

 PtcRunner

 v0.5.1

 Table of contents

 	PtcRunner

 	LICENSE

 	Changelog

 	SubAgent Guides

 	Getting Started with SubAgents

 	Core Concepts

 	Composition Patterns

 	Testing SubAgents

 	Troubleshooting SubAgents

 	Observability

 	Message Compression

 	Advanced Topics

 	Prompt Customization

 	Reference

 	Signature Syntax

 	Benchmark Evaluation

 	PTC-Lisp Language Specification

 	PTC-JSON Language Specification

 	Livebooks

 	PTC-Lisp Playground

 	SubAgent Examples

 	
 Modules

 	PtcRunner

 	PtcRunner.Context

 	PtcRunner.Json

 	PtcRunner.Json.Interpreter

 	PtcRunner.Json.Operations

 	PtcRunner.Json.Operations.Access

 	PtcRunner.Json.Operations.Aggregation

 	PtcRunner.Json.Operations.Arithmetic

 	PtcRunner.Json.Operations.Collection

 	PtcRunner.Json.Operations.Comparison

 	PtcRunner.Json.Operations.Helpers

 	PtcRunner.Json.Parser

 	PtcRunner.Json.Validator

 	PtcRunner.Lisp

 	PtcRunner.Lisp.AST

 	PtcRunner.Lisp.Analyze

 	PtcRunner.Lisp.Analyze.Patterns

 	PtcRunner.Lisp.Analyze.Predicates

 	PtcRunner.Lisp.Analyze.ShortFn

 	PtcRunner.Lisp.ClojureValidator

 	PtcRunner.Lisp.CoreAST

 	PtcRunner.Lisp.DataKeys

 	PtcRunner.Lisp.Env

 	PtcRunner.Lisp.Eval

 	PtcRunner.Lisp.Eval.Apply

 	PtcRunner.Lisp.Eval.Context

 	PtcRunner.Lisp.Eval.Helpers

 	PtcRunner.Lisp.Eval.Patterns

 	PtcRunner.Lisp.Eval.Where

 	PtcRunner.Lisp.Format

 	PtcRunner.Lisp.Formatter

 	PtcRunner.Lisp.LanguageSpec

 	PtcRunner.Lisp.Parser

 	PtcRunner.Lisp.ParserHelpers

 	PtcRunner.Lisp.Runtime

 	PtcRunner.Lisp.Runtime.Callable

 	PtcRunner.Lisp.Runtime.Collection

 	PtcRunner.Lisp.Runtime.FlexAccess

 	PtcRunner.Lisp.Runtime.Interop

 	PtcRunner.Lisp.Runtime.MapOps

 	PtcRunner.Lisp.Runtime.Math

 	PtcRunner.Lisp.Runtime.Predicates

 	PtcRunner.Lisp.Runtime.Regex

 	PtcRunner.Lisp.Runtime.SpecialValues

 	PtcRunner.Lisp.Runtime.String

 	PtcRunner.Lisp.SpecValidator

 	PtcRunner.Lisp.SymbolCounter

 	PtcRunner.Sandbox

 	PtcRunner.Schema

 	PtcRunner.Step

 	PtcRunner.SubAgent

 	PtcRunner.SubAgent.CompiledAgent

 	PtcRunner.SubAgent.Compiler

 	PtcRunner.SubAgent.Compression

 	PtcRunner.SubAgent.Compression.SingleUserCoalesced

 	PtcRunner.SubAgent.Debug

 	PtcRunner.SubAgent.JsonParser

 	PtcRunner.SubAgent.LLMResolver

 	PtcRunner.SubAgent.LLMTool

 	PtcRunner.SubAgent.Loop

 	PtcRunner.SubAgent.Loop.JsonMode

 	PtcRunner.SubAgent.Loop.LLMRetry

 	PtcRunner.SubAgent.Loop.Metrics

 	PtcRunner.SubAgent.Loop.ResponseHandler

 	PtcRunner.SubAgent.Loop.ReturnValidation

 	PtcRunner.SubAgent.Loop.ToolNormalizer

 	PtcRunner.SubAgent.Loop.TurnFeedback

 	PtcRunner.SubAgent.Namespace

 	PtcRunner.SubAgent.Namespace.Data

 	PtcRunner.SubAgent.Namespace.ExecutionHistory

 	PtcRunner.SubAgent.Namespace.Tool

 	PtcRunner.SubAgent.Namespace.TypeVocabulary

 	PtcRunner.SubAgent.Namespace.User

 	PtcRunner.SubAgent.PromptExpander

 	PtcRunner.SubAgent.Sigils

 	PtcRunner.SubAgent.Signature

 	PtcRunner.SubAgent.Signature.Coercion

 	PtcRunner.SubAgent.Signature.Parser

 	PtcRunner.SubAgent.Signature.ParserHelpers

 	PtcRunner.SubAgent.Signature.Renderer

 	PtcRunner.SubAgent.Signature.Validator

 	PtcRunner.SubAgent.SubAgentTool

 	PtcRunner.SubAgent.SystemPrompt

 	PtcRunner.SubAgent.SystemPrompt.Output

 	PtcRunner.SubAgent.Telemetry

 	PtcRunner.SubAgent.TypeExtractor

 	PtcRunner.SubAgent.Validator

 	PtcRunner.Template

 	PtcRunner.Tool

 	PtcRunner.Tracer

 	PtcRunner.Tracer.Timeline

 	PtcRunner.Turn

 	Exceptions

 	PtcRunner.Lisp.ExecutionError

 	PtcRunner.SubAgentError

 	PtcRunner.ToolExecutionError

 	
 Mix Tasks

 	mix ptc.install_babashka

 	mix ptc.repl

 	mix ptc.smoke

 	mix ptc.update_spec_checksums

 	mix ptc.validate_spec

 PtcRunner

[image: Hex.pm]
[image: Docs]
[image: CI]
[image: Hex Downloads]
[image: License]
[image: GitHub]
[image: Run in Livebook]
Build LLM agents that write and execute programs. SubAgents combine the reasoning power of LLMs with the computational precision of a sandboxed interpreter.
Quick Start
Conceptual example - see Getting Started guide for runnable code
{:ok, step} = PtcRunner.SubAgent.run(
 "What's the total value of orders over $100?",
 tools: %{"get_orders" => &MyApp.Orders.list/0},
 signature: "{total :float}",
 llm: my_llm
)

step.return.total #=> 2450.00
Try it yourself: The Getting Started guide includes fully runnable examples you can copy-paste.
The SubAgent doesn't answer directly - it writes a program that computes the answer:
(->> (tool/get_orders)
 (filter #(> (:amount %) 100))
 (sum-by :amount))
This is Programmatic Tool Calling: instead of the LLM being the computer, it programs the computer.
Why PtcRunner?
LLMs as programmers, not computers. Most agent frameworks treat LLMs as the runtime. PtcRunner inverts this: LLMs generate programs that execute deterministically in a sandbox.
BEAM-Native Advantages
	Parallel tool calling: pmap/pcalls execute I/O concurrently using lightweight BEAM processes
	Process isolation: Each execution runs in a sandboxed process with timeout and heap limits
	Fault tolerance: Crashes don't propagate; built-in supervision patterns

Safe Lisp DSL
	LLM-friendly: Minimal syntax, easy to generate correctly
	Safe by construction: No side effects, no system access, bounded iteration
	Inspectable: Debug by examining generated programs

Unique Features
	Context firewall: _ prefixed fields stay in BEAM memory, hidden from LLM prompts
	Transactional memory: def persists data across turns without bloating context
	Composable SubAgents: Nest agents as tools with isolated state and turn budgets
	Type-driven retry: Signatures validate outputs; agents auto-correct on mismatch

Examples
Parallel tool calling - fetch data concurrently:
;; LLM generates this - executes in parallel automatically
(let [[user orders stats] (pcalls #(tool/get_user {:id data/user_id})
 #(tool/get_orders {:id data/user_id})
 #(tool/get_stats {:id data/user_id}))]
 {:user user :order_count (count orders) :stats stats})
Context firewall - keep large data out of LLM prompts:
The LLM sees: %{summary: "Found 3 urgent emails"}
Elixir gets: %{summary: "...", _email_ids: [101, 102, 103]}
signature: "{summary :string, _email_ids [:int]}"
Compile SubAgents - LLM called once, execute many times:
LLM derives the program once during compilation
{:ok, compiled} = SubAgent.compile(classifier_agent, llm: my_llm, sample: %{text: "example"})

Execute without LLM calls - deterministic and fast
compiled.execute.(%{text: "new input"}) #=> %Step{return: %{category: "support"}}
Installation
def deps do
 [{:ptc_runner, "~> 0.5.0"}]
end
Documentation
Guides
	Getting Started - Build your first SubAgent
	Core Concepts - Context, memory, and the firewall convention
	Patterns - Chaining, orchestration, and composition
	Testing - Mocking LLMs and integration testing
	Troubleshooting - Common issues and solutions

Reference
	Signature Syntax - Input/output type contracts
	PTC-Lisp Specification - The language SubAgents write
	Benchmark Evaluation - LLM accuracy by model

Interactive
	mix ptc.repl - Interactive REPL for testing PTC-Lisp expressions
	Playground Livebook - Try PTC-Lisp interactively
	LLM Agent Livebook - Build an agent end-to-end
	Examples - Runnable example applications

Low-Level API
For direct program execution without the agentic loop:
{:ok, step} = PtcRunner.Lisp.run(
 "(->> data/items (filter :active) (count))",
 context: %{items: items}
)
step.return #=> 3
Programs run in isolated BEAM processes with resource limits (1s timeout, 10MB heap).
See PtcRunner.Lisp module docs for options. A JSON DSL (PtcRunner.Json) is also available for schema-enforced execution.
License
MIT

 LICENSE

MIT License

Copyright (c) 2025 Andreas Ronge

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

 Changelog

All notable changes to this project will be documented in this file.
The format is based on Keep a Changelog,
and this project adheres to Semantic Versioning.
0.5.1 - 2026-01-18
Added
	JSON Output Mode - SubAgents can now return structured JSON instead of PTC-Lisp	Add output: field to SubAgent struct for declaring JSON schema
	Add Signature.to_json_schema/1 for JSON schema generation
	Add LLMClient.generate_object/4 for structured output generation
	Add LLMClient.callback/1 for SubAgent integration
	Support array types and improved validation UX

	Add re-seq regex function to PTC-Lisp for extracting all matches
	Add debug mission display and tool call statistics with Clojure format output

Fixed
	Convert keyword-style tool args to map in Lisp interpreter

0.5.0 - 2026-01-16
Breaking Changes
	Replace ctx/ namespace with data/ and tool/ namespaces for clearer separation
	Remove tool_catalog field from SubAgent (use tools directly)

Added
Observability & Message History (v0.5 theme)
	Add Turn struct for immutable per-turn execution history with tool calls, prints, and memory snapshots
	Add SingleUserCoalesced compression strategy for token-efficient multi-turn conversations
	Add compression: true option to enable message compression in SubAgent
	Add collect_messages: true option to capture full conversation history
	Enhance print_trace/2 with new options: view: :compressed, messages: true, raw: true, usage: true
	Add compression statistics to debug output
	Add prompt caching support by splitting static/dynamic sections

New Functions
	Add distinct-by for unique items by key function
	Add re-split for regex-based string splitting
	Add rem function and fix mod to match Clojure semantics
	Add multi-arity map and partition functions
	Add list index support to get-in, assoc, update, and related functions
	Add context filtering via static analysis to reduce memory pressure

Other
	Add configurable println truncation limit (max_print_length option)
	Add hidden fields filtering from LLM-visible output (fields starting with _)
	Add configurable sample limits and smart println for char lists
	Improve float support in PTC-Lisp

Fixed
	Multi-arity map with variadic builtins
	Propagate max_print_length into closures and pcalls
	Show map field names in tool signatures for LLM
	Handle nil values in Debug.print_trace options
	Support builtin tuples in fnil for Clojure compatibility
	Show explicit "No tools available" message in prompt

0.4.1 - 2026-01-09
Added
	Add juxt function combinator for multi-criteria operations
	Add variadic function support with rest parameters [a & rest]
	Add max-key and min-key for variadic comparisons
	Add IEEE 754 special values: ##Inf, ##-Inf, ##NaN
	Add float_precision option to SubAgent (default: 2 decimal places)
	Add context_descriptions for automatic data inventory in prompts
	Extend reduce to work on maps, sets, and strings
	Add variadic update and update-in (match Clojure semantics)
	Add java.time.LocalDate/parse for date handling

Fixed
	Preserve memory state on parse/analysis errors (multi-turn recovery)
	Handle return/fail correctly in threading macros (->, ->>)
	Make return/fail terminate execution immediately
	Restore caller environment after closure execution
	Improve error messages with actionable suggestions

0.4.0 - 2026-01-06
Added
	Add SubAgent API for high-level agent definition with type-safe signatures, auto-chaining, and resource limits
	Add Tracer system for immutable recording and visualization of agent execution
	Implement loop and recur support for iterative computation in PTC-Lisp
	Add character literals and string-as-sequence support for more flexible data handling
	Add pcalls for parallel execution of heterogeneous thunks
	Add pmap for parallel map evaluation
	Support vector paths in collection extraction functions for nested data access
	Add Clojure namespace normalization to improve LLM resilience

Fixed
	Correct argument order for sort-by function to match Clojure semantics
	Fix update-vals argument order to match Clojure 1.11
	Update supported functions list (add frequencies, add float and for)
	Improve multi-turn agent guidance and system prompts
	Add specific error messages for predicate functions
	Fix Clojure compatibility for destructuring, count, and empty?

0.3.4 - 2025-12-25
Added
	Add seqable map support to filter, remove, and sort-by operations
	Add entries and identity functions to PTC-Lisp
	Add sandbox support to PtcRunner.Lisp for resource limits

Fixed
	Replace length() comparisons with Enum.empty? alternative
	Update error handling to use error tuples instead of raised exceptions

0.3.3 - 2025-12-22
Added
	Add update and update-in map bindings for transforming values with functions
	Add function-based key support to *-by operations for custom sorting and grouping
	Add spec validation system for PTC-Lisp with multi-line examples and section reporting
	Improve JSON DSL prompts for better LLM accuracy

Fixed
	Fix JSON agent to retry on empty LLM responses
	Improve deterministic ordering in keys/vals output
	Align assoc-in and update-in with Clojure semantics for intermediate path creation
	Correct update/3 semantics to pass nil to function for missing keys
	Fix zip and into operations to return vectors instead of tuples
	Handle empty and nil LLM responses gracefully in agent loop

0.3.2 - 2025-12-20
Added
	Add format_error/1 for human-readable error messages

Fixed
	Include ptc-lisp-llm-guide.md in hex package

0.3.1 - 2025-12-13
Added
	Improve PTC-JSON system prompt for better LLM accuracy
	Add object operation to construct maps with evaluated values (#253) (#254) (#254)
	Enhance Clojure validation to execute and compare results
	Add auto-generated report filenames and reports directory
	Add cross-dataset join test case and clean up old reports
	Add --show-prompt option to display system prompts
	Add arithmetic operations (add, sub, mul, div, round, pct) #255
	Add membership operations (in, filter_in) (#257) (#259) (#259)
	Add implicit object literals for memory storage (#256) (#261) (#261)

Fixed
	Handle Map values in constraint errors and fix GenServer timeout
	Correct round operation documentation for precision constraints
	Improve LLM prompt with arithmetic ops and better examples
	Evaluate filter_in value when it's a DSL expression
	Add sort_by order:desc to LLM prompt

0.3.0 - 2025-12-11
Added
	Add PTC-Lisp LLM generation benchmark (Phase 1)
	Improve generation and judge prompts for PTC-Lisp benchmark
	Improve benchmark with edge cases, better judge, and dry run output
	Add autonomous issue creation and GitHub Project integration to PM workflow
	Enhance PM workflow with tech debt priority and efficiency fixes
	Auto-trigger implementation on ready-for-implementation label
	Auto-trigger code review for PRs from claude/* branches
	Install git pre-commit hook in Claude workflow
	Create PtcRunner.Json public API and deprecate PtcRunner (#103) (#103)
	Allow full Bash access in claude.yml workflow
	Implement PTC-Lisp parser infrastructure (Phase 1) - Closes #106 (#107) (#107)
	Implement PTC-Lisp analyzer infrastructure (Phase 2) - Closes #108 (#109) (#109)
	Implement PTC-Lisp eval infrastructure (Phase 1) - Closes #111 (#112) (#112)
	Implement PtcRunner.Lisp entry point with memory contract - Closes #115 (#116) (#116)
	Add hourly schedule trigger to PM workflow
	Add pre-computed phase status to PM workflow prompt
	Implement LispGenerators module with StreamData generators (#130) (#132) (#132)
	Add property tests for evaluation safety and determinism (#133) (#134) (#134)
	Add domain property tests for arithmetic, collections, types, and logic (#135) (#136) (#136)
	Support flexible key access in where clause field accessors (#137) (#138) (#138)
	Add Lisp.Schema module and extend Runtime with flexible key access (#139) (#139)
	Add truncation hints to guide LLM query refinement
	Add PTC-Lisp CLI and enhance demo infrastructure
	Refactor PM workflow to use Epic Issue pattern
	Add LispTestRunner and improve multi-turn support
	Add file size analysis to PR review workflow
	Add #{...} set literal syntax support (Phase 1 of #164) (#166) (#166)
	Add {:set, [t()]} to AST type specifications (#167) (#168) (#168)
	Add set analysis support (Phase 3 of #164) (#170) (#170)
	Add set evaluation support (Phase 4 of #164) (#172) (#172)
	Add .env support and model selection for e2e tests
	Add flex_fetch/2 and flex_get_in/2 to Runtime module (#188) (#188)
	Add update-vals for map value transformation
	Create TestRunner.Base with shared constraint/formatting functions (#197) (#197)
	Create TestRunner.Report with markdown generation (#199) (#199)
	Create TestRunner.TestCase with shared test definitions (#201) (#201)
	Create CLIBase with shared CLI utilities (#203) (#203)
	Set up demo test infrastructure (MockAgent, test config) - Closes #205 (#206) (#206)
	Create JsonTestRunner with shared modules support
	Create JsonCLI module with test mode support (#217) (#217)
	Add memory support to JSON Agent (#220) (#221) (#221)
	Add agent injection to test runners for MockAgent testing (#222) (#223) (#223)
	Add ModelRegistry and unify test cases (#227) (#227)
	Add --runs=N option for running tests multiple times
	Add keyword/string type coercion to where clause comparisons (#232) (#233) (#233)
	Align JSON DSL memory model with Lisp (#234)
	Add take, drop, and distinct operations to JSON DSL (#236) (#243) (#243)
	Add enhanced stats to demo test runner report (#246) (#249) (#249)

Fixed
	Move PM prompt to command file to fix expression length limit
	Use Bash(gh:*) pattern for PM workflow
	Trigger PM workflow on claude-approved label too
	Re-trigger code review on sync for claude/* branches
	Use --force in precommit to catch stale .beam files
	Add spec document verification to code review prompt
	Include PR comments and review comments in claude.yml
	Add mkdir permission to claude.yml workflow
	Add explicit Claude CLI install to workaround action bug
	Add safety net to push unpushed commits in PR fix workflow
	Mark PTC-Lisp implementation checklist items as complete (#123) (#123)
	Update README with PTC-Lisp announcement and API migration guidance
	Complete API migration in Integration with LLMs section
	Implement compile-time extraction for PTC-Lisp schema prompt (#144) (#144)
	Configure StreamData to run 300 iterations in CI (#146) (#146)
	Make issue review always update the issue body
	Add sequential destructuring pattern type to CoreAST (#149) (#149)
	Extend analyze_pattern for vector destructuring patterns
	Complete PR #151 - Add fn parameter destructuring documentation and tests
	Complete PR #151 - Remove stale documentation and add insufficient elements test
	Complete PR #151 - Remove stale documentation and add insufficient elements test
	Add E2E test for group-by with destructuring (#153) (#153)
	Add analyzer unit tests for fn parameter destructuring patterns (#155) (#155)
	Add evaluator unit tests for fn parameter destructuring patterns (#157) (#157)
	Update LLM guide map example to use fn destructuring syntax (#159) (#159)
	Enable sort-by with comparator and builtin HOF arguments (#160) (#160)
	Extend multi-arity support to get and get-in (#163) (#163)
	Unify concurrency groups for Claude issue workflows
	Add MapSet-safe collection operations and set runtime support (#175) (#175)
	Add set literal formatting support to formatter (Phase 6 of #164) (#178) (#178)
	Add test coverage for remove, mapv, empty?, and count on sets (#181) (#181)
	Split eval_test.exs into multiple focused test files (#182) (#182)
	Extract shared dummy_tool test helper (#183) (#184) (#184)
	Support string key parameters in Lisp runtime functions (#185) (#185)
	Standardize OpenAI model to gpt-5.1-codex-mini
	Rename duplicate module name in integration_test.exs
	Wire all call sites to use flex_fetch/flex_get_in for string/atom key interop
	Add integration tests and update docs for flexible key access (Phase 3)
	Update docs for flexible key access implementation
	Add @doc annotation to flex_get for API consistency
	Update ptc-lisp-overview.md to reflect completed flex key access (#192) (#192)
	Update format_error references to PtcRunner.Json.format_error
	Update CHANGELOG format_error reference
	Change update-vals argument order to match Clojure 1.11
	Remove duplicate incorrect update-vals signature from LLM guide
	Handle FunctionClauseError in builtins with descriptive type errors
	Handle FunctionClauseError in multi-arity functions and complete type error messages
	Delete old TestRunner module and update README references (#219) (#219)
	Require closing keyword in PR body for auto-close
	Add --report option to Lisp CLI Options table
	Update demo CLI to use ModelRegistry.resolve pattern (#229) (#229)
	Update guide.md to reflect new JSON DSL API signature
	Update guide.md and demo to use new 4-tuple return format
	Handle invalid map destructuring syntax gracefully in analyzer
	Improve error message for update-vals with swapped arguments
	Update JSON agent to use new memory model API (#235) (#241) (#241)
	Filter nil opts in CLI to allow Keyword.get defaults
	Split transformation_test.exs into access_test.exs and collection_test.exs (#244) (#247) (#247)
	Align PTC-Lisp semantics with Clojure specification (#245) (#248) (#248)
	Resolve remaining Clojure conformance test failures (#250) (#250)

0.2.0 - 2025-12-05
Added
	Add introspection operations (keys, typeof) to DSL (#92) (#92)
	Improve DSL consistency for better LLM program generation (#94) (#94)
	Add explore mode for schema discovery (#97) (#97)
	Enable async execution for test modules (#98) (#98)

[0.1.0] - 2025-12-03
Added
	Add CI check to verify STATUS.md is updated in PRs
	Implement Phase 1 core interpreter with JSON parsing and sandbox execution (#10) (#10)
	Add pre-implementation check for blockers in PM workflow
	Implement get operation for nested path access (fixes #17) (#18) (#18)
	Implement comparison operations (neq, gt, gte, lt, lte) (#22) (#22)
	Implement collection operations (first, last, nth, reject) (#26) (#27) (#27)
	Implement contains, avg, min, max operations (#28)
	Implement let variable bindings for Phase 3 (#30) (#31) (#31)
	Implement if conditional operation for Phase 3 (#32) (#33) (#33)
	Implement boolean logic operations (and, or, not) for Phase 3 (#34) (#35) (#35)
	Implement combine operations (merge, concat, zip) for Phase 3 (#37) (#37)
	Implement call operation for tool invocation (#41) (#41)
	Add Jaro-Winkler typo suggestions for unknown operations (#44) (#44)
	Add ExDoc and Hex package metadata (#45) (#46) (#46)
	Implement declarative schema module for DSL operations (#52) (#52)
	[Phase 5] JSON Schema Generation (#50) (#55) (#55)
	[Phase 5] E2E LLM Testing Infrastructure (#51) (#57) (#57)
	Adopt program wrapper as canonical PTC format - Update to_json_schema/0 (#63) (#63)
	Adopt program wrapper as canonical PTC format in parser (#58) (#64) (#64)
	Add structured output support with generate_program_structured! for E2E tests (#65) (#67) (#67)
	Validate tool function arities at registration time (#42) (#68) (#68)
	Add interactive demo CLI for PTC with ReqLLM integration (#75) (#75)
	Add to_prompt/0 for token-efficient LLM text mode (#80) (#80)
	Add security gates and hardening to Claude workflows

Fixed
	Add safety improvements to GitHub workflows
	PM workflow commits STATUS.md directly to main
	Avoid parallel PRs by including STATUS.md in implementation PR
	Simplify STATUS.md update rules to prevent merge conflicts
	Improve PM workflow action handling
	Trigger PM workflow when issue becomes ready-for-implementation
	Ensure git push happens immediately after commit in Claude workflow
	Use PAT in issue-review workflow to trigger PM workflow
	Optimize min_list and max_list performance and update avg docs
	Correct documentation for sum vs avg behavior with non-numeric values
	Use anyOf for nested expressions in LLM schema (#71) (#71)
	Improve LLM schema descriptions and use Haiku 4.5 (#73) (#73)
	Store last_result in Agent state to avoid regenerating random data (#79) (#79)
	Add test_coverage configuration to exclude test support modules (#89) (#89)

 Getting Started with SubAgents

This guide walks you through your first SubAgent - from a minimal example to understanding the core execution model.
Prerequisites
	Elixir 1.14+
	An LLM provider (OpenRouter, Anthropic, OpenAI, etc.)

The Simplest SubAgent
{:ok, step} = PtcRunner.SubAgent.run(
 "How many r's are in raspberry?",
 llm: my_llm
)

step.return #=> 3
That's it. No tools, no signature, no validation - just a prompt and an LLM.
Why This Matters
The SubAgent doesn't answer directly - it writes a program that computes the answer:
(count (filter #(= % "r") (seq "raspberry")))
This is the core insight of PTC (Programmatic Tool Calling): instead of asking the LLM to be the computer, ask it to program the computer. The LLM reasons and generates code; the actual computation runs in a sandboxed interpreter where results are deterministic.
With Context
Pass data to the prompt using {{placeholders}}:
{:ok, step} = PtcRunner.SubAgent.run(
 "Summarize in one sentence: {{text}}",
 context: %{text: "Long article about climate change..."},
 llm: my_llm
)

step.return #=> "Climate change poses significant global challenges..."
With Type Validation
Add a signature to validate the output structure:
{:ok, step} = PtcRunner.SubAgent.run(
 "Rate this review sentiment",
 context: %{review: "Great product, love it!"},
 signature: "{sentiment :string, score :float}",
 llm: my_llm
)

step.return.sentiment #=> "positive"
step.return.score #=> 0.95
JSON Mode (Simpler Alternative)
For classification, extraction, and reasoning tasks that don't need tools, use output: :json:
{:ok, step} = PtcRunner.SubAgent.run(
 "Extract the person's name and age",
 context: %{text: "John is 25 years old"},
 output: :json,
 signature: "(text :string) -> {name :string, age :int}",
 llm: my_llm
)

step.return.name #=> "John"
step.return.age #=> 25
JSON mode skips PTC-Lisp entirely - the LLM returns structured JSON directly, validated against your signature. Use it when you need structured output but not computation or tool calls.
Constraints: JSON mode requires a signature, cannot use tools, and doesn't support compression or firewall fields.
Adding Tools
Tools let the agent call functions to gather information:
{:ok, step} = PtcRunner.SubAgent.run(
 "What is the most expensive product?",
 signature: "{name :string, price :float}",
 tools: %{"list_products" => &MyApp.Products.list/0},
 llm: my_llm
)

step.return.name #=> "Widget Pro"
step.return.price #=> 299.99
With tools, the SubAgent enters an agentic loop - it calls tools and reasons until it has enough information to return.
Execution Behavior
	Mode	Condition	Behavior
	Single-shot	max_turns: 1 and no tools	One LLM call, expression returned directly
	Loop	Otherwise	Multiple turns until (return ...) or (fail ...)

In single-shot mode, the LLM's expression is evaluated and returned directly. In loop mode, the agent must explicitly call return or fail to complete.
Common Pitfall: If your agent produces correct results but keeps looping until
max_turns_exceeded, it's likely in loop mode without calling return. Either set
max_turns: 1 for single-shot execution, or ensure your prompt guides the LLM to
use (return {:value ...}) when done.

Debugging Execution
To see what the agent is doing, use PtcRunner.SubAgent.Debug.print_trace/2:
{:ok, step} = SubAgent.run(prompt, llm: my_llm)
PtcRunner.SubAgent.Debug.print_trace(step)
For more detail, include raw LLM output (reasoning) or the actual messages sent:
Include LLM reasoning/commentary
PtcRunner.SubAgent.Debug.print_trace(step, raw: true)

Show full messages sent to LLM
PtcRunner.SubAgent.Debug.print_trace(step, messages: true)
This is essential for identifying why a model might be failing or ignoring tool instructions.
More options: See Observability for compression, telemetry, and production tips.

Signatures (Optional)
Signatures define a contract for inputs and outputs:
Output only
signature: "{name :string, price :float}"

With inputs (for reusable agents)
signature: "(query :string) -> [{id :int, title :string}]"
When provided, signatures:
	Validate return data (agent retries on mismatch)
	Document expected shape to the LLM
	Give your Elixir code predictable types

See Signature Syntax for full syntax.
Providing an LLM
SubAgent is provider-agnostic. You supply a callback function:
llm = fn %{system: system, messages: messages} ->
 # Call your LLM provider here
 {:ok, response_text}
 # Or include token counts for usage stats:
 # {:ok, %{content: response_text, tokens: %{input: 100, output: 50}}}
end

PtcRunner.SubAgent.run(prompt, llm: llm, signature: "...")
The callback receives:
	Key	Type	Description
	system	String.t()	System prompt with instructions
	messages	[map()]	Conversation history
	turn	integer()	Current turn number
	tool_names	[String.t()]	Available tool names
	llm_opts	map()	Custom options passed through

Using Atoms with a Registry
For convenience, you can use atoms like :haiku or :sonnet by providing an llm_registry:
Define your callbacks
defmodule MyApp.LLM do
 def haiku(input), do: call_anthropic("claude-3-haiku-20240307", input)
 def sonnet(input), do: call_anthropic("claude-3-5-sonnet-20241022", input)
end

Create registry
registry = %{
 haiku: &MyApp.LLM.haiku/1,
 sonnet: &MyApp.LLM.sonnet/1
}

Use atoms - resolved via registry
PtcRunner.SubAgent.run(prompt,
 llm: :sonnet,
 llm_registry: registry,
 signature: "..."
)
The registry is inherited by child SubAgents, so you only pass it once at the top level. See PtcRunner.SubAgent.run/2 for more details.
App-Level Default Registry
For applications that want to avoid passing the registry on every call:
In your application.ex start/2
def start(_type, _args) do
 Application.put_env(:ptc_runner, :default_llm_registry, MyApp.llm_registry())
 # ... rest of supervision tree
end

Now llm_registry is optional - falls back to default
PtcRunner.SubAgent.run(prompt, llm: :sonnet, signature: "...")
This is useful for production apps but not available in Livebook (use explicit registry there).
Example with ReqLLM
defmodule MyApp.LLM do
 @timeout 30_000

 def callback(model \\ "openrouter:anthropic/claude-haiku-4.5") do
 fn %{system: system, messages: messages} ->
 full_messages = [%{role: :system, content: system} | messages]

 case ReqLLM.generate_text(model, full_messages, receive_timeout: @timeout) do
 {:ok, %ReqLLM.Response{} = r} ->
 usage = ReqLLM.Response.usage(r)
 {:ok, %{
 content: ReqLLM.Response.text(r),
 tokens: %{input: usage[:input_tokens] || 0, output: usage[:output_tokens] || 0}
 }}

 {:error, reason} ->
 {:error, reason}
 end
 end
 end
end

Usage
llm = MyApp.LLM.callback()
PtcRunner.SubAgent.run(prompt, llm: llm, signature: "...")
Note: The callback must include the system prompt in the messages sent to the LLM.
The SubAgent's system prompt contains critical PTC-Lisp instructions that guide the LLM
to output valid programs.

Defining Tools
Tools are functions the SubAgent can call. Provide them as a map:
tools = %{
 "list_products" => &MyApp.Products.list/0,
 "get_product" => &MyApp.Products.get/1,
 "search" => fn %{query: q, limit: l} -> MyApp.search(q, l) end
}
Auto-Extraction from @spec and @doc
Tool signatures and descriptions are auto-extracted when available:
In your module
@doc "Search for items matching the query string"
@spec search(String.t(), integer()) :: [map()]
def search(query, limit), do: ...

