

 Protox

 v2.0.4

 Table of contents

 	Changelog

 	How to contribute to protox

 	Protox

 	Protox Benchmark

 	Generated code reference

 	Types mapping

 	Migration guide (v1 to v2)

 	
 Modules

 	Protox

 	Protox.Default

 	Protox.Field

 	Protox.Kind

 	Protox.MergeMessage

 	Protox.MessageSchema

 	Protox.OneOf

 	Protox.Scalar

 	Protox.Types

 	Exceptions

 	Protox.DecodingError

 	Protox.EncodingError

 	Protox.IllegalTagError

 	Protox.InvalidFieldAttributeError

 	Protox.RequiredFieldsError

 	
 Mix Tasks

 	mix protox.generate

Changelog

All notable changes to this project will be documented in this file.
The format is based on Keep a Changelog,
and this project adheres to Semantic Versioning.

 2.0.4

 Changed

	Remove useless fields from file options.

 Fixed

	Correct type description in types_mapping.md

 2.0.3

 Fixed

	Handle nested extensions

 2.0.2

 Fixed

	Handle FileOptions containing messages

 2.0.1

 Fixed

	Correct declaration of benchee dependency which is required at runtime

 2.0.0

 Added

	schema/0 to access the underlying definition of a message.

 Changed

	Minimal supported Elixir version is now 1.15.
	BREAKING CHANGE: encoding functions now return the size alongside iodata.
Previously, one had to use :binary.list_to_bin/1 to flatten the iodata and then use byte_size, defeating the purpose of having an iodata. Furthermore, it provides a significant performance boost.
	BREAKING CHANGE: Protox.decode! and Protox.decode no longer raise or return an error if a message don't have all required fields set. We should let the user decide whether it's a problem.
	BREAKING CHANGE: Rename InvalidFieldAttribute to InvalidFieldAttributeError for consistency.

 Removed

	BREAKING CHANGE: Drop support of JSON encoding and decoding.
The implementation was half-baked, it's preferable to have the library focused. Even Google doesn't recommend using JSON: "In short, there are many good reasons why Google prefers to use the standard wire format for virtually everything rather than ProtoJSON format".
	BREAKING CHANGE: Remove :path option in favor of the already existing :paths option, which covers the same functionality.
	BREAKING CHANGE: Remove :keep_unknown_fields option (the corresponding --keep-unknown-fields option for the mix task protox.generate is also removed). They are now always kept.
It added complexity to the generation logic while not providing any value as one can simply ignore those fields and as it's mandatory to parse them correctly.
	BREAKING CHANGE: Remove generated defs/0 (functionality remains available through schema/0).
	BREAKING CHANGE: Remove generated field_def/1 (functionality remains available through schema/0).
	BREAKING CHANGE: Remove generated file_options/0 (functionality remains available through schema/0).
	BREAKING CHANGE: Remove generated required_fields/0 (functionality remains available through schema/0).
	BREAKING CHANGE: Remove generated syntax/0 (functionality remains available through schema/0).
	BREAKING CHANGE: Remove generated encode/1 from strings for enums.
	BREAKING CHANGE: Remove Protox.Encode.encode/1 and Protox.Encode.encode!/1 (functionality remains available in generated modules and in Protox).

 1.7.8

 Fixed

	Fix warnings of unknown JSON modules when a JSON library is not installed

 1.7.7

 Fixed

	Fix launch by removing :propcheck from extra applications

 1.7.6

 Fixed

	Fix typespecs for JSON decoding (thanks to https://github.com/squirmy)

 1.7.5

 Changed

	Use origin repository for propchek rather than a fork

 1.7.4

 Fixed

	Fix handling of enum in snake case

 1.7.3

 Added

	Raise DecodingError and EncodingError for invalid strings (thanks to https://github.com/g-andrade)

 1.7.2

 Fixed

	Fix typespec of enum encode function (thanks to https://github.com/wingyplus)

 1.7.1

 Fixed

	Fix decoding and encoding of proto3 optional fields

 1.7.0

 Added

	Support FileOptions (which can be access with Msg.file_options/0)

 1.6.10

 Changed

	Format of generated files

 1.6.9

 Fixed

	Fix deprecation warnings in Elixir >= 1.14 about Bitwise (thanks to https://github.com/moogle19)

 1.6.8

 Added

	Raise clearer error message if protoc is missing (thanks to https://github.com/josevalim)

 1.6.7

 Changed

	New release to publish docs using the improved ex_doc 0.27

 1.6.6

 Fixed

	Fix JSON conformance tests related to fractional part in Timestamp

 Added

	Option to not generate deprecated functions defs/0 and defs_by_name/0

 1.6.5

 Changed

	Elixir 1.9 is now the minimal supported version
	Relax constraint on Decimal version (thanks to https://github.com/ananthakumaran)

 1.6.4

 Changed

	Renamed module Protox.Message into Protox.MergeMessage to reflect its real role

 Fixed

	Fix inconsistent behavior when encoding to JSON an enum with an unknown atom field (WARNING: Requires to regenerate code from .proto definitions)

