry, state}
 {:error, _} = err -> err
 end
end

Identity Management

TODO

README

 ProtoRune

 A type-safe, well-documented AT Protocol SDK and bot framework for Elixir

[!WARNING]
This library is under active development and isn't production ready, expect breaking chnages

 Installation

def deps do
 [
 {:proto_rune, "~> 0.1.0"}
]
end

 Quick Start

Create a session
{:ok, session} = ProtoRune.create_session("handle.bsky.social", "app-password")

Post something
{:ok, post} = ProtoRune.Client.create_post(session, "Hello from Elixir!")

Create a bot
defmodule MyBot do
 use ProtoRune.Bot, name: :my_bot, strategy: :polling

 @impl true
 def handle_event(:like, %{uri: uri, user: user}) do
 # Handle like event
 end
end

MyBot.start_link()

 Examples

	Simple bot with event handling
	Post with rich text and embeds
	Custom feed generator
	Firehose subscription

 Architecture

ProtoRune is organized into focused modules:
	ATProto - Core protocol implementation (repo, identity, etc)
	Bsky - Bluesky-specific features (feed, graph, notifications)
	Bot - Bot framework with polling/firehose support
	XRPC - Low-level XRPC client
	Lexicons - Generated code from AT Protocol lexicons

Other submodules do exist like ProtoRune.HTTPClient but it are to be used internally

 Documentation

Full documentation is available at hexdocs.pm/proto_rune.
The guide covers:
	Getting Started
	Bot Development
	Working with Records
	XRPC Client Usage
	Identity Management

 Contributing

Pull requests welcome! See our Contributing Guide.

 Inspirations

	Skyware
	atcute
	Python AT Proto SDK

 License

MIT License - see LICENSE for details.

Contributing to ProtoRune

 Development Setup

	Fork and clone the repository
	Install dependencies with mix deps.get
	Run tests with mix test

 Code Organization

lib/proto_rune/
├── atproto/ # Core AT Protocol
├── bsky/ # Bluesky app features
├── bot/ # Bot framework
├── lexicons/ # Generated code
└── xrpc/ # XRPC implementation

 Code Style

	Run mix format before committing
	Ensure 100% type coverage with dialyzer
	Keep functions focused and small
	Document public functions with @doc and @moduledoc
	Add typespecs to all public functions

 Testing

	Add tests for new features
	Tests should be in test/ mirroring lib/ structure
	Run full test suite with mix test
	Run dialyzer with mix dialyzer

 Pull Requests

	Create a branch from main
	Write descriptive commit messages
	Add tests for new functionality
	Update documentation as needed
	Submit PR with description of changes

PRs should:
	Have a clear purpose
	Include relevant tests
	Pass CI checks
	Follow code style guidelines
	Include documentation updates

 Generated Code

The lib/proto_rune/lexicons directory contains generated code from AT Protocol lexicons. To regenerate:
mix gen_schemas --path priv/lexicons/ --output lib/proto_rune/lexicons/

Do not modify generated code directly. Update the generator instead.

 Release Process

	Update version in mix.exs
	Update CHANGELOG.md
	Create GitHub release
	Publish to Hex.pm

 Questions?

Open an issue or join the github repo discussion forum.

LICENSE

Copyright 2024 zoedsoupe <zoey.spessanha@zeetech.io>

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

RFC: ProtoRune Elixir SDK for AT Protocol

 Abstract

This RFC proposes a domain-driven implementation of an AT Protocol SDK in Elixir, focusing on developer ergonomics, type safety, and scalable event processing. The implementation leverages Elixir's strengths in metaprogramming, concurrent processing, and functional design while providing clear boundaries between protocol layers.

 Background

AT Protocol enables decentralized social networking through a layered architecture. While existing implementations like indigo and skyware provide foundational capabilities, an Elixir implementation can uniquely leverage BEAM's strengths for handling concurrent network operations and real-time event processing.