Auto-extracted:
signature: "(query :string, limit :int) -> [:map]"
description: "Search for items matching the query string"
tools = %{"search" => &MyApp.search/2}
Explicit Signatures
For functions without specs, provide a signature explicitly:
tools = %{
 "search" => {&MyApp.search/2, "(query :string, limit :int) -> [{id :int}]"}
}
Adding Descriptions
Descriptions help the LLM understand when and how to use each tool. Use keyword list format:
tools = %{
 "search" => {&MyApp.search/2,
 signature: "(query :string, limit :int?) -> [{id :int, title :string}]",
 description: "Search for items matching query. Returns up to limit results (default 10)."
 },

 "get_user" => {&MyApp.get_user/1,
 signature: "(id :int) -> {name :string, email :string?}",
 description: "Fetch user by ID. Returns nil if not found."
 }
}
Tool Format Summary
	Format	When to Use
	&Mod.fun/n	Functions with @spec and @doc
	{fun, "signature"}	Explicit signature, no description needed
	{fun, signature: "...", description: "..."}	Production tools with full documentation
	fn args -> ... end	Quick inline functions

Agent as Data
For reusable agents, create the struct separately:
Define once
product_finder = PtcRunner.SubAgent.new(
 prompt: "Find the most expensive product",
 signature: "{name :string, price :float}",
 tools: product_tools,
 max_turns: 5
)

Execute with runtime params
{:ok, step} = PtcRunner.SubAgent.run(product_finder, llm: my_llm)
This separation enables testing, composition, and reuse.
Additional Struct Fields
SubAgents support additional optional fields for documentation and output control:
PtcRunner.SubAgent.new(
 prompt: "Find products matching {{query}}",
 signature: "(query :string) -> [{name :string, price :float}]",
 tools: product_tools,

 # Human-readable description for external documentation
 description: "Searches the product catalog and returns matching items",

 # Descriptions for individual signature fields
 field_descriptions: %{
 query: "Search term to match against product names",
 name: "Product name",
 price: "Price in USD"
 },

 # Descriptions for context variables (shown in Data Inventory)
 context_descriptions: %{
 user_id: "ID of the customer performing the search",
 region: "ISO region code (e.g. US, UK)"
 },

 # Output formatting options (shown with defaults)
 format_options: [
 feedback_limit: 10, # max collection items in turn feedback
 feedback_max_chars: 512, # max chars in turn feedback
 history_max_bytes: 512, # truncation limit for *1/*2/*3 history
 result_limit: 50, # inspect :limit for final result
 result_max_chars: 500, # final string truncation
 max_print_length: 2000 # max chars per println call
],

 # Float precision for output formatting (default: 2)
 float_precision: 2
)
These fields are used by the v2 namespace model for enhanced documentation flow and output control. See PtcRunner.SubAgent for full details.
The Firewall Convention
Fields prefixed with _ are firewalled - available to your Elixir code and the agent's programs, but hidden from LLM prompt history:
signature: "{summary :string, count :int, _email_ids [:int]}"
This keeps parent agent context lean while preserving full data access. See Core Concepts for details.
State Persistence
Use def to store values that persist across turns within a single run:
(def cache result) ; store
cache ; access as plain symbol
Use defn to define reusable functions:
(defn expensive? [item] (> (:price item) 1000))
(filter expensive? data/items)
State is scoped per-agent and hidden from prompts. See Core Concepts for details.
See Also
	Core Concepts - Context, memory, and the firewall convention
	Observability - Telemetry, debug mode, and tracing
	Patterns - Chaining, orchestration, and composition
	Signature Syntax - Full signature syntax reference
	Advanced Topics - ReAct patterns and the compile pattern
	PtcRunner.SubAgent - API reference

 Core Concepts

This guide covers the foundational concepts for library users: context management, the firewall convention, and how agents complete their work.
How SubAgents Work
When you call SubAgent.run/2, the library:
	Sends your prompt and context to the LLM
	The LLM generates a PTC-Lisp program (a Clojure subset)
	The program executes in a sandboxed environment
	Results are validated against your signature
	On success, {:ok, step} returns with step.return containing the result

You don't write PTC-Lisp - the LLM does. You configure the agent with Elixir.
Alternative: JSON Mode. For simple classification and extraction tasks, use output: :json to skip PTC-Lisp entirely. The LLM returns structured JSON directly. See Getting Started.
The Context Firewall
SubAgents solve a fundamental problem: LLMs need information to make decisions, but context windows are expensive and limited. The Context Firewall lets agents work with large datasets while keeping the parent context lean.
┌─────────────┐ ┌─────────────┐
│ Main Agent │ ── "Find urgent ──► │ SubAgent │
│ (strategic) │ emails" │ (isolated) │
│ │ │ │
│ Context: │ CONTRACT: │ Has tools: │
│ ~100 tokens│ {summary, _ids} │ - list │
│ │ │ - search │
│ │ ◄── validated ───── │ │
│ │ data only │ Processes │
│ │ │ 50KB data │
└─────────────┘ └─────────────┘
The parent only sees what the signature exposes. Heavy data stays inside the SubAgent.
The Firewall Convention (_ prefix)
Fields prefixed with _ are firewalled - available to your Elixir code but hidden from LLM prompts:
signature: "{summary :string, count :int, _email_ids [:int]}"
Visibility rules:
	Location	Normal Fields	Firewalled (_)
	LLM prompt history	Visible	Hidden
	Elixir step.return	Included	Included

The firewall protects LLM context windows, not your Elixir code. Your application always has full access.
Example: Email Processing
Step 1: Find emails (returns firewalled IDs)
{:ok, step1} = PtcRunner.SubAgent.run(
 "Find all urgent emails",
 signature: "{summary :string, count :int, _email_ids [:int]}",
 tools: email_tools,
 llm: llm
)

step1.return.summary #=> "Found 3 urgent emails"
step1.return.count #=> 3
step1.return._email_ids #=> [101, 102, 103] # Available to Elixir!

Step 2: Chain to next agent
{:ok, step2} = PtcRunner.SubAgent.run(
 "Draft replies for these {{count}} urgent emails",
 context: step1, # Auto-chains return data
 tools: drafting_tools,
 llm: llm
)
In Step 2, the LLM knows there are 3 emails (public) but cannot see the actual IDs (firewalled). The generated program can still access them if needed.
Context
Values passed to context: become available to the LLM's generated programs:
{:ok, step} = PtcRunner.SubAgent.run(
 "Get details for order {{order_id}}",
 context: %{order_id: "ORD-123", customer_tier: "gold"},
 tools: order_tools,
 llm: llm
)
Template Expansion
The {{placeholder}} syntax in prompts expands from context:
prompt: "Find emails for {{user.name}} about {{topic}}"
context: %{user: %{name: "Alice"}, topic: "billing"}
Expands to: "Find emails for Alice about billing"
Chaining Context
When passing a previous Step to context:, the return data is automatically extracted:
These are equivalent:
run(prompt, context: step1.return)
run(prompt, context: step1) # Auto-extraction
How Agents Complete
Agents complete their work in one of two ways:
Single-turn (Expression Result)
For simple tasks with max_turns: 1, the LLM's expression result is returned directly:
{:ok, step} = PtcRunner.SubAgent.run(
 "Classify this text: {{text}}",
 signature: "{category :string, confidence :float}",
 context: %{text: "..."},
 max_turns: 1,
 llm: llm
)

step.return #=> %{category: "positive", confidence: 0.95}
Multi-turn (Explicit Return)
For agentic tasks with tools, the LLM must explicitly signal completion. It does this by calling return or fail in its generated program:
{:ok, step} = PtcRunner.SubAgent.run(
 "Find the report with highest anomaly score",
 signature: "{report_id :int, reasoning :string}",
 tools: report_tools,
 max_turns: 5,
 llm: llm
)
The agent loops until the LLM's program calls return with valid data, or fail to abort.
Error Handling
SubAgents handle errors at three levels:
1. Turn Errors (Recoverable)
Syntax errors, tool failures, and validation errors are fed back to the LLM. It sees the error and can adapt in the next turn.
2. Mission Failures (Explicit)
When the LLM determines it cannot complete the task, it calls fail. Your code receives:
{:error, step} = SubAgent.run(...)
step.fail #=> %{reason: :not_found, message: "User does not exist"}
3. System Crashes
Programming bugs in your tool functions follow "let it crash" - they're returned as internal errors for investigation.
Multi-turn State
In multi-turn agents, the LLM can store values that persist across turns. This happens automatically - values defined in one turn are available in subsequent turns.
From your perspective as a library user:
	You see the final result in step.return
	You see execution history in step.turns
	You don't need to manage intermediate state

The LLM handles state internally to cache tool results, track progress, and avoid redundant work.
Defaults
	Option	Default	Description
	max_turns	5	Maximum LLM turns before timeout
	timeout	5000	Per-turn sandbox timeout (ms)
	mission_timeout	60000	Total mission timeout (ms)
	float_precision	2	Decimal places for floats in results
	compression	false	Enable message history compression

See Also
	Getting Started - Build your first SubAgent
	Observability - Debug mode, compression, and tracing
	Patterns - Chaining, orchestration, and composition
	Signature Syntax - Full signature syntax reference
	Advanced Topics - Prompt structure and internals
	PtcRunner.SubAgent - API reference

 Composition Patterns

This guide covers how to compose SubAgents into larger workflows: chaining, hierarchical delegation, LLM-powered tools, and orchestration patterns.
Chaining SubAgents
Using with (Recommended)
The idiomatic pattern for sequential chains:
with {:ok, step1} <- SubAgent.run(finder, llm: llm),
 {:ok, step2} <- SubAgent.run(drafter, llm: llm, context: step1),
 {:ok, step3} <- SubAgent.run(sender, llm: llm, context: step2) do
 {:ok, step3}
else
 {:error, %{fail: %{reason: :not_found}}} -> {:error, :no_data}
 {:error, step} -> {:error, step.fail}
end
Benefits:
	Short-circuits on first error
	Pattern matching in else for specific error handling
	Auto-chaining via context: step extracts both return data and signature

Using Pipes (run! and then!)
When you want to crash on failure:
SubAgent.run!(finder, llm: llm)
|> SubAgent.then!(drafter, llm: llm)
|> SubAgent.then!(sender, llm: llm)
then!/2 automatically sets context: to the previous step.
Field Description Flow in Chains
When agents are chained, field_descriptions from upstream agents automatically flow to downstream agents. This enables self-documenting chains:
Agent A defines output descriptions
agent_a = SubAgent.new(
 prompt: "Double {{n}}",
 signature: "(n :int) -> {result :int}",
 field_descriptions: %{result: "The doubled value"}
)

Agent B receives those descriptions as input context
agent_b = SubAgent.new(
 prompt: "Add 10 to result",
 signature: "(result :int) -> {final :int}",
 field_descriptions: %{final: "The final computed value"}
)

When chained, agent_b's LLM sees "The doubled value" description for data/result
step_a = SubAgent.run!(agent_a, llm: llm, context: %{n: 5})
step_b = SubAgent.then!(step_a, agent_b, llm: llm)

Each step carries its own field_descriptions for downstream use
step_a.field_descriptions #=> %{result: "The doubled value"}
step_b.field_descriptions #=> %{final: "The final computed value"}
This is useful when building multi-agent pipelines where each agent benefits from understanding what the previous agent produced.
Mixing JSON and PTC-Lisp Modes
JSON mode and PTC-Lisp mode use the same signature syntax, enabling seamless piping:
JSON mode for extraction
extractor = SubAgent.new(
 prompt: "Extract name and age from: {{text}}",
 output: :json,
 signature: "(text :string) -> {name :string, age :int}"
)

PTC-Lisp mode for computation
processor = SubAgent.new(
 prompt: "Calculate birth year assuming current year 2024",
 signature: "(age :int) -> {birth_year :int}"
)

Chain them - works seamlessly
{:ok, step1} = SubAgent.run(extractor, llm: llm, context: %{text: "Alice is 30"})
{:ok, step2} = SubAgent.run(processor, llm: llm, context: step1)
step2.return.birth_year #=> 1994
Parallel Execution
For concurrent agents, use standard Elixir patterns:
agents = [email_agent, calendar_agent, crm_agent]

results =
 agents
 |> Task.async_stream(&SubAgent.run(&1, llm: llm))
 |> Enum.map(fn {:ok, result} -> result end)
SubAgents as Tools
Wrap a SubAgent so other agents can call it:
main_tools = %{
 "customer-finder" => SubAgent.as_tool(
 SubAgent.new(
 description: "Finds customer by description",
 prompt: "Find customer matching: {{description}}",
 signature: "(description :string) -> {customer_id :int}",
 tools: %{"search" => &MyApp.CRM.search/1}
)
),

 "order-fetcher" => SubAgent.as_tool(
 SubAgent.new(
 description: "Fetches recent orders for customer",
 prompt: "Get recent orders for customer {{customer_id}}",
 signature: "(customer_id :int) -> {orders [:map]}",
 tools: %{"list_orders" => &MyApp.Orders.list/1}
)
)
}

Main agent orchestrates the sub-agents
{:ok, step} = SubAgent.run(
 "Find our top customer and get their orders",
 signature: "{summary :string}",
 tools: main_tools,
 llm: llm
)
The main agent sees typed tool signatures and can compose them:
(let [customer (tool/customer-finder {:description "highest revenue"})
 orders (tool/order-fetcher {:customer_id (:customer_id customer)})]
 (return {:summary (str "Found " (count orders) " orders")}))
LLM Inheritance
SubAgents can inherit their LLM from the parent. Atoms like :haiku or :sonnet are resolved via the :llm_registry option - a map from atoms to callback functions that you provide:
Define your LLM callbacks
registry = %{
 haiku: &MyApp.LLM.haiku/1,
 sonnet: &MyApp.LLM.sonnet/1
}

Resolution order (first non-nil wins):
1. agent.llm - Struct override
2. as_tool(..., llm: x) - Bound at tool creation
3. Parent's llm - Inherited at runtime
4. run(..., llm: x) - Required at top level

Always uses haiku (struct override)
classifier = SubAgent.new(
 prompt: "Classify {{text}}",
 signature: "(text :string) -> {category :string}",
 llm: :haiku
)

Inherits from parent (no llm specified)
finder = SubAgent.new(
 prompt: "Find {{item}}",
 signature: "(item :string) -> {id :int}",
 tools: search_tools
)

tools = %{
 "classify" => SubAgent.as_tool(classifier), # Uses haiku
 "find" => SubAgent.as_tool(finder), # Inherits parent
 "summarize" => SubAgent.as_tool(summarizer, llm: :haiku) # Bound
}

Parent uses sonnet; finder inherits it, others use haiku
Registry passed once at top level, inherited by all children
{:ok, step} = SubAgent.run(orchestrator,
 llm: :sonnet,
 llm_registry: registry,
 tools: tools
)
See PtcRunner.SubAgent.run/2 for details on setting up the registry.
LLM-Powered Tools
For tools needing LLM judgment (classification, evaluation, summarization):
alias PtcRunner.SubAgent.LLMTool

tools = %{
 "list_emails" => &MyApp.Email.list/1,

 "evaluate_importance" => LLMTool.new(
 prompt: """
 Evaluate if this email requires immediate attention.

 Consider:
 - Is it from a VIP customer? (Tier: {{customer_tier}})
 - Is it about billing or money?
 - Does it express urgency?

 Email subject: {{email.subject}}
 Email body: {{email.body}}
 """,
 signature: "(email {subject :string, body :string}, customer_tier :string) ->
 {important :bool, priority :int, reason :string}",
 description: "Evaluate if an email requires immediate attention based on VIP status and content"
)
}
The main agent calls it like any other tool:
(let [emails (tool/list_emails {:limit 10})]
 (mapv (fn [e]
 (assoc e :eval
 (tool/evaluate_importance
 {:email e :customer_tier "Silver"})))
 emails))
Batch Classification
Process multiple items in one LLM call:
"classify_batch" => LLMTool.new(
 prompt: """
 Classify each email by urgency.

 Emails:
 {{#emails}}
 - ID {{id}}: "{{subject}}" from {{from}}
 {{/emails}}
 """,
 signature: "(emails [{id :int, subject :string, from :string}]) ->
 [{id :int, urgency :string, reason :string}]",
 description: "Classify a batch of emails by urgency"
)
LLM Selection for Tools
Atoms like :haiku resolve via the llm_registry passed at the top-level run/2 call:
Uses caller's LLM (default)
"deep_analysis" => LLMTool.new(prompt: "...", signature: "...")

Uses cheaper model for simple tasks (resolved via registry)
"quick_triage" => LLMTool.new(
 prompt: "Is '{{subject}}' urgent?",
 signature: "(subject :string) -> {priority :string}",
 llm: :haiku
)
Orchestration Patterns
Pattern 1: Dynamic Agent Creation (spawn_agent)
Let the LLM create SubAgents on-the-fly:
@tool_registry %{
 "email" => %{
 "list_emails" => &MyApp.Email.list/1,
 "read_email" => &MyApp.Email.read/1
 },
 "calendar" => %{
 "find_slots" => &MyApp.Calendar.find_slots/1,
 "create_meeting" => &MyApp.Calendar.create/1
 }
}

def spawn_agent(args, registry, llm) do
 tool_names = args["tools"] || []

 selected_tools =
 tool_names
 |> Enum.map(&Map.get(registry, &1, %{}))
 |> Enum.reduce(%{}, &Map.merge/2)

 {:ok, step} = SubAgent.run(
 args["prompt"],
 llm: llm,
 tools: selected_tools,
 context: args["context"] || %{}
)

 step.return
end

Register meta-tool
tools = %{
 "spawn_agent" => {
 fn args -> spawn_agent(args, @tool_registry, llm) end,
 "(prompt :string, tools [:string], context :map) -> :map"
 }
}
The LLM decides which tool sets each child needs:
(let [emails (tool/spawn_agent {:prompt "Find urgent emails"
 :tools ["email"]})
 meetings (tool/spawn_agent {:prompt "Schedule follow-ups"
 :tools ["calendar"]
 :context emails})]
 (return {:scheduled (count meetings)}))
Pattern 2: Pre-defined SubAgents
For predictable workflows, define agents upfront:
tools = %{
 "email-agent" => SubAgent.as_tool(
 SubAgent.new(
 prompt: "Find urgent emails needing follow-up",
 signature: "() -> {_email_ids [:int]}",
 tools: email_tools
)
),

 "calendar-agent" => SubAgent.as_tool(
 SubAgent.new(
 prompt: "Schedule meetings for emails: {{email_ids}}",
 signature: "(email_ids [:int]) -> {_meeting_ids [:int]}",
 tools: calendar_tools
)
)
}
Pattern 3: Plan Then Execute
Separate planning from execution:
def plan_and_execute(prompt, opts) do
 llm = Keyword.fetch!(opts, :llm)
 tools = Keyword.fetch!(opts, :tools)

 # Phase 1: Plan (no tools)
 {:ok, plan} = SubAgent.run(
 """
 Task: #{prompt}

 Think through your approach. What steps are needed?
 Output a numbered plan. Do NOT execute yet.
 """,
 signature: "{steps [:string]}",
 llm: llm
)

 # Phase 2: Execute with plan as context
 SubAgent.run(
 """
 Execute: #{prompt}

 Your plan:
 #{Enum.join(plan.return.steps, "\n")}

 Follow your plan, adapting as needed.
 """,
 tools: tools,
 llm: llm,
 context: Keyword.get(opts, :context, %{})
)
end
Pattern 4: Structured Plan Executor
LLM generates a plan structure, Elixir executes deterministically:
defmodule PlanExecutor do
 def run(plan, tool_registry, llm) do
 Enum.reduce(plan.steps, %{}, fn step, context ->
 tools =
 step.tools
 |> Enum.flat_map(&Map.get(tool_registry, &1, %{}))
 |> Map.new()

 step_context = Map.take(context, step.needs || [])

 {:ok, result} = SubAgent.run(
 step.prompt,
 llm: llm,
 tools: tools,
 context: step_context
)

 Map.merge(context, result.return || %{})
 end)
 end
end

Plan structure (generated by LLM or defined manually)
plan = %{
 steps: [
 %{id: :find, prompt: "Find urgent emails",
 tools: [:email], needs: []},
 %{id: :draft, prompt: "Draft acknowledgments",
 tools: [:email], needs: [:email_ids]}
]
}

PlanExecutor.run(plan, tool_registry, llm)
Choosing a Pattern
	Task Type	Pattern	Why
	Simple query	Direct run/2	One tool call, no orchestration
	2-3 step chain	Pre-defined SubAgents	Known flow, predictable
	Complex multi-item	Plan then execute	LLM plans batching strategy
	Novel/exploratory	Dynamic spawn_agent	Flexibility to compose
	Production pipeline	Plan executor	Deterministic, auditable

See Also
	Advanced Topics - Multi-turn ReAct and compile pattern
	Observability - Telemetry, debug mode, and tracing
	Signature Syntax - Full signature syntax reference
	Core Concepts - Context, memory, and the firewall
	PtcRunner.SubAgent - API reference

 Testing SubAgents

Strategies for testing SubAgent-based code: mocking LLMs, testing tools, and integration testing.
Prerequisites
	Basic familiarity with SubAgents
	ExUnit testing knowledge

Overview
SubAgents have three testable layers:
	Layer	What to Test	Approach
	Tools	Business logic	Unit tests, no LLM needed
	Prompts	Template expansion	Snapshot with preview_prompt/2
	Integration	Full agent behavior	Mock or real LLM (gated)

Test tools extensively, snapshot prompts for regression, use integration tests sparingly.
Mocking the LLM Callback
The LLM callback is a function. Create mocks in a test helper module:
defmodule MyApp.TestHelpers do
 @doc "Mock LLM that returns a fixed PTC-Lisp program"
 def mock_llm(program) do
 fn _input -> {:ok, "```clojure\n#{program}\n```"} end
 end

 @doc "Mock LLM that returns programs in sequence (for multi-turn)"
 def scripted_llm(programs) do
 {:ok, counter} = Agent.start_link(fn -> 0 end)

 fn _input ->
 turn = Agent.get_and_update(counter, fn n -> {n, n + 1} end)
 program = Enum.at(programs, turn, List.last(programs))
 {:ok, "```clojure\n#{program}\n```"}
 end
 end
end
Usage:
test "finds maximum value" do
 mock = TestHelpers.mock_llm("(return {:max 42})")

 {:ok, step} = SubAgent.run(
 "Find the maximum",
 signature: "{max :int}",
 llm: mock
)

 assert step.return.max == 42
end

test "multi-turn agent" do
 mock = TestHelpers.scripted_llm([
 "(call \"search\" {:query \"test\"})",
 "(return {:count (count data/results)})"
])

 {:ok, step} = SubAgent.run(
 "Search and count",
 signature: "{count :int}",
 tools: %{"search" => fn _ -> [%{id: 1}, %{id: 2}] end},
 llm: mock
)

 assert step.return.count == 2
end
Testing Tools in Isolation
Tools are regular functions—test them directly without SubAgent:
describe "search/1" do
 test "returns matching items" do
 result = MyApp.Tools.search(%{query: "urgent", limit: 5})

 assert is_list(result)
 assert length(result) <= 5
 end

 test "returns empty list for no matches" do
 assert MyApp.Tools.search(%{query: "nonexistent"}) == []
 end
end
Snapshot Testing with preview_prompt/2
Test prompt generation without calling the LLM:
test "system prompt includes expected sections" do
 agent = SubAgent.new(
 prompt: "Find urgent emails for {{user}}",
 signature: "{count :int}",
 tools: %{"list_emails" => &MyApp.Email.list/1}
)

 preview = SubAgent.preview_prompt(agent, context: %{user: "alice@example.com"})

 assert preview.system =~ "list_emails"
 assert preview.user =~ "alice@example.com"
end
For regression testing, compare against stored snapshots. See PtcRunner.SubAgent.preview_prompt/2 for details.
Integration Testing
Gate real LLM tests—they're slow and non-deterministic:
defmodule MyApp.SubAgentIntegrationTest do
 use ExUnit.Case

 @moduletag :e2e

 setup do
 case System.get_env("OPENROUTER_API_KEY") do
 nil -> {:ok, skip: true}
 key -> {:ok, llm: MyApp.LLM.openrouter(key)}
 end
 end

 @tag :e2e
 test "email finder returns valid structure", %{llm: llm} do
 {:ok, step} = SubAgent.run(
 "Find the most recent email",
 signature: "{subject :string, from :string}",
 tools: %{"list_emails" => &MyApp.Email.list_mock/1},
 llm: llm
)

 assert is_binary(step.return.subject)
 end
end
Run with mix test --include e2e. Use temperature: 0.0 for more deterministic results.
Testing Error Paths
test "returns error when agent calls fail" do
 mock = TestHelpers.mock_llm("(fail {:reason :not_found})")

 {:error, step} = SubAgent.run("Find something", signature: "{id :int}", llm: mock)

 assert step.fail.reason == :not_found
end

test "fails when max_turns exceeded" do
 mock = TestHelpers.mock_llm("(+ 1 1)") # Never returns

 {:error, step} = SubAgent.run(
 "Loop forever",
 signature: "{result :int}",
 max_turns: 3,
 llm: mock
)

 assert step.fail.reason == :max_turns_exceeded
end
Other error scenarios follow the same pattern: validation errors (wrong return type), tool errors ({:error, reason}). The agent receives error feedback and can retry or fail gracefully.
Debugging with print_trace
During development and testing, use SubAgent.Debug.print_trace/2 to see exactly what happened:
{:ok, step} = SubAgent.run(agent, llm: llm)

Show a compact view of the execution
SubAgent.Debug.print_trace(step)

Include raw LLM output (reasoning/commentary)
SubAgent.Debug.print_trace(step, raw: true)

Show full LLM messages including the system prompt
SubAgent.Debug.print_trace(step, messages: true)
With messages: true, you'll see the System Prompt, the raw LLM output, and the feedback sent to the LLM. This is essential for debugging prompt issues or tool definition errors.
See Also
	Getting Started - Build your first SubAgent
	Observability - Telemetry, debug mode, and tracing
	PtcRunner.SubAgent - API reference (all options)
	PtcRunner.Step - Result struct reference

 Troubleshooting SubAgents

Common issues and solutions when working with SubAgents.
Agent Loops Until max_turns_exceeded
Symptom: Agent produces correct intermediate results but never returns, hitting max_turns_exceeded.
Cause: The agent is in loop mode but not calling return to complete.
Solutions:
	For single-shot tasks, set max_turns: 1:
PtcRunner.SubAgent.run(prompt,
 max_turns: 1, # Single expression, no explicit return needed
 llm: llm
)

	For agentic tasks, ensure your prompt guides the LLM to call return:
prompt = """
Find the most expensive product.
When done, call (return {:name "...", :price ...})
"""

	Check the trace to see what the agent is doing:
{:error, step} = SubAgent.run(prompt, llm: llm)
SubAgent.Debug.print_trace(step)

Validation Errors (Wrong Return Type)
Symptom: {:error, step} with step.fail.reason == :validation_error.
Cause: The agent's return value doesn't match the signature.
Solutions:
	Check the signature syntax:
Output only
signature: "{name :string, price :float}"

With optional fields
signature: "{name :string, price :float?}"

Arrays
signature: "[{id :int, name :string}]"

	Make the signature more lenient if the LLM struggles:
Instead of strict types
signature: "{count :int}"

Allow any value (validate in Elixir)
signature: "{count :any}"

	Inspect what the agent returned:
{:error, step} = SubAgent.run(prompt, llm: llm)
IO.inspect(step.fail, label: "Validation error")

Tool Not Being Called
Symptom: Agent answers from "knowledge" instead of calling the provided tool.
Cause: The LLM doesn't understand when or how to use the tool.
Solutions:
	Add a clear description:
tools = %{
 "get_products" => {&MyApp.Products.list/0,
 description: "Returns all products with name, price, and category fields."
 }
}

	Be explicit in the prompt:
prompt = "Use the get_products tool to find the most expensive item."

	Verify the tool appears in the system prompt:
You can preview the prompt before running:
preview = SubAgent.preview_prompt(agent, context: %{})
IO.puts(preview.system) # Should list available tools
Or inspect it after execution:
SubAgent.Debug.print_trace(step, messages: true)

Context Too Large
Symptom: LLM responses are slow, expensive, or truncated.
Cause: Too much data in context or return values.
Solutions:
	Use the firewall convention for large data:
_ids hidden from LLM prompts but available to programs
signature: "{summary :string, _ids [:int]}"

	Set prompt limits:
PtcRunner.SubAgent.run(prompt,
 prompt_limit: %{list: 3, string: 500}, # Truncate in prompts
 llm: llm
)

	Enable compression for multi-turn agents:
PtcRunner.SubAgent.run(prompt,
 compression: true, # Coalesces history into single USER message
 llm: llm
)

	Process in stages - fetch data in one agent, analyze in another:
{:ok, step1} = SubAgent.run("Fetch relevant data", tools: fetch_tools, ...)
{:ok, step2} = SubAgent.run("Analyze this data", context: step1, ...)

LLM Returns Prose Instead of Code
Symptom: The LLM explains what it would do instead of writing PTC-Lisp. You may see MaxTurnsExceeded errors with empty traces and no programs generated.
Cause: System prompt not being sent, model confusion, or using wrong code fence format.
Solutions:
	Enable message view to see exactly what the LLM is receiving and returning:
{:error, step} = SubAgent.run(prompt, llm: llm)
Show full LLM messages including the system prompt
SubAgent.Debug.print_trace(step, messages: true)
With messages: true, you'll see the System Prompt (containing instructions and tool definitions), the actual LLM response, and what feedback was sent back. This is essential for verifying that the instructions and tool definitions are correctly formatted and sent to the LLM.

	Ensure your LLM callback includes the system prompt:
llm = fn %{system: system, messages: messages} ->
 # system MUST be included - it contains PTC-Lisp instructions
 full_messages = [%{role: :system, content: system} | messages]
 call_llm(full_messages)
end

	Preview the prompt to verify it contains PTC-Lisp instructions:
preview = SubAgent.preview_prompt(agent, context: %{})
String.contains?(preview.system, "PTC-Lisp") #=> true

	Try a different model - some models follow PTC-Lisp instructions better than others. See Benchmark Evaluation for model comparisons.

Viewing Token Usage
To see token consumption for debugging or optimization:
{:ok, step} = SubAgent.run(prompt, llm: llm)
SubAgent.Debug.print_trace(step, usage: true)
Output:
┌─ Usage ──┐
│ Input tokens: 3,107
│ Output tokens: 368
│ Total tokens: 3,475
│ System prompt: 2,329 (est.)
│ Duration: 1,234ms
│ Turns: 1
└──┘
Options can be combined: print_trace(step, messages: true, usage: true).
Viewing Println Output
When debugging multi-turn agents, println output appears in the trace under "Output:":
{:ok, step} = SubAgent.run(prompt, llm: llm)
SubAgent.Debug.print_trace(step)
Output:
┌─ Turn 1 ──┐
│ Program:
│ (def results (tool/search {:q "test"}))
│ (println "Found:" (count results))
│ results
│ Output:
│ Found: 42
│ Result:
│ [{:id 1, :name "..."}, ...]
└──┘
If you don't see "Output:" in the trace, either no println was called or the LLM didn't use it. The prompt (lisp-addon-multi_turn.md) documents that only println output is shown in feedback—expression results are not displayed.
Parse Errors in Generated Code
Symptom: {:error, {:parse_error, ...}} from the sandbox.
Cause: LLM generated invalid PTC-Lisp syntax.
Solutions:
	Check common mistakes (these are fed back to the LLM automatically):
	Missing operator: (where :status "active") should be (where :status = "active")
	Lists instead of vectors: '(1 2 3) should be [1 2 3]
	Missing else branch: (if cond then) should be (if cond then nil)

	View raw LLM output to see what the LLM generated:
{:error, step} = SubAgent.run(prompt, llm: llm)
SubAgent.Debug.print_trace(step, raw: true)

	The agent retries automatically - parse errors are shown to the LLM for correction. If it keeps failing, the prompt or model may need adjustment.

Tool Errors
Symptom: step.fail.reason == :tool_error.
Cause: Your tool function raised an exception or returned {:error, ...}.
Solutions:
	Return {:error, reason} for expected failures:
def get_user(%{id: id}) do
 case Repo.get(User, id) do
 nil -> {:error, "User #{id} not found"}
 user -> user
 end
end

	Let unexpected errors crash - they'll be logged and the agent will see a generic error.

	Test tools in isolation before using with SubAgents:
MyApp.Tools.get_user(%{id: 123}) # Test directly

State Not Persisting
Symptom: A stored value returns nil in subsequent turns.
Cause: The program didn't use def to store the value.
Solutions:
	Use def to persist values:
;; This persists cached-data for later access
(def cached-data (tool/fetch-data {}))

	Store and return different values:
;; Persists cached-data, returns a summary
(do
 (def cached-data (tool/fetch-data {}))
 (str "Stored " (count cached-data) " items"))

	Access stored values as plain symbols:
;; Access previously stored value
cached-data

See Core Concepts for the full state persistence documentation.
Side Effects Lost in Parallel/HOF Execution
Symptom: println output or tool calls inside pmap, map, filter, or other higher-order functions don't appear in the trace.
Cause: When closures are passed to higher-order functions (HOFs) or executed in parallel (pmap, pcalls), side effects like println and tool calls are discarded. This is a known limitation of the current architecture.
Why this happens: Higher-order functions convert PTC-Lisp closures to Erlang functions for execution. The evaluation context (which tracks prints and tool calls) is not threaded back from these function calls. For parallel execution, merging side effects from multiple concurrent branches would require complex ordering semantics.
Solutions:
	Use doseq for side-effectful iterations:
;; DON'T: println inside map (output lost)
(map (fn [x] (println x) (+ x 1)) items)

;; DO: Use doseq for side effects
(doseq [x items] (println x))
(map (fn [x] (+ x 1)) items)

	Separate side effects from transformations:
;; Process data first
(def results (map process-item items))
;; Then observe
(println "Processed:" (count results))

	For debugging parallel code, use explicit println before/after parallel operations:
(println "Starting parallel processing...")
(def results (pmap expensive-fn items))
(println "Finished with" (count results) "results")

Note: This limitation only affects observability (what appears in the trace). The actual computation results from closures are returned correctly. Tool calls inside parallel execution still execute - they just aren't tracked in the turn's tool call history.
See Also
	Getting Started - Basic SubAgent usage
	Observability - Telemetry, debug mode, and tracing
	Message Compression - Reduce context size in multi-turn agents
	Core Concepts - Context, memory, error handling
	Testing - Mock LLMs and debug strategies
	PtcRunner.SubAgent - API reference

 Observability

Integrate SubAgent with logging, metrics, and debugging tools.
Turn History
Every Step includes a turns field with immutable per-turn execution history:
{:ok, step} = SubAgent.run(agent, llm: llm)

for turn <- step.turns do
 IO.puts("Turn #{turn.number}: #{turn.program}")
 IO.puts(" Tools: #{inspect(Enum.map(turn.tool_calls, & &1.name))}")
end

Aggregated metrics
step.usage.duration_ms
step.usage.total_tokens
Each Turn struct captures:
	number - Turn index (1-based)
	raw_response - Full LLM output including reasoning
	program - Extracted PTC-Lisp code
	result - Execution result
	prints - Output from println calls
	tool_calls - Tools invoked with args and results
	memory - State snapshot after this turn
	success? - Whether the turn succeeded

Debug Mode
Use print_trace/2 to visualize execution:
{:ok, step} = SubAgent.run(agent, llm: llm)

Default: show programs and results
SubAgent.Debug.print_trace(step)

Include raw LLM output (reasoning/commentary)
SubAgent.Debug.print_trace(step, raw: true)

Show what the LLM sees (compressed format)
SubAgent.Debug.print_trace(step, view: :compressed)

Show actual messages sent to LLM
SubAgent.Debug.print_trace(step, messages: true)

Include token usage
SubAgent.Debug.print_trace(step, usage: true)
View Options
	Option	Description
	view: :turns	(default) Show programs + results from Turn structs
	view: :compressed	Show what LLM sees when compression is enabled
	raw: true	Include raw_response in turns view
	messages: true	Show full messages sent to LLM each turn
	usage: true	Add token statistics after trace

Options can be combined: print_trace(step, messages: true, usage: true).
Full API: See PtcRunner.SubAgent.Debug.print_trace/2.