 1.6.3

 Fixed

	Fix typespec of message's json_decode! function

 1.6.2

 Fixed

	Fix possible double compilation of Empty well-known type
	Fix dependency on protoc for generated code

 1.6.1

 Fixed

	Fix compilation when protoc does not include well-known types

 1.6.0

 Added

	Add support of JSON protobuf encoding and decoding (https://developers.google.com/protocol-buffers/docs/proto3##json), with support of well-known types (except for Any)

 Changed

	More accurate error reporting
	Internal refactoring to hopefully make things more explicit (based on a work initiated by https://github.com/sneako)

 Fixed

	Fix decoding of fixed32 and fixed64 values (detected using JSON conformance tests)

 Deprecated

	Protox.Encode.encode/1 and Protox.Encode.encode!/1; use Protox.encode/1 and Protox.encode!/1 instead
	 Generated functionsdefs/0 and defs_by_name/0

 1.5.1

 Fixed

 Fix handling of multiple import paths (thanks to https://github.com/zolakeith)

 1.5.0

 Added

	Allow multiple import paths (thanks to https://github.com/cheng81)

 1.4.0

 Added

	Add support of proto3 optional fields (thanks to https://github.com/sneako)

 1.3.2

 Changed

	Bump version to build doc using ex_doc 0.24

 1.3.1

 Fixed

	Fix table of types mapping in documentation

 1.3.0

 Added

	Allow namespaces through protox.generate (thanks to https://github.com/sdrew)

 Changed

	Expand output path when generating files
	More thorough testing of code generation

 1.2.4

 Changed

	Format generated code

 Fixed

	Fix warning when compiling generated code (thanks to https://github.com/xinz)
	Fix warning about unused variable in generated code when encoding an empty protobuf message

 1.2.3

 Changed

	Update documentation to better explain the package directive usage

 1.2.2

 Added

	Enable listing of task protox.generate via mix help.

 1.2.1

 Added

	--keep-unknown-fields option to configure support of unknown fields when generating files

 1.2.0

 Added

	Add :keep_unknown_fields option to configure support of unknown fields

 1.1.1

 Fixed

	Fix documentation links

 1.1.0

 Added

	It's now possible to generate one file per protobuf message to speed up compilation (thanks to https://github.com/qgau)

 1.0.0

 Changed

	Use Protox exceptions as errors codes

 0.25.0

 Added

	Add mix task to generate files

 Changed

	Bump to Elixir 1.7 as minimal supported version

 0.24.0

 Changed

	Usage of @external_resource is no longer necessary

 0.23.1

 Fixed

	Fix parse of [packed=false] option (the serialization was correct, but not in compliance with Protobuf conformance checker recommandations)

 0.23.0

 Changed

	BREAKING CHANGE: encode/1 returns a tuple, use encode!/1 to get the old behavior of encode/1
	+40% speedup & -30% memory consumption when decoding thanks to macros
	Raise RequiredFieldsError when encoding or decoding a Protobuf 2 message with unset required fields (that is, that have the value nil)
	Raise IllegalTagError when decoding a message with a tag set to 0

 Fixed

	Fix missing encoding of unknown fields when a message hadn't any field

 0.22.0

 Changed

	Constant time encoding of oneof fields

 0.21.0

 Changed

	Move back to ahamez/protox
	Bump to Elixir 1.6 as minimal supported version

 Added

	Add benchmarks
	Add conformance tests to CI
	Add dialyzer to CI

 0.20.0

 Fixed

	Pass all tests of protobuf 3.12 conformance suite tests
	Always serialize required fields (proto2)

 Added

	defs_by_name/0 in generated modules for messages
	syntax/0 in generated modules for messages
	Protox.MergeMessage.merge/2 to merge two messages of the same type

 Changed

	BREAKING CHANGE: (proto2) use nil for unset fields
	BREAKING CHANGE: rename generated get_required_fields/0 into required_fields/0
	BREAKING CHANGE: rename generated get_unknown_fields/0 into unknown_fields/0
	BREAKING CHANGE: rename generated get_unknown_fields_name/0 into unknown_fields_name/0

 0.19.1

 Fixed

	Fix warning about duplicate keys (thanks to https://github.com/ananthakumaran)

 0.19.0

 Changed

	CamelCase for all generated modules (fixes https://github.com/ahamez/protox/issues/3)

 0.18.0

 Added

	Allow ability to construct file names at compile time (thanks to https://github.com/ananthakumaran)

 0.17.0

 Added

	:path option to specify import path (thanks to https://github.com/mathsaey)

 0.16.2

 Fixed

	Fix generation of typespecs for when there are more than one required field

 0.16.1

 Changed

	Change base name for unknown fields from __unknown_fields__ to __uf__

 0.16.0

 Fixed

	Fix handling of +/-infinity and NaN when encoding/decoding floats

Changed
	Move RandomInit to tests

 0.15.2

 Fixed

	Fix typespecs for enum constants accessors

 0.15.1

 Fixed

	Fix typespecs for unknown and required fields accessors

 0.15.0

Changed
	Use 0.0 as default value for floats and doubles

 0.14.0

 Changed

	Development now takes place at https://github.com/EasyMile/protox
	Move conformance test escript to https://github.com/EasyMile/protox-conformance