 Goals

	Provide an intuitive, domain-driven API that reflects AT Protocol's layered architecture
	Generate type-safe, validated code from Lexicons with comprehensive documentation
	Enable efficient event processing through multiple strategies
	Maintain extensibility for future AT Protocol features
	Follow Elixir conventions and leverage BEAM capabilities

 Architecture

 Domain Organization

The codebase is organized by domain contexts at the root level, reflecting AT Protocol's layered architecture:
lib/
 atproto/ # Core protocol implementation
 xrpc/ # XRPC client and utilities
 repo/ # Repository operations
 identity/ # DID and handle resolution
 sync/ # Data synchronization primitives

 lexicon/ # Generated code from Lexicons
 app/
 bsky/ # Bluesky-specific Lexicons
 com/
 atproto/ # Core protocol Lexicons

 bluesky/ # Bluesky application features
 ozone/ # Content moderation features

 Code Generation

Lexicons are processed at compile-time through a mix task, generating Ecto schemas and type specifications:
defmodule Mix.Tasks.Compile.Lexicon do
 use Mix.Task

 @impl Mix.Task
 def run(_args) do
 # Process lexicon JSON files
 # Generate Elixir modules with proper namespacing
 end
end
The generated code provides validation and documentation while maintaining clear mapping to AT Protocol data structures:
Abrevviated fields just for clarity and example purposes
defmodule Lexicon.App.Bsky.Feed.Post do
 @moduledoc "Record containing a Bluesky post."

 use Ecto.Schema
 import Ecto.Changeset

 @typedoc """
 - `text`: The primary post content. May be an empty string, if there are embeds.
 - `created_at`: Client-declared timestamp when this post was originally created.
 - `facets`: Annotations of text (mentions, URLs, hashtags, etc)
 """
 @type t :: %__MODULE__{
 text: String.t,
 created_at: DateTime.t,
 facets: list(Facet.t),
 }

 @primary_key false
 embedded_schema do
 field :text, :string
 field :created_at, :utc_datetime

 embeds_many :facets, Facet
 embeds_one :embed, Embed
 end

 def changeset(post, attrs) do
 post
 |> cast(attrs, [:text, :created_at])
 |> validate_required([:text, :created_at])
 |> validate_length(:text, max: 300)
 end
end

 Error Handling

A unified error system categorizes and handles different types of failures:
defmodule ATProto.Error do
 defexception [:type, :message, :reason]

 def transient(:rate_limit), do: %__MODULE__{
 type: :transient,
 message: "Rate limited",
 reason: :rate_limit
 }

 def permanent(:auth), do: %__MODULE__{
 type: :permanent,
 message: "Authentication failed",
 reason: :auth
 }
end

 Event Processing

The system supports multiple event processing strategies through a composable architecture:
defmodule ATProto.EventSource.Polling do
 use GenServer

 def init(config) do
 schedule_poll()
 {:ok, %{interval: config.interval}}
 end

 defp schedule_poll do
 Process.send_after(self(), :poll, @interval)
 end
end

defmodule ATProto.EventSource.Firehose do
 use GenServer

 def init(config) do
 {:ok, socket} = connect_websocket(config)
 {:ok, %{socket: socket}}
 end
end
Bots can use any event source through a unified interface:
defmodule MyBot do
 use ATProto.Bot,
 name: :my_bot,
 source: :firehose # or :polling

 def handle_event(:like, payload) do
 # Handle like event
 end
end

 Supervision and Monitoring

Each bot runs under its own supervisor tree:
defmodule ATProto.Bot.Supervisor do
 use Supervisor

 def init({bot_module, init_args}) do
 children = [
 {bot_module, init_args},
 {ATProto.EventSource.Polling, init_args}
]

 Supervisor.init(children, strategy: :one_for_all)
 end
end
Telemetry integration provides observability:
:telemetry.span(
 [:proto_rune, :polling],
 %{bot: state.bot_name},
 fn ->
 result = fetch_notifications(state)
 {result, %{duration: System.monotonic_time() - start_time}}
 end
)

 Public API and Builder Patterns

 Rich Content Construction

One of the most common tasks when working with AT Protocol is constructing rich text content with mentions, links, and formatting. We provide two complementary approaches: a pipeline-based builder pattern and a custom sigil.
The builder pattern leverages Elixir's pipe operator for readable, chainable operations:
defmodule ATProto.RichText do
 @moduledoc """
 Provides a fluent API for constructing rich text content.