Trace Filtering
Control trace collection for production optimization:
Only keep trace on failure
SubAgent.run(agent, llm: llm, trace: :on_error)

Disable tracing entirely
SubAgent.run(agent, llm: llm, trace: false)
Message Compression
By default, multi-turn agents send full conversation history to the LLM. Enable compression to reduce token usage:
SubAgent.run(agent, llm: llm, compression: true)
To see what the LLM receives with compression:
SubAgent.Debug.print_trace(step, view: :compressed)
Full turn history is always preserved in step.turns regardless of compression.
Full guide: See Message Compression for details on how compression works and implementing custom strategies.

Telemetry Events
SubAgent emits :telemetry events for integration with Prometheus, OpenTelemetry, or custom handlers:
:telemetry.attach_many(
 "my-handler",
 [
 [:ptc_runner, :sub_agent, :run, :stop],
 [:ptc_runner, :sub_agent, :llm, :stop],
 [:ptc_runner, :sub_agent, :tool, :stop]
],
 &MyApp.Telemetry.handle_event/4,
 nil
)
Available Events
	Event	Measurements	Use Case
	run:start/stop	duration	Total execution time
	turn:start/stop	duration, tokens	Per-turn metrics
	llm:start/stop	duration, tokens	LLM latency, cost tracking
	tool:start/stop/exception	duration	Tool performance

Duration is in native time units. Convert with:
System.convert_time_unit(duration, :native, :millisecond)
Full event table: See PtcRunner.SubAgent.Telemetry.span/3.

Production Tips
	Use trace: :on_error to reduce memory in production
	Attach telemetry handlers for latency and cost dashboards
	Token counts are in step.usage (requires LLM to return token info)
	Use step.usage.llm_requests to track API call volume

See Also
	Message Compression - Reduce token usage in multi-turn agents
	Troubleshooting - Common issues and debugging
	Testing - Mock LLMs and test strategies
	PtcRunner.SubAgent.Telemetry.span/3 - Telemetry module with event reference
	PtcRunner.SubAgent.Debug.print_trace/2 - Trace inspection API

 Message Compression

This guide explains message compression: what problem it solves, how to enable it, and how to implement custom strategies.
The Problem
In multi-turn execution, the LLM generates programs that build on previous turns:
Turn 1: (def x 1) (println x)
Turn 2: (def x 1) (def y 2) (println (+ x y)) # repeats turn 1
Turn 3: (def x 1) (def y 2) (def z 3) ... # repeats turn 1+2
Without compression, the message history accumulates full programs from every turn. The LLM sees all previous versions of its evolving program. This:
	Wastes tokens - Repeated code inflates context size
	Confuses the model - Multiple versions of the same definitions
	Reduces cache hits - Dynamic history defeats prompt caching

The Solution
Compression transforms the turn history into a compact format. Instead of showing previous programs, it shows:
	What was defined (symbols available)
	What actions were taken (tool calls)
	What was observed (println output)
	Whether execution succeeded or failed

The LLM doesn't need to see its previous code - it needs the results of its previous code.
Enabling Compression
Enable with default strategy
SubAgent.run(prompt, llm: llm, compression: true)

Explicit strategy
alias PtcRunner.SubAgent.Compression.SingleUserCoalesced
SubAgent.run(prompt, llm: llm, compression: SingleUserCoalesced)

With options
SubAgent.run(prompt, llm: llm, compression: {SingleUserCoalesced, println_limit: 10})
SingleUserCoalesced Strategy
The default strategy coalesces all turn history into a single USER message. This prevents the LLM from mimicking summary formats (which could happen if summaries appeared in ASSISTANT messages).
Message Structure
[SYSTEM] Static: language reference, return/fail usage, output format
[USER] Dynamic: mission + namespaces + execution history + turns left
What the LLM Sees
Find well-reviewed products in stock

;; === tool/ ===
(tool/search-reviews query) ; query:string -> string

;; === data/ ===
data/products ; list[7], sample: {:name "Laptop", :price 1200}

;; === user/ (your prelude) ===
electronics ; = list[4], sample: {:name "Laptop"}

;; Tool calls made:
; search-reviews("Electronics")

;; Output:
Found 5 matching products

Turns left: 4
Namespace Model
	Namespace	Content	Changes?
	tool/	Available tools with signatures	No (stable)
	data/	Input context data	No (stable)
	user/	Accumulated definitions (prelude)	Yes (grows)

The tool/ and data/ sections are stable across turns, enabling prompt caching. Only user/ changes as definitions accumulate.
Error Handling
Errors use conditional collapsing:
	Current turn	Error display
	Succeeds	All previous errors collapsed (clean view)
	Fails	Most recent error shown (helps recovery)

Once the LLM recovers from an error, old mistakes become noise and are hidden.
Configuration Options
	Option	Default	Description
	println_limit	15	Most recent println calls shown
	tool_call_limit	20	Most recent tool calls shown
	sample_limit	3	Max items shown in list/map samples
	sample_printable_limit	80	Max chars for string samples

SubAgent.run(prompt,
 llm: llm,
 compression: {SingleUserCoalesced, println_limit: 10, tool_call_limit: 15}
)
Older entries are dropped (FIFO) but preserved in step.turns for debugging.
Sample Limits
The sample_limit and sample_printable_limit options control how values are displayed in the data/ and user/ namespace sections:
Default: truncated samples
matches ; = list[50], sample: [{:file "lib/ptc_runner/..." ...} ...] (showing first 3)

With higher limits: more context preserved
SubAgent.run(prompt,
 llm: llm,
 compression: {SingleUserCoalesced, sample_limit: 10, sample_printable_limit: 200}
)
Now shows: [{:file "lib/ptc_runner/lisp/eval.ex" ...} ...] (showing first 10)
Increase these limits when the LLM needs to see more context (e.g., full file paths in grep results).
Debugging Compression
To see what the LLM receives:
{:ok, step} = SubAgent.run(prompt, llm: llm, compression: true)

Show compressed view
SubAgent.Debug.print_trace(step, view: :compressed)

Compare with full turn history
SubAgent.Debug.print_trace(step)
Full history is always preserved in step.turns regardless of compression.
Compression Statistics
Use usage: true to see compression metrics:
SubAgent.Debug.print_trace(step, usage: true)
This displays a compression section showing what was dropped:
+- Compression ---+
| Strategy: single-user-coalesced
| Turns: 9 compressed
| Tool calls: 20/25 shown (5 dropped)
| Printlns: 15/18 shown (3 dropped)
| Errors: 2 turn(s) collapsed
+---+
The stats are also available programmatically in step.usage.compression:
step.usage.compression
=> %{
enabled: true,
strategy: "single-user-coalesced",
turns_compressed: 9,
tool_calls_total: 25,
tool_calls_shown: 20,
tool_calls_dropped: 5,
printlns_total: 18,
printlns_shown: 15,
printlns_dropped: 3,
error_turns_collapsed: 2
}
	Metric	Description
	turns_compressed	Number of turns coalesced into single message
	tool_calls_dropped	Tool calls exceeding tool_call_limit
	printlns_dropped	Println output exceeding println_limit
	error_turns_collapsed	Failed turns hidden from LLM (all if recovered, all but last if still failing)

When to Use Compression
Enable compression when:
	Multi-turn agents with many turns (5+)
	Agents that make many tool calls
	Context size is a concern (cost, latency)
	LLM seems confused by seeing old program versions

Skip compression when:
	Single-turn agents (max_turns: 1) — compression is automatically skipped even if enabled
	Simple agents with few turns
	Debugging (easier to see full history)

Compression in Practice
Note: The observations below are based on limited testing. Results will vary depending on task complexity, LLM model, and prompt design.

Observed Trade-offs
In one example comparing a multi-turn agent with compression vs. a single-turn approach:
	Aspect	With Compression	Without
	Turns	6	1
	Tokens	~18k input	~2.4k input
	Duration	~35s	~14s
	Confidence	92%	60%
	Answer quality	Comprehensive	Incomplete

The single-turn approach was faster and cheaper, but produced an inaccurate answer. The compressed multi-turn approach allowed the LLM to:
	Recover from errors — When distinct-by failed (undefined), the next turn used distinct instead
	Iterate systematically — Read the right files after initial grep results
	Build understanding — Each turn refined the investigation based on previous findings

When Compression Helps Most
Based on initial observations, compression appears most beneficial when:
	Tasks require exploration — The LLM doesn't know upfront which files or data matter
	Errors are likely — Syntax mistakes, undefined functions, or incorrect assumptions
	Quality matters more than speed — The extra tokens/time pays off in accuracy

Potential Pitfalls
Without compression (or with single-turn execution), we've observed:
	LLMs attempting too much at once in a single massive program
	Redundant tool calls when earlier results could have guided the search
	Premature returns with low-confidence answers

These patterns suggest that the iterative feedback loop enabled by compression helps the LLM stay on track.
Implementing Custom Strategies
For advanced use cases, you can implement the Compression behaviour:
defmodule MyApp.CustomCompression do
 @behaviour PtcRunner.SubAgent.Compression

 @impl true
 def name, do: "custom"

 @impl true
 def to_messages(turns, memory, opts) do
 # turns: list of %Turn{} structs (immutable history)
 # memory: accumulated user definitions
 # opts: keyword list with :prompt, :system_prompt, :tools, :data, etc.

 system_prompt = Keyword.get(opts, :system_prompt, "")
 mission = Keyword.get(opts, :prompt, "")

 # Build your message array
 [
 %{role: :system, content: system_prompt},
 %{role: :user, content: build_user_content(mission, turns, memory, opts)}
]
 end

 defp build_user_content(mission, turns, memory, opts) do
 # Your compression logic here
 # ...
 end
end
Available Data in opts
	Key	Type	Description
	:prompt	string	The mission/prompt text
	:system_prompt	string	Static system prompt
	:tools	map	Tool name → Tool struct
	:data	map	Input context data
	:turns_left	integer	Remaining turns
	:println_limit	integer	Max println entries
	:tool_call_limit	integer	Max tool call entries
	:sample_limit	integer	Max items in list/map samples
	:sample_printable_limit	integer	Max chars for string samples
	:signature	string	Output signature (if any)

Turn Struct Fields
Each %Turn{} provides:
	Field	Type	Description
	number	integer	Turn index (1-based)
	program	string	Extracted PTC-Lisp code
	result	term	Execution result
	prints	list	Output from println calls
	tool_calls	list	Tools invoked with args/results
	memory	map	State snapshot after turn
	success?	boolean	Whether turn succeeded

Using Your Strategy
SubAgent.run(prompt,
 llm: llm,
 compression: MyApp.CustomCompression
)

Or with options
SubAgent.run(prompt,
 llm: llm,
 compression: {MyApp.CustomCompression, my_option: "value"}
)
See Also
	Observability - Debug mode and tracing
	Advanced Topics - Prompt structure details
	PtcRunner.SubAgent.Compression - Behaviour documentation
	PtcRunner.SubAgent.Compression.SingleUserCoalesced - Default implementation

 Advanced Topics

This guide covers advanced SubAgent features: multi-turn ReAct patterns, the compile pattern for batch processing, and system prompt internals.
Multi-Turn Patterns (ReAct)
The SubAgent loop naturally supports ReAct (Reason + Act). Each turn's result merges into the context for the next turn.
Implicit Context Chaining
Turn 1: LLM program -> execute -> result merged to data/
Turn 2: LLM sees data/results, generates next program
Turn 3: LLM calls return with final answer
Example: Discovery and Reasoning
{:ok, step} = SubAgent.run(
 "Find urgent emails from Acme",
 signature: "{summary :string, _ids [:int]}",
 tools: %{
 "search_emails" => &MyApp.Email.search/1,
 "count_results" => &MyApp.Email.count/1
 },
 max_turns: 5,
 llm: llm
)
Turn 1: Discovery
;; Store results in user namespace
(def results (tool/search-emails {:query "Acme Corp"}))
The LLM sees in its next prompt:
Program Result:
{:results [{id: 101, subject: "Urgent...", _body: <Firewalled>}, ...]}
(8 more items omitted. Full data available in data/results)
Turn 2: Filter and Return
;; Process all results from data/results
(let [urgent (filter (fn [e] (includes? (:subject e) "Urgent")) data/results)]
 (return {
 :summary (str "Found " (count urgent) " urgent emails")
 :_ids (mapv :id urgent)
 }))
Visibility Rules
	Data Type	Lisp Context	LLM Prompt
	Normal fields	Full value	Visible
	Firewalled (_)	Full value	<Firewalled>
	Large lists	Full list	Sample (first N)
	Large strings	Full string	Truncated
	Memory	Full value	Hidden

When data is truncated, the system appends:
"[98 more items omitted. Full data available in data/results]"

Investigation Agents (Zero Tools)
Sometimes you have all data in context but it's too large for one pass:
data = %{
 reports: [...] # thousands of items
}

max_turns > 1 with tools enables agentic loop
{:ok, step} = SubAgent.run(
 "Find the report with highest anomaly score",
 signature: "{report_id :int, reasoning :string}",
 context: data,
 max_turns: 5,
 llm: llm
)
The LLM can "walk" the data across turns:
;; Turn 1: Extract summaries
(mapv (fn [r] {:id (:id r) :score (:score r)}) data/reports)

;; Turn 2: Find max and get details
(first (filter #(= (:id %) 123) data/reports))

;; Turn 3: Return with reasoning
(return {:report_id 123 :reasoning "..."})
Debugging
Prompt Preview
Inspect expanded prompts without executing:
preview = SubAgent.preview_prompt(agent,
 context: %{user: "alice", sender: "bob@example.com"}
)

IO.puts(preview.system) # Full system prompt
IO.puts(preview.user) # Expanded user prompt
Telemetry, debug mode, and trace inspection: See Observability.

Output Truncation
Large results are automatically truncated at different stages to manage context size and memory:
	Option	Default	Used For
	feedback_limit	10	Max collection items shown to LLM in turn feedback
	feedback_max_chars	512	Max chars in turn feedback message
	history_max_bytes	512	Truncation limit for *1/*2/*3 history access
	result_limit	50	Inspect :limit for final result formatting
	result_max_chars	500	Max chars in final result string
	max_print_length	2000	Max chars per println call

Configure via format_options:
SubAgent.new(
 prompt: "Analyze large dataset",
 format_options: [
 feedback_limit: 20, # Show more items to LLM
 feedback_max_chars: 1024 # Allow longer feedback
]
)
When data is truncated in turn feedback, the system appends:
"... (truncated)"

When lists are truncated in prompts, the system appends:
"[98 more items omitted. Full data available in data/results]"

Compile Pattern
For repetitive batch processing, separate the cognitive step (writing logic) from execution (running at scale).
What Can Be Compiled
	Tool Type	Compilable?	Why
	Pure Elixir functions	Yes	Deterministic
	LLMTool	No	Needs LLM
	SubAgent as tool	No	Needs LLM

1. Derive Phase
LLM analyzes sample data and generates pure PTC-Lisp:
scorer = SubAgent.new(
 prompt: "Extract anomaly score and reasoning from report",
 signature: "(report :map) -> {score :float, reason :string}",
 tools: %{"lookup_threshold" => &MyApp.lookup_threshold/1}
)

{:ok, compiled} = SubAgent.compile(scorer,
 llm: llm,
 sample: sample_reports
)

IO.puts(compiled.source)
#=> (fn [report] (let [...] {...}))
2. Validate (Optional)
Test against known cases:
case SubAgent.validate_compiled(compiled, test_reports) do
 :ok -> IO.puts("Verified!")
 {:error, failures} -> Logger.warning("Failed: #{length(failures)}")
end
3. Apply Phase
Execute at scale with zero LLM cost:
results = Enum.map(all_reports, fn r ->
 compiled.execute(%{report: r})
end)
Persistence
Save derived logic for later:
File.write!("agents/scorer.lisp", compiled.source)

Load later
{:ok, compiled} = SubAgent.load(
 File.read!("agents/scorer.lisp"),
 signature: "(report :map) -> {score :float, reason :string}"
)
Prompt Structure
Understanding what the LLM receives helps debug unexpected behavior.
Message Layout
	Message	Content	Caching
	SYSTEM	Role, language reference, return/fail usage, output format	Static (cacheable)
	USER	Mission + namespaces + execution history + turns left	Partial (tool/data stable)

Note: With compression enabled, tools and data are in the USER message (not SYSTEM) to leverage prompt caching on the stable content.
Namespace Model
The USER message presents three namespaces:
;; === tool/ ===
(tool/search query) ; query:string -> [:map]

;; === data/ ===
data/products ; list[7], sample: {:name "Laptop"}

;; === user/ (your prelude) ===
cached-results ; = list[5], sample: {:id 1}
	Namespace	Meaning	Mutable?
	tool/	Available tools (side effects)	No (external)
	data/	Input context (read-only)	No (external)
	user/	Your definitions (prelude)	Yes (grows each turn)

Viewing the Prompt
Preview without executing
preview = SubAgent.preview_prompt(agent, context: %{})
IO.puts(preview.system)
IO.puts(preview.user)

After execution, see compressed view
SubAgent.Debug.print_trace(step, view: :compressed)
Strict Termination
If the LLM provides text without a code block or terminal form:
	Loop records the reasoning
	Appends: "Your mission is still active. Provide a PTC-Lisp program or call 'return'."
	LLM must provide a functional result

PTC-Lisp Quick Reference
Core
(tool/tool-name {:arg value}) ; Call tool
data/key ; Access context
(def key value) ; Store value
key ; Access stored value
(defn name [args] body) ; Define function
Control Flow
(do expr1 expr2) ; Sequential, returns last
(let [x 1 y 2] (+ x y)) ; Local bindings
(if cond then else) ; Conditional
(when cond expr) ; Conditional without else
(cond c1 e1 c2 e2 :else e3) ; Multi-branch
(fn [x] (* x 2)) ; Anonymous function
Collections
(map f coll) ; Transform
(mapv f coll) ; Transform to vector
(filter pred coll) ; Keep matching
(reduce f init coll) ; Fold
(first coll) (last coll) ; Access
(count coll) (empty? coll) ; Info
(sort-by :key coll) ; Sort
(group-by :key coll) ; Group
Maps
(get m :key) ; Access
(get-in m [:a :b]) ; Nested access
(assoc m :key val) ; Add/update
(merge m1 m2) ; Combine
(keys m) (vals m) ; Extract
Keywords as Functions
(:id item) ; Same as (get item :id)
(mapv :id items) ; Extract :id from each
Type Conversion
(parse-long "42") ; String to int (nil on failure)
(parse-double "3.14") ; String to float
Glossary
	Term	Definition
	Signature	Contract defining inputs and outputs
	Step	Result struct with return, fail, memory, trace
	Firewall	_ prefix hiding data from LLM prompts
	Data Inventory	Type info section in system prompt
	Turn	One LLM generation + execution cycle
	Mission	Complete SubAgent execution until return/fail

See Also
	Core Concepts - Context, memory, and the firewall
	Observability - Telemetry, debug mode, and tracing
	Prompt Customization - LLM-specific prompts and language specs
	Patterns - Chaining, orchestration, and composition
	Signature Syntax - Type system details
	PtcRunner.SubAgent - Full API reference
	PTC-Lisp Specification - Language reference

 Prompt Customization

This guide covers customizing SubAgent system prompts for different LLMs, execution modes, and use cases.
System Prompt Structure
SubAgent generates a system prompt with these sections:
	Role & Purpose - Defines agent as PTC-Lisp generator
	Rules - Boundaries for code generation
	Data Inventory - Typed view of data/ variables
	Tool Schemas - Available tools with signatures
	Language Reference - PTC-Lisp syntax (customizable)
	Output Format - Code block requirements (customizable)
	Mission - User's task from prompt option

Customization Options
The system_prompt field accepts three forms:
Map with options
system_prompt: %{
 prefix: "You are an expert data analyst.",
 suffix: "Always validate results before returning.",
 language_spec: :multi_turn,
 output_format: "..."
}

Function transformer
system_prompt: fn prompt -> "CUSTOM PREFIX\n\n" <> prompt end

Complete override (use with caution)
system_prompt: "Your entire custom prompt here..."
Map Options
	Option	Description
	:prefix	Prepended before generated content
	:suffix	Appended after generated content
	:language_spec	Replaces PTC-Lisp reference section
	:output_format	Replaces output format instructions

Language Spec Profiles
The :language_spec option controls the PTC-Lisp reference shown to the LLM:
	Profile	Description	Use Case
	:single_shot	Base language reference	Quick lookups, no memory
	:multi_turn	Base + memory addon	Conversational analysis

Single-turn: no memory docs needed
SubAgent.new(
 prompt: "Count items over $100",
 max_turns: 1,
 system_prompt: %{language_spec: :single_shot}
)

Multi-turn: include memory documentation
SubAgent.new(
 prompt: "Analyze sales trends",
 max_turns: 5,
 system_prompt: %{language_spec: :multi_turn}
)
Dynamic Language Spec
Use a callback to change prompts based on runtime context:
SubAgent.new(
 prompt: "Process the data",
 system_prompt: %{
 language_spec: fn ctx ->
 if ctx.turn == 1 do
 PtcRunner.Lisp.LanguageSpec.get(:single_shot)
 else
 PtcRunner.Lisp.LanguageSpec.get(:multi_turn)
 end
 end
 }
)
The callback receives:
	Key	Type	Description
	:turn	integer	Current turn number (1-indexed)
	:model	atom | function	The LLM reference
	:memory	map	Current memory state
	:messages	list	Conversation history

LLM-Specific Prompts
Different models may need different prompt styles:
defmodule MyApp.Prompts do
 def language_spec_for_model(ctx) do
 base = PtcRunner.Lisp.LanguageSpec.get(:single_shot)

 case ctx.model do
 :gemini ->
 # Gemini benefits from more examples
 base <> "\n\n" <> extra_examples()

 :claude ->
 # Claude handles concise prompts well
 base

 _ ->
 base
 end
 end

 defp extra_examples do
 """
 ## Additional Examples

    ```clojure
    ;; Filtering with multiple conditions
    (->> data/orders
         (filter (all-of (where :status = "pending")
                         (where :total > 100)))
         (count))
    ```
 """
 end
end

Usage
SubAgent.new(
 prompt: "Analyze orders",
 system_prompt: %{language_spec: &MyApp.Prompts.language_spec_for_model/1}
)
Custom Prompt Addons
Build on top of library prompts:
defmodule MyApp.Prompts do
 alias PtcRunner.Lisp.LanguageSpec

 def with_domain_context do
 """
 #{LanguageSpec.get(:single_shot)}

 ## Domain Context

 - Orders have statuses: pending, shipped, delivered, cancelled
 - Products belong to categories: electronics, clothing, food
 - Use `data/current_user` for permission checks
 """
 end
end

SubAgent.new(
 prompt: "Find high-value orders",
 system_prompt: %{language_spec: MyApp.Prompts.with_domain_context()}
)
Single-Turn vs Multi-Turn
Single-Turn (Classification, Extraction)
For simple tasks with one LLM call:
SubAgent.new(
 prompt: "Classify sentiment: {{text}}",
 signature: "{sentiment :string, confidence :float}",
 max_turns: 1,
 system_prompt: %{language_spec: :single_shot}
)
No return call needed - the expression result is returned directly.
Multi-Turn (Investigation, Analysis)
For complex tasks requiring iteration:
SubAgent.new(
 prompt: "Find anomalies in the dataset",
 signature: "{anomalies [:map], summary :string}",
 tools: analysis_tools,
 max_turns: 10,
 system_prompt: %{language_spec: :multi_turn}
)
The :multi_turn profile documents:
- return/fail for finishing the agentic loop and returning values to caller
- println for outputting values to LLM context (expression results are NOT shown)
- State persistence with def and *1/*2/*3 for previous results
Prompt Preview
Inspect the generated prompt without execution:
agent = SubAgent.new(
 prompt: "Find emails for {{user}}",
 system_prompt: %{
 prefix: "You are a helpful assistant.",
 language_spec: :multi_turn
 }
)

preview = SubAgent.preview_prompt(agent, context: %{user: "alice"})

IO.puts(preview.system) # Full system prompt
IO.puts(preview.user) # Expanded user prompt
See Also
- Core Concepts - Context, memory, and firewalls
- Advanced Topics - System prompt structure details
- PtcRunner.SubAgent.SystemPrompt - API reference for prompt generation
- PtcRunner.Lisp.LanguageSpec - Available language spec profiles

 Signature Syntax

Signatures define the contract between agents and tools - what inputs they accept and what outputs they produce.
Overview
signature: "(query :string, limit :int) -> {count :int, items [{id :int}]}"
Signatures are:
	Token-efficient - Compact syntax optimized for LLM prompts
	Human-readable - Intuitive arrow notation for function contracts
	Validated at runtime - Inputs and outputs are checked against the signature

Basic Structure
(inputs) -> output
Or for output-only signatures (common for top-level agents):
output
These are equivalent:
signature: "() -> {name :string, price :float}"
signature: "{name :string, price :float}"

Primitive Types
	Type	Description	Example Values
	:string	UTF-8 string	"hello", ""
	:int	Integer	42, -1, 0
	:float	Floating point	3.14, -0.5
	:bool	Boolean	true, false
	:keyword	Keyword/atom	:pending, :active
	:any	Any value	Matches everything

Collection Types
Lists
[:int] ; List of integers
[:string] ; List of strings
[:map] ; List of maps
[{id :int, name :string}] ; List of typed maps
Maps with Typed Fields
{id :int, name :string}
{customer {id :int, name :string}} ; Nested
:map ; Any map (dynamic keys)

Optional Fields
Use ? suffix for optional (nullable) fields:
{id :int, email :string?}
The field can be nil or omitted entirely.

Named Parameters
Input parameters have names that become available in the signature:
signature: "(user {id :int, name :string}, limit :int) -> [{order_id :int}]"
Multiple parameters are comma-separated. The names user and limit:
	Document what each parameter represents
	Are validated against template placeholders in prompts
	Appear in tool schemas shown to LLMs

Firewalled Fields
Prefix with _ to hide from LLM prompts:
signature: "{summary :string, count :int, _email_ids [:int]}"
Firewalled fields:
	Available in Lisp context (data/_email_ids)
	Available to Elixir code (step.return._email_ids)
	Hidden from LLM prompt text (shown as <Firewalled>)
	Hidden from parent LLM when agent is used as tool

This protects LLM context windows while preserving data flow.

Examples
Simple Output
signature: "{answer :int}"
LLM must return: {:answer 42}
Multiple Fields
signature: "{name :string, price :float, in_stock :bool}"
LLM must return: {:name "Widget" :price 99.99 :in_stock true}
List Output
signature: "[{id :int, title :string}]"
LLM must return: [{:id 1 :title "First"} {:id 2 :title "Second"}]
With Inputs
signature: "(user_id :int) -> {name :string, orders [:map]}"
Called as: (tool/agent {:user_id 123})
Returns: {:name "Alice" :orders [...]}
Complex Nested
signature: """
(query :string, options {limit :int?, sort :string?}) ->
{results [{id :int, score :float, metadata :map}], total :int}
"""
Firewalled Data
signature: "{summary :string, _raw_data [:map]}"
Parent sees: {summary :string}
Elixir gets: %{summary: "...", _raw_data: [...]}

Validation Behavior
Input Validation
When a tool is called, inputs are validated against signature parameters:
Signature: (id :int, name :string) -> :bool
Tool call: (tool/check {:id "42" :name "Alice"})

Behavior:
1. Coerce "42" -> 42 (string to int, with warning)
2. Validate "Alice" is string
3. Proceed with call
Output Validation
When return is called, data is validated against the return type:
Signature: () -> {count :int, items [:string]}
Return: (return {:count 5 :items ["a" "b"]})

Behavior:
1. Validate count is int
2. Validate items is list of strings
3. Mission succeeds

If validation fails, error is fed back to LLM for self-correction
Coercion Rules
Lenient coercion for inputs (LLMs sometimes quote numbers):
	From	To	Behavior
	"42"	:int	42 (with warning)
	"3.14"	:float	3.14 (with warning)
	"true"	:bool	true (with warning)
	42	:float	42.0 (silent)

Output validation is strict - no coercion applied.
Validation Modes
SubAgent.run(agent, signature_validation: :enabled, llm: llm)
	Mode	Behavior
	:enabled	Validate, fail on errors, allow extra fields (default)
	:warn_only	Validate, log warnings, continue
	:disabled	Skip all validation
	:strict	Validate, fail on errors, reject extra fields

Error Messages
Validation errors include paths for precise debugging:
Tool validation errors:
- results[0].customer.id: expected int, got string "abc"
- results[2].amount: expected float, got nil

Tool validation warnings:
- limit: coerced string "10" to int
Errors are fed back to the LLM for self-correction.

Type Mapping from @spec
When auto-extracting from Elixir specs:
	Elixir Type	Maps To
	String.t()	:string
	integer()	:int
	float()	:float
	boolean()	:bool
	atom()	:keyword
	map()	:map
	list(t)	[:t]
	%{key: type}	{:key :type}

Types that require explicit signatures:
	pid(), reference() - No JSON equivalent
	Complex unions - {:ok, t} | {:error, term}

	Custom @type definitions

Template Placeholders
Every {{placeholder}} in a prompt must match a signature input:
prompt: "Find emails for {{user.name}} about {{topic}}"
signature: "(user {name :string}, topic :string) -> {count :int}"
Validation happens at registration time, not runtime.
	Placeholder	Valid?	Notes
	{{name}}	Yes	Simple variable
	{{user.name}}	Yes	Nested access
	{{user.address.city}}	Yes	Deep nesting allowed
	{{user-name}}	Yes	Hyphens allowed in names
	{{user_name}}	Yes	Underscores allowed
	{{123}}	No	Names must start with letter
	{{}}	No	Empty placeholder invalid
	{{ name }}	Yes	Whitespace trimmed

Schema Generation for Prompts
Tool schemas are rendered in the LLM prompt using signature syntax:
Tools you can call

search(query :string, limit :int) -> [{id :int, title :string}]
 Search for items matching query.

get_user(id :int) -> {name :string, email :string?}
 Fetch user by ID. Email may be null.

Syntax Summary
Primitives:
 :string :int :float :bool :keyword :any

Lists:
 [:int] # list of integers
 [:string] # list of strings
 [{id :int, name :string}] # list of maps

Maps:
 {id :int, name :string} # map with required fields
 :map # any map (dynamic keys)

Optional (? suffix):
 {id :int, email :string?} # email is optional

Nested:
 {user {id :int, address {city :string, zip :string}}}

Full signature:
 (param1 :type, param2 :type) -> output_type

Shorthand (no inputs):
 {count :int} # same as () -> {count :int}

Edge Cases
Valid Edge Cases
	Signature	Valid?	Meaning
	":any"	Yes	Any output, no validation
	"() -> :any"	Yes	Same as above
	"{}"	Yes	Empty map (must be a map, but no required fields)
	"[]"	No	Invalid - list of what? Use [:any]
	"[:any]"	Yes	List of anything
	"[{}]"	Yes	List of empty maps
	""	No	Invalid - empty string is not a valid signature

Nesting Depth
There is no hard limit on nesting depth, but deeply nested types should be avoided for readability:
Valid but not recommended
{user {profile {settings {theme {colors {primary :string}}}}}}

Prefer flatter structures or use :map for deep nesting
{user {profile :map}}
Type Coercion in Nested Structures
Coercion applies recursively to nested types:
Signature: [{id :int, name :string}]
Input: [%{"id" => "42", "name" => "Alice"}]
Result: [%{id: 42, name: "Alice"}] (with coercion warning for id)

Future Considerations
Enums (v2+)
If enum types are needed, extend the shorthand syntax:
(status :enum[pending active closed]) -> {ok :bool}
Union Types (v2+)
If union types are needed:
(value :string|:int) -> {result :any}
Refinements (v2+)
If value constraints are needed:
(page :int[>0], limit :int[1..100]) -> [{id :int}]
These extensions should be added only when genuine use cases emerge.

See Also
	Core Concepts - How signatures interact with context
	Getting Started - Using signatures in your first agent
	Patterns - Chaining agents using signatures
	PtcRunner.SubAgent - API reference

 Benchmark Evaluation

Benchmark results for PTC-Lisp with guidance on model selection and improving reliability.
Results Summary (v0.4.1)
	Model	Pass Rate	Duration	Cost	Notes
	Claude Haiku 4.5	100%	4.4m	$0.024	Highest reliability
	Gemini 2.5 Flash	92.6%	2.8m	$0.009	Fastest, good value
	DeepSeek v3	92.6%	9.2m	$0.009	Cost-effective

Configuration: 19 tests, 5 runs per model, schema data mode (January 2026)
Interpreting Results
Take these numbers with a grain of salt. This is a single benchmark run with a specific test suite. Results vary between runs, and small percentage differences (100% vs 92.6%) represent only a few failed tests out of 95.
What We Can Say
	All models handle PTC-Lisp syntax well. Basic to intermediate queries (filtering, aggregation, sorting, joins) pass consistently across all models.
	Complex multi-step analysis is harder. Tests involving temporal trends, budget optimization, and chained aggregations caused most failures.
	Failure patterns are similar. DeepSeek and Gemini failed on the same tests, suggesting test difficulty rather than model-specific issues.