 Removed

	Benchmarks escripts

 0.13.0

 Added

	Typespecs for generated encoder
	Bring varint library into protox

 Fixed

	Fix decoding of booleans encoded with a varint which is not 0 or 1

 0.12.1

 Fixed

	Fix handling of unset members in map entries

 0.12.0

Changed
	~2x speed improvement when encoding

 0.11.1

 Added

	It's now possible to clear unknown fields

 0.11.0

 Added

	Encode unknown fields

 0.10.0

 Changed

	Update deps (dialyxir, excoveralls, hackney)

 0.9.0

 Added

	Keep unknown fields when decoding

 0.8.0

 Changed

	Raise an error when decoding and when required fields are missing

 0.7.1

 Fixed

	Fix encoding of varint to match C++ version
	Fix encoding of enums to match C++ version

 0.7.0

 Added

	Read definitions from files or binaries
	Parse definitions with protoc
	Generate Elixir structs from parsed definition
	Can prepend namespaces
	Encode/decode protobuf messages

How to contribute to protox

First, thank you for your interest in contributing to protox!
To ensure a smooth experience while contributing, here are a few handy guidelines.

 Development Prerequisites

	Erlang/OTP 26 or later
	Elixir 1.15 or later
	(optional) lefthook for git hooks

 Development Guidelines

We use a few tools to keep the code clean and consistent:
	mix deps.unlock --check-unused to check for unused dependencies
	mix format --check-formatted to check for code formatting issues
	mix credo for code style and consistency checks
	mix dialyzer for type checking
	mix muzak for mutation testing
	mix test --include conformance for testing

[!NOTE]
These tasks are always run in the CI pipeline.

[!NOTE]
lefthook can be used to run these tasks automatically on each commit or push (except for the muzak task which takes a long time to run).

[!NOTE]
mix test --include conformance automatically downloads and compiles the conformance test suite and runs it against the current version of protox.

 Testing

Correctness is the main goal of Protox, here's how you can contribute to it:
	add tests for any new features;
	when fixing a bug, add tests that reproduce the bug;
	ensure all tests pass with mix test --include conformance;
	try to maintain or improve test coverage (check with mix test --cover).

 Documentation

Documentation is as important as correctness, here's a quick reminder of the things to keep in mind:
	document public functions;
	update module documentation if needed;
	if possible, include examples as doctests;
	update the main README.md if needed.

 License

By contributing to Protox, you agree that your contributions will be licensed under MIT License.

 Getting Help

If you have questions or need help, you can:
	Send me a direct message on Elixir Forum.
	Send me an email at alexandre.hamez at gmail.com.
	Open an issue.
	Start a discussion at https://github.com/ahamez/protox/discussions.

Protox

[image: Elixir CI] [image: Coverage Status] [image: Hex.pm Version] [image: Hex Docs] [image: License]
Protox is an Elixir library for working with Google's Protocol Buffers, versions 2 and 3, supporting binary encoding and decoding.
The primary objective of Protox is reliability: it uses property testing, mutation testing and has a near 100% code coverage. Protox passes all the tests of the conformance checker provided by Google.
[!NOTE]
If you're using version 1, please see how to migrate to version 2 here.

 Example

Given the following protobuf definition:
message Msg{
 int32 a = 1;
 map<int32, string> b = 2;
}
Protox will create a regular Elixir Msg struct:
iex> msg = %Msg{a: 42, b: %{1 => "a map entry"}}
iex> {:ok, iodata, iodata_size} = Msg.encode(msg)

iex> binary = # read binary from a socket, a file, etc.
iex> {:ok, msg} = Msg.decode(binary)

 Usage

You can use Protox in two ways:
	pass the protobuf schema (as an inlined schema or as a list of files) to the Protox macro;
	generate Elixir source code files with the mix task protox.generate.

 Table of contents

	Prerequisites
	Installation
	Usage with an inlined schema
	Usage with files
	Encode
	Decode
	Packages and namespaces
	Specify include path
	Files generation
	Unknown fields
	Unsupported features
	Implementation choices
	Generated code reference and types mapping
	Conformance
	Benchmark
	Contributing

 Prerequisites

	Elixir >= 1.15 and OTP >= 26
	protoc >= 3.0 This dependency is only required at compile-time. It must be available in $PATH.

 Installation

Add :protox to your list of dependencies in mix.exs:
def deps do
 [{:protox, "~> 2.0"}]
end

 Usage with an inlined schema

The following example generates two modules, Baz and Foo:
defmodule MyModule do
 use Protox, schema: """
 syntax = "proto3";

 message Baz {
 }

 message Foo {
 int32 a = 1;
 map<int32, Baz> b = 2;
 }
 """
end
[!NOTE]
The module in which the Protox macro is called is ignored and does not appear in the names of the generated modules. To include the enclosing module’s name, use the namespace option, see here.