 The builder pattern maintains immutability while allowing
 natural composition of text elements.
 """

 defstruct text: "", facets: []

 def new(initial_text \\ "") do
 %__MODULE__{text: initial_text}
 end

 def text(builder, content) do
 %{builder | text: builder.text <> content}
 end

 def mention(builder, handle) do
 # Calculate byte indices for the mention
 start = String.length(builder.text)
 builder = text(builder, "@#{handle}")

 facet = %{
 index: %{
 byteStart: start,
 byteEnd: start + byte_size(handle) + 1
 },
 features: [%{$type: "app.bsky.richtext.facet#mention", did: handle}]
 }

 %{builder | facets: [facet | builder.facets]}
 end

 # Similar implementations for links, hashtags, etc.
end
This can be used like:
Building rich text through method chaining
post = ATProto.RichText.new()
 |> ATProto.RichText.text("Hello ")
 |> ATProto.RichText.mention("alice.bsky.social")
 |> ATProto.RichText.text("! Check out ")
 |> ATProto.RichText.link("our project", "https://example.com")
 |> ATProto.RichText.hashtag("elixir")
For more extensive and complex use cases, we provide a custom sigil that offers a more concise syntax:
defmodule ATProto.Sigils do
 @doc """
 Provides a markdown-like syntax for rich text construction.

 Supports:
 - @mentions
 - #hashtags
 - [links](url)
 """
 def sigil_f(text, _opts) do
 # Parse the text and construct rich text with proper facets
 ATProto.RichText.Parser.parse(text)
 end
end

Using the sigil
import ATProto.Sigils

parses the rich text on compile time ^-^
post = ~f"""
Hello @alice.bsky.social!
Check out [our project](https://example.com) #elixir
"""

 Post Creation and Interaction

The public API provides high-level functions for common operations while maintaining access to lower-level primitives:
defmodule ATProto.Bluesky do
 @moduledoc """
 High-level API for Bluesky-specific operations.

 This module provides ergonomic functions for common tasks while
 internally managing the complexities of AT Protocol interactions.
 """

 @type post_opts :: [
 reply_to: String.t(),
 langs: [String.t()],
 labels: [String.t()],
 # Other options...
]

 @doc """
 Creates a new post with rich text content.

 ## Examples

 # Simple text post
 ATProto.Bluesky.post(session, "Hello world!")

 # Rich text with builder pattern
 post_content = ATProto.RichText.new()
 |> ATProto.RichText.text("Hello ")
 |> ATProto.RichText.mention("alice.bsky.social")

 ATProto.Bluesky.post(session, post_content)

 # Reply to another post
 ATProto.Bluesky.post(session, "Great point!",
 reply_to: "at://did:plc:1234/app.bsky.feed.post/123")
 """
 @spec post(Session.t(), String.t() | RichText.t(), post_opts()) ::
 {:ok, Post.t()} | {:error, Error.t()}
 def post(session, content, opts \\ []) do
 # Convert content to proper format
 # Handle reply threading if reply_to is present
 # Create post record
 # Upload any embedded media
 # Publish through XRPC
 end

 @doc """
 Retrieves a thread of posts, handling pagination and
 parent/child relationships.
 """
 @spec get_thread(Session.t(), String.t(), keyword()) ::
 {:ok, Thread.t()} | {:error, Error.t()}
 def get_thread(session, uri, opts \\ []) do
 # Fetch thread with proper depth
 # Organize posts into thread structure
 # Handle deleted/moderated content
 end
end

 Repository Operations

For developers needing lower-level access, we expose the core repository operations while maintaining safety and proper error handling:
defmodule ATProto.Repo do
 @moduledoc """
 Provides direct access to AT Protocol repository operations.