What We Can't Say
	That 100% means "best model" for your use case
	That 92.6% means a model is unreliable
	That these results generalize to all domains

Example: Generated Program
Here's a program generated by Claude Haiku for a budget optimization query. It demonstrates what PTC-Lisp can express:
; Query: Select products to restock with $50,000 budget, maximizing expected revenue

(def products data/products)

; Add calculated fields: value_ratio and expected_revenue
(def enriched
 (map (fn [p]
 (assoc p
 :value_ratio (/ (:stock p) (:price p))
 :expected_revenue (* (:price p) (:stock p))))
 products))

; Sort by value_ratio descending (greedy: best bang for buck first)
(def sorted-products (sort-by :value_ratio > enriched))

; Greedy selection: pick products until budget exhausted
(def budget 50000)
(def result
 (reduce
 (fn [acc product]
 (let [current-cost (:total_cost acc)
 new-cost (+ current-cost (:price product))]
 (if (<= new-cost budget)
 (-> acc
 (update :product_ids conj (:id product))
 (update :total_cost + (:price product))
 (update :expected_revenue + (:expected_revenue product)))
 acc)))
 {:product_ids [] :total_cost 0 :expected_revenue 0}
 sorted-products))

(return result)
This shows data enrichment, sorting, the accumulator pattern with reduce, and thread-first macros — all generated from a natural language query.
Test Configuration
Test Categories
	Level	Tests	Turn Limit	Description
	Basic	1-5	1	count, filter, sum, avg
	Intermediate	6-10	1	compound filters, sort, find extremes
	Advanced	11-15	1	cross-dataset joins, grouped aggregation
	Multi-turn	16-19	1-4	tool calls, temporal analysis, optimization

Single-shot tests (turn limit 1) are unforgiving — no recovery from errors.
Hardest Tests
Three tests caused most failures:
	Test	Challenge	Failure Mode
	#15: Employee with most rejected claims	Group → count → find max	Confused max-by with max-key
	#18: Month with highest growth rate	Temporal grouping, sequential comparison	Missing partition function
	#19: Budget optimization	Greedy algorithm with constraints	Heap limits on naive approaches

Improving Reliability
1. Increase Turn Limits
For complex analytical queries, allow more iterations:
SubAgent.run(agent, context, max_turns: 8) # default is 5
This helps when the model needs to explore data or recover from errors.
2. Prompt Customization
The base prompt includes common mistakes to avoid. Domain-specific examples can further improve reliability. See SubAgent Advanced.
3. Language Improvements (Ongoing)
Some failures stem from LLMs expecting Clojure functions that PTC-Lisp doesn't yet support (e.g., partition, float). We're actively adding commonly-expected functions to reduce friction.
Practical Recommendations
	Priority	Recommendation
	Reliability first	Claude Haiku — highest pass rate in testing
	Speed first	Gemini Flash — 2-3x faster than alternatives
	Cost first	DeepSeek or Gemini — similar cost, different speed

Key insight: All models achieve 90%+ with default settings. For production, consider retry logic for complex queries regardless of model choice.
Running Benchmarks
cd demo

Run benchmark with reports
mix lisp --test --runs=5 --report

Specific model
mix lisp --test --model=haiku --runs=3

Verbose output to debug failures
mix lisp --test --model=gemini -v

Via GitHub Actions:
gh workflow run benchmark.yml -f runs=5 -f dsl=lisp

Reports are saved to demo/reports/.
Further Reading
	SubAgent Getting Started — Basic usage
	SubAgent Advanced — Turn limits, truncation, prompts
	PTC-Lisp Specification — Language reference

 PTC-Lisp Language Specification

1. Overview
PTC-Lisp is a small, safe, deterministic subset of Clojure designed for Programmatic Tool Calling. Programs are expressions that transform data through pipelines of operations. Multiple top-level expressions are supported with implicit do semantics.
Execution Model
A PTC-Lisp program is a pure function of (memory, ctx) → result:
	Input: Persistent memory from previous turns + current request context
	Output: A result value that may update persistent memory
	Semantics: Functional, transactional, all-or-nothing

This design enables safe execution in agentic LLM loops where programs are generated, executed, and refined across multiple turns.
Design Goals
	LLM-friendly: Easy for language models to generate correctly
	Safe: No side effects, no unbounded recursion, no system access
	Compact: Minimal syntax, high information density
	Verifiable: Can be validated against real Clojure for correctness
	Expressive: Sufficient for common data transformation tasks
	Transactional: All-or-nothing memory updates, safe for retry loops

Non-Goals
	General-purpose programming
	Turing completeness
	Full Clojure compatibility

Clojure Extensions
PTC-Lisp extends standard Clojure with features designed for data transformation in agentic contexts. These are not valid Clojure but provide significant utility for LLM-generated programs:
	Extension	Description
	Implicit do	Multiple expressions in fn, let, when, when-let bodies (§5, §13.2)
	data/path, tool/name	Namespace-qualified access to context data and tool invocation (§9)
	*1, *2, *3	Turn history symbols for accessing previous results (§9.4)
	where, all-of, any-of, none-of	Predicate builders for filtering (§7)
	sum-by, avg-by, min-by, max-by, distinct-by	Collection aggregators (§8)
	min-key, max-key	Clojure-compatible variadic key comparison (§8)
	re-pattern	Compile string to regex without literal syntax (§8.8)
	pluck	Extract field values from collections (§8)
	floor, ceil, round, trunc	Integer rounding
	float, double, int	Type coercion (to float / to integer)
	call	Tool invocation special form (§9)
	Keyword/string coercion in where	:status = :active matches "active" (§7.6)
	Path-based where	(where [:user :role] = :admin) for nested access (§7.1)

All other syntax and functions are valid Clojure and are tested against Babashka for conformance.

2. Lexical Structure
2.1 Whitespace
Whitespace separates tokens. The following are whitespace:
	Space ()
	Tab (\t)
	Newline (\n, \r\n)
	Comma (,) — treated as whitespace for readability

{:a 1, :b 2} ; comma is optional
{:a 1 :b 2} ; equivalent
[1, 2, 3] ; comma is optional
[1 2 3] ; equivalent
2.2 Comments
Single-line comments start with ; and extend to end of line:
; This is a comment
(+ 1 2) ; inline comment
2.3 Identifiers (Symbols)
Symbols are names that refer to values or functions:
symbol = symbol-first symbol-rest*
symbol-first = letter | special-initial
symbol-rest = letter | digit | special-rest
letter = a-z | A-Z
digit = 0-9
special-initial = + | - | * | / | < | > | = | ? | !
special-rest = special-initial | - | _ | /
Note: / appears in both special-initial (for the division operator) and special-rest (for namespaced symbols like data/bar or tool/search).
Valid symbols: filter, map, sort-by, empty?, +, ->>, high-paid, data/bar, tool/search
Reserved symbols (cannot be redefined): nil, true, false
2.4 Keywords
Keywords are symbolic identifiers that evaluate to themselves:
keyword = : symbol
Examples: :name, :user-id, :total, :else
Keywords with namespaces are not supported: :foo/bar

3. Data Types
3.1 Nil
The absence of a value:
nil
3.2 Booleans
true
false
3.3 Numbers
Integers — arbitrary precision:
0
42
-17
1000000
Floats — double precision:
3.14
-0.5
1.0
2.5e10
1.23e-4
Special Values (IEEE 754) — namespaced constants:
Double/POSITIVE_INFINITY ; => ##Inf
Double/NEGATIVE_INFINITY ; => ##-Inf
Double/NaN ; => ##NaN (Not a Number)
Special values are returned by operations like division by zero ((/ 1.0 0.0)) or indeterminate forms ((/ 0.0 0.0)). They are formatted using Clojure's reader syntax (##Inf, ##NaN) but evaluate to their respective symbolic representations.
Not supported: Ratios (1/3), BigDecimals (1.0M), octal/hex literals
3.4 Strings
Double-quoted, with escape sequences:
"hello"
"hello world"
""
"line1\nline2"
"tab\there"
"quote: \""
"backslash: \\"
Supported escapes: \\, \", \n, \t, \r
Single-line only: Strings must not contain literal newline characters (\n, \r). Use escape sequences (\n, \r) for newlines within string content.
Not supported: Multi-line strings, regex literals (use re-pattern instead).
String operations: Strings support count, empty?, seq, str, subs, join, split, trim, replace, re-find, and re-matches. The seq function converts a string to a sequence of characters (graphemes), enabling character iteration. See Section 8.3 and 8.8 for details.
String as sequence: Strings can be used as sequences in many collection operations. Functions like filter, map, first, last, take, drop, reverse, sort, and others work directly on strings, treating them as sequences of characters (graphemes). These operations return lists of single-character strings:
(first "hello") ; => "h"
(filter #(= \e %) "hello") ; => ["e"]
(map identity "abc") ; => ["a" "b" "c"]
(take 2 "hello") ; => ["h" "e"]
(count (filter #(= \r %) "raspberry")) ; => 3
3.5 Character Literals
Character literals provide a concise syntax for single-character strings, using Clojure's backslash notation:
\a ; => "a"
\Z ; => "Z"
\5 ; => "5"
\λ ; => "λ" (Unicode supported)
Special characters use named escapes:
	Literal	Value	Description
	\newline	"\n"	Newline
	\space	" "	Space
	\tab	"\t"	Tab
	\return	"\r"	Carriage return
	\backspace	"\b"	Backspace
	\formfeed	"\f"	Form feed

Important: Character literals are represented as single-character strings internally. This means \r produces the string "r", while \return produces "\r" (carriage return). Character equality with strings works naturally:
(= \a "a") ; => true
(= \newline "\n") ; => true
(char? \a) ; => true
(char? "ab") ; => false
Use case: Character literals are particularly useful with collection operations on strings:
;; Count occurrences of 'r' in a string
(count (filter #(= \r %) "raspberry")) ; => 3

;; Find vowels
(filter #(contains? #{\a \e \i \o \u} %) "hello") ; => ["e" "o"]
3.6 Keywords
Self-evaluating symbolic identifiers:
:name
:user-id
:category
:else
Keywords can be called as functions to access map values:
(:name {:name "Alice" :age 30}) ; => "Alice"
(:missing {:name "Alice"}) ; => nil
(:missing {:name "Alice"} "default") ; => "default"
Maps can also be called as functions with a keyword to access values:
({:name "Alice" :age 30} :name) ; => "Alice"
({:name "Alice"} :missing) ; => nil
({:name "Alice"} :missing "default") ; => "default"
Keywords also work as predicates in higher-order functions, checking if the field is truthy:
;; As predicate in filter/remove/find (checks field truthiness)
(filter :active [{:active true} {:active false}]) ; => [{:active true}]
(remove :deleted [{:deleted true} {:deleted nil}]) ; => [{:deleted nil}]

;; As accessor in map (extracts field value)
(map :name [{:name "Alice"} {:name "Bob"}]) ; => ["Alice" "Bob"]
3.7 Vectors
Ordered, indexed collections:
[]
[1 2 3]
["a" "b" "c"]
[1 "mixed" :types true nil]
[[1 2] [3 4]] ; nested
3.8 Maps
Key-value associations:
{}
{:name "Alice"}
{:name "Alice" :age 30}
{:user {:name "Bob" :email "bob@example.com"}} ; nested
{"string-key" 42} ; string keys allowed
Map keys: Only keywords and strings are valid map keys. Keywords are preferred for their readability and self-documenting nature. Using other types (numbers, vectors, maps) as keys raises a validation-error.
{:name "Alice"} ; OK - keyword key
{"name" "Alice"} ; OK - string key
{1 "one"} ; VALIDATION ERROR - number key
{[:a :b] "nested"} ; VALIDATION ERROR - vector key
Maps as functions: Maps can be invoked as functions to look up values by key:
	Expression	Result	Description
	({:a 1 :b 2} :a)	1	Keyword key lookup
	({:a 1} :missing)	nil	Missing key returns nil
	({:a 1} :missing "default")	"default"	Missing key with default
	({"name" "Alice"} "name")	"Alice"	String key lookup

Note: Maps cannot be passed directly to higher-order functions like mapv or filter. Use a wrapper closure instead:
;; Won't work: (mapv my-map keys)
;; Use instead:
(let [lookup {:a 1 :b 2}]
 (mapv #(lookup %) [:a :b])) ; => [1 2]
3.9 Sets
Unordered collections of unique values:
#{} ; empty set
#{1 2 3} ; set with 3 elements
#{1 1 2} ; duplicates silently removed: equivalent to #{1 2}
#{:a :b :c} ; keyword set
Sets are unordered - iteration order is not guaranteed.
Set operations:
	Function	Signature	Description
	set?	(set? x)	Returns true if x is a set
	set	(set coll)	Convert collection to set
	vec	(vec coll)	Convert collection to vector
	vector	(vector & args)	Create vector from arguments
	count	(count #{1 2})	Returns element count
	empty?	(empty? #{})	Returns true if empty
	contains?	(contains? #{1 2} 1)	Membership test (O(1))
	intersection	(clojure.set/intersection & sets)	Returns the intersection of one or more sets
	union	(clojure.set/union & sets)	Returns the union of zero or more sets
	difference	(clojure.set/difference & sets)	Returns the difference of one or more sets

Sets as predicates: Sets can be invoked as functions to check membership:
	Expression	Result	Description
	(#{1 2 3} 2)	2	Element found, returns it
	(#{1 2 3} 4)	nil	Not found, returns nil
	(filter #{:a :b} [:a :c :b])	[:a :b]	Filter using set membership
	(some #{"x"} ["a" "x"])	"x"	Find first matching element

Not supported for sets: first, last, nth, sort, sort-by (sets are unordered).
Not supported: Lists ('())
3.10 Vars
Vars are references to bindings created by the def form. They allow you to create references to named values that can be stored in collections and passed around.
Reader syntax: The #'name syntax produces a var reference:
#'x ; var reference to binding x
#'my-var ; var reference to binding my-var
#'suspicious? ; var reference to binding suspicious?
#'save! ; var reference to binding save!
Vars can be stored in collections:
	Expression	Description
	[#'x #'y]	Vector containing two var references
	{:result #'foo}	Map with var reference as value
	#{#'a #'b #'c}	Set containing var references

Var dereferencing: The actual dereferencing of vars and access to the values they reference is handled by the def form. See the def form documentation for details on how var bindings work and how vars are evaluated.

4. Truthiness
Only nil and false are falsy. Everything else is truthy:
	Value	Truthy?
	nil	No
	false	No
	true	Yes
	0	Yes
	"" (empty string)	Yes
	[] (empty vector)	Yes
	{} (empty map)	Yes
	Any other value	Yes

(if nil "truthy" "falsy") ; => "falsy"
(if false "truthy" "falsy") ; => "falsy"
(if true "truthy" "falsy") ; => "truthy"
(if 0 "truthy" "falsy") ; => "truthy"
(if "" "truthy" "falsy") ; => "truthy"
(if [] "truthy" "falsy") ; => "truthy"
(if {} "truthy" "falsy") ; => "truthy"

5. Special Forms
Special forms are fundamental constructs with special evaluation rules.
5.1 let — Local Bindings
Binds names to values for use in the body expression:
(let [name value]
 body)

(let [name1 value1
 name2 value2]
 body)
Semantics:
	Bindings are evaluated left-to-right
	Later bindings can reference earlier ones
	Bindings are scoped to the body
	Inner let can shadow outer bindings

(let [x 10] x) ; => 10
(let [x 10] (+ x 5)) ; => 15
(let [x 1 y 2] (+ x y)) ; => 3
(let [x 1 y (+ x 1)] y) ; => 2
(let [x 10
 y (+ x 5)] ; y can use x
 (* x y)) ; => 150

(let [x 1]
 (let [x 2] ; shadows outer x
 x)) ; => 2
Implicit do (Clojure Extension)
Multiple body expressions are supported without explicit do:
;; Multiple expressions - last value is returned
(let [x 10]
 (def saved x) ; side effect: store in memory
 (* x 2)) ; => 20, saved = 10

;; Equivalent to explicit do
(let [x 10]
 (do
 (def saved x)
 (* x 2)))
Destructuring
Destructuring allows you to bind names to values within collections.
Sequential (Vector) Destructuring:
Extract values from vectors by position.
; Basic sequential destructuring
(let [[a b] [1 2]]
 (+ a b)) ; => 3

; Use _ to skip elements
(let [[_ b] [1 2]]
 b) ; => 2

; Nested sequential destructuring
(let [[a [b c]] [1 [2 3]]]
 (+ a b c)) ; => 6

; Rest pattern: bind remaining elements to a variable
(let [[x & rest] [1 2 3 4]]
 rest) ; => [2 3 4]

; Rest pattern with multiple leading elements
(let [[a b & rest] [1 2 3 4 5]]
 [a b rest]) ; => [1 2 [3 4 5]]

; Bind entire list (no leading elements)
(let [[& all] [1 2 3]]
 all) ; => [1 2 3]
Map Destructuring:
Extract values from maps by key. Supports both keyword and string keys.
; Basic map destructuring
(let [{:keys [name age]} {:name "Alice" :age 30}]
 name) ; => "Alice"

; With defaults
(let [{:keys [name age] :or {age 0}} {:name "Bob"}]
 age) ; => 0

; Renaming bindings
(let [{the-name :name} {:name "Carol"}]
 the-name) ; => "Carol"

; Binding the whole map with :as
(let [{:keys [id] :as user} {:id 123 :name "Alice"}]
 (:name user)) ; => "Alice"
Supported destructuring forms:
	[a b] — sequential (vector)
	[a & rest] — rest pattern (bind remaining elements)
	{:keys [a b]} — map keyword keys
	{:keys [a] :or {a default}} — map with defaults
	{new-name :old-key} — map renaming
	{:as symbol} — bind collection to symbol

5.2 if — Conditional
Conditional (else is optional):
(if condition
 then-expression
 else-expression)
(if true "yes" "no") ; => "yes"
(if false "yes" "no") ; => "no"
(if (> 5 3) "bigger" "smaller") ; => "bigger"
(if (< 5 3) "bigger" "smaller") ; => "smaller"
(if (empty? []) "empty" "full") ; => "empty"
(if (empty? [1]) "empty" "full") ; => "full"
Single-branch if is allowed and returns nil if the condition is false. However, when is often more idiomatic for side effects.
5.3 if-not — Negative Conditional
Swapped branch conditional. Evaluates else if condition is truthy, otherwise evaluates then.
(if-not condition
 then-expression
 else-expression?)
Semantics:
	Desugars at analysis time to if:	(if-not cond then else) → (if cond else then)
	(if-not cond then) → (if cond nil then)

(if-not true "yes" "no") ; => "no"
(if-not false "yes" "no") ; => "yes"
(if-not (> 3 5) "smaller" "bigger") ; => "smaller"
(if-not true "yes") ; => nil
(if-not false "yes") ; => "yes"
5.4 when — Single-branch Conditional
Returns body if condition is truthy, otherwise nil:
(when condition
 body)
(when true "yes") ; => "yes"
(when false "yes") ; => nil
(when (> 5 3) "bigger") ; => "bigger"
(when (< 5 3) "smaller") ; => nil
Implicit do (Clojure Extension): Multiple body expressions are supported:
(when (> x 0)
 (def positive x) ; side effect
 (* x 2)) ; return value
5.5 when-not — Negative Single-branch Conditional
Returns body if condition is falsy, otherwise nil:
(when-not condition
 body)
Semantics:
	Desugars at analysis time to if: (when-not cond body ...) → (if cond nil (do body ...))
	Supports implicit do for multiple body expressions.

(when-not false "yes") ; => "yes"
(when-not true "yes") ; => nil
(when-not (> x 0) (log "neg")) ; => result of log, or nil
5.6 cond — Multi-way Conditional
Tests conditions in order, returns first matching result:
(cond
 condition1 result1
 condition2 result2
 :else default-result)
(cond
 (> total 1000) "high"
 (> total 100) "medium"
 :else "low")
Semantics:
	Conditions are evaluated in order
	First truthy condition's result is returned
	:else is conventional for default (it's truthy)
	Returns nil if no condition matches and no :else

(cond true "first" :else "default") ; => "first"
(cond false "first" :else "default") ; => "default"
(cond false "a" false "b" :else "c") ; => "c"
(cond (> 5 3) "yes" :else "no") ; => "yes"
(cond (< 5 3) "yes" :else "no") ; => "no"
(cond false "only") ; => nil
5.7 if-let and when-let — Conditional Binding
Binds a value from an expression and evaluates the body only if the value is truthy.
if-let syntax:
(if-let [name condition-expr]
 then-expr
 else-expr)
when-let syntax:
(when-let [name condition-expr]
 body-expr)
Semantics:
	if-let evaluates condition-expr, binds result to name, then evaluates then-expr if truthy, otherwise else-expr
	when-let is like if-let but returns nil instead of an else branch
	Both only support single symbol bindings (no destructuring)
	Desugars at analysis time: (if-let [x expr] then else) → (let [x expr] (if x then else))

Examples:
(if-let [user (get-user 123)]
 (str "Hello " user)
 "User not found") ; => ...

(when-let [result (compute)]
 (process result)) ; => result of process, or nil

(if-let [x 0]
 "truthy"
 "falsy") ; => "truthy" (0 is truthy in Lisp)

(if-let [x nil]
 "yes"
 "no") ; => "no"

(when-let [x false]
 (do-something)) ; => nil
Implicit do (Clojure Extension): when-let supports multiple body expressions:
(when-let [x (find-value)]
 (def found x) ; side effect
 (* x 2)) ; return value
Limitations:
	Only single bindings are supported (no sequential bindings like Clojure)
	Binding names must be symbols (no destructuring patterns)

5.8 do — Sequential Evaluation
Evaluates expressions in order, returning the value of the last expression:
(do expr1 expr2 ... exprN)
Semantics:
	All expressions are evaluated left-to-right
	The value of the last expression is returned
	(do) with no expressions returns nil
	Unlike and/or, there is no short-circuiting

1 2 3 ; => 3 (not needed at top level)
(tool/log {:msg "hi"}) ; => result of log call
(do) ; => nil

5.9 def — User Namespace Binding
Binds a name to a value in the user namespace, persisting across turns:
(def name value)
(def name docstring value) ; docstring is optional and ignored
Semantics:
	Returns the var (#'name), not the value (like Clojure)
	Creates or overwrites the binding in user namespace
	Value is evaluated before binding
	Binding persists until session ends or redefined
	Cannot shadow builtin function names (returns error)
	Can shadow data names, but data/ prefix still works

(def x 42) ; => #'x (x = 42)
(def threshold 5000) ; => #'threshold
(def results (tool/search {})) ; => ...

; Redefinition
(def x 1) ; x = 1
(def x 2) ; x = 2 (overwrites)

; Define and return (using implicit multi-expression)
(def x 10) x ; => 10

; Reference previous defs (single evaluation)
(def a 1) (def b (+ a 1)) b ; => 2

; Error: cannot shadow builtins
(def map {}) ; => error: cannot shadow builtin 'map'
Differences from Clojure:
	No ^:dynamic, ^:private, or other metadata
	No destructuring in def (use let then def)
	Docstrings allowed but ignored (for Clojure compatibility)

5.10 defn — Named Function Definition
Syntactic sugar for defining named functions in the user namespace:
(defn name [params] body)
(defn name docstring [params] body) ; docstring is optional and ignored
Desugars to: (def name (fn [params] body))
Semantics:
	Returns the var (#'name), not the function
	Creates or overwrites the function binding in user namespace
	Functions persist across turns via user namespace
	Can reference other user-defined symbols and functions
	Can access data/ data and call tool/ tools
	Cannot shadow builtin function names (returns error)

; Note: using `twice` not `double` since `double` is a builtin (§8.4)
(defn twice [x] (* x 2)) ; => #'twice
(defn greet [name] (str "Hello, " name)) ; => #'greet

; Use defined function (single evaluation with implicit do)
(defn twice [x] (* x 2)) (twice 21) ; => 42

; Reference data/ data
(defn expensive? [e] (> (:amount e) data/threshold))

; Reference other defs (single evaluation)
(def rate 0.1) (defn apply-rate [x] (* x rate)) (apply-rate 100) ; => 10.0

; With higher-order functions
(defn expensive? [e] (> (:amount e) 5000))
(filter expensive? data/expenses) ; => filtered list
Multiple body expressions (implicit do):
(defn with-logging [x]
 (def last-input x) ; side effect
 (* x 2)) ; return value
Multi-turn persistence:
; Turn 1: Define function
(defn expensive? [e] (> (:amount e) 5000))

; Turn 2: Use function (passed via memory)
(filter expensive? data/expenses)
Destructuring in parameters:
defn supports the same destructuring patterns as fn and let:
; Vector destructuring (single evaluation)
(defn first-name [[first last]] first) (first-name ["Alice" "Smith"]) ; => "Alice"

; Map destructuring (single evaluation)
(defn greet [{:keys [name]}] (str "Hello " name)) (greet {:name "World"}) ; => "Hello World"

; Nested destructuring (single evaluation)
(defn process [[id {:keys [status]}]] (str id ":" status)) (process [42 {:status "ok"}]) ; => "42:ok"
Not supported:
	Multi-arity: (defn f ([x] ...) ([x y] ...)) — use separate defn forms
	Pre/post conditions

5.11 loop and recur — Tail Recursion
loop establishes a recursion point, and recur transfers control back to that point with new values.
loop syntax:
(loop [bindings] body)
recur syntax:
(recur expr1 expr2 ...)
Semantics:
	loop establishes bindings just like let.
	recur can only appear in a tail position of a loop or fn.
	When recur is evaluated, it re-binds the arguments and jumps back to the start of the loop or fn body.
	Evaluation is stack-safe (no stack growth).
	An iteration check is enforced to prevent infinite loops (default limit: 1000 iterations).

Examples:
;; Summing numbers 0 to 4
(loop [i 0 acc 0]
 (if (< i 5)
 (recur (inc i) (+ acc i))
 acc))
; => 10

;; Factorial with recur in fn
((fn [n acc]
 (if (> n 0)
 (recur (dec n) (* acc n))
 acc))
 5 1)
; => 120

;; Process list with rest pattern destructuring
(loop [[head & tail] [1 2 3 4]
 sum 0]
 (if head
 (recur tail (+ sum head))
 sum))
; => 10
Safety Mechanism:
To ensure sandbox safety, PTC-Lisp enforces an iteration limit on recursive calls. If a loop exceeds the allowed number of iterations (default 1000), execution is terminated with a loop_limit_exceeded error.

6. Threading Macros
Threading macros transform nested function calls into linear pipelines.
6.1 ->> — Thread Last
Threads the value as the last argument to each form:
(->> value
 (fn1 arg1)
 (fn2 arg2)
 (fn3))
Equivalent to:
(fn3 (fn2 arg2 (fn1 arg1 value)))
Primary use: Collection pipelines where data is the last argument.
(->> [1 2 3] (map inc)) ; => [2 3 4]
(->> [1 2 3 4] (filter odd?)) ; => [1 3]
(->> [3 1 2] (sort)) ; => [1 2 3]
(->> [1 2 3] (map inc) (filter even?)) ; => [2 4]
(->> [1 2 3 4 5] (filter odd?) (take 2)) ; => [1 3]
6.2 -> — Thread First
Threads the value as the first argument to each form:
(-> value
 (fn1 arg1)
 (fn2 arg2))
Equivalent to:
(fn2 (fn1 value arg1) arg2)
Primary use: Map transformations where data is the first argument.
(-> {:a 1} (assoc :b 2)) ; => {:a 1 :b 2}
(-> {:a 1 :b 2} (dissoc :b)) ; => {:a 1}
(-> {:a 1} (assoc :b 2) (assoc :c 3)) ; => {:a 1 :b 2 :c 3}
(-> {:a {:b 1}} (get-in [:a :b])) ; => 1
(-> {:a 1} (update :a inc)) ; => {:a 2}

7. Predicate Builders
Predicate builders create predicate functions for use with filter, remove, find, etc. They eliminate the need for anonymous functions in most filtering scenarios.
7.1 where — Field Comparison
Creates a predicate function that compares a field value:
(where field-key operator value)
(where path operator value)
Operators: =, not=, >, <, >=, <=, includes, in
Single Field
(where :status = "active") ; field equals value
(where :age > 18) ; field greater than
(where :price <= 100) ; field less than or equal
(where :category not= "hidden") ; field not equals
(where :tags includes "urgent") ; field includes value (substring or member)
(count (filter (where :x = 1) [{:x 1} {:x 2}])) ; => 1
(count (filter (where :x > 1) [{:x 1} {:x 2} {:x 3}])) ; => 2
(count (filter (where :x < 2) [{:x 1} {:x 2} {:x 3}])) ; => 1
(count (filter (where :x not= 2) [{:x 1} {:x 2} {:x 3}])) ; => 2
(count (filter (where :x >= 2) [{:x 1} {:x 2} {:x 3}])) ; => 2
(count (filter (where :x <= 2) [{:x 1} {:x 2} {:x 3}])) ; => 2
Nested Field (Path)
Use a vector for nested access:
(where [:user :age] > 18)
(where [:profile :email] not= nil)
(where [:address :country] = "US")
(count (filter (where [:a :b] = 1) [{:a {:b 1}} {:a {:b 2}}])) ; => 1
Field Exists / Is Truthy
Check if field is truthy (not nil or false):
(where :active) ; field is truthy (not nil, not false)
(where :verified = true) ; explicit boolean check
(where [:user :premium]) ; nested truthy check
(count (filter (where :a) [{:a 1} {:a nil} {:a false}])) ; => 1
(count (filter (where :a = true) [{:a true} {:a false}])) ; => 1
Keyword/String Coercion
For the equality operators (=, not=), in, and includes, keywords are coerced to strings for comparison. This allows LLM-generated keywords to match string data values:
;; Keyword coerces to string
(where :status = :active) ; matches if field is "active"
(where :status in [:active :pending]) ; both keywords coerce to strings
(where :tags includes :urgent) ; keyword "urgent" matches in ["urgent" "bug"]
Coercion rules:
	Keywords (atoms that are not booleans) coerce to their string representation
	true and false do not coerce (prevent true from matching "true")
	Empty keyword :"" coerces to empty string ""
	Other types (strings, numbers, nil) are unchanged

Note: Ordering comparisons (>, <, >=, <=) do not use coercion. Type mismatches return false (same as nil handling).
(count (filter (where :s = :a) [{:s "a"} {:s "b"}])) ; => 1
(count (filter (where :s in [:a :b]) [{:s "a"} {:s "c"}])) ; => 1
(count (filter (where :t includes :x) [{:t ["x" "y"]} {:t []}])) ; => 1
7.2 Combining Predicates
Use all-of, any-of, none-of to combine predicate functions:
;; ALL-OF - all predicates must match
(filter (all-of (where :status = "active")
 (where :age >= 18))
 users)

;; ANY-OF - at least one predicate must match
(filter (any-of (where :role = "admin")
 (where :role = "moderator"))
 users)

;; NONE-OF - no predicate must match (inverts)
(filter (none-of (where :deleted))
 items)

;; Complex combinations
(filter (all-of (where :status = "active")
 (any-of (where :role = "admin")
 (where :premium))
 (none-of (where :banned)))
 users)
(count (filter (all-of (where :a = 1) (where :b = 2)) [{:a 1 :b 2} {:a 1 :b 3}])) ; => 1
(count (filter (any-of (where :a = 1) (where :a = 2)) [{:a 1} {:a 2} {:a 3}])) ; => 2
(count (filter (none-of (where :a = 1)) [{:a 1} {:a 2}])) ; => 1
Zero predicates:
	Expression	Result
	(all-of)	Always true (vacuous truth)
	(any-of)	Always false (no predicate matches)
	(none-of)	Always true (no predicate to fail)

(count (filter (all-of) [{:a 1} {:a 2}])) ; => 2
(count (filter (any-of) [{:a 1} {:a 2}])) ; => 0
(count (filter (none-of) [{:a 1} {:a 2}])) ; => 2
Why not and/or/not?
The logical operators and, or, not operate on boolean values and short-circuit. Predicate combinators all-of, any-of, none-of combine predicate functions into a new predicate function. Keeping them separate avoids confusion:
;; WRONG - and returns last truthy value, not a combined predicate
(filter (and (where :a = 1) (where :b = 2)) coll) ; BUG!

;; CORRECT - all-of returns a new predicate that checks both
(filter (all-of (where :a = 1) (where :b = 2)) coll) ; OK
7.3 Membership Testing
Test if field value is in a set of values:
(where :status in ["active" "pending"])
(where :category in ["travel" "food" "transport"])
Equivalent to: (or (where :status = "active") (where :status = "pending"))
Variables in in clause: The value can be a bound variable, not just a literal:
;; Using a variable for the membership set
(let [premium-ids (->> users
 (filter (where :tier = "premium"))
 (pluck :id))]
 (filter (where :user-id in premium-ids) orders))
At eval time, premium-ids is resolved to its value before the predicate closure is created.
7.4 where Semantics
	Expression	True when
	(where :f = v)	(= (get item :f) v)
	(where :f not= v)	(not= (get item :f) v)
	(where :f > v)	(> (get item :f) v)
	(where :f < v)	(< (get item :f) v)
	(where :f >= v)	(>= (get item :f) v)
	(where :f <= v)	(<= (get item :f) v)
	(where :f includes v)	Value v is in field f (string substring or collection member)
	(where :f in [vs])	Field value equals any value in list
	(where :f)	Field is truthy (not nil, not false)
	(where [:a :b] op v)	(op (get-in item [:a :b]) v)

7.5 where Edge Cases
; Missing field returns nil, comparisons handle gracefully
(where :missing = nil) ; matches items without the field
(where :missing > 0) ; false (nil > 0 is false inside where)

; nil handling
(where :field = nil) ; explicitly match nil
(where :field not= nil) ; field exists and is not nil
(where :field) ; field is truthy (not nil, not false)
where vs raw comparisons with nil:
Inside where, ordering comparisons (>, <, >=, <=) with nil or missing fields return false instead of raising a type error. This enables safe filtering without pre-checking for nil:
; INSIDE where: nil comparisons return false (safe for filtering)
(filter (where :age > 18) users) ; users without :age are excluded, no error

; OUTSIDE where: nil comparisons are type errors
(> 5 nil) ; => TYPE ERROR
(< nil 10) ; => TYPE ERROR
This distinction exists because where is designed for safe filtering over potentially incomplete data, while raw comparisons should fail explicitly on invalid input.
Flexible Key Access — String and Atom Keys:
Field accessors in where and key-based functions (sort-by, sum-by, avg-by, min-by, max-by, distinct-by, group-by, pluck, get) support bidirectional key matching. This means:
	Atom keys in code (:status) match both atom and string keys in data
	String keys in code ("status") match both string and atom keys in data

This makes it easy to work with data from various sources without preprocessing:
; Atom keys (preferred Elixir style)
(filter (where :status = "active") users)

; String keys (from JSON APIs or LLM-generated code)
(filter (where :status = "active") data)
;; If data is %{"status" => "active"}, it will match!

; String key parameter also works (LLM compatibility)
(sort-by "price" products) ; Works with both %{price: 10} and %{"price" => 10}
(sum-by "amount" expenses) ; Same bidirectional matching

; Mixed: nested structure with different key types
(filter (where [:user :email] = "alice@example.com") items)
;; Matches both: %{user: %{"email" => ...}} and %{"user" => %{email: ...}}

; Atom key takes precedence when both exist
;; If a map has both :category and "category", the atom key wins
%{category: "priority", "category" => "ignored"}
;; (where :category = "priority") matches "priority", not "ignored"
How it works:
	When looking up a field, the accessor tries the exact key type first
	If not found, it falls back to the alternative type (atom↔string conversion)
	When both exist, the exact key type takes precedence
	This applies to nested fields too—each level independently tries exact match first, then fallback
	Missing fields at any level still return nil

This design eliminates the need to manually convert JSON responses to atom-keyed maps before filtering, and provides resilience to LLM-generated code that may use strings instead of keywords.