 Usage with files

Use the :files option to pass a list of files:
defmodule MyModule do
 use Protox, files: [
 "./defs/foo.proto",
 "./defs/bar.proto",
 "./defs/baz/fiz.proto"
]
end

 Encode

Here's how to encode a message to binary protobuf:
msg = %Foo{a: 3, b: %{1 => %Baz{}}}
{:ok, iodata, iodata_size} = Protox.encode(msg)
or using the bang version
{iodata, iodata_size} = Protox.encode!(msg)
It's also possible to call encode/1 and encode!/1 directly on the generated structures:
{:ok, iodata, iodata_size} = Foo.encode(msg)
{iodata, iodata_size} = Foo.encode!(msg)
[!NOTE]
encode/1 and encode!/1 return an IO data for efficiency reasons. Such IO data can be used directly with files or sockets write operations:
iex> {iodata, _iodata_size} = Protox.encode!(%Foo{a: 3, b: %{1 => %Baz{}}})
{["\b", <<3>>, <<18, 4, 8>>, <<1>>, <<18>>, [<<0>>, []]], 8}
iex> {:ok, file} = File.open("msg.bin", [:write])
{:ok, #PID<0.1023.0>}
iex> IO.binwrite(file, iodata)
:ok
Use :binary.list_to_bin/1 or IO.iodata_to_binary if you need to get a binary from an IO data.

 Decode

Here's how to decode a message from binary protobuf:
{:ok, msg} = Protox.decode(<<8, 3, 18, 4, 8, 1, 18, 0>>, Foo)
or using the bang version
msg = Protox.decode!(<<8, 3, 18, 4, 8, 1, 18, 0>>, Foo)
It's also possible to call decode/1 and decode!/1 directly on the generated structures:
{:ok, msg} = Foo.decode(<<8, 3, 18, 4, 8, 1, 18, 0>>)
msg = Foo.decode!(<<8, 3, 18, 4, 8, 1, 18, 0>>)

 Packages and namespaces

 Packages

Protox honors the package directive:
package abc.def;
message Baz {}
The example above will be translated to Abc.Def.Baz (note the camelization of package abc.def to Abc.Def).

 Prepend namespaces

In addition, Protox provides the possibility to prepend a namespace with the :namespace option:
defmodule Bar do
 use Protox, schema: """
 syntax = "proto3";

 package abc;

 message Msg {
 int32 a = 1;
 }
 """,
 namespace: __MODULE__
end
In this example, the module Bar.Abc.Msg is generated:
msg = %Bar.Abc.Msg{a: 42}

 Specify include path

One or more include paths (directories in which to search for imports) can be specified using the :paths option:
defmodule Baz do
 use Protox,
 files: [
 "./defs1/prefix/foo.proto",
 "./defs1/prefix/bar.proto",
 "./defs2/prefix/baz/baz.proto"
],
 paths: [
 "./defs1",
 "./defs2"
]
end
[!NOTE]
It corresponds to the -I option of protoc.

 Files generation

It's possible to generate Elixir source code files with the mix task protox.generate:
protox.generate --output-path=/path/to/messages.ex protos/foo.proto protos/bar.proto

The files will be usable in any project as long as Protox is declared in the dependencies as functions from its runtime are used.
[!NOTE]
protoc is not needed to compile the generated files.

 Options

	--output-path
The path to the file to be generated or to the destination folder when generating multiple files.

	--include-path
Specifies the include path. If multiple include paths are needed, add more --include-path options.

	--multiple-files
Generates one file per Elixir module. It's useful for definitions with a lot of messages as the compilation will be parallelized.
When generating multiple files, the --output-path option must point to a directory.

	--namespace
Prepends a namespace to all generated modules.

 Unknown fields

Unknown fields are fields that are present on the wire but which do not correspond to an entry in the protobuf definition. Typically, it occurs when the sender has a newer version of the protobuf definition. It enables backwards compatibility as the receiver with an old version of the protobuf definition will still be able to decode old fields.
When unknown fields are encountered at decoding time, they are kept in the decoded message. It's possible to access them with the unknown_fields/1 function defined with the message.
iex> msg = Msg.decode!(<<8, 42, 42, 4, 121, 97, 121, 101, 136, 241, 4, 83>>)
%Msg{a: 42, b: "", z: -42, __uf__: [{5, 2, <<121, 97, 121, 101>>}]}

iex> Msg.unknown_fields(msg)
[{5, 2, <<121, 97, 121, 101>>}]
You must use unknown_fields/1 as the name of the field (e.g. __uf__ in the above example) is generated at compile-time to avoid collision with the actual fields of the Protobuf message. This function returns a list of tuples {tag, wire_type, bytes}. For more information, please see the protobuf encoding guide.
[!NOTE]
Unknown fields are retained when re-encoding the message.

 Unsupported features

	The Any well-known type is partially supported: you can manually unpack the embedded message after decoding and conversely pack it before encoding;
	Groups (deprecated in protobuf);
	All options other than packed and default are ignored as they concern other languages implementation details.