 These functions implement the foundational CRUD operations
 defined by AT Protocol, with proper handling of CIDs, commits,
 and Merkle tree validation.
 """

 @doc """
 Creates a record in a repository with proper validation
 and Merkle tree updates.
 """
 @spec create_record(Session.t(), String.t(), term(), keyword()) ::
 {:ok, Record.t()} | {:error, Error.t()}
 def create_record(session, collection, record, opts \\ []) do
 with {:ok, validated} <- validate_record(collection, record),
 {:ok, cid} <- compute_cid(validated),
 {:ok, _} <- update_merkle_tree(session, cid, validated) do
 # Commit changes
 end
 end

 @doc """
 Efficiently computes differences between two repository
 states using Merkle Search Trees.
 """
 @spec diff(repo_a :: String.t(), repo_b :: String.t()) ::
 {:ok, [Record.t()]} | {:error, Error.t()}
 def diff(repo_a, repo_b) do
 # Use MST to identify different blocks
 # Fetch only necessary records
 # Return structured diff
 end
end

 Understanding Merkle Search Trees

The Merkle Search Tree implementation deserves special attention as it's fundamental to efficient repository synchronization. Here's a detailed look at its implementation:
defmodule ATProto.MST do
 @moduledoc """
 Implements Merkle Search Trees for efficient repository
 comparison and synchronization.

 MSTs combine the properties of:
 - B-trees for efficient range queries
 - Merkle trees for content verification
 - Search trees for ordered key spaces
 """

 # Implementation details...

 @doc """
 Determines which blocks need to be synchronized between
 two MSTs by comparing their structure.

 This is more efficient than comparing entire repositories
 as it only needs to traverse branches that differ.
 """
 def sync_blocks(local_root, remote_root) do
 # Compare root hashes
 # Traverse only differing branches
 # Return minimal set of blocks needed
 end
end

 Why These Design Choices?

	Builder Pattern: We chose a builder pattern for rich text because it:
	Maintains immutability while being composable
	Provides clear, chainable operations
	Makes complex content construction readable
	Allows for extension with new content types

	Custom Sigil: The ~f sigil complements the builder pattern by:
	Offering a concise syntax for simple cases
	Supporting familiar markdown-like formatting
	Making code more readable for text-heavy content

	Layered API: The API is structured in layers because:
	High-level functions handle common use cases simply
	Lower-level access enables advanced usage
	Domain separation maintains clear boundaries
	Each layer can evolve independently

 Implementation Phases

	Core Protocol Layer (ATProto)
	XRPC client implementation
	Repository operations
	Identity resolution
	Basic synchronization

	Code Generation
	Lexicon parsing and IR
	Ecto schema generation
	Type specification generation
	Documentation generation

	Event Processing
	Polling implementation
	Firehose implementation
	Bot supervision
	Error handling

	Application Layer
	Bluesky integration
	Jetstream support
	Ozone integration

 Future Considerations

	Advanced event filtering and transformation
	Custom Lexicon support
	Integration with other AT Protocol applications (white-wind, ozone, teal, ...)

 Security Considerations

	Rate limiting and backoff strategies
	Secure credential management
	Input validation and sanitization
	Network timeout handling
	Resource usage monitoring

The implementation must follow AT Protocol security guidelines and implement proper error handling for all network operations.

 Conclusion

This architecture provides a solid foundation for building AT Protocol applications in Elixir while maintaining extensibility for future protocol developments. The domain-driven organization will help developers build reliable applications while leveraging BEAM's strengths.
The proposed implementation balances developer ergonomics with protocol compliance, providing both high-level abstractions for common use cases and low-level access for advanced scenarios.

ProtoRune.Bot behaviour

The ProtoRune.Bot module provides the foundational behavior and macros for building bots
in the ProtoRune ecosystem. It defines the basic structure for bots and ensures that every bot
adheres to a consistent interface, with customizable event handling, identifier, and password
retrieval.
The bot system integrates with the ProtoRune.Bot.Server to manage bot lifecycles, handle
events, and manage sessions. Bots can use different strategies for receiving notifications,
such as polling or firehose (currently under development).

 Usage

To create a bot using ProtoRune.Bot, you need to define your bot module with the required
callbacks: get_identifier/0, get_password/0, and handle_event/2.
Here is an example bot implementation:
defmodule Walle do
 use ProtoRune.Bot,
 name: __MODULE__,
 strategy: :polling

 require Logger

 @impl true
 def get_identifier, do: System.get_env("IDENTIFIER")

 @impl true
 def get_password, do: System.get_env("PASSWORD")

 @impl true
 def handle_event(event, payload) do
 Logger.info("Event: #{event} with URI: #{inspect(payload[:uri])}")
 end
end
In this example, Walle is a bot that uses the polling strategy to fetch notifications.
It retrieves its identifier and password from environment variables and logs any events it receives.