8. Core Functions
8.1 Collection Operations
Filtering
	Function	Signature	Description
	filter	(filter pred coll)	Keep items where pred is truthy
	remove	(remove pred coll)	Remove items where pred is truthy
	find	(find pred coll)	First item where pred is truthy, or nil

;; Using where (explicit predicate builder)
(filter (where :active) users)
(remove (where :deleted) items)
(find (where :id = 42) users)

;; Using keyword directly (concise, checks truthiness)
(filter :active users)
(remove :deleted items)
(find :special items)
Map support: filter and remove accept maps as input, treating each entry as a [key value] pair passed to the predicate. They return a list of [key value] pairs (not a map):
;; Filter map entries by value
(filter (fn [[k v]] (> v 100)) {:food 50 :travel 200 :office 150})
;; => [[:travel 200] [:office 150]]

;; Remove entries where value is nil
(remove (fn [[k v]] (nil? v)) {:a 1 :b nil :c 3})
;; => [[:a 1] [:c 3]]
Transforming
	Function	Signature	Description
	map	(map f coll)	Apply f to each item
	map	(map f c1 c2)	Apply f to pairs from c1, c2
	map	(map f c1 c2 c3)	Apply f to triples
	pmap	(pmap f coll)	Apply f to each item in parallel
	pcalls	(pcalls f1 f2 ...)	Execute thunks in parallel
	mapv	(mapv f coll)	Like map, returns vector
	mapv	(mapv f c1 c2)	Like map with two collections
	mapv	(mapv f c1 c2 c3)	Like map with three collections
	map-indexed	(map-indexed f coll)	Apply f to index and item
	select-keys	(select-keys map keys)	Pick specific keys
	pluck	(pluck key coll)	Extract single field from each item

(map :name users) ; extract :name from each
(pmap :name users) ; same, but parallel execution
(pcalls #(tool/get-user) #(tool/get-stats)) ; parallel heterogeneous calls
(mapv :name users) ; same, ensures vector
(map-indexed (fn [i x] [i x]) ["a" "b"]) ; => [[0 "a"] [1 "b"]]
(select-keys user [:name :email]) ; pick keys from map
(pluck :name users) ; shorthand for (map :name coll)

;; Multi-arity map - parallel iteration over collections
(map + [1 2 3] [10 20 30]) ; => [11 22 33]
(map (fn [a b] [a b]) [1 2] [:a :b]) ; => [[1 :a] [2 :b]]
(map + [1 2 3 4] [10 20]) ; => [11 22] (stops at shortest)

;; 3-collection map requires explicit closure for variadic ops
(map (fn [a b c] (+ a b c)) [1 2] [10 20] [100 200]) ; => [111 222]
Limitation: Variadic builtins (+, *, str) don't work directly with 3-collection map—use explicit closures. See #668.
Note: Since PTC-Lisp has no lazy sequences (see Section 13.1), map and mapv are functionally identical—both return vectors. mapv is provided for Clojure compatibility and to make intent explicit.
Parallel Map (pmap): Executes the function for each element concurrently using BEAM processes. Useful when the mapping function involves I/O-bound operations (like tool calls) that can benefit from parallelism:
;; Process multiple items in parallel - much faster for I/O-bound tasks
(pmap #(tool/fetch-data {:id %}) item-ids)

;; Closures work - captures outer scope at evaluation time
(let [factor 10]
 (pmap #(* % factor) [1 2 3])) ; => [10 20 30]
pmap semantics:
	Order is preserved - results match input order
	Each parallel branch gets a read-only snapshot of the user namespace
	Writes within branches (via def) are isolated and discarded
	Errors in any branch propagate to the caller
	Concurrency is bounded to 2 × CPU cores to prevent resource exhaustion
	Individual tasks timeout after 5 seconds

Parallel Calls (pcalls): Executes multiple zero-arity functions (thunks) concurrently and returns their results as a vector. Unlike pmap which applies one function to many items, pcalls runs multiple different functions in parallel:
;; Fetch multiple pieces of data in parallel
(let [[user stats config] (pcalls
 #(tool/get-user {:id data/user-id})
 #(tool/get-stats {:id data/user-id})
 #(tool/get-config {}))]
 {:user user :stats stats :config config})

;; Simple parallel computations
(pcalls #(+ 1 1) #(* 2 3) #(- 10 5)) ; => [2 6 5]
pcalls semantics:
	Order is preserved - results match argument order
	All functions must be zero-arity thunks (use #() syntax)
	If any function fails, entire pcalls expression fails (atomic)
	Errors include the failed function index and error details
	Each parallel branch gets a read-only snapshot of the user namespace
	Concurrency is bounded to 2 × CPU cores to prevent resource exhaustion
	Individual tasks timeout after 5 seconds

Ordering
	Function	Signature	Description
	sort	(sort coll)	Sort by natural order
	sort-by	(sort-by keyfn coll)	Sort by extracted key
	sort-by	(sort-by keyfn comp coll)	Sort with comparator
	reverse	(reverse coll)	Reverse order

Sortable types: Numbers and strings can be sorted. Numbers use numeric order; strings use lexicographic (alphabetical) order. Sorting mixed types or unsortable types (maps, nil) raises a type error.
(sort [3 1 2]) ; => [1 2 3]
(sort ["b" "a" "c"]) ; => ["a" "b" "c"]
(sort :desc [1 3 2]) ; => [3 2 1] (Clojure extension)
(sort :asc [3 1 2]) ; => [1 2 3] (Clojure extension)
(sort-by :price products) ; ascending by price
(sort-by :price > products) ; descending by price (boolean comparator)
(sort-by :price :desc products) ; descending by price (simplified keyword)
(sort-by :price (fn [a b] (compare b a)) products) ; descending by price (Clojure-style)
(sort-by :name products) ; alphabetical by name
(sort-by first [["b" 2] ["a" 1] ["c" 3]]) ; => [["a" 1] ["b" 2] ["c" 3]]
(sort-by (fn [x] (nth x 1)) > [["a" 2] ["b" 1] ["c" 3]]) ; descending by second element
(reverse [1 2 3]) ; => [3 2 1]
Note: While sort and sort-by support string comparison internally, the explicit comparison operators (>, <, >=, <=) only work on numbers. This prevents ambiguous comparisons in user code while allowing natural sorting.
Map support: sort-by accepts maps, treating each entry as a [key value] pair. Returns a list of [key value] pairs (not a map) to preserve sort order:
;; Sort map by values (descending)
(sort-by second > {:food 100 :travel 500 :office 200})
;; => [[:travel 500] [:office 200] [:food 100]]

;; Sort map by keys
(sort-by first {:z 1 :a 2 :m 3})
;; => [[:a 2] [:m 3] [:z 1]]
Subsetting
	Function	Signature	Description
	first	(first coll)	First item or nil
	second	(second coll)	Second item or nil
	last	(last coll)	Last item or nil
	nth	(nth coll idx)	Item at index or nil
	rest	(rest coll)	All but first (empty list if none)
	next	(next coll)	All but first (nil if none)
	ffirst	(ffirst coll)	First of first
	fnext	(fnext coll)	First of next
	nfirst	(nfirst coll)	Next of first
	nnext	(nnext coll)	Next of next
	take	(take n coll)	First n items
	drop	(drop n coll)	Skip first n items
	take-while	(take-while pred coll)	Take while pred is true
	drop-while	(drop-while pred coll)	Drop while pred is true
	distinct	(distinct coll)	Remove duplicates
	partition	(partition n coll)	Chunk into groups of n
	partition	(partition n step coll)	Sliding window chunks

(first [1 2 3]) ; => 1
(first []) ; => nil
(second [1 2 3]) ; => 2
(last [1 2 3]) ; => 3
(nth [1 2 3] 1) ; => 2
(nth [1 2 3] 10) ; => nil (out of bounds)
(rest [1 2 3]) ; => [2 3]
(rest []) ; => []
(next [1 2 3]) ; => [2 3]
(next []) ; => nil
(next [1]) ; => nil
(ffirst [[1 2] [3]]) ; => 1
(fnext [1 2 3]) ; => 2
(nfirst [[1 2] [3]]) ; => [2]
(nnext [1 2 3 4]) ; => [3 4]
(take 2 [1 2 3 4]) ; => [1 2]
(drop 2 [1 2 3 4]) ; => [3 4]
(distinct [1 2 1 3]) ; => [1 2 3]

;; partition - chunk collection into groups
(partition 2 [1 2 3 4 5 6]) ; => [[1 2] [3 4] [5 6]]
(partition 3 [1 2 3 4 5]) ; => [[1 2 3]] (incomplete discarded)
(partition 2 1 [1 2 3 4]) ; => [[1 2] [2 3] [3 4]] (sliding window)
take-while and drop-while with keywords:
;; Using keyword directly (checks field truthiness)
(take-while :active [{:active true} {:active true} {:active false}])
;; => [{:active true} {:active true}]

(drop-while :pending [{:pending true} {:pending true} {:pending false}])
;; => [{:pending false}]
Combining
	Function	Signature	Description
	conj	(conj coll x ...)	Add elements to collection
	concat	(concat coll1 coll2 ...)	Join collections
	into	(into to from)	Pour from into to
	flatten	(flatten coll)	Flatten nested collections
	interleave	(interleave c1 c2)	Interleave collections
	interpose	(interpose sep coll)	Insert separator between elements
	zip	(zip c1 c2)	Combine into pairs

(conj [1 2] 3) ; => [1 2 3]
(conj #{1 2} 3) ; => #{1 2 3}
(conj {:a 1} [:b 2]) ; => {:a 1 :b 2}
(concat [1 2] [3 4]) ; => [1 2 3 4]
(into [] [1 2 3]) ; => [1 2 3]
(into [] {:a 1 :b 2}) ; => [[:a 1] [:b 2]]
(into #{} [1 2 2 3]) ; => #{1 2 3}
(into {} [[:a 1] [:b 2]]) ; => {:a 1 :b 2}
(into #{} {:a 1}) ; => #{[:a 1]}
(into {} #{[:a 1]}) ; => {:a 1}
(flatten [[1 2] [3 [4]]]) ; => [1 2 3 4]
(interpose ", " ["a" "b" "c"]) ; => ["a" ", " "b" ", " "c"]
(zip [1 2] [:a :b]) ; => [[1 :a] [2 :b]]
Conversion
	Function	Signature	Description
	seq	(seq coll)	Convert to sequence (nil if empty)

The seq function converts a collection to a sequence:
	Lists: Returns the list unchanged, or nil if empty
	Strings: Returns a list of characters (graphemes), or nil if empty
	Sets: Returns a list of elements, or nil if empty
	Maps: Returns a list of [key value] pairs, or nil if empty
	nil: Returns nil

(seq [1 2 3]) ; => [1 2 3]
(seq []) ; => nil
(seq "hello") ; => ["h" "e" "l" "l" "o"]
(seq "") ; => nil
(seq #{1 2 3}) ; => [1 2 3] or another order (sets are unordered)
(seq {}) ; => nil
(seq {:a 1 :b 2}) ; => [[:a 1] [:b 2]]
(count (seq "abc")) ; => 3 (iterate over characters)
Aggregation
	Function	Signature	Description
	count	(count coll)	Number of items
	reduce	(reduce f init coll)	Fold collection
	sum-by	(sum-by key coll)	Sum field values
	avg-by	(avg-by key coll)	Average field values
	min-by	(min-by key coll)	Item with minimum field
	max-by	(max-by key coll)	Item with maximum field
	distinct-by	(distinct-by key coll)	Items with unique field values
	min-key	(min-key f x y & more)	Return x for which (f x) is least
	max-key	(max-key f x y & more)	Return x for which (f x) is greatest
	group-by	(group-by keyfn coll)	Group items by key
	frequencies	(frequencies coll)	Count occurrences of each item

(count [1 2 3]) ; => 3
(reduce + 0 [1 2 3]) ; => 6
(reduce - 10 [1 2 3]) ; => 4 (10 - 1 - 2 - 3, Clojure style: f receives (acc, elem))

;; reduce on maps (v is [key value] pair)
;; NOTE: 3-arg form is preferred for maps as the 2-arg form uses the first [k v] pair as init.
(reduce (fn [acc [k v]] (+ acc v)) 0 {:a 1 :b 2}) ; => 3

;; reduce on strings (iterates over graphemes)
(reduce (fn [acc x] (str acc "-" x)) "a" "bc") ; => "a-b-c"

;; reduce on sets
(reduce + 0 #{1 2 3}) ; => 6

(sum-by :amount expenses) ; sum of :amount fields
(avg-by :price products) ; average of :price fields
(min-by :price products) ; item with lowest price
(max-by :years employees) ; item with highest years
(group-by :category products) ; map of category -> items
(distinct-by :category products) ; one item per category (first occurrence)
(frequencies [:a :b :a :c :b :a]) ; => {:a 3, :b 2, :c 1}
(frequencies "hello") ; => {"h" 1, "e" 1, "l" 2, "o" 1}
(frequencies (pluck :status orders)) ; count orders by status
(min-by first [["b" 2] ["a" 1]]) ; => ["a" 1] (item with minimum first element)
(max-by (fn [x] (nth x 1)) [["a" 2] ["b" 3]]) ; item with maximum second element
(sum-by (fn [x] (nth x 1)) [["a" 2] ["b" 3]]) ; => 5 (sum second elements)
(group-by first [["a" 1] ["a" 2] ["b" 3]]) ; {"a" [["a" 1] ["a" 2]], "b" [["b" 3]]}
(distinct-by first [["a" 1] ["a" 2] ["b" 3]]) ; [["a" 1] ["b" 3]] (first of each key)

;; max-key / min-key - compare variadic args using function
(max-key count "a" "abc" "ab") ; => "abc" (longest string)
(min-key count "abc" "a" "ab") ; => "a" (shortest string)
(max-key #(nth % 1) ["a" 1] ["b" 5] ["c" 3]) ; => ["b" 5]

;; Common pattern: find map entry with max/min value using apply
(apply max-key second (seq {:a 3 :b 7 :c 2})) ; => [:b 7]

;; Note: max-key/min-key are variadic (take individual items) - use apply to spread a collection
;; max-by/min-by take a collection directly - no apply needed: (max-by :key coll)
Predicates on Collections
	Function	Signature	Description
	empty?	(empty? coll)	True if empty or nil
	not-empty	(not-empty coll)	coll if not empty, else nil
	some	(some pred coll)	First truthy result of pred, or nil
	some	(some :key coll)	First truthy :key value, or nil
	every?	(every? pred coll)	True if all match
	every?	(every? :key coll)	True if all have truthy :key
	not-any?	(not-any? pred coll)	True if none match
	not-any?	(not-any? :key coll)	True if none have truthy :key
	contains?	(contains? coll key)	True if key/element exists (maps, sets, lists)

(empty? []) ; => true
(empty? nil) ; => true
(not-empty [1 2]) ; => [1 2]
(not-empty []) ; => nil
(not-empty nil) ; => nil
(some (where :admin) users) ; any admins? (with predicate)
(some :admin users) ; any admins? (keyword shorthand)
(every? (where :active) users) ; all active? (with predicate)
(every? :active users) ; all active? (keyword shorthand)
(not-any? :error items) ; no errors?
(contains? {:a 1} :a) ; => true
(contains? {:a 1} :b) ; => false
(contains? ["a" "b" "c"] "b") ; => true (works on lists too)
(contains? ["a" "b" "c"] "x") ; => false
Sequence Generation
	Function	Signature	Description
	range	(range end)	Returns sequence from 0 to end (exclusive)
	range	(range start end)	Returns sequence from start to end (exclusive)
	range	(range start end step)	Returns sequence with specific step

(range 5) ; => [0 1 2 3 4]
(range 5 10) ; => [5 6 7 8 9]
(range 0 10 2) ; => [0 2 4 6 8]
(range 10 0 -2) ; => [10 8 6 4 2]
(range 5 5) ; => []
Note: Unlike Clojure, range in PTC-Lisp is always finite and requires at least one argument. The zero-arity (range) which produces an infinite sequence is not supported because PTC-Lisp does not support lazy sequences.
8.2 Map Operations
	Function	Signature	Description
	get	(get m key)	Get value by key
	get	(get m key default)	Get with default
	get-in	(get-in m path)	Get nested value
	get-in	(get-in m path default)	Get nested with default
	assoc	(assoc m key val)	Add/update key
	assoc-in	(assoc-in m path val)	Add/update nested
	update	(update m key f)	Update value with function
	update	(update m key f & args)	Update with extra args passed to f
	update-in	(update-in m path f)	Update nested with function
	update-in	(update-in m path f & args)	Update nested with extra args
	dissoc	(dissoc m key)	Remove key
	merge	(merge m1 m2 ...)	Merge maps (later wins)
	select-keys	(select-keys m keys)	Pick specific keys
	keys	(keys m)	Get all keys
	vals	(vals m)	Get all values
	entries	(entries m)	Get all [key value] pairs as a list
	update-vals	(update-vals m f)	Apply f to each value (matches Clojure 1.11)

(get {:a 1} :a) ; => 1
(get {:a 1} :b "default") ; => "default"
(get-in {:user {:name "A"}} [:user :name]) ; => "A"
(assoc {:a 1} :b 2) ; => {:a 1 :b 2}
(assoc-in {} [:user :name] "Bob") ; => {:user {:name "Bob"}}
(update {:n 1} :n inc) ; => {:n 2}
(update {:n 1} :n + 5) ; => {:n 6} - extra args passed to f
(update {:n nil} :n (fnil inc 0)) ; => {:n 1} - fnil with 1-arity fn
(update {:n nil} :n (fnil + 0) 5) ; => {:n 5} - fnil with 2-arity fn + extra arg
(update-in {:a {:b 1}} [:a :b] + 10) ; => {:a {:b 11}}
(dissoc {:a 1 :b 2} :b) ; => {:a 1}
(merge {:a 1} {:b 2} {:a 3}) ; => {:a 3 :b 2}
(select-keys {:a 1 :b 2 :c 3} [:a :c]) ; => {:a 1 :c 3}
(keys {:a 1 :b 2}) ; => [:a :b]
(vals {:a 1 :b 2}) ; => [1 2]
(entries {:a 1 :b 2}) ; => [[:a 1] [:b 2]]

;; update-vals: apply function to each value (matches Clojure 1.11)
(update-vals {:a 1 :b 2} inc) ; => {:a 2 :b 3}

;; Common pattern: count items per group after group-by
;; Note: Use -> (not ->>) since map is first argument
(-> orders
 (group-by :status)
 (update-vals count)) ; => ...
List Index Support:
get-in, assoc, assoc-in, and update-in support numeric indices for list/vector access:
(get-in {:results [{:title "A"}]} [:results 0 :title]) ; => "A"
(get-in [1 2 3] [0]) ; => 1
(get-in [[1 2] [3 4]] [1 0]) ; => 3
(get-in [1 2 3] [10]) ; => nil (out of bounds)
(get-in [1 2 3] [-1]) ; => nil (negative not supported)

(assoc [1 2 3] 1 5) ; => [1 5 3]
(assoc-in [1 2 3] [1] 99) ; => [1 99 3]
(assoc-in [[1 2] [3 4]] [0 1] 99) ; => [[1 99] [3 4]]
(update-in [1 2 3] [1] inc) ; => [1 3 3]
Note: assoc, assoc-in, and update-in raise ArgumentError for out-of-bounds indices.
8.3 String Functions
	Function	Signature	Description
	str	(str ...)	Convert and concatenate to string
	subs	(subs s start)	Substring from index to end
	subs	(subs s start end)	Substring from start to end
	split	(split s separator)	Split string by separator
	split-lines	(split-lines s)	Split string into lines (\n or \r\n)
	join	(join separator coll)	Join collection elements with separator
	join	(join coll)	Join collection elements (no separator)
	trim	(trim s)	Remove leading/trailing whitespace
	replace	(replace s pattern replacement)	Replace all occurrences
	upcase / upper-case	(upcase s)	Convert to uppercase
	downcase / lower-case	(downcase s)	Convert to lowercase
	starts-with?	(starts-with? s prefix)	Check if string starts with prefix
	ends-with?	(ends-with? s suffix)	Check if string ends with suffix
	includes?	(includes? s substring)	Check if string contains substring

Type coercion: str converts values to strings using these rules:
	nil → ""
	true / false → "true" / "false"
	Numbers → decimal representation (e.g., 42 → "42", 3.14 → "3.14")
	Strings → unchanged
	Keywords → :keyword (with leading colon)
	Collections → string representation

(str "hello") ; => "hello"
(str "Hello" " " "World") ; => "Hello World"

(subs "hello" 1) ; => "ello"
(subs "hello" 1 4) ; => "ell"
PTC-Lisp specific string examples:
	(str) → "" (empty call)
	(str 42) → "42" (number conversion)
	(str true) → "true" (boolean conversion)
	(str :user) → ":user" (keyword with colon)
	(str nil "x") → "x" (nil coerced to empty string)
	(split "a,b,c" ",") → ["a" "b" "c"] (split by separator)
	(split "hello" "") → ["h" "e" "l" "l" "o"] (split into characters)
	(split "a,,b" ",") → ["a" "" "b"] (preserves empty elements)
	(split-lines "a\nb\r\nc") → ["a" "b" "c"] (split by line endings)
	(split-lines "a\n\n\n") → ["a"] (discards trailing empty lines)
	(join ", " ["a" "b" "c"]) → "a, b, c" (join with separator)
	(join "-" [1 2 3]) → "1-2-3" (numeric types converted)
	(trim "\n\tworld\r\n") → "world" (remove all whitespace)
	(replace "hello" "l" "L") → "heLLo" (replace all occurrences)
	(replace "aaa" "a" "b") → "bbb" (replace pattern)
	(upcase "hello") → "HELLO" (uppercase conversion)
	(upper-case "world") → "WORLD" (alias for upcase)
	(downcase "HELLO") → "hello" (lowercase conversion)
	(lower-case "WORLD") → "world" (alias for downcase)
	(starts-with? "hello" "he") → true (prefix check)
	(starts-with? "hello" "lo") → false (does not start with)
	(starts-with? "hello" "") → true (empty prefix always matches)
	(ends-with? "hello" "lo") → true (suffix check)
	(ends-with? "hello" "he") → false (does not end with)
	(ends-with? "hello" "") → true (empty suffix always matches)
	(includes? "hello" "ll") → true (substring check)
	(includes? "hello" "x") → false (does not contain)
	(includes? "hello" "") → true (empty substring always matches)

8.4 Arithmetic
	Function	Signature	Description
	+	(+ x y ...)	Addition
	-	(- x y ...)	Subtraction
	*	(* x y ...)	Multiplication
	/	(/ x y)	Division
	mod	(mod x y)	Modulo (floored division, result sign matches divisor)
	rem	(rem x y)	Remainder (truncated division, result sign matches dividend)
	inc	(inc x)	Add 1
	dec	(dec x)	Subtract 1
	abs	(abs x)	Absolute value
	compare	(compare x y)	Numeric comparison: -1 if x < y, 0 if x == y, 1 if x > y. Only supports numbers in PTC-Lisp.
	max	(max x y ...)	Maximum value
	min	(min x y ...)	Minimum value
	floor	(floor x)	Round toward -∞
	ceil	(ceil x)	Round toward +∞
	round	(round x)	Round to nearest integer
	float	(float x)	Alias for double (Clojure compat)
	double	(double x)	Type coercion (to float)
	int	(int x)	Type coercion (to integer)

Special Value Behavior:
	NaN Propagation: Any arithmetic operation involving Double/NaN returns Double/NaN.
	Division by Zero: (/ n 0) returns Double/POSITIVE_INFINITY (if n > 0), Double/NEGATIVE_INFINITY (if n < 0), or Double/NaN (if n = 0).
	Indeterminate Forms: Operations like (- Double/POSITIVE_INFINITY Double/POSITIVE_INFINITY) or (* Double/POSITIVE_INFINITY 0) return Double/NaN.
	Coercion: Converting Infinity or NaN to int raises an arithmetic-error.

(+ 1 2 3) ; => 6
(- 10 3) ; => 7
(* 2 3 4) ; => 24
(/ 10 2) ; => 5.0
(/ 10 3) ; => 3.333...
(mod 10 3) ; => 1
(mod -10 3) ; => 2 (sign matches divisor)
(rem 10 3) ; => 1
(rem -10 3) ; => -1 (sign matches dividend)
(inc 5) ; => 6
(dec 5) ; => 4
(abs -5) ; => 5
(max 1 5 3) ; => 5
(min 1 5 3) ; => 1
(floor 3.7) ; => 3
(ceil 3.2) ; => 4
(round 3.5) ; => 4
(double 5) ; => 5.0
(int 3.7) ; => 3

(/ 1.0 0.0) ; => ##Inf
(/ 0.0 0.0) ; => ##NaN
(sqrt -1) ; => ##NaN
(+ Double/POSITIVE_INFINITY 1) ; => ##Inf
(* Double/NaN 10) ; => ##NaN
(int Double/POSITIVE_INFINITY) ; => ARITHMETIC ERROR
Division behavior: The / operator always returns a float, even for exact divisions. Integer division (quot) is not supported. Division by zero returns Infinity, -Infinity, or NaN as per IEEE 754 standard for floats. Converting Infinity or NaN to int raises an arithmetic-error.
8.5 Comparison
	Function	Signature	Description
	=	(= x y)	Equality
	not=	(not= x y)	Inequality
	<	(< x y)	Less than
	>	(> x y)	Greater than
	<=	(<= x y)	Less or equal
	>=	(>= x y)	Greater or equal

Note: Comparison operators in PTC-Lisp are strictly 2-arity. Chained comparisons like (< 1 2 3) are not supported. Use and to combine comparisons: (and (< 1 2) (< 2 3)).
(= 1 1) ; => true
(= 1 2) ; => false
(not= 1 2) ; => true
(< 1 2) ; => true
(> 3 2) ; => true
(<= 1 1) ; => true
(>= 3 2) ; => true

;; Special Value Comparisons (IEEE 754)
(< 1.0 Double/POSITIVE_INFINITY) ; => true
(> -1.0 Double/NEGATIVE_INFINITY) ; => true
(= Double/NaN Double/NaN) ; => false
(< Double/NaN 0.0) ; => false
(>= Double/NaN 0.0) ; => false
8.6 Logic
	Function	Signature	Description
	and	(and x y ...)	Logical AND (short-circuits)
	or	(or x y ...)	Logical OR (short-circuits)
	not	(not x)	Logical NOT
	identity	(identity x)	Returns argument unchanged

(and true true) ; => true
(and true false) ; => false
(and nil "x") ; => nil (short-circuits)
(or false true) ; => true
(or nil false "x") ; => "x" (returns first truthy)
(not true) ; => false
(not nil) ; => true
(identity 42) ; => 42
identity function: Returns its argument unchanged. Useful as a default function argument, for passing to higher-order functions, or in pipelines where no transformation is needed.
8.7 Type Predicates
	Function	Description
	nil?	Is nil?
	some?	Is not nil?
	boolean?	Is boolean?
	number?	Is number?
	string?	Is string?
	char?	Is single-character string? (See §3.5)
	keyword?	Is keyword?
	vector?	Is vector?
	map?	Is map?
	set?	Is set?
	coll?	Is collection? (vectors only, not maps or strings)

Note: In PTC-Lisp, coll? returns true only for vectors (and any future sequence types). Maps and strings are not considered collections by coll?. This affects functions like flatten which only flatten values where coll? is true.
Collection Functions on Maps and Strings:
Although maps and strings are not "collections" per coll?, many collection functions work on them:
	Function	Maps	Strings	Notes
	count	✓	✓	Returns key count / character count
	empty?	✓	✓	True if no keys / no characters (or nil)
	not-empty	✓	✓	Returns map/string if not empty, else nil
	first	✗	✓	Maps: use (first (keys m)). Strings: returns first character
	second	✗	✓	Maps: use (second (keys m)). Strings: returns second character
	last	✗	✓	Maps: use (last (keys m)). Strings: returns last character
	nth	✗	✓	Maps: not supported. Strings: returns character at index
	rest	✗	✓	Strings: returns list of remaining characters
	next	✗	✓	Strings: returns list of remaining characters or nil
	take	✗	✓	Strings: returns list of first n characters
	drop	✗	✓	Strings: returns list of characters after dropping n
	take-while	✗	✓	Strings: returns list of characters while predicate is true
	drop-while	✗	✓	Strings: returns list of characters after predicate becomes false
	map	✓	✓	Maps: iterates over [key value] pairs. Strings: iterates over characters
	mapv	✓	✓	Same as map, returns vector
	filter	✓	✓	Maps: returns list of [key value] pairs. Strings: returns list of characters
	remove	✓	✓	Maps: returns list of [key value] pairs. Strings: returns list of characters
	find	✗	✓	Strings: returns first character matching predicate
	sort	✗	✓	Strings: returns sorted list of characters
	sort-by	✓	✓	Maps: returns sorted list of [key value] pairs. Strings: sorted list of characters
	reverse	✗	✓	Strings: returns reversed list of characters
	distinct	✗	✓	Strings: returns list of unique characters
	some	✗	✓	Strings: returns first truthy result of predicate
	every?	✗	✓	Strings: true if predicate is truthy for all characters
	not-any?	✗	✓	Strings: true if predicate is false for all characters
	reduce	✓	✓	Maps: iterates over [key value] pairs. Strings: iterates over characters
	entries	✓	✗	Explicit conversion to list of [key value] pairs

Note: String operations that return characters return lists of single-character strings, not a string. Use (join "" result) to convert back to a string if needed.
Mapping over maps: When you call map on a map, each entry is passed as a [key value] vector. Use destructuring to extract the key and value:
;; Transform grouped data
(let [by-category (group-by :category expenses)]
 (map (fn [[cat items]]
 {:category cat :total (sum-by :amount items)})
 by-category))
To iterate over just keys or values, extract them first:
(->> (keys my-map)
 (map (fn [k] {:key k :val (get my-map k)})))
8.8 Numeric Predicates
	Function	Description
	zero?	Is zero?
	pos?	Is positive?
	neg?	Is negative?
	even?	Is even?
	odd?	Is odd?

Note on Special Values:
	number? returns true for Infinity and NaN.
	pos? returns true for Double/POSITIVE_INFINITY.
	neg? returns true for Double/NEGATIVE_INFINITY.
	All predicates (including zero?) return false for Double/NaN.
	Double/NaN is not equal to itself: (= Double/NaN Double/NaN) is false.

Integer predicates on floats: The predicates even? and odd? require integers. Passing a float raises a type-error, even if the float represents a whole number:
(even? 4) ; => true
(even? 4.0) ; => TYPE ERROR (float, not integer)
(odd? 3) ; => true
(odd? 3.0) ; => TYPE ERROR (float, not integer)
Since division always returns floats (see Section 8.3), avoid using even?/odd? on division results. Use mod instead:
;; Check if x is divisible by 2
(zero? (mod x 2)) ; works for integers
8.9 String Parsing
	Function	Description
	parse-long	Parse string to integer, returns nil on failure
	parse-double	Parse string to double, returns nil on failure

String parsing functions provide safe conversion from strings to numbers, compatible with Clojure 1.11+. These functions return nil on parse failure rather than throwing exceptions.
Parsing behavior:
	Both functions require the entire string to be consumed by the parse. Partial parses are rejected.
	Leading/trailing whitespace is not stripped—the string must be in exact numeric form.
	Invalid input returns nil rather than an error.

;; Successful parses
(parse-long "42") ; => 42
(parse-long "-17") ; => -17
(parse-double "3.14") ; => 3.14
(parse-double "-0.5") ; => -0.5
(parse-double "1.23e-4") ; => 1.23e-4
8.10 Regex Functions
Regex functions provide validation and extraction capabilities. To ensure system stability, PTC-Lisp uses a "Safety-First" regex engine with forced backtracking and recursion limits.
	Function	Signature	Description
	re-pattern	(re-pattern s)	Compile string s into an opaque regex object
	re-find	(re-find re s)	Returns the first match of re in s
	re-matches	(re-matches re s)	Returns match if re matches the entire string s
	re-seq	(re-seq re s)	Returns all matches of re in s as a list
	re-split	(re-split re s)	Split string s by regex pattern re
	regex?	(regex? x)	Returns true if x is a regex object

Opaque Regex Type: Regexes do not have a literal syntax. They must be created using re-pattern. Internally, they are opaque objects that can be passed to functions but not inspected directly.
Return Value Semantics:
	If no match is found, re-find and re-matches return nil; re-seq returns an empty list.
	If the regex has no capture groups, returns the matching string (or list of strings for re-seq).
	If the regex contains capture groups, returns a vector where the first element is the full match and subsequent elements are the groups.

(re-find (re-pattern "\\d+") "v1") ; => "1"
(re-matches (re-pattern "\\d+") "123") ; => "123"
(re-matches (re-pattern "\\d+") "123abc") ; => nil (not entire string)
(re-find (re-pattern "(\\d+)-(\\d+)") "10-20") ; => ["10-20" "10" "20"]
(re-seq (re-pattern "\\d+") "a1b22c333") ; => ["1" "22" "333"]
(re-seq (re-pattern "(\\d)(\\w)") "1a2b") ; => [["1a" "1" "a"] ["2b" "2" "b"]]
(re-split (re-pattern "\\s+") "a b c") ; => ["a" "b" "c"]
(re-split (re-pattern ",") "a,b,c") ; => ["a" "b" "c"]
Note: Regex literals (#"...") are not supported. Use (re-pattern "...") instead. For simple delimiter splitting, prefer (split s "delimiter") or (split-lines s) for newlines.
Safety Constraints:
	Match Limit: Regex execution is restricted to 100,000 backtracking steps. Exceeding this limit (e.g., due to ReDoS) terminates evaluation with an error.
	Input Truncation: To prevent super-linear scaling on massive inputs, regex functions only scan the first 32KB of any input string.
	Pattern Complexity: Patterns are limited to 256 bytes in length.

;; Failed parses

(parse-long "abc") ; => nil
(parse-double "invalid") ; => nil
(parse-long "42abc") ; => nil (partial parse rejected - must consume entire string)
(parse-double "3.14 ") ; => nil (trailing whitespace not allowed)
Type checking:
Both functions accept strings and return nil for non-string input. Note: This diverges from Clojure 1.11+, which raises IllegalArgumentException for non-string input. PTC-Lisp returns nil for safety in agentic contexts.
(parse-long 42) ; => ...
(parse-long nil) ; => ...
(parse-double nil) ; => ...
(parse-double 3.14) ; => ...
Use cases:
Typical usage involves filtering valid parses from potentially invalid input:
;; Extract valid integers from mixed data
(->> ["1" "2" "not-a-number" "4"]
 (map parse-long)
 (filter some?)
 (reduce + 0)) ; => 7
8.10 Function Combinators
	Function	Signature	Description
	juxt	(juxt f1 f2 ...)	Returns a function that applies all functions and returns a vector of results

The juxt combinator creates a function that applies each of its argument functions to the same input and returns a vector containing all results. This is particularly useful for multi-criteria sorting and extracting multiple values at once.
;; Basic usage: extract multiple values from a map
((juxt :name :age) {:name "Alice" :age 30})
; => ["Alice" 30]

;; Multi-criteria sorting (primary: priority, secondary: name)
(sort-by (juxt :priority :name) tasks)
; Sorts first by priority, then by name for equal priorities

;; Extracting coordinates from point maps
(map (juxt :x :y) points)
; => [[1 2] [3 4] ...]