 Implementation choices

	 (Protobuf 2) Required fields Protox enforces the presence of required fields; an error is raised when encoding a message with missing required field:
 defmodule Bar do
 use Protox, schema: """
 syntax = "proto2";

 message Required {
 required int32 a = 1;
 }
 """
 end

 iex> Protox.encode!(%Required{})
 ** (Protox.RequiredFieldsError) Some required fields are not set: [:a]

	(Protobuf 2) Nested extensions Fields names coming from a nested extension are prefixed with the name of the extender:
 message Extendee {
 extensions 100 to max;
 }

 message Extension1 {
 extend Extendee {
 optional Extension1 ext1 = 102;
 }
 }

 message Extension2 {
 extend Extendee {
 optional int32 ext2 = 103;
 }
 }

 message Extension3 {
 extend Extendee {
 optional int32 identical_name = 105;
 }
 }

 message Extension4 {
 extend Extendee {
 repeated int32 identical_name = 106;
 }
 }
 In the above example, the fields of Extendee will be:
 :extension1_ext1
 :extension2_ext2
 :extension3_identical_name
 :extension4_identical_name
 This is to disambiguate cases where fields in extensions have the same name.

	Enum aliases When decoding, the last encountered constant is used. For instance, in the following example, :BAR is always used if the value 1 is read on the wire:
 enum E {
 option allow_alias = true;
 FOO = 0;
 BAZ = 1;
 BAR = 1;
 }

	(Protobuf 2) Unset optional fields are assigned nil. You can use the generated default/1 function to get the default value of a field:
 defmodule Bar do
 use Protox,
 schema: """
 syntax = "proto2";

 message Foo {
 optional int32 a = 1 [default = 42];
 }
 """
 end

 iex> %Foo{}.a
 nil

 iex> Foo.default(:a)
 {:ok, 42}

	(Protobuf 3) Unset fields are assigned to their default values. However, if you use the optional keyword (available in protoc >= 3.15), then unset fields are assigned nil:
 defmodule Bar do
 use Protox,
 schema: """
 syntax = "proto3";

 message Foo {
 int32 a = 1;
 optional int32 b = 2;
 }
 """
 end

 iex> %Foo{}.a
 0

 iex> Foo.default(:a)
 {:ok, 0}

 iex> %Foo{}.b
 nil

 iex> Foo.default(:b)
 {:error, :no_default_value}

	Messages and enums names are converted using the Macro.camelize/1 function.
Thus, in the following example, non_camel_message becomes NonCamelMessage, but the field non_camel_field is left unchanged:
 defmodule Bar do
 use Protox,
 schema: """
 syntax = "proto3";

 message non_camel_message {
 }

 message CamelMessage {
 int32 non_camel_field = 1;
 }
 """
 end

 iex> msg = %NonCamelMessage{}
 %NonCamelMessage{__uf__: []}

 iex> msg = %CamelMessage{}
 %CamelMessage{__uf__: [], non_camel_field: 0}

 Generated code reference and types mapping

	The detailed reference of the generated code is available in documentation/reference.md.
	Please see documentation/types_mapping.md to see how protobuf types are mapped to Elixir types.

 Conformance

The Protox library has been thoroughly tested using the conformance checker provided by Google.
To launch these conformance tests, use the protox.conformance mix task:
 $ mix protox.conformance
 WARNING: All log messages before absl::InitializeLog() is called are written to STDERR
 I0000 00:00:1738246114.224098 3490144 conformance_test_runner.cc:394] ./protox_conformance
 CONFORMANCE TEST BEGIN ====================================

 CONFORMANCE SUITE PASSED: 1368 successes, 1307 skipped, 0 expected failures, 0 unexpected failures.

 WARNING: All log messages before absl::InitializeLog() is called are written to STDERR
 I0000 00:00:1738246115.065491 3495574 conformance_test_runner.cc:394] ./protox_conformance
 CONFORMANCE TEST BEGIN ====================================

 CONFORMANCE SUITE PASSED: 0 successes, 414 skipped, 0 expected failures, 0 unexpected failures.
[!NOTE]
A report will be generated in the directory conformance_report.

 Benchmark

Please see benchmark/launch_benchmark.md for more information on how to launch benchmark.

 Contributing

Please see CONTRIBUTING.md for more information on how to contribute.

Protox Benchmark

All the following commands are executed from the root of the project.

 Launch the benchmark

	you can specify the task to run (encode or decode)
	you have to specify the benchmark tag, which will be used to identify the benchmark run
	benchmark results are stored in ./benchmark/output/benchee/<TASK>-<DATE>-<BENCHMARK_TAG>

mix protox.benchmark.run [--task <TASK>] <BENCHMARK_TAG>
Example:
mix protox.benchmark.run --task decode my_tag

 Aggregate the results

mix protox.benchmark.report <BENCHMARK_RESULT_PATHS>
Example:
mix protox.benchmark.report ./benchmark/output/benchee/encode-*

Generated code reference

This documentation lists the functions generated with each Elixir structure associated to a protobuf message or enum.