 Polling Strategy Events

When using the polling strategy, the bot can receive various types of events triggered by
notifications from the Bluesky or ATProto services. Each event type corresponds to a specific
user action, and a payload containing relevant data is provided. Below is a list of possible
events and their associated payloads:

 Event Types and Payloads

	:reply
	Triggered when someone replies to a post involving the bot.
	Payload:	:uri - The URI of the post that was replied to.
	:user - The user who made the reply.
	:content - The content of the reply post.

Example payload:
%{uri: "at://did:plc:1234", user: "user123", content: "Thanks for your post!"}

	:quote
	Triggered when someone quotes the bot's post.
	Payload:	:uri - The URI of the quoted post.
	:user - The user who quoted the post.
	:content - The content of the quote.

Example payload:
%{uri: "at://did:plc:1234", user: "user456", content: "Great article!"}

	:mention
	Triggered when the bot is mentioned in a post.
	Payload:	:uri - The URI of the post mentioning the bot.
	:user - The user who mentioned the bot.
	:content - The content of the post where the bot was mentioned.

Example payload:
%{uri: "at://did:plc:5678", user: "user789", content: "Check out @bot's post!"}

	:like
	Triggered when someone likes a post by the bot.
	Payload:	:uri - The URI of the liked post.
	:user - The user who liked the post.
	:subject - The subject of the post that was liked (full post data).

Example payload:
%{uri: "at://did:plc:1234", user: "user123", subject: %{content: "Nice post!"}}

	:repost
	Triggered when someone reposts content from the bot.
	Payload:	:uri - The URI of the reposted content.
	:user - The user who reposted the content.
	:post - The post that was reposted (full post data).

Example payload:
%{uri: "at://did:plc:5678", user: "user987", post: %{content: "Check this out!"}}

	:follow
	Triggered when someone follows the bot.
	Payload:	:uri - The URI of the follow event.
	:user - The user who followed the bot.

Example payload:
%{uri: "at://did:plc:9876", user: "user123"}

	:error
	Triggered when there is an error while processing an event (e.g., failed to fetch a post).
	Payload:	:reason - An atom describing the error.

Example payload:
%{reason: {:rate_limited, retry_adter :: integer}}

 Callbacks

The following callbacks can be implemented by any bot module that uses ProtoRune.Bot:
	get_identifier/0: Retrieves the bot's identifier (e.g., username or email). This is used
for logging into the service.

	get_password/0: Retrieves the bot's password. This is used alongside the identifier
to authenticate the bot.

	handle_event/2: Handles events that are dispatched to the bot. These events can include
mentions, replies, likes, and other interactions that the bot should process.

The handle_event/2 function receives:
	event: An atom that represents the type of event (e.g., :mention, :like, :reply).
	payload: A map containing the data related to the event, such as the URI of the post or the user who triggered the event.

 Optional Callbacks

These callbacks are optional and can be overridden by the bot module:
	get_identifier/0: If not implemented, a default error will be raised indicating the callback must be defined.
	get_password/0: Similar to get_identifier/0, this must be implemented by the bot if needed for authentication.

 Bot Lifecycle

The bot is started using start_link/0, which initializes the bot server with the provided options.
The server handles the bot's session and dispatches messages or events to the bot's defined handlers.
For instance, starting the bot would look like this:
Walle.start_link()

 Customizing the Bot

	Authentication: Bots must implement get_identifier/0 and get_password/0 to provide authentication details.
	Event Handling: The handle_event/2 function allows bots to react to different types of events such as mentions, replies, and likes.

 Example Workflow

When the bot receives a notification (for example, a new mention), the following happens:
	The bot's handle_event/2 callback is called with the event type and payload.
	The bot processes the event and can take actions such as replying, liking a post, or logging information.

 Notes

	The current implementation supports the polling strategy for fetching notifications. Firehose-based notifications are not yet implemented.
	Bots should be designed to handle events and messages in a non-blocking manner for efficient performance.