;; Using closures for computed values
((juxt #(+ % 1) #(* % 2)) 5)
; => [6 10]

;; Using builtin functions
((juxt first last) [1 2 3])
; => [1 3]

;; Empty juxt returns empty vector
((juxt) {:a 1})
; => []
Comparison with explicit function:
;; These are equivalent:
(sort-by (juxt :priority :name) tasks)
(sort-by (fn [t] [(:priority t) (:name t)]) tasks)

;; juxt is more concise for multiple key extraction
(map (juxt :id :name :email) users)
(map (fn [u] [(:id u) (:name u) (:email u)]) users)
Supported function types:
	Keywords (used as map accessors)
	Closures (fn and #() syntax)
	Builtin functions (first, last, count, etc.)

8.11 Functional Tools: apply
	Function	Signature	Description
	apply	(apply f coll)	Applies function f to the argument sequence coll
		(apply f x y ... coll)	Applies function f to x, y, ... and the argument sequence coll

The apply function invokes a function f with the provided arguments. The last argument must be a collection (vector or set), which is "unrolled" into individual arguments. Any arguments between f and the collection are passed as fixed prefix arguments.
;; Basic usage
(apply + [1 2 3]) ; => 6
(apply str ["a" "b" "c"]) ; => "abc"

;; Spreading with fixed arguments
(apply + 1 2 [3 4]) ; => 10
(apply merge {:a 1} [{:b 2} {:c 3}]) ; => {:a 1 :b 2 :c 3}

;; With Keywords as functions
(apply :name [{:name "Alice"}]) ; => "Alice"

;; With Sets as functions
(apply #{1 2 3} [2]) ; => 2

;; With filtering (passing apply as a value)
(map #(apply + %) [[1 2] [3 4]]) ; => [3 7]
Edge Cases:
	Empty collection: (apply + []) is equivalent to (+), returning 0.
	Nil as last argument: (apply + 1 2 nil) returns a type-error. PTC-Lisp requires an explicit collection.
	Sets as last argument: (apply + 1 #{2 3}) is allowed, but since sets are unordered, the application order is undefined (not an issue for commutative operations like +).
	Non-callable first argument: Raises a not-callable error.
	Non-collection last argument: Raises a type_error.

8.12 Debugging with println
	Function	Signature	Description
	println	(println ...)	Prints arguments to the execution trace, separated by spaces. Returns nil.

The println function is the only way to inspect values during multi-turn SubAgent execution. Expression results are NOT shown to the LLM — only explicit println output appears in feedback.
Behavior:
	Arguments are converted to Clojure syntax strings.
	Multiple arguments are separated by single spaces.
	Each println call results in a new line in the output buffer.
	Returns nil.

(def results (tool/search {:q "test"}))
(println "Found:" (count results)) ; shown in feedback
(println "First:" (first results)) ; shown in feedback
results ; NOT shown - use println to inspect
Multi-Turn Feedback:
In SubAgent multi-turn loops, the LLM only sees:
	println output from the current turn
	Stored symbol names (from def)
	Turn information

Expression results are intentionally hidden to encourage explicit inspection and reduce token waste.
Trace Output:
Programs that call println will have their output available in the prints list of the result:
Result of Lisp.run(...)
{:ok, %Step{
 return: [...],
 prints: ["Found: 42", "First: {:id 1}"]
}}
Note: In parallel operations like pmap, println output from parallel branches is NOT captured. Only the main execution thread's output is captured.
8.13 Date and Time (Minimal Java Interop)
PTC-Lisp supports a minimal subset of Java interop for date and time handling, simulating the behavior of java.util.Date, java.time.LocalDate, and java.lang.System.
	Symbol	Signature	Description
	java.util.Date.	(java.util.Date.)	Current UTC time
		(java.util.Date. arg)	Construct from timestamp (ms/sec) or ISO-8601/RFC 2822 string
	java.time.LocalDate/parse	(java.time.LocalDate/parse s)	Parse ISO-8601 date string into a Date object
	.getTime	(.getTime date)	Return Unix timestamp in milliseconds (DateTime only)
	System/currentTimeMillis	(System/currentTimeMillis)	Return current Unix milliseconds

Constructor java.util.Date.
	No arguments: Returns a DateTime object for the current UTC time.
	Integer argument: Smart unit detection.	If abs(ts) < 1,000,000,000,000: Treated as Unix seconds.
	Otherwise: Treated as Unix milliseconds.

	String argument: Attempts to parse in the following order:	ISO-8601 (e.g., "2026-01-08T14:30:00Z")
	Date-only ISO (e.g., "2026-01-08", defaults to midnight UTC)
	RFC 2822 (e.g., "Wed, 8 Jan 2026 14:30:00 +0000", common in email headers)

java.time.LocalDate/parse
	Shorthand: (LocalDate/parse s) is also supported.
	Behavior: Parses a string in ISO-8601 date format (YYYY-MM-DD). Returns an opaque Date object representing just the date (no time).
	Format: When displayed or returned to an LLM, it is formatted as an ISO string: "2023-10-27".

Methods and Utilities
	.getTime: Takes a DateTime object (from java.util.Date.) and returns its value as Unix milliseconds (integer). Note: This method does not work on objects from LocalDate/parse.
	System/currentTimeMillis: Returns the current system time in milliseconds.

Errors and Type Safety
	Passing nil to java.util.Date., LocalDate/parse, or .getTime raises an error.
	Invalid strings or types raise descriptive errors.
	Unsupported Methods: Calling unregistered dot-methods (e.g., (.toString date)) provides a hint listing supported interop functions.

Comparison
java.util.Date objects themselves do not support direct comparison via >, <. Instead, extract the milliseconds:
(< (.getTime d1) (.getTime d2)) ; check if d1 is before d2
LocalDate objects can be compared by converting to strings as they are ISO-8601 formatted:
(< (str d1) (str d2)) ; lexicographical comparison works for YYYY-MM-DD

9. Namespaces, Context, and Tools
Programs have access to data and functions through namespaced symbols and special forms.
9.1 Namespace Overview
	Access Pattern	Source	Description
	Plain symbols	Stored values	Values from map returns (defined via def form)
	data/	Current request context	Current request context (read-only)
	tool/	Tool invocation	Call registered tools
	*1, *2, *3	Recent results	Previous turn results (for debugging)

9.2 Persistent Values — User Namespace symbols
Access values stored in the User Namespace as plain symbols. These values are defined using the def or defn forms and persist across turns within a session:
high-paid ; access symbol defined via (def high-paid ...)
orders ; access symbol defined via (def orders ...)
query-count ; access symbol defined via (def query-count ...)
Stored values are read-only during evaluation unless redefined via def. To update a value for the next turn, use def in your program (see Section 16).
(def new-orders (tool/get-orders {:since "2024-01-01"}))
(def orders (concat orders new-orders))
orders ; return current total
With default values (using or):
(def current-count (or query-count 0))
(def query-count (inc current-count))
query-count
9.3 Context Access — data/
Read from current request context using the data/ namespace prefix:
data/input ; get :input from context
data/user-id ; get :user-id from context
data/request-id ; get :request-id from context
Context is per-request data passed by the host. It does not persist across turns.
(->> data/expenses
 (filter (where :category = "travel"))
 (sum-by :amount))
9.4 Turn History — *1, *2, *3
Access results from previous turns using the turn history symbols:
*1 ; result from the previous turn (most recent)
*2 ; result from 2 turns ago
*3 ; result from 3 turns ago
Semantics:
	*1 returns the result of the most recent turn
	Returns nil if the turn doesn't exist (e.g., *1 on turn 1)
	Results are truncated to ~1KB to prevent memory bloat
	Use stored values (plain symbols from map returns) for persistent access to full values

Use cases:
	Quick inspection of previous results during debugging
	Lightweight chaining when full values aren't needed

;; On turn 2, check if previous result was a list
(if (list? *1)
 (count *1)
 0)

;; Compare current with previous
(> (count data/items) (count *1))
For reliable multi-turn patterns, use (def name value) to store values in the User Namespace. Turn history (*1, *2, *3) is primarily a debugging aid, not a storage mechanism.
9.5 Tool Invocation — tool/tool-name
Invoke registered tools using the tool/ namespace:
(tool/tool-name) ; no arguments
(tool/tool-name args-map) ; with arguments
Syntax:
	Tool names become atoms in tool/ namespace: tool/tool-name
	Arguments follow these rules:	No arguments: (tool/get-users)
	Single map argument is passed through: (tool/fetch {:id 123})
	Multiple arguments are wrapped: (tool/transform arg1 arg2) → {:args [arg1 arg2]}

Examples:
(tool/get-users) ; no arguments
(tool/search {:query "budget"}) ; single map argument
(tool/fetch {:id 123}) ; with parameters
(tool/search {:query "foo" :limit 10})

;; Store tool result for later use
(let [users (tool/get-users)]
 (->> users
 (filter (where :active))
 (count)))
Tool behavior:
	Tools are Elixir functions registered by the host
	Tools may have side effects (external API calls, database queries)
	Tool errors propagate as execution errors
	Tool calls are logged for auditing

9.6 Clojure Namespace Compatibility
LLMs often generate code with Clojure-style namespaced symbols. PTC-Lisp normalizes these to built-in functions at analysis time.
Supported namespaces:
	Namespace	Shorthand	Category
	clojure.string	str, string	String functions
	clojure.core	core	Core functions
	clojure.set	set	Set functions
	System	-	Java System properties/time
	java.util.Date	-	Java Date constructors
	java.time.LocalDate	LocalDate	Java Date parsing (ISO-8601)

Examples of normalization:
;; These all normalize to the same built-in function:
(clojure.string/join "," items) ; → (join "," items)
(str/join "," items) ; → (join "," items)
(join "," items) ; (no change)

;; Core functions work too:
(clojure.core/map inc xs) ; → (map inc xs)
(core/filter even? xs) ; → (filter even? xs)
Error handling:
When a namespaced function doesn't exist as a built-in, the analyzer provides helpful error messages with available alternatives:
(clojure.string/capitalize s)
;; Error: capitalize is not available. String functions: str, subs, join, split, trim, ...

(clojure.set/project relations [:id])
;; Error: project is not available. Set functions: set, set?, vec, vector, contains?, intersection, union, difference
Note: The data/ and tool/ namespaces are reserved for context access and tool invocation respectively. Clojure-style namespaces cannot be used for these purposes.

10. Complete Examples
10.1 Filter and Sum (Pure Query)
Filter expenses by category and sum amounts:
(->> data/expenses
 (filter (where :category = "travel"))
 (sum-by :amount))
Returns a number. No memory update (non-map result).
10.2 Find Single Item
Find the cheapest product:
(min-by :price data/products)
Find employee with most years:
(max-by :years-employed data/employees)
10.3 Sort and Limit
Get top 5 products by price:
(->> data/products
 (sort-by :price >)
 (take 5))
10.4 Extract Field Values
Get all product names:
(pluck :name data/products)
;; or
(map :name data/products)
10.5 Conditional Classification
Classify invoice by total:
(let [{:keys [total]} data/invoice]
 (cond
 (> total 1000) "high-value"
 (> total 100) "medium-value"
 :else "low-value"))
10.6 Complex Filtering
Find eligible orders (high value, premium status, not flagged):
(->> data/orders
 (filter (all-of (where :total > 100)
 (any-of (where :status = "vip")
 (where :status = "premium"))
 (none-of (where :flagged)))))
10.7 Transform and Select Fields
Get names and emails of active users:
(->> data/users
 (filter (where :active))
 (mapv (fn [u] (select-keys u [:name :email]))))
10.8 Combine Multiple Data Sources
Join orders with user information:
(let [users (tool/get-users)
 orders (tool/get-orders)]
 (->> orders
 (filter (where :total > 100))
 (mapv (fn [order]
 (let [user (find (where :id = (:user-id order)) users)]
 (merge order (select-keys user [:name :email])))))))
10.9 Grouping and Aggregation
Sum expenses by category:
(let [by-category (group-by :category data/expenses)]
 (->> (keys by-category)
 (mapv (fn [cat]
 {:category cat
 :total (sum-by :amount (get by-category cat))}))))
10.10 Nested Data Access
Get email from nested user profile:
(get-in data/user [:profile :contact :email])
Filter by nested field:
(->> data/users
 (filter (where [:profile :verified] = true)))

11. Semantics and Edge Cases
11.1 Empty Collections
	Operation	Empty Input	Result
	(count [])	[]	0
	(first [])	[]	nil
	(last [])	[]	nil
	(sum-by :x [])	[]	0
	(avg-by :x [])	[]	nil
	(min-by :x [])	[]	nil
	(max-by :x [])	[]	nil
	(distinct-by :x [])	[]	[]
	(filter pred [])	[]	[]
	(sort-by :x [])	[]	[]

11.2 Nil Handling
;; Accessing missing key returns nil
(get {:a 1} :b) ; => nil
(:b {:a 1}) ; => nil
(get-in {:a {:b 1}} [:a :c]) ; => nil

;; Arithmetic with nil is a type error
(+ 1 nil) ; => TYPE ERROR

;; Equality with nil is allowed
(= nil nil) ; => true
(= 5 nil) ; => false
(nil? nil) ; => true

;; Ordering comparisons with nil are type errors
(> 5 nil) ; => TYPE ERROR
(< nil 10) ; => TYPE ERROR

;; filter/map handle nil gracefully
(filter (where :x = nil) [{:x nil} {:x 1}]) ; => [{:x nil}]
11.3 Type Errors in Comparisons
Ordering comparisons (>, <, >=, <=) are only defined for numbers:
;; Valid
(> 5 3) ; => true
(< 1.5 2.0) ; => true

;; Type errors
(> "a" "b") ; => TYPE ERROR (strings not orderable via >)
(< {:a 1} {:b 2}) ; => TYPE ERROR (maps not orderable)
(>= 5 nil) ; => TYPE ERROR (nil not orderable)
Note on sorting: While explicit comparison operators reject strings, the sort and sort-by functions use internal comparison that supports both numbers and strings. This design prevents ambiguous user-written comparisons while enabling natural sorting:
;; These work (internal comparison)
(sort ["b" "a" "c"]) ; => ["a" "b" "c"]
(sort-by :name users) ; sorts alphabetically

;; This fails (explicit comparison)
(> "bob" "alice") ; => TYPE ERROR
11.4 Aggregation with Missing/Nil Fields
;; sum-by skips nil/missing fields
(sum-by :amount [{:amount 10} {:amount nil} {:other 5}]) ; => 10

;; avg-by skips nil/missing (not counted in denominator)
(avg-by :amount [{:amount 10} {:amount nil} {:amount 20}]) ; => 15.0

;; min-by/max-by skip nil values
(min-by :price [{:price nil} {:price 10} {:price 5}]) ; => {:price 5}
11.5 Non-Numeric Aggregation Fields
Aggregation functions require numeric field values:
;; Type error - string in numeric aggregation
(sum-by :amount [{:amount "10"} {:amount 20}]) ; => TYPE ERROR

;; Type error - map in numeric aggregation
(avg-by :value [{:value {:x 1}}]) ; => TYPE ERROR
Rule: If a field exists and is not nil but is non-numeric, aggregation functions raise a type error. Only nil and missing fields are silently skipped.
11.6 Short-Circuit Evaluation
and and or short-circuit:
(and false (tool/expensive)) ; "expensive" not called
(or true (tool/expensive)) ; "expensive" not called
11.7 Keyword as Function with Default
(:name {:name "Alice"}) ; => "Alice"
(:name {}) ; => nil
(:name {} "Unknown") ; => "Unknown"
11.8 Map as Function
Maps can be called as functions with a keyword argument:
({:name "Alice"} :name) ; => "Alice"
({} :name) ; => nil
({} :name "Unknown") ; => "Unknown"
11.9 Flatten Behavior
flatten recursively flattens nested collections:
(flatten [[1 2] [3 [4]]]) ; => [1 2 3 4]
(flatten [1 [2 {:a 3}] "str"]) ; => [1 2 {:a 3} "str"]
	Only vectors are flattened (they satisfy coll?)
	Maps, strings, and other non-collection values pass through unchanged
	Flattening depth is bounded by max_depth limit

11.10 Tool Call Evaluation Order
Tool calls are evaluated in left-to-right order and never reordered:
(let [a (tool/tool-1) ; called first
 b (tool/tool-2)] ; called second
 [a b])
This matters because tools may have side effects. The interpreter guarantees:
	Arguments evaluated left-to-right
	Tool calls execute in program order
	No speculative or parallel execution

12. Error Handling
Errors are represented as tagged tuples: {:error, {error_type, details}}. The error type is an atom, and details vary by error type (usually a message string, but may include additional context like expected/got values for type errors). Examples:
{:error, {:parse_error, "unexpected token at line 3"}}
{:error, {:validation_error, "unknown function: foo"}}
{:error, {:type_error, "expected number", "got string"}}
{:error, {:execution_error, "tool 'get-users' failed"}}
{:error, {:timeout, 5000}}
{:error, {:memory_exceeded, 10_000_000}}
The formatted strings shown below are human-readable renderings for display to users or LLMs.
12.1 Error Types
	Error Type	Cause
	parse-error	Invalid syntax
	validation-error	Invalid program structure
	type-error	Wrong argument type
	arithmetic-error	Arithmetic operation error (division by zero)
	arity-error	Wrong number of arguments
	undefined-error	Unknown function/symbol
	execution-error	Runtime error
	timeout	Execution time exceeded
	memory-exceeded	Memory limit exceeded

12.2 Error Message Format
Errors should include location and context when available. Source location tracking (line/column) is recommended but optional for v1 implementations—at minimum, errors must include the error type and a descriptive message.
parse-error at line 3, column 15:
 (filter (where :status "active") coll)
 ^
 Expected operator (=, >, <, >=, <=, not=, includes, in)
 after field name in 'where' expression.

 Hint: Use (where :status = "active") for equality comparison.
type-error at line 5:
 (sum-by :amount items)

 'sum-by' expected a collection, got string: "not a list"

 Context: items was bound at line 2:
 (let [items data/data] ...)
12.3 Common Errors and Hints
	Error	Hint
	Unknown symbol foo	Did you mean: filter, first, find?
	where missing operator	Use (where :field = value), not (where :field value)
	Wrong arity for if	if requires 2 or 3 arguments (condition, then, else?)
	let bindings not paired	let requires an even number of binding forms

13. What Is NOT Supported
13.1 Language Features
	Feature	Reason
	lazy-seq	All operations are eager
	Macros	No metaprogramming
	Namespaces (user-defined)	No modules
	Full Java interop	Security (Minimal subset for Date/Time supported: see §8.13)
	Atoms, refs, agents	No mutable state
	eval, read-string	Security
	File I/O (slurp, spit)	Security
	Regex literals	Complexity (use re-pattern)
	Multi-methods, protocols	Complexity
	try, catch, throw	No exception handling (use fail for errors)

Note: println IS supported — see section 8.12. It writes to an internal trace buffer, not stdout.
13.2 Anonymous Functions
Anonymous functions are supported via fn or #() shorthand with restrictions:
Full fn Syntax
(fn [x] body) ; single argument
(fn [a b] body) ; multiple arguments
(fn [a & rest] body) ; variadic arguments
(fn [[a b]] body) ; vector destructuring in params
(fn [{:keys [x]}] body) ; map destructuring in params
Implicit do (Clojure Extension): Multiple body expressions are supported:
(fn [x]
 (def last-input x) ; side effect
 (* x 2)) ; return value
Short #() Syntax
The #() shorthand syntax provides concise lambdas (like Clojure):
#(+ % 1) ; % is the first parameter (p1)
#(+ %1 %2) ; explicit numbered parameters
#(* % %) ; same parameter used multiple times
#(42) ; zero-arity thunk (no parameters)
The #() syntax desugars to the equivalent fn:
	#(+ % 1) → (fn [p1] (+ p1 1))
	#(+ %1 %2) → (fn [p1 p2] (+ p1 p2))
	#() with no placeholders → (fn [] ...)
	Arity is determined by the highest numbered placeholder, or 1 if only % is used

Restrictions:
	#() accepts a single expression as the body
	% and %1, %2, etc. are parameter placeholders (not regular symbols within #())
	Nested #() is not allowed
	Recursion is supported via recur (no self-reference by name, see §5.9)
	Closures over local let bindings are allowed
	No closures over mutable host state (there is none)

Examples:
;; Filter with #() shorthand
(filter #(> % 10) items)

;; Map with string construction
(map #(str "id-" %) items)

;; Transform each item with fn (more complex)
(mapv (fn [u] (select-keys u [:name :email])) users)

;; Access outer let bindings (closure)
(let [threshold 100]
 (filter #(> (:price %) threshold) products))

;; Destructuring in fn params
(mapv (fn [{:keys [name age]}] {:name name :years age}) users)
When to use #() vs fn vs where:
	Use #() for simple, single-argument lambdas (most common LLM use case)
	Use fn for complex logic, destructuring, or multiple parameters
	Use where for simple field comparisons in filter/remove/find

13.3 Functions Excluded from Core
	iterate, repeat, cycle (infinite sequences)
	Infinite (range) (standard finite range is supported: see §8.1)
	partial, comp (function composition)
	Transducers

13.4 Clojure Compatibility Issues
The following behaviors differ from standard Clojure/Babashka:
	Issue	PTC-Lisp Behavior	Clojure Behavior	Workaround
	keys return type	Returns keywords (atoms)	Returns keywords	Use (count (keys m)) for comparison

Example workarounds:
;; Instead of possibly-nil values having to be guarded before destructuring
;; You can now destructure nil directly (returns nil for all bindings)
(let [{:keys [a]} nil]
 a) ; => nil

14. Grammar (EBNF)
program = expression* ; (* Multiple top-level expressions with implicit do *)

expression = literal
 | symbol
 | keyword
 | vector
 | set
 | map
 | list-expr ;

literal = nil | boolean | number | string | char ;

nil = "nil" ;
boolean = "true" | "false" ;
number = integer | float ;
integer = ["-"] digit+ ;
float = ["-"] digit+ "." digit+ [exponent]
 | ["-"] digit+ exponent ;
exponent = ("e" | "E") ["+" | "-"] digit+ ;
string = '"' string-char* '"' ;
string-char = escape-seq | (any char except '"', '\', and newline) ;
escape-seq = '\\' ('"' | '\\' | 'n' | 't' | 'r') ;
char = '\\' (char-name | any-char) ;
char-name = "newline" | "space" | "tab" | "return" | "backspace" | "formfeed" ;
any-char = (any single Unicode grapheme) ;

symbol = symbol-first symbol-rest* ;
symbol-first = letter | special-initial ;
symbol-rest = letter | digit | special-rest ;
letter = "a"-"z" | "A"-"Z" ;
digit = "0"-"9" ;
special-initial = "+" | "-" | "*" | "/" | "<" | ">" | "=" | "?" | "!" ;
special-rest = special-initial | "-" | "_" | "/" ;

keyword = ":" keyword-char+ ;
keyword-char = letter | digit | "-" | "_" | "?" | "!" ; (* no "/" in keywords *)

vector = "[" expression* "]" ;

set = "#{" expression* "}" ;

map = "{" (map-entry)* "}" ;
map-entry = expression expression ;

list-expr = "(" expression expression* ")" ; (* operator can be any expression *)

comment = ";" (any char except newline)* newline ;

whitespace = " " | "\t" | "\n" | "\r" | "," ;
Grammar notes:
	/ is allowed in symbols for namespaced access (data/bar, tool/bar)
	/ is NOT allowed in keywords (:foo/bar is invalid)
	The operator position in list-expr accepts any expression, enabling:	(:name user) — keyword as function
	((fn [x] x) 42) — anonymous function application
	(tool/tool-name args) — tool invocation

Tokenization precedence: When a token could match multiple grammar rules, literals take precedence over symbols:
	nil, true, false → reserved literals (not symbols)
	-123, 3.14 → numbers (not symbols starting with - or digits)
	:foo → keyword
	\a, \newline → character literal
	Everything else → symbol

This means -1 is always the integer negative one, never a symbol named "-1". Similarly, \r is the character "r", not a symbol.

15. Implementation Notes
15.1 Evaluation Model
	Programs can contain multiple expressions (evaluated sequentially, last value returned)
	Evaluation is strict (eager), not lazy
	No side effects except tool calls
	Tools may have side effects (external)

15.2 Resource Limits
	Resource	Default	Notes
	Timeout	1,000 ms	Execution time limit
	Max Heap	~10 MB	Memory limit (1,250,000 words)

Note: Hosts may configure higher timeouts (e.g., 5,000ms) to accommodate slow tool calls.
15.3 Compatibility Testing
Programs should produce identical results when run in:
	PTC-Lisp interpreter (Elixir)
	Clojure (with stub implementations for data/, tool/, call, where, etc.)

16. Memory Model for Agentic Loops
This section specifies how PTC-Lisp programs interact with persistent memory across multiple turns in an LLM-agent loop.
16.1 Core Principle: Functional Transactions
Programs are pure functions that:
	Read from stored values (plain symbols) and data/ namespace
	Return a result value
	The result determines stored value updates

This provides transactional semantics: either the entire program succeeds and memory updates, or it fails and memory remains unchanged.
16.2 Environment Structure
The host builds an execution environment for each program:
%{
 memory: %{ # Persistent across turns
 high_paid: [...],
 query_count: 5,
 ...
 },
 ctx: %{ # Current request only
 input: [...],
 user_id: "user-123",
 request_id: "req-456",
 ...
 },
 tools: %{ # Registered tool functions
 "get-users" => &Host.get_users/1,
 "get-orders" => &Host.get_orders/1,
 ...
 },
 __meta__: %{ # Execution metadata (not exposed to DSL)
 call_id: "uuid-...",
 turn: 3,
 retry_count: 0,
 timestamp: ~U[2024-01-15 10:30:00Z],
 limits: %{max_tool_calls: 10, timeout_ms: 5000}
 }
}
16.3 Result Contract (V2 Simplified Model)
The program's return value is passed through unchanged. Storage is explicit via def:
	Behavior	How It Works
	Return value	Last expression result (standard REPL semantics)
	Persistent storage	Use (def name value) to store values
	Access stored values	Use plain symbols (e.g., my-value)

No implicit map merge. Unlike earlier versions, returning a map does NOT automatically store its keys. Use def for explicit storage.
Pure Query (No Storage)
;; Returns a number - nothing stored
(->> data/expenses
 (filter (where :category = "travel"))
 (sum-by :amount))
Explicit Storage with def
;; Store values explicitly, return a result
(def high-paid (->> (tool/find-employees {})
 (filter (where :salary > 100000))))
(def last-query "employees")
(pluck :email high-paid)
After execution:
	high-paid = the filtered list (available as symbol in next turn)
	last-query = "employees" (available as symbol in next turn)
	Return value = ["alice@example.com", "bob@example.com", ...]

Return Map Without Storage
Maps return as-is, no special handling:
;; Returns a map - nothing stored unless you use def
{:summary "Query complete"
 :count (count data/items)
 :items data/items}
Return value = {:summary "Query complete", :count 5, :items [...]}, no symbols stored.
16.4 Symbol Storage Semantics
Values stored via def persist across turns. Each def sets a single key:
;; Turn 1: Store values
(def a 1)
(def b {:x 10})
"stored"

;; Turn 2: Access and update
(def b {:y 20}) ; replaces previous value
(def c 3) ; new value
{:a a, :b b, :c c}
After Turn 2: a=1, b={:y 20}, c=3
	New symbols are added
	Existing symbols are replaced (not deep-merged)
	Symbols not referenced remain unchanged

16.5 Execution Flow
┌───┐
│ AGENTIC LOOP EXECUTION FLOW │
├───┤
│ │
│ 1. HOST BUILDS ENVIRONMENT │
│ ├─ Load stored symbols from previous turns (def bindings) │
│ ├─ Attach current request context │
│ └─ Register available tools │
│ │
│ 2. RECEIVE PROGRAM FROM LLM │
│ └─ Parse source → AST │
│ │
│ 3. EXECUTE IN SANDBOX │
│ ├─ Validate AST │
│ ├─ Evaluate with resource limits │
│ ├─ Track def bindings (become symbols for next turn) │
│ └─ Track tool calls for logging │
│ │
│ 4. HANDLE RESULT │
│ │ │
│ ├─ ON SUCCESS: │
│ │ ├─ Return last expression value (standard REPL) │
│ │ ├─ Persist def bindings as symbols │
│ │ └─ Log: program, tool calls, stored symbols, result │
│ │ │
│ └─ ON ERROR: │
│ ├─ NO symbol changes (rollback) │
│ ├─ Log: program, error, partial trace │
│ └─ Return error to LLM for retry │
│ │
│ 5. NEXT TURN │
│ ├─ Feed stored symbols to LLM │
│ └─ LLM generates next program │
│ │
└───┘
16.6 Multi-Turn Example
Turn 1: Find high-paid employees and store with def
(def high-paid (->> (tool/find-employees {})
 (filter (where :salary > 100000))))
(count high-paid)
Returns: 5
Symbols stored: {:high-paid [{:id 1, :name "Alice", :salary 150000}, ...]}
Turn 2: Query stored data (no symbol update)
(count high-paid)
Returns: 5
Symbols unchanged
Turn 3: Fetch orders for stored employees, add new symbol
(def orders (let [ids (pluck :id high-paid)]
 (tool/get-orders {:employee-ids ids})))
{:orders-count (count orders)}
Returns: {:orders-count 42}
Symbols stored: {:high-paid [...], :orders [...]}
Turn 4: Return summary
{:employee-count (count high-paid)
 :order-count (count orders)}
Returns: {:employee-count 5, :order-count 42}
Symbols unchanged
16.7 Logging and Audit Trail
Every execution produces a log entry:
%{
 call_id: "uuid-...",
 turn: 3,
 timestamp: ~U[2024-01-15 10:30:00Z],

 # Input
 program_source: "(do (def orders (call \"get-orders\" {:ids (pluck :id high-paid)})) ...)",
 memory_before: %{high_paid: [...]},
 ctx: %{user_id: "user-123"},

 # Execution trace
 tool_calls: [
 %{tool: "get-orders", args: %{ids: [1, 2, 3]},
 result_size: 42, duration_ms: 150}
],

 # Output
 status: :success, # or :error
 result: {:orders-count 42}, # last expression value
 memory_after: %{high_paid: [...], orders: [...]}, # includes def bindings

 # Metrics
 duration_ms: 180,
 memory_bytes: 102400
}
16.8 Resource Limits for Agentic Execution
	Limit	Default	Description
	timeout_ms	1,000	Max execution time per program
	max_heap	~10 MB	Memory limit (1,250,000 words)
	max_tool_calls	10	Max tool invocations per program (planned)

Note: Hosts can configure higher timeouts (e.g., 5,000ms) to accommodate slow tool calls.
On limit violation:
	Execution aborts immediately
	No memory changes (transaction rollback)
	Error returned to LLM with limit details
	LLM can retry with a modified program

16.9 Error Handling in Agentic Loops
Errors are designed to be LLM-recoverable:
Error structure
{:error, %{
 type: :tool_call_limit_exceeded,
 message: "Program made 12 tool calls, limit is 10",
 context: %{
 limit: 10,
 actual: 12,
 last_tool: "get-orders"
 },
 hint: "Consider batching requests or filtering data before tool calls"
}}
The LLM receives this error and can generate a corrected program.
16.10 Security Considerations
	Concern	Mitigation
	Memory exhaustion	Max memory size limit
	Infinite loops	Timeout + no recursion
	Tool abuse	Per-program tool call limit
	Data exfiltration	Tools are host-controlled, audited
	Memory pollution	Shallow merge, explicit keys only
	Cross-turn attacks	Memory is agent-scoped, not shared

Appendix A: JSON DSL to PTC-Lisp Migration
	JSON DSL	PTC-Lisp
	{"op": "literal", "value": 42}	42
	{"op": "load", "name": "x"}	data/x
	{"op": "var", "name": "x"}	x (let-bound) or memory/x (persistent)
	{"op": "pipe", "steps": [...]}	(->> ...)
	{"op": "filter", "where": ...}	(filter pred coll)
	{"op": "eq", "field": "f", "value": v}	(where :f = v)
	{"op": "gt", "field": "f", "value": v}	(where :f > v)
	{"op": "sum", "field": "f"}	(sum-by :f coll)
	{"op": "count"}	(count coll)
	{"op": "first"}	(first coll)
	{"op": "get", "path": ["a", "b"]}	(get-in m [:a :b])
	{"op": "let", "name": "x", ...}	(let [x ...] ...)
	{"op": "if", ...}	(if cond then else)
	{"op": "call", "tool": "t"}	(tool/t)
	{"op": "and", "conditions": [...]}	(and ...)
	{"op": "merge", "objects": [...]}	(merge ...)

Appendix B: Symbol Resolution
Resolution Order
When the interpreter encounters a symbol, it resolves in this order:
	Local bindings — let-bound variables in current scope
	Namespaced symbols — memory/x, data/y, tool/z
	Built-in functions — filter, map, count, etc.

Namespace Symbols
	Pattern	Resolves To
	memory/foo	(get env.memory :foo)
	data/bar	(get env.data :bar)
	tool/baz	Tool invocation
	foo	Local binding or built-in

Example
(let [x 10] ; x is local
 (+ x ; resolves to local x (10)
 memory/x ; resolves to env.memory[:x]
 data/x)) ; resolves to env.data[:x]
Whole Map Access
The bare symbols memory and data are not accessible as whole maps. Only namespaced access is allowed:
memory/foo ; OK - access :foo key
data/bar ; OK - access :bar key
memory ; ERROR - cannot access whole memory map
data ; ERROR - cannot access whole data map
(keys memory) ; ERROR - memory is not a value
This restriction prevents accidental data leakage and simplifies reasoning about what data a program can access.