 Messages

 Encode

@spec encode(struct() :: {:ok, iodata()} | {:error, any()}
encode(msg)
Encode msg into an iodata suitable for files or sockets.
Returns {:ok, iodata} when the encoding was successful and {:error, description} in case of an encoding error.
@spec encode!(struct() :: iodata() | no_return()
encode!(msg)
Throwing version of encode/1.

 Decode

@spec decode(binary() :: {:ok, struct()} | {:error, any()}
decode(data)
Decode binary data into an structure with the type of the module on which this function is called.
Returns {:ok, msg} when the decoding was successful and {:error, description} in case of an decoding error.
@spec decode!(binary() :: struct() | no_return()
decode!(data)
Throwing version of decode/1.

 Default values

@spec default(atom() :: {:ok, boolean() | integer() | String.t() | binary() | float()} | {:error, atom()}
default(field_name)
Get the default value of a message field. Note that for Protobuf 3, the default value is mandated by the Google reference documentation.

 Unknown fields

@spec clear_unknown_fields(struct() :: struct()
clear_unknown_fields(msg)
Returns a copy of msg with all unknown fields removed.
@spec unknown_fields(struct() :: [{non_neg_integer(), Protox.Types.tag(), binary()}]
unknown_fields(msg)
Get the unknown fields that may have been encountered when decoding data.
See Types section to get a description of Protox.Types.tag.
@spec unknown_fields_name() :: atom()
unknown_fields_name(msg)
Get the name of the field that stores unknown fields.

 Metadata

@spec schema() :: Protox.MessageSchema.t()
schema()
Return the underlying definition of a message, which contains information such as:
	syntax (protobuf 2 or 3)
	required fields
	types of fields

 Enums

@spec default() :: atom()
default()
Get the default value of an enum.
@spec encode(atom() :: integer() | atom()
encode(enum_entry)
Get the integer value of an enum entry. If enum_entry does not exist in the enum, it is returned as is.
@spec decode(integer() :: atom() | integer()
decode(value)
Get the enum entry of an integer value. If value does not correpond to any entry in the enum, it is returned as is.
@spec constants() :: [{integer(), atom()}]
constants()
Get the list of all the constants of the enum that correponds to the module on which this function has been called.

Types mapping

The following table shows how Protobuf types are mapped to Elixir's ones.
	Protobuf	Elixir
	int32	integer()
	int64	integer()
	uint32	integer()
	uint64	integer()
	sint32	integer()
	sint64	integer()
	fixed32	integer()
	fixed64	integer()
	sfixed32	integer()
	sfixed64	integer()
	float	float() | :infinity | :'-infinity' | :nan
	double	float() | :infinity | :'-infinity' | :nan
	bool	boolean()
	string	String.t()
	bytes	binary()
	repeated	list(value_type) where value_type is the type of the repeated field
	map	map()
	oneof	{atom(), value_type} where atom() is the name of the set field and where value_type is the type of the set field
	enum	atom() | integer()
	message	struct()

Migration guide (v1 to v2)

This guide explains how to migrate from version 1 to version 2 of Protox.
[!NOTE]
You'll find the rationales behind the changes in the changelog.

 Encoding

Protox now returns the size of the encoded messages along with the encoded data. If you don't need the size, you can simply ignore it:
iex> msg = %Foo{a: 3, b: %{1 => %Baz{}}}
{:ok, iodata, _iodata_size} = Protox.encode(msg)

 JSON support

It's no longer possible to encode or decode JSON data directly using Protox. If it's necessary, you can stick to version 1.7 or switch to protobuf.

 Protox macro options

The :path option is removed in favor of the already existing :paths option, thus one just has to provide a list containing a single path.
Also, the :keep_unknown_fields option is no longer available. Thus, unknown fields are always kept. If you don't need them, you can simply ignore them.

 Generated code

The following functions generated for messages are replaced by the function schema/0:
	defs/0
	field_def/1
	file_options/0
	required_fields/0
	syntax/0

schema/0 returns a Protox.MessageSchema struct which contains information about the message's fields, syntax, and file options.

 Example

iex> defmodule MyModule do
 use Protox, schema: """
 syntax = "proto2";

 message Foo {
 required int32 a = 1;
 map<int32, string> b = 2;
 }
 """
end

iex> Foo.schema().syntax
:proto2

iex> Foo.schema().fields[:a]
%Protox.Field{
 tag: 1,
 label: :required,
 name: :a,
 kind: %Protox.Scalar{default_value: 0},
 type: :int32
}

iex> Foo.schema().file_options
nil

Protox

Use this module to generate the Elixir structs corresponding to a set of protobuf definitions
and to encode/decode instances of these structures.

 Elixit structs generation examples

From a set of files:
defmodule Dummy do
 use Protox,
 files: [
 "./defs/foo.proto",
 "./defs/bar.proto",
 "./defs/baz/fiz.proto",
]
end
From a string:
defmodule Dummy do
 use Protox,
 schema: """
 syntax = "proto3";
 package fiz;

 message Baz {
 }

 message Foo {
 map<int32, Baz> b = 2;
 }
 """
end
The generated modules respect the package declaration. For instance, in the above example,
both the Fiz.Baz and Fiz.Foo modules will be generated.