 Summary

 Callbacks

 ProtoRune.Bot.Poller - proto_rune v0.1.2

ProtoRune.Bot.Poller

A GenServer module that handles periodic polling of notifications for a bot, and dispatches
these notifications to the appropriate handler functions within the bot.
The Poller connects to the ATProto or Bluesky notification systems and periodically polls
for new notifications, processes them, and dispatches them as events to the bot server. It
handles various types of notifications including replies, mentions, likes, reposts, and follows.

 Features

	Periodic polling of notifications based on a customizable interval.
	Supports exponential backoff in case of rate limiting or errors.
	Handles session refresh when required.
	Dispatches notifications like replies, mentions, quotes, likes, reposts, and follows to the bot.
	Extensible to handle other types of notifications and custom behavior.

 Options

	:name (required) - The name of the GenServer instance.
	:interval (required) - The polling interval in seconds for checking new notifications.
	:process_from - Start polling from a specific date/time.
	:last_seen - The last seen date of notifications.
	:cursor - The cursor to fetch subsequent notifications from the API.
	:attempt - Number of polling attempts, used for backoff.
	:server_pid (required) - The server process that handles events from the poller.
	:session (required) - The session information used to authenticate API requests.

 Functions

	start_link/1: Starts the Poller process with the given options.
	poll_notifications/1: Fetches the latest notifications from the service and handles them.
	handle_notifications/2: Dispatches each notification to the appropriate event handler in the bot server.
	handle_rate_limited/2: Handles the rate-limiting case by applying exponential backoff before the next poll.
	handle_error/2: Sends error events to the bot server.
	dispatch_notification/2: Dispatches different types of notifications (e.g., replies, quotes, mentions, likes, reposts, follows) to the bot server.

 Example

You can start the poller like this:
ProtoRune.Bot.Poller.start_link([
 name: :my_bot_poller,
 interval: 30,
 session: my_session,
 server_pid: self()
])
The poller will then periodically fetch notifications and dispatch them to the bot server based on the event type.

 Backoff Strategy

The poller implements an exponential backoff strategy when rate-limited or in case of errors.
The backoff starts with the defined interval and increases exponentially with each failed attempt,
up to a maximum of 5 minutes.

 Internal State

The State struct is used to keep track of:
	name: The name of the poller process.
	interval: The polling interval in seconds.
	last_seen: The last notification timestamp.
	cursor: API cursor for fetching new notifications.
	attempt: The number of failed attempts.
	session: The current session for API requests.
	server_pid: The PID of the server handling the notifications.

 Summary

 Types

 ProtoRune.Bot.Server - proto_rune v0.1.2

ProtoRune.Bot.Server

The ProtoRune.Bot.Server module is responsible for managing bot processes in ProtoRune.
It handles bot initialization, session management, and event/message dispatching. This
module also integrates with the polling system to retrieve real-time notifications from
ATProto and Bluesky services.
The bot server can operate in two modes:
	Polling: Periodically fetches notifications using the ProtoRune.Bot.Poller module.
	Firehose: (Not yet implemented) Stream real-time events using a websocket-like connection.

 Features

	Bot Lifecycle Management: The server manages the entire bot lifecycle, from login
and session refresh to handling messages and events.
	Polling Strategy: Supports polling for notifications at regular intervals via the
ProtoRune.Bot.Poller.
	Session Management: Automatically handles session creation, refresh, and expiration.
	Event and Message Handling: Provides a unified interface for handling events and messages
via handle_message/1 and handle_event/2.

 Options

	:name (required) - The name of the bot process.
	:lang - A list of languages the bot supports (default: ["en"]).
	:service - The service endpoint the bot will connect to (default: "https://bsky.social").
	:identifier - The bot's login identifier (e.g., email or username).
	:password - The bot's password for login.
	:polling - Polling configuration (e.g., interval and process_from).
	:firehose - Firehose configuration (not implemented yet).
	:strategy - The bot's strategy for receiving notifications (:polling or :firehose).

 Polling Configuration

Polling can be configured with the following options:
	:interval - How often (in seconds) the bot should poll for notifications (default: 5 seconds).
	:process_from - Start processing notifications from a specific timestamp (default: current time).