Appendix C: Documentation Tests
This specification contains executable examples that are automatically validated against the PTC-Lisp implementation using PtcRunner.Lisp.SpecValidator.
Example Syntax
Examples use the pattern code ; => expected where the expected value is parsed and compared to the actual execution result:
(+ 1 2) ; => 3
(filter even? [1 2 3]) ; => [2]
{:a 1 :b 2} ; => {:a 1 :b 2}
Semantic Markers
For examples that cannot be automatically validated, use these markers:
	Marker	Meaning	Example
	; => TODO: description	Feature not yet implemented	; => TODO: :or defaults not implemented
	; => BUG: description	Known bug	; => BUG: edge case fails
	; => ...	Illustrative example (requires external context)	; => ...

When to use each:
	TODO — The feature is documented but the implementation is incomplete. Running the example would fail.
	BUG — The example documents expected behavior but currently fails due to a known bug.
	... — The example requires external context (tools, data/memory data) that isn't available during automated testing. These are illustrative examples showing usage patterns.

Running Validation
Validate all examples
{:ok, results} = PtcRunner.Lisp.SpecValidator.validate_spec()

Results include:
- passed: count of passing examples
- failed: count of failing examples
- todos: list of {code, description, section} tuples
- bugs: list of {code, description, section} tuples
- skipped: count of illustrative examples (using ...)
Supported Expected Values
The validator can parse these value types:
	Literals: nil, true, false, integers (42), floats (3.14)
	Strings: "hello" (with escape sequences)
	Keywords: :name, :user-id
	Collections: [1 2 3], (1 2 3)
	Maps: {:a 1 :b 2} (simple keyword/value pairs only)

 PTC-JSON Language Specification

1. Overview
PTC-JSON is a JSON-based domain-specific language designed for Programmatic Tool Calling. Programs are JSON objects that describe data transformation operations.
Execution Model
A PTC-JSON program is a pure function that transforms input data:
	Input: Context variables and registered tools
	Output: A result value
	Semantics: Functional, all operations are pure transformations

Design Goals
	Universal compatibility: JSON is supported by all programming languages and LLMs
	Safe: No side effects, sandboxed execution with resource limits
	Debuggable: Exact error positions, clear operation names
	LLM-friendly: Structured format that LLMs generate reliably

Non-Goals
	Turing completeness
	Complex control flow
	State mutation

2. Program Structure
2.1 Basic Format
Every program is a JSON object with a program key:
{
 "program": {
 "op": "operation_name",
 ...operation_parameters
 }
}
2.2 Operations
Operations are the building blocks of programs. Each operation has:
	op: The operation type (required)
	Additional parameters specific to the operation

3. Data Types
PTC-JSON supports standard JSON data types:
	Type	JSON Representation	Example
	Null	null	null
	Boolean	true, false	true
	Number	Integer or float	42, 3.14
	String	Double-quoted	"hello"
	Array	Square brackets	[1, 2, 3]
	Object	Curly braces	{"a": 1}

4. Truthiness
Only null and false are falsy. Everything else is truthy:
	Value	Truthy?
	null	No
	false	No
	true	Yes
	0	Yes
	"" (empty string)	Yes
	[] (empty array)	Yes
	{} (empty object)	Yes

5. Operations Reference
5.1 Data Operations
	Operation	Description	Example
	literal	Literal value	{"op": "literal", "value": 42}
	var	Reference a variable	{"op": "var", "name": "expenses"}
	load	Load from context	{"op": "load", "name": "data"}
	let	Bind a value to a name	{"op": "let", "name": "x", "value": ..., "in": ...}

literal
Returns a literal value.
{"op": "literal", "value": 42}
{"op": "literal", "value": "hello"}
{"op": "literal", "value": [1, 2, 3]}
var
References a variable bound by let.
{"op": "var", "name": "expenses"}
load
Loads data from the execution context (external data passed to run/2).
{"op": "load", "name": "data"}
let
Binds a value to a name for use in the body expression.
{
 "op": "let",
 "name": "total",
 "value": {"op": "sum", "field": "amount"},
 "in": {"op": "var", "name": "total"}
}
5.2 Collection Operations
	Operation	Description	Example
	pipe	Chain operations	{"op": "pipe", "steps": [...]}
	filter	Keep matching items	{"op": "filter", "where": {...}}
	reject	Remove matching items	{"op": "reject", "where": {...}}
	map	Transform each item	{"op": "map", "expr": {...}}
	select	Pick specific fields	{"op": "select", "fields": ["id", "name"]}
	sort_by	Sort by field	{"op": "sort_by", "field": "price", "order": "asc"}
	first	Get first item	{"op": "first"}
	last	Get last item	{"op": "last"}
	nth	Get nth item (0-indexed)	{"op": "nth", "index": 2}
	take	Take first N items	{"op": "take", "count": 5}
	drop	Drop first N items	{"op": "drop", "count": 5}
	distinct	Remove duplicates	{"op": "distinct"}
	count	Count items	{"op": "count"}

pipe
Chains multiple operations together. Each step receives the output of the previous step.
{
 "op": "pipe",
 "steps": [
 {"op": "load", "name": "expenses"},
 {"op": "filter", "where": {"op": "eq", "field": "category", "value": "travel"}},
 {"op": "sum", "field": "amount"}
]
}
filter
Keeps items where the condition is truthy.
{
 "op": "filter",
 "where": {"op": "eq", "field": "status", "value": "active"}
}
reject
Removes items where the condition is truthy (inverse of filter).
{
 "op": "reject",
 "where": {"op": "eq", "field": "deleted", "value": true}
}
map
Transforms each item using the expression.
{
 "op": "map",
 "expr": {"op": "get", "path": ["name"]}
}
select
Picks specific fields from each item.
{
 "op": "select",
 "fields": ["id", "name", "email"]
}
sort_by
Sorts items by a field.
{"op": "sort_by", "field": "price", "order": "asc"}
{"op": "sort_by", "field": "created_at", "order": "desc"}
take
Takes the first N items from a list.
{"op": "take", "count": 5}
	count (required, non-negative integer): Number of items to take from the beginning
	Returns the first count items, or the entire list if count exceeds the list length
	Returns [] if applied to an empty list or if count is 0

drop
Drops (skips) the first N items from a list.
{"op": "drop", "count": 5}
	count (required, non-negative integer): Number of items to skip
	Returns the remaining items after dropping the first count items
	Returns [] if count is greater than or equal to the list length
	Returns the entire list if count is 0

distinct
Removes duplicate values from a list, preserving the first occurrence order.
{"op": "distinct"}
	Works with values of any type (numbers, strings, objects, etc.)
	Uses structural equality for comparison (e.g., objects with the same content are equal)
	Returns a list with duplicates removed while maintaining the order of first occurrences
	Returns [] if applied to an empty list

5.3 Aggregation Operations
	Operation	Description	Example
	sum	Sum a field	{"op": "sum", "field": "amount"}
	avg	Average a field	{"op": "avg", "field": "amount"}
	min	Minimum value	{"op": "min", "field": "amount"}
	max	Maximum value	{"op": "max", "field": "amount"}
	min_by	Row with min value	{"op": "min_by", "field": "price"}
	max_by	Row with max value	{"op": "max_by", "field": "years"}

Empty Collection Behavior
	Operation	Empty List Result
	sum	0
	count	0
	avg	null
	min	null
	max	null
	min_by	null
	max_by	null
	sort_by	[]

5.4 Access Operations
	Operation	Description	Example
	get	Get single field	{"op": "get", "field": "name"}
	get	Get nested field	{"op": "get", "path": ["user", "profile", "email"]}
	get	Get with default	{"op": "get", "field": "x", "default": 0}

get
Accesses a field or nested path.
{"op": "get", "field": "name"}
{"op": "get", "path": ["user", "profile", "email"]}
{"op": "get", "field": "missing", "default": "unknown"}
Path semantics:
	Path elements are always string keys for maps
	For arrays, use nth operation (not get with numeric path)
	{"op": "get", "path": ["0"]} looks for key "0", not index 0
	Empty path [] returns the current value

5.5 Introspection Operations
	Operation	Description	Example
	keys	Get sorted keys of a map	{"op": "keys"}
	typeof	Get type of current value	{"op": "typeof"}

typeof Return Values
	Input Type	Return Value
	Map	"object"
	Array	"list"
	String	"string"
	Number	"number"
	Boolean	"boolean"
	Null	"null"

5.6 Comparison Operations
	Operation	Description	Example
	eq	Equals	{"op": "eq", "field": "status", "value": "active"}
	neq	Not equals	{"op": "neq", "field": "status", "value": "deleted"}
	gt	Greater than	{"op": "gt", "field": "age", "value": 18}
	gte	Greater than or equal	{"op": "gte", "field": "score", "value": 100}
	lt	Less than	{"op": "lt", "field": "price", "value": 50}
	lte	Less than or equal	{"op": "lte", "field": "quantity", "value": 10}
	contains	String/list contains	{"op": "contains", "field": "tags", "value": "urgent"}

contains Behavior by Type
	On array: checks if value is a member (value in array)
	On string: checks substring (String.contains?/2)
	On object: checks if key exists (Map.has_key?/2)
	On other types: returns false

Field-Based Comparisons
	All comparison ops use field to access the current item
	To compare the current value directly, use field: null or omit field

5.7 Arithmetic Operations
	Operation	Description	Example
	add	Add two numbers	{"op": "add", "left": 5, "right": 3}
	sub	Subtract two numbers	{"op": "sub", "left": 10, "right": 3}
	mul	Multiply two numbers	{"op": "mul", "left": 5, "right": 3}
	div	Divide two numbers (returns float)	{"op": "div", "left": 10, "right": 4}
	round	Round to N decimal places	{"op": "round", "value": 3.14159, "precision": 2}
	pct	Calculate percentage	{"op": "pct", "part": 50, "whole": 100}

add
Adds two numbers. Both operands are expressions (recursively evaluated).
{"op": "add", "left": {"op": "literal", "value": 5}, "right": {"op": "literal", "value": 3}}
Result: 8
sub
Subtracts the right operand from the left operand.
{"op": "sub", "left": {"op": "literal", "value": 10}, "right": {"op": "literal", "value": 3}}
Result: 7
mul
Multiplies two numbers.
{"op": "mul", "left": {"op": "literal", "value": 5}, "right": {"op": "literal", "value": 3}}
Result: 15
div
Divides the left operand by the right operand. Always returns a float (Elixir's / operator behavior). Returns an error if the divisor is zero.
{"op": "div", "left": {"op": "literal", "value": 10}, "right": {"op": "literal", "value": 4}}
Result: 2.5
Note: For integer division, use div followed by round with precision: 0.
round
Rounds a number to a specified number of decimal places. Precision defaults to 0 (round to nearest integer). Precision must be a non-negative integer (0-15).
{"op": "round", "value": {"op": "literal", "value": 3.14159}, "precision": 2}
Result: 3.14
Precision examples:
	"precision": 0 — round to nearest integer
	"precision": 1 — round to tenths
	"precision": 2 — round to hundredths
	"precision": 3 — round to thousandths

pct
Calculates a percentage: (part / whole) * 100. This is a convenience operation for the common case of calculating ratios as percentages. Returns an error if whole is zero.
{"op": "pct", "part": {"op": "literal", "value": 50}, "whole": {"op": "literal", "value": 100}}
Result: 50.0
With variables (memory):
{
 "op": "let",
 "name": "delivered",
 "value": {
 "op": "pipe",
 "steps": [
 {"op": "load", "name": "orders"},
 {"op": "filter", "where": {"op": "eq", "field": "status", "value": "delivered"}},
 {"op": "count"}
]
 },
 "in": {
 "op": "let",
 "name": "total",
 "value": {
 "op": "pipe",
 "steps": [
 {"op": "load", "name": "orders"},
 {"op": "count"}
]
 },
 "in": {
 "op": "pct",
 "part": {"op": "var", "name": "delivered"},
 "whole": {"op": "var", "name": "total"}
 }
 }
}
Result (with 2 delivered out of 3 orders): 66.66666...
Arithmetic Operation Semantics
	All arithmetic operations work with both integers and floats
	Operations take expressions as operands (not just literals) — operands are recursively evaluated
	Non-numeric operands → {:error, {:execution_error, "...requires numeric operands..."}}
	Division by zero → {:error, {:execution_error, "division by zero"}}
	Percentage with zero whole → {:error, {:execution_error, "division by zero"}}

5.8 Logic Operations
	Operation	Description	Example
	and	Logical AND	{"op": "and", "conditions": [...]}
	or	Logical OR	{"op": "or", "conditions": [...]}
	not	Logical NOT	{"op": "not", "condition": {...}}
	if	Conditional	{"op": "if", "condition": ..., "then": ..., "else": ...}

if
Two-branch conditional. The else branch is required.
{
 "op": "if",
 "condition": {"op": "gt", "field": "total", "value": 1000},
 "then": {"op": "literal", "value": "high_value"},
 "else": {"op": "literal", "value": "low_value"}
}
5.9 Tool Operations
	Operation	Description	Example
	call	Call a registered tool	{"op": "call", "tool": "get_users", "args": {...}}

call
Invokes a registered tool function.
{"op": "call", "tool": "get_users"}
{"op": "call", "tool": "get_expenses", "args": {"year": 2024}}
{"op": "call", "tool": "search", "args": {"query": "foo", "limit": 10}}
Tool behavior:
	Tools receive args as a map (may be empty {})
	Tools may have side effects (external API calls, database queries)
	Tool errors propagate as execution errors
	Tool results count toward memory limit

5.10 Combine Operations
	Operation	Description	Example
	object	Construct object with evaluated values	{"op": "object", "fields": {...}}
	merge	Merge objects	{"op": "merge", "objects": [...]}
	concat	Concatenate lists	{"op": "concat", "lists": [...]}
	zip	Zip lists together	{"op": "zip", "lists": [...]}

object
Constructs a map from literal and expression field values. Field values that are objects with an "op" field are evaluated as expressions; other values are passed through as literals.
{
 "op": "object",
 "fields": {
 "count": {"op": "var", "name": "n"},
 "name": "test"
 }
}
Result: {"count": <value of n>, "name": "test"}
merge
Merges objects. Later objects override earlier objects (last wins).
{
 "op": "merge",
 "objects": [
 {"op": "var", "name": "defaults"},
 {"op": "var", "name": "overrides"}
]
}
concat
Concatenates arrays.
{
 "op": "concat",
 "lists": [
 {"op": "var", "name": "list1"},
 {"op": "var", "name": "list2"}
]
}
zip
Combines arrays into tuples. Stops at the shortest array length.
{
 "op": "zip",
 "lists": [
 {"op": "literal", "value": [1, 2, 3]},
 {"op": "literal", "value": ["a", "b"]}
]
}
Result: [[1, "a"], [2, "b"]]
5.11 Implicit Object Literals
Objects without an "op" field are treated as implicit object literals. Field values that are objects with an "op" field are evaluated as expressions; all other values are passed through as literals.
This provides a concise syntax for constructing objects without requiring the explicit "op": "object" wrapper.
Implicit Object Shorthand
Instead of:
{
 "op": "object",
 "fields": {
 "id": 42,
 "name": "test"
 }
}
You can write:
{
 "id": 42,
 "name": "test"
}
Both produce the same result: {"id": 42, "name": "test"}
Mixing Literals and Expressions
Field values can be either literals or operations (identified by the "op" key):
{
 "count": {"op": "literal", "value": 5},
 "name": "test",
 "total": {"op": "sum", "field": "amount"}
}
This evaluates to: {"count": 5, "name": "test", "total": <sum of amount field>}
Empty Implicit Objects
An empty map {} is a valid implicit object literal:
{
 "op": "if",
 "condition": {"op": "eq", "field": "status", "value": "active"},
 "then": {},
 "else": {"op": "literal", "value": null}
}
Memory Contract with "result" Key
When an implicit object literal contains a "result" key, it participates in the memory contract:
	Scenario	Return Value	Memory Update
	Non-map result	Value itself	No change
	Map without "result"	Entire map	Merged into memory
	Map with "result"	Value of "result"	Rest of map merged

Reserved key: "result" is reserved at the top level of returned objects. It controls what value is returned to the caller while allowing other fields to be persisted to memory. Do not use "result" as a memory key name—use alternatives like "result_data", "query_result", or "output".
See also: PTC-Lisp has an equivalent :return key memory contract documented in Section 16.3 (Result Contract) of the PTC-Lisp specification.
Example: Single Value Output with Memory
Return a filtered count while storing the full list in memory:
{
 "op": "pipe",
 "steps": [
 {"op": "load", "name": "expenses"},
 {"op": "filter", "where": {"op": "eq", "field": "category", "value": "travel"}},
 {
 "op": "map",
 "expr": {
 "result": {"op": "get", "field": "amount"},
 "all_travel_expenses": {"op": "get", "path": []}
 }
 }
]
}
Each item's amount is returned, while the full item is stored in memory.all_travel_expenses.
Example: Multiple Values Output
Return computed values while storing original data:
{
 "result": {"op": "count"},
 "items": {"op": "load", "name": "data"}
}
	Caller receives: 5 (the count)
	Memory after: {"items": [...]} (original data stored for later use)

6. Variable Bindings and Context
6.1 load vs var
	load reads from the context passed to run/2 (external data)
	var reads from let bindings within the program (internal variables)
	Both return null if the name doesn't exist (no error)

6.2 let Scoping
	Inner let bindings shadow outer bindings with the same name
	Bindings are only visible within the in expression

6.3 Context Usage
Running with pre-bound context
PtcRunner.Json.run(program,
 context: %{
 "previous_expenses" => [...],
 "user_preferences" => %{...}
 },
 tools: %{
 "get_expenses" => &MyApp.get_expenses/1
 }
)

7. Complete Examples
7.1 Filter and Sum Expenses
{
 "program": {
 "op": "pipe",
 "steps": [
 {"op": "load", "name": "expenses"},
 {"op": "filter", "where": {"op": "eq", "field": "category", "value": "travel"}},
 {"op": "sum", "field": "amount"}
]
 }
}
7.2 Query Voice Call Transcripts
{
 "program": {
 "op": "pipe",
 "steps": [
 {"op": "call", "tool": "get_voice_calls"},
 {"op": "filter", "where": {"op": "eq", "field": "status", "value": "completed"}},
 {"op": "filter", "where": {"op": "gt", "field": "duration_ms", "value": 60000}},
 {"op": "select", "fields": ["id", "transcript", "duration_ms"]}
]
 }
}
7.3 Combine Data from Multiple Sources
{
 "program": {
 "op": "let",
 "name": "users",
 "value": {"op": "call", "tool": "get_users"},
 "in": {
 "op": "let",
 "name": "orders",
 "value": {"op": "call", "tool": "get_orders"},
 "in": {
 "op": "pipe",
 "steps": [
 {"op": "var", "name": "orders"},
 {"op": "filter", "where": {"op": "gt", "field": "total", "value": 100}},
 {"op": "map", "expr": {
 "op": "merge",
 "objects": [
 {"op": "get", "path": []},
 {"op": "pipe", "steps": [
 {"op": "var", "name": "users"},
 {"op": "filter", "where": {"op": "eq", "field": "id", "value": {"op": "get", "path": ["user_id"]}}},
 {"op": "first"},
 {"op": "select", "fields": ["name", "email"]}
]}
]
 }}
]
 }
 }
 }
}
7.4 Conditional Logic
{
 "program": {
 "op": "pipe",
 "steps": [
 {"op": "load", "name": "invoice"},
 {"op": "let", "name": "total", "value": {"op": "get", "path": ["total"]}, "in": {
 "op": "if",
 "condition": {"op": "gt", "field": "total", "value": 1000},
 "then": {"op": "literal", "value": "high_value"},
 "else": {
 "op": "if",
 "condition": {"op": "gt", "field": "total", "value": 100},
 "then": {"op": "literal", "value": "medium_value"},
 "else": {"op": "literal", "value": "low_value"}
 }
 }}
]
 }
}
7.5 Multi-Turn Conversation
Turn 1: Get expenses
{:ok, expenses, _metrics} = PtcRunner.Json.run(
 ~s({"program": {"op": "call", "tool": "get_expenses"}}),
 tools: tools
)

Turn 2: Use previous result
{:ok, total, _metrics} = PtcRunner.Json.run(
 ~s({
 "program": {
 "op": "pipe",
 "steps": [
 {"op": "load", "name": "previous_expenses"},
 {"op": "filter", "where": {"op": "eq", "field": "category", "value": "travel"}},
 {"op": "sum", "field": "amount"}
]
 }
 }),
 context: %{"previous_expenses" => expenses},
 tools: tools
)

8. Semantic Specifications
8.1 Pipe Behavior
Empty pipe:
	{"op": "pipe", "steps": []} returns null

pipe input:
	First step receives null as input (unless it's load, var, call, or literal)
	Each subsequent step receives the previous step's output

Current item in map:
	Inside a map expression, {"op": "get", "path": []} returns the current item

8.2 Type Handling
Collection operations on wrong types:
	filter, map, reject on non-array → {:error, {:execution_error, "..."}}
	select on non-object → error
	Operations fail fast with descriptive errors

nth with invalid index:
	Negative indices → error (not supported)
	Out of bounds → returns null

8.3 Aggregation Edge Cases
Non-numeric fields:
	avg skips non-numeric values entirely (not counted in denominator)
	sum errors on non-numeric values
	min, max use Elixir's term ordering
	min_by, max_by skip items with null field values and return the entire row

9. Error Handling
9.1 Error Types
	Error Type	Cause
	parse_error	Invalid JSON syntax
	validation_error	Invalid program structure
	execution_error	Runtime error
	timeout	Execution time exceeded
	memory_exceeded	Memory limit exceeded

9.2 Error Format
{:error, {:parse_error, "Unexpected token at position 42"}}
{:error, {:validation_error, "Unknown operation 'filer'. Did you mean 'filter'?"}}
{:error, {:execution_error, "Cannot access field 'name' on null"}}
{:error, {:timeout, 1000}}
{:error, {:memory_exceeded, 10485760}}

10. Resource Limits
10.1 Default Limits
	Resource	Default	Notes
	Timeout	1,000 ms	Execution time limit
	Max Heap	~10 MB	Memory limit (1,250,000 words)
	Max Depth	50	Nesting depth limit

10.2 Configuring Limits
PtcRunner.Json.run(program,
 timeout: 5000, # 5 seconds
 max_heap: 5_000_000 # ~40MB
)

11. Out of Scope
These features are intentionally excluded:
	Feature	Reason
	group_by	Use tools for grouping
	String operations	Use tools
	Regex matching	Use tools
	Modulo / bitwise operations	Can add if needed
	Math functions (sqrt, pow, log)	Use tools for advanced math
	Parallel tool execution	Tools execute sequentially
	Anonymous functions	Not supported in JSON DSL
	Closures	Not supported in JSON DSL

12. Comparison with PTC-Lisp
	Aspect	PTC-JSON	PTC-Lisp
	Status	Stable	Stable (v0.3.0+)
	Token efficiency	~1x (baseline)	~3-5x better
	Parser complexity	JSON.decode (1 line)	NimbleParsec (~500 LOC)
	Error location	Exact position	Harder to pinpoint
	LLM familiarity	Universal	Clojure subset
	Anonymous functions	Not supported	(fn [x] body)
	Closures	Not supported	Yes

When to Prefer Each
Use PTC-JSON if:
	Stability and proven implementation matter most
	Simple pipelines (filter → transform → aggregate) suffice
	Universal tooling and logging are priorities

Use PTC-Lisp if:
	Token costs are significant (3-5x reduction)
	Complex predicates with combinators are common
	Closures and dynamic predicates are needed

Appendix A: Operation Quick Reference
Data
	literal — {"op": "literal", "value": v}
	var — {"op": "var", "name": "x"}
	load — {"op": "load", "name": "x"}
	let — {"op": "let", "name": "x", "value": ..., "in": ...}

Collections
	pipe — {"op": "pipe", "steps": [...]}
	filter — {"op": "filter", "where": {...}}
	reject — {"op": "reject", "where": {...}}
	map — {"op": "map", "expr": {...}}
	select — {"op": "select", "fields": [...]}
	sort_by — {"op": "sort_by", "field": "x", "order": "asc"|"desc"}
	first — {"op": "first"}
	last — {"op": "last"}
	nth — {"op": "nth", "index": n}
	count — {"op": "count"}

Aggregation
	sum — {"op": "sum", "field": "x"}
	avg — {"op": "avg", "field": "x"}
	min — {"op": "min", "field": "x"}
	max — {"op": "max", "field": "x"}
	min_by — {"op": "min_by", "field": "x"}
	max_by — {"op": "max_by", "field": "x"}

Access
	get — {"op": "get", "field": "x"} or {"op": "get", "path": [...]}
	keys — {"op": "keys"}
	typeof — {"op": "typeof"}

Comparison
	eq — {"op": "eq", "field": "x", "value": v}
	neq — {"op": "neq", "field": "x", "value": v}
	gt — {"op": "gt", "field": "x", "value": v}
	gte — {"op": "gte", "field": "x", "value": v}
	lt — {"op": "lt", "field": "x", "value": v}
	lte — {"op": "lte", "field": "x", "value": v}
	contains — {"op": "contains", "field": "x", "value": v}

Arithmetic
	add — {"op": "add", "left": ..., "right": ...}
	sub — {"op": "sub", "left": ..., "right": ...}
	mul — {"op": "mul", "left": ..., "right": ...}
	div — {"op": "div", "left": ..., "right": ...}
	round — {"op": "round", "value": ..., "precision": n}
	pct — {"op": "pct", "part": ..., "whole": ...}

Logic
	and — {"op": "and", "conditions": [...]}
	or — {"op": "or", "conditions": [...]}
	not — {"op": "not", "condition": {...}}
	if — {"op": "if", "condition": ..., "then": ..., "else": ...}

Tools
	call — {"op": "call", "tool": "name", "args": {...}}

Combine
	object — {"op": "object", "fields": {...}}
	merge — {"op": "merge", "objects": [...]}
	concat — {"op": "concat", "lists": [...]}
	zip — {"op": "zip", "lists": [...]}
	Implicit objects — {"key": value, ...} (no "op" field; shorthand for object operation)

 PTC-Lisp Playground

For local dev: run `mix deps.get` in the project root first
repo_root = Path.expand("..", __DIR__)

deps =
 if File.exists?(Path.join(repo_root, "mix.exs")) do
 [{:ptc_runner, path: repo_root}]
 else
 [{:ptc_runner, "~> 0.5.0"}]
 end

Mix.install(deps, consolidate_protocols: false)
Introduction
PTC-Lisp is a small, safe subset of Clojure designed for Programmatic Tool Calling. Programs run in sandboxed BEAM processes with resource limits (1s timeout, 10MB memory).
Key concepts:
	->> threads data through a pipeline (like Elixir's |>)
	:keyword accesses map fields (converted to string keys internally)
	where builds predicates for filtering
	ctx/tool-name calls external tools

Basic Example
Filter expenses and sum amounts:
tools = %{
 "get-expenses" => fn _args ->
 [
 %{"category" => "travel", "amount" => 500},
 %{"category" => "food", "amount" => 50},
 %{"category" => "travel", "amount" => 200}
]
 end
}

program = ~S|(->> (ctx/get-expenses) (filter (where :category = "travel")) (sum-by :amount))|

{:ok, step} = PtcRunner.Lisp.run(program, tools: tools)

IO.puts("Travel expenses: #{step.return}")
Step-by-step breakdown
	(ctx/get-expenses) - calls the tool, returns list of expense maps
	(filter (where :category = "travel")) - keeps only travel expenses
	(sum-by :amount) - sums the amount field

Working with Variables
Use let to bind intermediate results:
program = ~S"""
(let [expenses (ctx/get-expenses)
 travel (filter (where :category = "travel") expenses)]
 {:count (count travel)
 :total (sum-by :amount travel)
 :avg (avg-by :amount travel)})
"""

{:ok, step} = PtcRunner.Lisp.run(program, tools: tools)
step.return
Error Handling
PTC-Lisp provides helpful error messages with hints:
Missing operator in where clause
bad_program = ~S|(filter (where :status "active") items)|

case PtcRunner.Lisp.run(bad_program, tools: %{}) do
 {:error, error} -> IO.puts("Error: #{inspect(error)}")
 {:ok, step} -> step.return
end
Type error - sum-by needs a collection
bad_program = ~S|(sum-by :amount "not a list")|

case PtcRunner.Lisp.run(bad_program, tools: %{}) do
 {:error, error} -> IO.puts("Error: #{inspect(error)}")
 {:ok, step} -> step.return
end
Advanced: Data Transformation
Transform and join data from multiple sources:
tools = %{
 "get-users" => fn _args ->
 [
 %{"id" => 1, "name" => "Alice", "email" => "alice@example.com"},
 %{"id" => 2, "name" => "Bob", "email" => "bob@example.com"}
]
 end,
 "get-orders" => fn _args ->
 [
 %{"user-id" => 1, "product" => "Laptop", "total" => 1200},
 %{"user-id" => 2, "product" => "Mouse", "total" => 25},
 %{"user-id" => 1, "product" => "Keyboard", "total" => 150}
]
 end
}

program = ~S"""
(let [users (ctx/get-users)
 orders (ctx/get-orders)
 high-value (filter (where :total > 100) orders)]
 (->> high-value
 (mapv (fn [order]
 (let [user (find (where :id = (:user-id order)) users)]
 {:customer (:name user)
 :product (:product order)
 :total (:total order)})))))
"""

{:ok, step} = PtcRunner.Lisp.run(program, tools: tools)
step.return
Advanced: Grouping and Aggregation
Group expenses by category and compute totals:
expenses_tools = %{
 "get-expenses" => fn _args ->
 [
 %{"category" => "travel", "amount" => 500},
 %{"category" => "food", "amount" => 50},
 %{"category" => "travel", "amount" => 200},
 %{"category" => "food", "amount" => 75}
]
 end
}

program = ~S"""
(let [expenses (ctx/get-expenses)
 by-category (group-by :category expenses)]
 (->> (keys by-category)
 (mapv (fn [cat]
 {:category cat
 :total (sum-by :amount (get by-category cat))
 :count (count (get by-category cat))}))))
"""

{:ok, step} = PtcRunner.Lisp.run(program, tools: expenses_tools)
step.return
Learn More
	PTC-Lisp Specification - Complete language reference
	SubAgent Getting Started - Build LLM-powered agents
	LLM Agent Livebook - Interactive agent example

 SubAgent Examples

repo_root = Path.expand("..", __DIR__)

deps =
 if File.exists?(Path.join(repo_root, "mix.exs")) do
 [{:ptc_runner, path: repo_root}, {:llm_client, path: Path.join(repo_root, "llm_client")}]
 else
 [{:ptc_runner, "~> 0.5.0"}]
 end

Mix.install(deps ++ [{:req_llm, "~> 1.0"}, {:kino, "~> 0.14"}], consolidate_protocols: false)
Setup
Add your API key in the Secrets panel (ss) for cloud models. Ollama works without a key.
For testing locally and reloading the library
IEx.Helpers.recompile()
api_key = System.get_env("LB_OPENROUTER_API_KEY") || System.get_env("OPENROUTER_API_KEY")
if api_key, do: System.put_env("OPENROUTER_API_KEY", api_key)
if(api_key, do: "API key configured", else: "No API key - Ollama only")
model_options =
 if Code.ensure_loaded?(LLMClient) do
 LLMClient.list_models()
 |> Enum.filter(& &1.available)
 |> Enum.map(&{&1.model_id, "#{&1.alias} - #{&1.description}"})
 |> Enum.sort_by(&elem(&1, 1))
 else
 [
 {"openrouter:anthropic/claude-haiku-4.5", "haiku - Claude Haiku 4.5"},
 {"openrouter:google/gemini-2.5-flash", "gemini - Gemini 2.5 Flash"},
 {"openrouter:deepseek/deepseek-chat-v3-0324", "deepseek - DeepSeek V3"}
]
 end

model_input = Kino.Input.select("Model", model_options)
model = Kino.Input.read(model_input)

my_llm =
 if Code.ensure_loaded?(LLMClient) do
 fn %{system: system, messages: messages} ->
 case LLMClient.generate_text(model, [%{role: :system, content: system} | messages], receive_timeout: 60_000) do
 {:ok, r} -> {:ok, r}
 error -> error
 end
 end
 else
 fn %{system: system, messages: messages} ->
 case ReqLLM.generate_text(model, [%{role: :system, content: system} | messages], receive_timeout: 30_000) do
 {:ok, r} -> {:ok, %{content: ReqLLM.Response.text(r), tokens: ReqLLM.Response.usage(r)}}
 error -> error
 end
 end
 end

"Ready: #{model}"
Output Modes
SubAgents support two output modes:
	Mode	Use When	Output
	:json	Classification, extraction, summarization	Structured JSON
	:ptc_lisp (default)	Computation, tool orchestration, multi-step reasoning	PTC-Lisp program result

JSON Mode - Direct LLM Tasks
Use output: :json when the LLM can answer directly without computation:
alias PtcRunner.SubAgent
alias PtcRunner.SubAgent.Debug

review = "Great product, fast shipping! Would buy again."