 Encoding/decoding

For the rest of this module documentation, we suppose the following protobuf messages are defined:
defmodule Dummy do
 use Protox,
 schema: """
 syntax = "proto3";
 package fiz;

 message Baz {
 }

 enum Enum {
 FOO = 0;
 BAR = 1;
 }

 message Foo {
 Enum a = 1;
 map<int32, Baz> b = 2;
 }
 """,
 namespace: Namespace

 use Protox,
 schema: """
 syntax = "proto3";

 message Msg {
 map<int32, string> msg_k = 8;
 }
 """

 use Protox,
 schema: """
 syntax = "proto3";

 message Sub {
 int32 a = 1;
 }
 """
end
See each function documentation to see how they are used to encode and decode protobuf messages.

 Summary

 Functions

 decode(binary, msg_module)

 Decode a binary into a protobuf message.

 decode!(binary, msg_module)

 Throwing version of decode/2.

 encode(msg)

 Encode a protobuf message into IO data.

 encode!(msg)

 Throwing version of encode/1.

 Functions

 decode(binary, msg_module)

 (since 1.6.0)

 @spec decode(binary(), atom()) :: {:ok, struct()} | {:error, any()}

Decode a binary into a protobuf message.

 Examples

iex> binary = <<8, 42, 18, 7, 8, 1, 18, 3, 102, 111, 111>>
iex> {:ok, msg} = Protox.decode(binary, ProtoxExample)
iex> msg
%ProtoxExample{a: 42, b: %{1 => "foo"}}

iex> binary = <<66, 7, 8, 1, 18, 3, 102, 111, 66, 7, 8, 2, 18, 3, 98, 97, 114>>
iex> {:error, reason} = Protox.decode(binary, ProtoxExample)
iex> reason
%Protox.DecodingError{
 message: "Could not decode data (invalid wire type 7)",
 binary: <<7, 8, 2, 18, 3, 98, 97, 114>>
 }

 decode!(binary, msg_module)

 (since 1.6.0)

 @spec decode!(binary(), atom()) :: struct() | no_return()

Throwing version of decode/2.

 encode(msg)

 (since 1.6.0)

 @spec encode(struct()) :: {:ok, iodata(), non_neg_integer()} | {:error, any()}

Encode a protobuf message into IO data.

 Examples

iex> msg = %ProtoxExample{a: 3, b: %{1 => "some string"}}
iex> {:ok, iodata, _iodata_size} = Protox.encode(msg)
iex> IO.iodata_to_binary(iodata)
<<8, 3, 18, 15, 8, 1, 18, 11, 115, 111, 109, 101, 32, 115, 116, 114, 105, 110, 103>>

iex> msg = %ProtoxExample{a: "should not be a string"}
iex> {:error, reason} = Protox.encode(msg)
iex> reason
%Protox.EncodingError{field: :a, message: "Could not encode field :a (invalid field value)"}

 encode!(msg)

 (since 1.6.0)

 @spec encode!(struct()) :: {iodata(), non_neg_integer()} | no_return()

Throwing version of encode/1.

Protox.Default

Default values of Protocol Buffers types.
Note that generated structs contain a default/1 function to return the default
value of a field using its name.

 Summary

 Functions

 default(arg1)

 Returns the default value of a Protocol Buffer type specified with an atom.

 Functions

 default(arg1)

 @spec default(atom() | {atom(), atom()}) ::
 false | integer() | float() | binary() | nil | atom()

Returns the default value of a Protocol Buffer type specified with an atom.

 Examples

iex> Protox.Default.default(:bool)
false

iex> Protox.Default.default(:string)
""

Protox.Field

The definition of a protobuf field (e.g. tag, type, etc.).

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Protox.Field{
 extender: nil | atom(),
 kind: Protox.Kind.t(),
 label: Protox.Types.label(),
 name: atom(),
 tag: number(),
 type: Protox.Types.type()
}

Protox.Kind

Defines the kind of a field.
It can be one of the following:
	Protox.Scalar - A scalar value.
	:packed - A packed repeated field.
	:unpacked - An unpacked repeated field.
	:map - A map field.
	Protox.OneOf - A oneof field.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: Protox.Scalar.t() | :packed | :unpacked | :map | Protox.OneOf.t()

Protox.MergeMessage

This module provides a helper function to merge messages.

 Summary

 Functions

 merge(msg, from)

 Singular fields of msg will be overwritten, if specified in from, except for
embedded messages which will be merged. Repeated fields will be concatenated.