Example:
ProtoRune.Bot.Server.start_link(
 name: :my_bot,
 strategy: :polling,
 service: "https://bsky.social",
 polling: %{interval: 10}
)

 Firehose Configuration (Not Implemented)

While not yet available, the firehose strategy will enable real-time notifications using a
websocket connection. Firehose configuration includes:
	:relay_uri - The WebSocket URI for the relay server.
	:auto_reconnect - Automatically reconnect if the connection drops (default: true).
	:cursor - The starting cursor for reading the stream.

 Functions

	start_link/1: Starts the bot process with the given configuration options.
	handle_message/2: Handles incoming messages for the bot.
	handle_event/3: Handles events dispatched to the bot.
	format_status/1: Formats the bot's internal state for debugging.

 Session Management

The bot manages its session by authenticating with the ATProto server upon startup.
It also refreshes the session token periodically. If the session expires or cannot be
refreshed, the bot will stop.

 Example

ProtoRune.Bot.Server.start_link([
 name: :my_bot,
 strategy: :polling,
 service: "https://bsky.social",
 identifier: "my-bot-id",
 password: "super-secret-password"
])
This will start a bot that uses the polling strategy to retrieve notifications from the
Bsky service every 5 seconds.
The bot can handle messages and events like this:
ProtoRune.Bot.Server.handle_message(:my_bot, "hello")
ProtoRune.Bot.Server.handle_event(:my_bot, :user_joined, %{user: "user123"})

 Internal State

The server maintains a state that includes:
	name: The bot's name.
	service: The endpoint to connect to.
	session: The session data for making authenticated requests.
	poller: The PID of the polling process (if using the polling strategy).
	langs: The languages the bot supports.

 Error Handling

	The bot gracefully handles errors such as rate limits and API failures by retrying or
stopping the process when necessary.
	Errors are dispatched as events to the bot, allowing custom error handling.

 Summary

 Types

 ProtoRune.Lexicon - proto_rune v0.1.2

ProtoRune.Lexicon

Type definitions for the Intermediate Representation (IR) of AT Protocol Lexicons.
This structure serves as a bridge between raw lexicon JSON and generated Elixir code.

 Summary

 Types

 ProtoRune.Lexicon.Parser - proto_rune v0.1.2

ProtoRune.Lexicon.Parser

Parses AT Protocol Lexicon files and converts them into Elixir code structures.
This module is responsible for:
	Parsing Lexicon JSON files
	Validating lexicon structure and types
	Converting AT Protocol types to Elixir types
	Creating an intermediate representation for code generation

 Summary

 Functions

 ProtoRune.XRPC.Case - proto_rune v0.1.2

ProtoRune.XRPC.Case

Yeah, in house string casing

 Summary

 Functions

 ProtoRune.XRPC.Client - proto_rune v0.1.2

ProtoRune.XRPC.Client

The XRPC.Client module handles executing queries and procedures in the XRPC system. It interacts with external services through HTTP requests and performs response validation and schema parsing. The client supports both GET and POST requests, depending on whether the request is a query or a procedure.

 Overview

This module allows:
	Executing Queries: Executes GET requests for queries.
	Executing Procedures: Executes POST requests for procedures with a body.
	Error Handling: Maps various HTTP response codes to custom error messages.

 Functions

 execute/1

Executes an XRPC query or procedure.
	For queries, it performs a GET request and validates the query parameters.
	For procedures, it performs a POST request and validates the request body.

 Summary

 Functions

 ProtoRune.XRPC.DSL - proto_rune v0.1.2

ProtoRune.XRPC.DSL

The XRPC.DSL module provides macros to define queries and procedures for interacting with the XRPC system, simplifying the creation of API methods for querying or performing procedures. It supports building custom XRPC queries and procedures by encoding method names and dynamically generating functions based on user-defined parameters.

 Overview

The primary purpose of this module is to offer a simple DSL for defining queries and procedures in Elixir projects using XRPC. It automates the generation of functions that initiate XRPC requests, reducing boilerplate code for developers.