 Functions

 merge(msg, from)

 @spec merge(struct() | nil, struct() | nil) :: struct() | nil

Singular fields of msg will be overwritten, if specified in from, except for
embedded messages which will be merged. Repeated fields will be concatenated.
Note that "specified" has a different meaning in protobuf 2 and 3:
	2: if the singular field from from is nil, the value from msg is kept

	3: if the singular field from from is set to the default value, the value from msg is
kept. This behaviour matches the C++ reference implementation behaviour.

	msg and from must be of the same type; or

	either msg or from is nil: the non-nil message is returned; or

	both are nil: nil is returned

Example
iex> r1 = %Protobuf2Message{a: 0, b: :ONE}
iex> r2 = %Protobuf2Message{a: nil, b: :TWO}
iex> Protox.MergeMessage.merge(r1, r2)
%Protobuf2Message{a: 0, b: :TWO}
iex> Protox.MergeMessage.merge(r2, r1)
%Protobuf2Message{a: 0, b: :ONE}

Protox.MessageSchema

Represents the schema of a Protocol Buffers message once it has been processed by Protox.
This struct contains all the necessary information to describe a message in a Protocol Buffers
schema, including its name, syntax version, fields, and optional file-level options.

 Fields

	:name - The atom representing the name of the message
	:syntax - The Protocol Buffers syntax version (e.g., :proto2 or :proto3)
	:fields - A map of field names to their definitions (Protox.Field.t())
	:file_options - Optional file-level options, represented as a map if any.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Protox.MessageSchema{
 fields: %{required(atom()) => Protox.Field.t()},
 file_options: struct() | %{required(atom()) => any()} | nil,
 name: atom(),
 syntax: atom()
}

Protox.OneOf

Represents a oneof field in protobuf.
A oneof field represents a group of fields where only one of them can be set at a time.
This module provides a struct to store the parent field of this oneof group, that is, the
field that effectively contains the set value.

 Fields

	:parent - The name the parent field of this oneof group.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Protox.OneOf{parent: atom()}

Protox.Scalar

Represents a scalar field in a Protocol Buffer message.
This module defines a struct that holds information about a scalar field,
particularly its default value. Scalar fields are the basic data types
such as integers, floats, booleans, strings.
The default value is used when a field is not present in the encoded message.

 Summary

 Types

 scalar_default_value_type()

 All the possible types that can be used as a default value for a scalar.

 t()

 Types

 scalar_default_value_type()

 @type scalar_default_value_type() ::
 binary() | boolean() | integer() | float() | atom() | nil

All the possible types that can be used as a default value for a scalar.

 t()

 @type t() :: %Protox.Scalar{default_value: scalar_default_value_type()}

Protox.Types

This module describes the types that define a protobuf message.
See https://developers.google.com/protocol-buffers/docs/encoding#structure.

 Summary

 Types

 label()

 This type gives more information on the field presence (if applicable).

 map_key()

 All types that can be used as a key in a map field.

 tag()

 The wire type of a field: it tells how a field is encoded (32 or 64 bits scalar, repeated or
variable-length integer).

 type()

 All the types that can be stored in a protobuf message.

 wire_32bits()

 32 bits scalar.

 wire_64bits()

 64 bits scalar.

 wire_delimited()

 Repeated field.

 wire_varint()

 Variable length integer.

 Types

 label()

 @type label() :: :none | :optional | :proto3_optional | :repeated | :required | nil

This type gives more information on the field presence (if applicable).

 map_key()

 @type map_key() ::
 :int32
 | :int64
 | :uint32
 | :uint64
 | :sint32
 | :sint64
 | :fixed32
 | :fixed64
 | :sfixed32
 | :sfixed64
 | :bool
 | :string

All types that can be used as a key in a map field.

 tag()

 @type tag() :: wire_varint() | wire_64bits() | wire_delimited() | wire_32bits()

The wire type of a field: it tells how a field is encoded (32 or 64 bits scalar, repeated or
variable-length integer).

 type()

 @type type() ::
 :fixed32
 | :sfixed32
 | :float
 | :fixed64
 | :sfixed64
 | :double
 | :int32
 | :uint32
 | :sint32
 | :int64
 | :uint64
 | :sint64
 | :bool
 | :string
 | :bytes
 | {:enum, atom()}
 | {:message, atom()}
 | {map_key(), type()}

All the types that can be stored in a protobuf message.

 wire_32bits()

 @type wire_32bits() :: 5

32 bits scalar.

 wire_64bits()

 @type wire_64bits() :: 1

64 bits scalar.

 wire_delimited()

 @type wire_delimited() :: 2

Repeated field.

 wire_varint()

 @type wire_varint() :: 0

Variable length integer.

Protox.DecodingError exception

This error is thrown when a data could not be decoded.

Protox.EncodingError exception

This error is thrown when a message could not be encoded.

Protox.IllegalTagError exception

This error is thrown when decoding data with a field which tag is 0.

Protox.InvalidFieldAttributeError exception

This error is thrown when a field is constructed with an invalid atribute.

Protox.RequiredFieldsError exception

This error is thrown when encoding or decoding a Protobuf 2 message
with unset required fields (that is, that have the value nil).

mix protox.generate

Generate Elixir code from .proto files.
Example:
mix protox.generate --output-path=lib/message.ex --include-path=. message.proto
The generated file will be usable in any project as long as protox is declared
in the dependencies (the generated code still needs functions from the protox runtime).
You can use the --namespace option to prepend a namespace to all generated modules.
If you have large protobuf files, you can use the --multiple-files option to generate
one file per module (it will leverage parallel compilation).

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