 Key Features:

	Query Definition: Use the defquery/1 macro to define an XRPC query method.
	Procedure Definition: Use the defprocedure/2 macro to define an XRPC procedure method.
	Parameter Handling: The param/2 macro allows specifying parameters and their types for queries and procedures.
	Automatic Method Name Encoding: Converts method names to function names by snakelizing the last segment of the method.

 Macros

 defquery/1

Defines a query function based on the given method name.
defquery("app.bsky.actor.getProfile")
This creates a function that returns a new query for the app.bsky.actor.getProfile method.

 defquery/2

Defines a query with parameters.
defquery("app.bsky.feed.getFeed", do: block)
Within the block, you can specify parameters using the param/2 macro. The generated function will include these parameters in the query.

 defprocedure/2

Defines a procedure with parameters.
defprocedure("app.bsky.actor.mute", do: block)
Similar to defquery/2, you can specify parameters in the block using the param/2 macro. This will generate a function that returns a new procedure with the given method and parameters.

 param/2

Defines a parameter for queries or procedures.
param(:actor_id, :string)
This specifies a parameter with a key of actor_id and a type of :string, which will be included in the final query or procedure.

 Usage Example

defmodule MyApp.Bsky do
 import XRPC.DSL

 defquery "app.bsky.actor.getProfile"

 defprocedure "app.bsky.actor.mute" do
 param :actor_id, :string
 end
end
In this example:
	get_profile/0 is generated as a function that creates a query for app.bsky.actor.getProfile.
	mute/0 is generated as a function that creates a procedure for app.bsky.actor.mute with the parameter :actor_id of type :string.

 Summary

 Types

 ProtoRune.XRPC.Procedure - proto_rune v0.1.2

ProtoRune.XRPC.Procedure

The XRPC.Procedure module represents a procedure in the XRPC system, encapsulating the method name, request body, and a parser for validating the body. It provides functions to create and manipulate procedure structures.

 Overview

This module allows for:
	Creating Procedures: Use the new/2 function to create a new procedure with a method and a parser.
	Adding a Body: Use the put_body/2 function to attach a validated body to the procedure.
	String Representation: The procedure can be converted to a string that represents its full URL.

 Functions

 new/2

Creates a new procedure with a given method and parser.
XRPC.Procedure.new("app.bsky.actor.mute", from: MyParser)

 put_body/2

Attaches a validated body to the procedure.
{:ok, updated_proc} = XRPC.Procedure.put_body(proc, %{"actor_id" => "123"})
Validates the body using the specified parser and updates the procedure via peri.

 Summary

 Functions

 ProtoRune.XRPC.Query - proto_rune v0.1.2

ProtoRune.XRPC.Query

The XRPC.Query module is responsible for defining and managing queries in the XRPC system. It encapsulates the method, parameters, headers, and an optional parser, providing functions to create and manipulate query structures.

 Overview

This module allows for:
	Creating Queries: Use new/1 or new/2 to create a query with an optional parser.
	Adding Parameters and Headers: Use put_param/3 and put_header/3 to add query parameters and headers.
	String Representation: Converts a query to a string URL, including parameters if present.

 Functions

 new/1

Creates a new query with the given method.
XRPC.Query.new("app.bsky.actor.getProfile")

 new/2

Creates a new query with a method and a parser for validation.
XRPC.Query.new("app.bsky.feed.getFeed", from: MyParser)

 put_param/3

Adds or updates a query parameter.
query = XRPC.Query.put_param(query, :actor_id, "123")

 put_header/3

Adds or updates a request header.
query = XRPC.Query.put_header(query, "Authorization", "Bearer token")

 Summary

 Functions

 ProtoRune.XRPC.Schema - proto_rune v0.1.2

ProtoRune.XRPC.Schema protocol

 Summary

 Types

 mix gen_schemas - proto_rune v0.1.2

mix gen_schemas

Generates Elixir code from Lexicon schema files.

 Overview

	Complex types (object, record) become their own modules with a struct and @type t.
	Primitive or “inline” types become @types within a single ProtoRune.Types module.
	Queries/Procedures also generate minimal modules, mainly containing @type input and @type output.

By default, code is written into lib/proto_rune, but you can configure via --output-dir.

 mix gen_schemas.generator - proto_rune v0.1.2

mix gen_schemas.generator

Handles generation of Elixir code