{:ok, step} = SubAgent.run(
 "Classify as positive/negative/neutral with confidence 0.0-1.0: {{review}}",
 output: :json,
 signature: "(review :string) -> {sentiment :string, confidence :float}",
 context: %{review: review},
 llm: my_llm
)

Debug.print_trace(step, raw: true)
step.return
PTC-Lisp Mode - Computational Tasks
The default mode. The LLM writes a program to solve tasks that need accurate computation:
{:ok, step} = SubAgent.run(
 "How many r's are in raspberry?",
 llm: my_llm,
 max_turns: 1
)

Debug.print_trace(step, raw: true)
step.return
Execution Modes
	max_turns	Mode	Behavior
	1	Single-shot	One LLM call, answer immediately
	> 1 (default: 10)	Multi-turn	Can iterate, fix errors, explore data

Single-shot is faster and cheaper - use when the task is straightforward.
Multi-turn allows the LLM to inspect results with println, retry on errors, and call return when confident.
Signatures
Signatures define input/output types. They work with both output modes.
Format: (input1 :type, input2 :type) -> output_type
	Type	Examples
	:string, :int, :float, :bool	Primitives
	{field :type, ...}	Object with named fields
	[element_type]	List of elements
	{:optional, :type}	Optional field

Input: two strings, Output: object with score and explanation
sig1 = "(text1 :string, text2 :string) -> {similarity :float, explanation :string}"

Input: list of items, Output: object with categorized lists
sig2 = "(items [{name :string, price :float}]) -> {expensive [{name :string}], cheap [{name :string}]}"

Output only (no inputs from context)
sig3 = "{count :int, items [:string]}"

:ok
Compiled SubAgents
Compile an agent once to derive reusable PTC-Lisp logic. Runs without further LLM calls:
agent = SubAgent.new(
 prompt: "Count r's in {{word}}",
 signature: "(word :string) -> :int"
)

{:ok, compiled} = SubAgent.compile(agent, llm: my_llm)

IO.puts("Compiled source:\n#{compiled.source}")
Execute on multiple inputs - no LLM calls
words = ["strawberry", "raspberry", "program", "error"]

for word <- words do
 step = compiled.execute.(%{"word" => word})
 "#{word}: #{step.return}"
end
Working with Tools
Tools let agents fetch external data or perform actions:
expenses = [
 %{"id" => 1, "category" => "travel", "amount" => 450.00, "vendor" => "Airlines Inc"},
 %{"id" => 2, "category" => "food", "amount" => 32.50, "vendor" => "Cafe Luna"},
 %{"id" => 3, "category" => "travel", "amount" => 189.00, "vendor" => "Hotel Central"},
 %{"id" => 4, "category" => "office", "amount" => 299.99, "vendor" => "Tech Store"},
 %{"id" => 5, "category" => "food", "amount" => 28.00, "vendor" => "Deli Express"}
]

tools = %{
 "list-expenses" => {fn _ -> expenses end,
 signature: "() -> [{id :int, category :string, amount :float, vendor :string}]",
 description: "Returns all expense records"
 }
}

Kino.DataTable.new(expenses)
{:ok, step} = SubAgent.run(
 "What is the total travel expense?",
 tools: tools,
 signature: "{total :float}",
 llm: my_llm
)

Debug.print_trace(step, raw: true)
step.return
Interactive Query
question_input = Kino.Input.textarea("Question", default: "Show spending by category")
question = Kino.Input.read(question_input)

case SubAgent.run(question, tools: tools, llm: my_llm) do
 {:ok, step} ->
 Debug.print_trace(step)
 step.return

 {:error, step} ->
 Debug.print_trace(step)
 "Failed: #{step.fail.message}"
end
Debug Options
Preview the prompt before running
agent = SubAgent.new(prompt: "What is 2 + 2?")
SubAgent.preview_prompt(agent).system |> IO.puts()
print_trace options:
	Option	Description
	raw: true	Show raw LLM input/output
	messages: true	Show all messages including system prompt
	usage: true	Show token usage
	view: :compressed	Show what LLM sees (compressed format)

Learn More
	Playground - PTC-Lisp basics
	SubAgent Guide
	PTC-Lisp Spec

PtcRunner

BEAM-native Programmatic Tool Calling (PTC) runner.
Languages
PtcRunner supports multiple DSL languages:
	PtcRunner.Json - JSON-based DSL (stable)
	PtcRunner.Lisp - Clojure-like DSL (experimental)

Examples
JSON DSL
iex> program = ~s({"program": {"op": "literal", "value": 42}})
iex> {:ok, result, _metrics} = PtcRunner.Json.run(program)
iex> result
42
PTC-Lisp
iex> {:ok, result, _delta, _memory} = PtcRunner.Lisp.run("(+ 1 2)")
iex> result
3

PtcRunner.Context

Manages context, memory, and tools for program execution.
	ctx: External input data (read-only)
	memory: Mutable state passed through evaluation
	tools: Tool registry

See PtcRunner.SubAgent for usage in agentic loops.

 Summary

 Types

 t()

 Context structure containing external data, memory, and tool registry.

 Functions

 get_ctx(context, name)

 Retrieves a value from context (external data).

 get_memory(context, name)

 Retrieves a value from memory (mutable state).

 new(ctx \\ %{}, memory \\ %{}, tools \\ %{}, turn_history \\ [])

 Creates a new context with external data, memory, tools, and optional turn history.

 put_memory(context, name, value)

 Sets a value in memory.

 Types

 t()

 @type t() :: %PtcRunner.Context{
 ctx: map(),
 memory: map(),
 tools: map(),
 turn_history: list()
}

Context structure containing external data, memory, and tool registry.

 Functions

 get_ctx(context, name)

 @spec get_ctx(t(), String.t()) :: {:ok, any()} | {:error, {atom(), String.t()}}

Retrieves a value from context (external data).
Returns {:ok, nil} if key doesn't exist.
Examples
iex> ctx = PtcRunner.Context.new(%{"users" => [1, 2, 3]})
iex> PtcRunner.Context.get_ctx(ctx, "users")
{:ok, [1, 2, 3]}

iex> ctx = PtcRunner.Context.new()
iex> PtcRunner.Context.get_ctx(ctx, "missing")
{:ok, nil}

 get_memory(context, name)

 @spec get_memory(t(), String.t()) :: {:ok, any()} | {:error, {atom(), String.t()}}

Retrieves a value from memory (mutable state).
Returns {:ok, nil} if key doesn't exist.
Examples
iex> ctx = PtcRunner.Context.new(%{}, %{"counter" => 42})
iex> PtcRunner.Context.get_memory(ctx, "counter")
{:ok, 42}

iex> ctx = PtcRunner.Context.new()
iex> PtcRunner.Context.get_memory(ctx, "missing")
{:ok, nil}

 new(ctx \\ %{}, memory \\ %{}, tools \\ %{}, turn_history \\ [])

 @spec new(map(), map(), map(), list()) :: t()

Creates a new context with external data, memory, tools, and optional turn history.
Examples
iex> ctx = PtcRunner.Context.new(%{"users" => [1, 2, 3]})
iex> ctx.ctx
%{"users" => [1, 2, 3]}

iex> ctx = PtcRunner.Context.new(%{}, %{"counter" => 0})
iex> ctx.memory
%{"counter" => 0}

 put_memory(context, name, value)

 @spec put_memory(t(), String.t(), any()) :: t()

Sets a value in memory.
Examples
iex> ctx = PtcRunner.Context.new()
iex> ctx = PtcRunner.Context.put_memory(ctx, "result", 100)
iex> ctx.memory
%{"result" => 100}

PtcRunner.Json

Execute PTC programs written in JSON DSL.
PtcRunner.Json enables LLMs to write safe programs that orchestrate tools
and transform data inside a sandboxed environment using JSON syntax.
See the PTC-JSON Specification for the complete
DSL reference.
Tool Registration
Tools are functions that receive a map of arguments and return results:
tools = %{
 "get_user" => fn %{"id" => id} -> MyApp.Users.get(id) end,
 "search" => fn %{"query" => q, "limit" => n} -> MyApp.Search.run(q, limit: n) end
}

PtcRunner.Json.run(program, tools: tools)
Contract:
	Receives: map() of arguments (may be empty %{})
	Returns: Any Elixir term (maps, lists, primitives)
	Should not raise (return {:error, reason} for errors)

Error Handling
Use format_error/1 to convert errors into LLM-friendly messages:
case PtcRunner.Json.run(program, tools: tools) do
 {:ok, result, _, _} -> handle_success(result)
 {:error, error} -> retry_with_feedback(format_error(error))
end
Examples
iex> program = ~s({"program": {"op": "literal", "value": 42}})
iex> {:ok, result, _memory_delta, _new_memory} = PtcRunner.Json.run(program)
iex> result
42

 Summary

 Types

 error()

 Error types returned by PtcRunner.Json operations.

 metrics()

 Execution metrics for a program run.

 Functions

 format_error(other)

 Formats an error into a human-readable message suitable for LLM feedback.

 run(program, opts \\ [])

 Runs a PTC program and returns the result with metrics and memory.

 run!(program, opts \\ [])

 Runs a PTC program, raising on error.

 Types

 error()

 @type error() ::
 {:parse_error, String.t()}
 | {:validation_error, String.t()}
 | {:execution_error, String.t()}
 | {:timeout, non_neg_integer()}
 | {:memory_exceeded, non_neg_integer()}

Error types returned by PtcRunner.Json operations.

 metrics()

 @type metrics() :: %{duration_ms: integer(), memory_bytes: integer()}

Execution metrics for a program run.

 Functions

 format_error(other)

 @spec format_error(error() | any()) :: String.t()

Formats an error into a human-readable message suitable for LLM feedback.
This function converts internal error tuples into clear, actionable messages
that help LLMs understand what went wrong and how to fix their programs.
Examples
iex> PtcRunner.Json.format_error({:parse_error, "unexpected token"})
"ParseError: unexpected token"

iex> PtcRunner.Json.format_error({:validation_error, "unknown operation"})
"ValidationError: unknown operation"

 run(program, opts \\ [])

 @spec run(
 String.t() | map(),
 keyword()
) :: {:ok, any(), map(), map()} | {:error, error()}

Runs a PTC program and returns the result with metrics and memory.
Arguments
	program: JSON string or parsed map representing the program
	opts: Execution options

Options
	:context - Map of external context data (default: %{})
	:memory - Map of initial memory state (default: %{})
	:tools - Tool registry (default: %{})
	:timeout - Timeout in milliseconds (default: 1000)
	:max_heap - Max heap size in words (default: 1_250_000)

Returns
	{:ok, result, memory_delta, new_memory} on success
	{:error, reason} on failure

The return format follows the memory contract:
	If result is not a map: memory_delta is empty, new_memory is unchanged
	If result is a map with "result" key: "result" value is returned, other keys merged to memory
	If result is a map with :result key: :result value is returned, other keys merged to memory
	If result is a map without "result" or :result: result is returned as-is, merged to memory

Examples
iex> {:ok, result, _memory_delta, _new_memory} = PtcRunner.Json.run(~s({"program": {"op": "literal", "value": 42}}))
iex> result
42

 run!(program, opts \\ [])

 @spec run!(
 String.t() | map(),
 keyword()
) :: any()

Runs a PTC program, raising on error.
Arguments
	program: JSON string or parsed map representing the program
	opts: Execution options (same as run/2)

Returns
	The result value (memory is discarded)

Raises
	Raises an error if parsing, validation, or execution fails

Examples
iex> result = PtcRunner.Json.run!(~s({"program": {"op": "literal", "value": 42}}))
iex> result
42

PtcRunner.Json.Interpreter

Interprets and evaluates AST nodes.
Recursively evaluates operations by dispatching to the Operations module,
threading memory through the evaluation.

 Summary

 Functions

 eval(node, context)

 Evaluates an AST node in a given context.

 Functions

 eval(node, context)

 @spec eval(map(), PtcRunner.Context.t()) ::
 {:ok, any(), map()} | {:error, {atom(), String.t()}}

Evaluates an AST node in a given context.
Arguments
	node: The AST node to evaluate
	context: The execution context

Returns
	{:ok, result, memory} on success
	{:error, reason} on failure

PtcRunner.Json.Operations

Built-in operations for the DSL.
Implements built-in operations for the DSL (Phase 1: literal, load, var, pipe,
filter, map, select, eq, sum, count; Phase 2: get, neq, gt, gte, lt, lte, first,
last, nth, reject, contains, avg, min, max; Phase 3: let, if, and, or, not, object,
merge, concat, zip; Phase 4: keys, typeof - introspection operations; Phase 5: take, drop,
distinct - list filtering and deduplication; Phase 6: add, sub, mul, div, round, pct - arithmetic operations; Phase 7: in, filter_in - membership operations).
This module acts as a dispatcher, delegating to specialized sub-modules:
	PtcRunner.Json.Operations.Comparison - eq, neq, gt, gte, lt, lte, contains, in
	PtcRunner.Json.Operations.Aggregation - sum, count, avg, min, max
	PtcRunner.Json.Operations.Arithmetic - add, sub, mul, div, round, pct
	PtcRunner.Json.Operations.Collection - filter, map, select, reject, filter_in
	PtcRunner.Json.Operations.Access - get, first, last, nth, sort_by, max_by, min_by, take, drop, distinct

 Summary

 Functions

 eval(op, node, context, eval_fn)

 Evaluates a built-in operation.

 Functions

 eval(op, node, context, eval_fn)

 @spec eval(String.t(), map(), PtcRunner.Context.t(), function()) ::
 {:ok, any(), map()} | {:error, {atom(), String.t()}}

Evaluates a built-in operation.
Arguments
	op: Operation name
	node: Operation definition map
	context: Execution context
	eval_fn: Function to recursively evaluate expressions

Returns
	{:ok, result, memory} on success
	{:error, reason} on failure

PtcRunner.Json.Operations.Access

Element access operations for the JSON DSL.
Implements element and item access: get, first, last, nth, take, drop, distinct, sort_by, max_by, min_by.

 Summary

 Functions

 eval(binary, node, context, eval_fn)

 Evaluates an access operation.

 Functions

 eval(binary, node, context, eval_fn)

 @spec eval(String.t(), map(), any(), function()) ::
 {:ok, any(), map()} | {:error, {atom(), String.t()}}

Evaluates an access operation.
Arguments
	op: Operation name
	node: Operation definition map
	context: Execution context
	eval_fn: Function to recursively evaluate expressions

Returns
	{:ok, result, memory} on success
	{:error, reason} on failure

PtcRunner.Json.Operations.Aggregation

Aggregation operations for the JSON DSL.
Implements aggregations: sum, count, avg, min, max.

 Summary

 Functions

 eval(binary, node, context, eval_fn)

 Evaluates an aggregation operation.

 Functions

 eval(binary, node, context, eval_fn)

 @spec eval(String.t(), map(), any(), function()) ::
 {:ok, any(), map()} | {:error, {atom(), String.t()}}

Evaluates an aggregation operation.
Arguments
	op: Operation name
	node: Operation definition map
	context: Execution context
	eval_fn: Function to recursively evaluate expressions

Returns
	{:ok, result, memory} on success
	{:error, reason} on failure

PtcRunner.Json.Operations.Arithmetic

Arithmetic operations for the JSON DSL.
Implements arithmetic operations: add, sub, mul, div, round, pct.

 Summary

 Functions

 eval(binary, node, context, eval_fn)

 Evaluates an arithmetic operation.

 Functions

 eval(binary, node, context, eval_fn)

 @spec eval(String.t(), map(), any(), function()) ::
 {:ok, any(), map()} | {:error, {atom(), String.t()}}

Evaluates an arithmetic operation.
Arguments
	op: Operation name
	node: Operation definition map
	context: Execution context
	eval_fn: Function to recursively evaluate expressions (unused for arithmetic)

Returns
	{:ok, result, memory} on success
	{:error, reason} on failure

PtcRunner.Json.Operations.Collection

Collection operations for the JSON DSL.
Implements collection transformations: filter, map, select, reject, filter_in.

 Summary

 Functions

 eval(binary, node, context, eval_fn)

 Evaluates a collection operation.

 Functions

 eval(binary, node, context, eval_fn)

 @spec eval(String.t(), map(), any(), function()) ::
 {:ok, any(), map()} | {:error, {atom(), String.t()}}

Evaluates a collection operation.
Arguments
	op: Operation name
	node: Operation definition map
	context: Execution context
	eval_fn: Function to recursively evaluate expressions

Returns
	{:ok, result, memory} on success
	{:error, reason} on failure

PtcRunner.Json.Operations.Comparison

Comparison operations for the JSON DSL.
Implements comparison and containment checks: eq, neq, gt, gte, lt, lte, contains, in.

 Summary

 Functions

 eval(binary, node, context, eval_fn)

 Evaluates a comparison operation.

 Functions

 eval(binary, node, context, eval_fn)

 @spec eval(String.t(), map(), any(), function()) ::
 {:ok, any(), map()} | {:error, {atom(), String.t()}}

Evaluates a comparison operation.
Arguments
	op: Operation name
	node: Operation definition map
	context: Execution context
	eval_fn: Function to recursively evaluate expressions

Returns
	{:ok, result, memory} on success
	{:error, reason} on failure

PtcRunner.Json.Operations.Helpers

Helper functions for JSON DSL operations.
Provides shared utilities for membership checks and other common operations.

 Summary

 Functions

 member_of?(value, collection)

 Checks if a value is a member of a collection (list or map).

 Functions

 member_of?(value, collection)

 @spec member_of?(any(), any()) :: boolean()

Checks if a value is a member of a collection (list or map).
For lists, checks if the value is in the list using the in operator.
For maps, checks if the value is a key in the map.
Returns false for other types.
Examples
iex> PtcRunner.Json.Operations.Helpers.member_of?("apple", ["apple", "banana"])
true

iex> PtcRunner.Json.Operations.Helpers.member_of?("grape", ["apple", "banana"])
false

iex> PtcRunner.Json.Operations.Helpers.member_of?("name", %{"name" => "John", "age" => 30})
true

iex> PtcRunner.Json.Operations.Helpers.member_of?("email", %{"name" => "John"})
false

iex> PtcRunner.Json.Operations.Helpers.member_of?("value", "not a collection")
false

PtcRunner.Json.Parser

Parses JSON strings or maps into AST representation.
Accepts JSON strings or already-parsed maps and returns
either the parsed result or a descriptive error.

 Summary

 Functions

 parse(input)

 Parses JSON string or map into AST.

 Functions

 parse(input)

 @spec parse(String.t() | map()) :: {:ok, map()} | {:error, {:parse_error, String.t()}}

Parses JSON string or map into AST.
Expects input to be wrapped in a {"program": ...} format.
Extracts the program field and returns it.
Arguments
	input: Either a JSON string or an already-parsed map

Returns
	{:ok, map} on success (the unwrapped program)
	{:error, {:parse_error, message}} on parse error

PtcRunner.Json.Validator

Validates DSL programs against the schema.
Ensures operations have correct structure and required fields.

 Summary

 Functions

 validate(ast)

 Validates an AST node against the DSL schema.

 Functions

 validate(ast)

 @spec validate(map()) :: :ok | {:error, {:validation_error, String.t()}}

Validates an AST node against the DSL schema.
Arguments
	ast: The AST to validate

Returns
	:ok if valid
	{:error, {:validation_error, message}} if invalid

PtcRunner.Lisp

Execute PTC programs written in Lisp DSL (Clojure subset).
PTC-Lisp enables LLMs to write safe programs that orchestrate tools and transform
data. Unlike raw code execution (Python, JavaScript), PTC-Lisp provides safety by
design: no filesystem/network access, no unbounded recursion, and deterministic
execution in isolated BEAM processes with resource limits.
See the PTC-Lisp Specification for the complete
language reference.
Tool Registration
Tools are functions that receive a map of arguments and return results.
Note: tool names use kebab-case in Lisp (e.g., "get-user" not "get_user"):
tools = %{
 "get-user" => fn %{"id" => id} -> MyApp.Users.get(id) end,
 "search" => fn %{"query" => q} -> MyApp.Search.run(q) end
}

PtcRunner.Lisp.run(~S|(tool/get-user {:id 123})|, tools: tools)
Contract:
	Receives: map() of arguments (may be empty %{})
	Returns: Any Elixir term (maps, lists, primitives)
	Should not raise (return {:error, reason} for errors)

 Summary

 Functions

 format_error(other)

 Format an error tuple into a human-readable string.

 run(source, opts \\ [])

 Run a PTC-Lisp program.

 Functions

 format_error(other)

 @spec format_error(term()) :: String.t()

Format an error tuple into a human-readable string.
Useful for displaying errors to users or feeding back to LLMs for retry.
Examples
iex> PtcRunner.Lisp.format_error({:parse_error, "unexpected token"})
"Parse error: unexpected token"

iex> PtcRunner.Lisp.format_error({:eval_error, "undefined variable: x"})
"Eval error: undefined variable: x"

 run(source, opts \\ [])

 @spec run(
 String.t(),
 keyword()
) :: {:ok, PtcRunner.Step.t()} | {:error, PtcRunner.Step.t()}

Run a PTC-Lisp program.
Parameters
	source: PTC-Lisp source code as a string
	opts: Keyword list of options	:context - Initial context map (default: %{})
	:memory - Initial memory map (default: %{})
	:tools - Map of tool names to functions (default: %{})
	:signature - Optional signature string for return value validation
	:float_precision - Number of decimal places for floats in result (default: nil = full precision)
	:timeout - Timeout in milliseconds (default: 1000)
	:max_heap - Max heap size in words (default: 1_250_000)
	:max_symbols - Max unique symbols/keywords allowed (default: 10_000)
	:max_print_length - Max characters per println call (default: 2000)
	:filter_context - Filter context to only include accessed data keys (default: true)

Return Value
On success, returns:
	{:ok, Step.t()} with:	step.return: The value returned to the caller
	step.memory: Complete memory state after execution
	step.usage: Execution metrics (duration_ms, memory_bytes)

On error, returns:
	{:error, Step.t()} with:	step.fail.reason: Error reason atom
	step.fail.message: Human-readable error description
	step.memory: Memory state at time of error

Memory Contract
The memory contract is applied only at the top level (via apply_memory_contract/3):
	If result is not a map: step.return = value, no memory update
	If result is a map without :return: merges map into memory, returns map as step.return
	If result is a map with :return: merges remaining keys into memory, returns :return value as step.return

Related modules:
	PtcRunner.SubAgent.Loop - Uses this contract to persist memory across turns
	PtcRunner.Lisp.Eval - Evaluates programs with user_ns (memory) symbol resolution

Float Precision
When :float_precision is set, all floats in the result are rounded to that many decimal places.
This is useful for LLM-facing applications where excessive precision wastes tokens.
Full precision (default)
{:ok, step} = PtcRunner.Lisp.run("(/ 10 3)")
step.return
#=> 3.3333333333333335

Rounded to 2 decimals
{:ok, step} = PtcRunner.Lisp.run("(/ 10 3)", float_precision: 2)
step.return
#=> 3.33
Resource Limits
Lisp programs execute with configurable timeout and memory limits:
PtcRunner.Lisp.run(source, timeout: 5000, max_heap: 5_000_000)
Exceeding limits returns an error:
	{:error, {:timeout, ms}} - execution exceeded timeout
	{:error, {:memory_exceeded, bytes}} - heap limit exceeded

Context Filtering
By default, PTC-Lisp performs static analysis to identify which data/xxx keys are accessed
by a program, then filters the context to only include those datasets. This significantly
reduces memory pressure when the context contains large datasets that aren't used.
Only products is loaded into the sandbox, orders/employees are filtered out
ctx = %{"products" => large_list, "orders" => large_list, "employees" => large_list}
PtcRunner.Lisp.run("(count data/products)", context: ctx)
Scalar context values (strings, numbers, nil) are always preserved as they typically
represent metadata like prompts or configuration.
Disable filtering if you need all context available (e.g., for dynamic data access):
PtcRunner.Lisp.run(source, context: ctx, filter_context: false)
See PtcRunner.Lisp.DataKeys for the static analysis implementation.

PtcRunner.Lisp.AST

AST node types for PTC-Lisp

 Summary

 Types

 t()

 Functions

 keyword(name)

 Create a keyword node

 list(elements)

 Create a list (call) node

 map_node(pairs)

 Create a map node from flat list [k1, v1, k2, v2, ...]

 symbol(name)

 Create a symbol node

 vector(elements)

 Create a vector node

 Types

 t()

 @type t() ::
 nil
 | boolean()
 | number()
 | {:string, String.t()}
 | {:keyword, atom()}
 | {:vector, [t()]}
 | {:map, [{t(), t()}]}
 | {:set, [t()]}
 | {:symbol, atom()}
 | {:ns_symbol, atom(), atom()}
 | {:list, [t()]}

 Functions

 keyword(name)

Create a keyword node

 list(elements)

Create a list (call) node

 map_node(pairs)

Create a map node from flat list [k1, v1, k2, v2, ...]

 symbol(name)

Create a symbol node

 vector(elements)

Create a vector node

PtcRunner.Lisp.Analyze

Validates and desugars RawAST into CoreAST.
The analyzer transforms the parser's output (RawAST) into a validated,
desugared intermediate form (CoreAST) that the interpreter can safely evaluate.
Error Handling
Returns {:ok, CoreAST.t()} on success or {:error, error_reason()} on failure.

 Summary

 Types

 error_reason()

 Functions

 analyze(raw_ast)

 Types

 error_reason()

 @type error_reason() ::
 {:invalid_form, String.t()}
 | {:invalid_arity, atom(), String.t()}
 | {:invalid_where_form, String.t()}
 | {:invalid_where_operator, atom()}
 | {:invalid_cond_form, String.t()}
 | {:invalid_thread_form, atom(), String.t()}
 | {:unsupported_pattern, term()}
 | {:invalid_placeholder, atom()}

 Functions

 analyze(raw_ast)

 @spec analyze(term()) :: {:ok, PtcRunner.Lisp.CoreAST.t()} | {:error, error_reason()}

PtcRunner.Lisp.Analyze.Patterns

Pattern analysis and destructuring for let bindings and function parameters.
Transforms RawAST pattern forms into CoreAST pattern representations.
Supports simple variable bindings, sequential destructuring, and map destructuring
with :keys, :or defaults, :as bindings, and renamed keys.

 Summary

 Functions

 analyze_pattern(other)

 Analyzes a pattern AST for use in bindings.

 split_at_ampersand(elements)

 Splits vector elements at & symbol for rest pattern destructuring.
Returns {:rest, leading_elements, rest_element} or :no_rest

 Functions

 analyze_pattern(other)

 @spec analyze_pattern(term()) :: {:ok, term()} | {:error, term()}

Analyzes a pattern AST for use in bindings.
Examples
iex> PtcRunner.Lisp.Analyze.Patterns.analyze_pattern({:symbol, :x})
{:ok, {:var, :x}}

iex> PtcRunner.Lisp.Analyze.Patterns.analyze_pattern({:vector, [{:symbol, :a}, {:symbol, :b}]})
{:ok, {:destructure, {:seq, [{:var, :a}, {:var, :b}]}}}

 split_at_ampersand(elements)

Splits vector elements at & symbol for rest pattern destructuring.
Returns {:rest, leading_elements, rest_element} or :no_rest

PtcRunner.Lisp.Analyze.Predicates

Predicate analysis for where clauses and predicate combinators.
Transforms predicate expressions (where, all-of, any-of, none-of) from
RawAST into CoreAST representations used for filtering collections.

 Summary

 Functions

 analyze_pred_comb(kind, args, analyze_list_fn)

 Analyzes a predicate combinator (all-of, any-of, none-of).

 analyze_where(args, analyze_fn)

 Analyzes a where expression.

 Functions

 analyze_pred_comb(kind, args, analyze_list_fn)

 @spec analyze_pred_comb(atom(), list(), (list() -> {:ok, list()} | {:error, term()})) ::
 {:ok, term()} | {:error, term()}

Analyzes a predicate combinator (all-of, any-of, none-of).
Takes the combinator kind, arguments, and an analyzer function for the predicates.

 analyze_where(args, analyze_fn)

 @spec analyze_where(list(), (term() -> {:ok, term()} | {:error, term()})) ::
 {:ok, term()} | {:error, term()}

Analyzes a where expression.
Takes the arguments to a where form and an analyzer function for nested values.
Forms
	(where field) - truthy check on field
	(where field op value) - comparison using op

PtcRunner.Lisp.Analyze.ShortFn

Analyzer for short function syntax (#()).
Transforms short function forms into desugared anonymous functions
by extracting placeholders (%, %1, %2, etc.) and generating parameters.

 Summary

 Functions

 desugar(body_asts)

 Desugars short function syntax into a transformed AST.

 Functions

 desugar(body_asts)

 @spec desugar([term()]) :: {:ok, term()} | {:error, term()}

Desugars short function syntax into a transformed AST.
Takes the body ASTs from a short_fn form and returns a desugared form
as a list-based fn form, ready for the parent analyzer to process.
Returns {:ok, desugared_ast} on success or {:error, error_reason()} on failure.

PtcRunner.Lisp.ClojureValidator

Validates PTC-Lisp programs against Babashka/Clojure.
Provides validation to ensure:
	PTC-Lisp programs are valid Clojure syntax
	Runtime functions behave identically to Clojure equivalents

Usage
Check if Babashka is available
PtcRunner.Lisp.ClojureValidator.available?()

Validate syntax only (fast)
PtcRunner.Lisp.ClojureValidator.validate_syntax("(+ 1 2)")

Execute and get result
PtcRunner.Lisp.ClojureValidator.execute("(+ 1 2)")
Installation
Install Babashka with: mix ptc.install_babashka

 Summary

 Functions

 available?()

 Check if Babashka is available.

 bb_path()

 Get the path to the Babashka binary.

 compare_results(ptc_result, clj_result)

 Compare a PTC-Lisp result with a Clojure result.

 execute(source, opts \\ [])

 Execute source in Babashka and return the result.

 validate_syntax(source)

 Validate that source is valid Clojure syntax.

 wrap_with_stubs(source, context \\ %{}, memory \\ %{})

 Wrap PTC-Lisp source with Clojure stubs for PTC-specific features.

 Functions

 available?()

 @spec available?() :: boolean()

Check if Babashka is available.
Looks for bb at _build/tools/bb first, then in system PATH.

 bb_path()

 @spec bb_path() :: String.t() | nil

Get the path to the Babashka binary.
Returns nil if not found.

 compare_results(ptc_result, clj_result)

 @spec compare_results(any(), any()) :: :match | {:mismatch, String.t()}

Compare a PTC-Lisp result with a Clojure result.
Handles normalization of types that differ between systems:
	Elixir atoms vs Clojure keywords
	Map key type differences

Returns :match if equivalent, {:mismatch, details} otherwise.

 execute(source, opts \\ [])

 @spec execute(
 String.t(),
 keyword()
) :: {:ok, any()} | {:error, String.t()}

Execute source in Babashka and return the result.
Options
	:timeout - Timeout in milliseconds (default: 5000)
	:context - Context map to inject as ctx binding
	:memory - Memory map to inject as memory binding

Examples
iex> PtcRunner.Lisp.ClojureValidator.execute("(+ 1 2 3)")
{:ok, 6}

iex> PtcRunner.Lisp.ClojureValidator.execute("(filter even? [1 2 3 4])")
{:ok, [2, 4]}

 validate_syntax(source)

 @spec validate_syntax(String.t()) :: :ok | {:error, String.t()}

Validate that source is valid Clojure syntax.
Returns :ok if valid, {:error, reason} if invalid.
Examples
iex> PtcRunner.Lisp.ClojureValidator.validate_syntax("(+ 1 2)")
:ok

iex> PtcRunner.Lisp.ClojureValidator.validate_syntax("(+ 1 2")
{:error, "Syntax error: ..."}

 wrap_with_stubs(source, context \\ %{}, memory \\ %{})

 @spec wrap_with_stubs(String.t(), map(), map()) :: String.t()

Wrap PTC-Lisp source with Clojure stubs for PTC-specific features.
Adds definitions for:
	ctx - Context data as a map
	memory - Memory data as a map
	PTC-specific functions: where, all-of, any-of, none-of, etc.

PtcRunner.Lisp.CoreAST

Core, validated AST for PTC-Lisp.
This module defines the type specifications for the intermediate
representation that the analyzer produces. The interpreter evaluates
CoreAST to produce results.
Pipeline
source → Parser → RawAST → Analyze → CoreAST → Eval → result

 Summary

 Types

 binding()

 field_path()

 field_segment()

 fn_params()

 literal()

 pattern()

 t()

 where_op()

 Types

 binding()

 @type binding() :: {:binding, pattern(), t()}

 field_path()

 @type field_path() :: {:field, [field_segment()]}

 field_segment()

 @type field_segment() :: {:keyword, atom()} | {:string, String.t()}

 fn_params()

 @type fn_params() :: [pattern()] | {:variadic, [pattern()], pattern()}

 literal()

 @type literal() ::
 nil | boolean() | number() | {:string, String.t()} | {:keyword, atom()}

 pattern()

 @type pattern() ::
 {:var, atom()}
 | {:destructure, {:keys, [atom()], keyword()}}
 | {:destructure, {:map, [atom()], [{atom(), atom()}], keyword()}}
 | {:destructure, {:as, atom(), pattern()}}
 | {:destructure, {:seq, [pattern()]}}
 | {:destructure, {:seq_rest, [pattern()], pattern()}}

 t()

 @type t() ::
 literal()
 | {:vector, [t()]}
 | {:map, [{t(), t()}]}
 | {:set, [t()]}
 | {:var, atom()}
 | {:data, atom()}
 | {:call, t(), [t()]}
 | {:let, [binding()], t()}
 | {:if, t(), t(), t()}
 | {:fn, fn_params(), t()}
 | {:do, [t()]}
 | {:and, [t()]}
 | {:or, [t()]}
 | {:where, field_path(), where_op(), t() | nil}
 | {:pred_combinator, :all_of | :any_of | :none_of, [t()]}
 | {:return, t()}
 | {:fail, t()}
 | {:tool_call, atom(), [t()]}
 | {:def, atom(), t(), map()}
 | {:loop, [binding()], t()}
 | {:recur, [t()]}

 where_op()

 @type where_op() ::
 :eq | :not_eq | :gt | :lt | :gte | :lte | :includes | :in | :truthy

PtcRunner.Lisp.DataKeys

Static analysis to extract data keys accessed by a PTC-Lisp program.
Walks the Core AST to find all {:data, key} nodes, which represent
data/xxx access patterns in the source code.
This enables context optimization by loading only the datasets actually
needed by the program, reducing memory pressure during execution.
Example
iex> {:ok, ast} = PtcRunner.Lisp.Parser.parse("(count data/products)")
iex> {:ok, core_ast} = PtcRunner.Lisp.Analyze.analyze(ast)
iex> PtcRunner.Lisp.DataKeys.extract(core_ast)
MapSet.new([:products])

 Summary

 Functions

 extract(ast)

 Extracts all data keys accessed by a program.

 filter_context(ast, ctx)

 Filters a context map to only include keys accessed by the program.

 Functions

 extract(ast)

 @spec extract(term()) :: MapSet.t()

Extracts all data keys accessed by a program.
Returns a MapSet of atoms/strings representing the keys accessed via data/xxx.
Examples
iex> {:ok, ast} = PtcRunner.Lisp.Parser.parse("(+ (count data/foo) (count data/bar))")
iex> {:ok, core_ast} = PtcRunner.Lisp.Analyze.analyze(ast)
iex> keys = PtcRunner.Lisp.DataKeys.extract(core_ast)
iex> Enum.sort(keys)
[:bar, :foo]

 filter_context(ast, ctx)

 @spec filter_context(term(), map()) :: map()

Filters a context map to only include keys accessed by the program.
Keys not present in the context are silently ignored (the program may
reference data that doesn't exist, which will be handled at runtime).
Examples
iex> {:ok, ast} = PtcRunner.Lisp.Parser.parse("(count data/products)")
iex> {:ok, core_ast} = PtcRunner.Lisp.Analyze.analyze(ast)
iex> ctx = %{"products" => [1,2,3], "orders" => [4,5,6], "question" => "test"}
iex> PtcRunner.Lisp.DataKeys.filter_context(core_ast, ctx)
%{"products" => [1,2,3], "question" => "test"}

PtcRunner.Lisp.Env

Builds the initial environment with builtins for PTC-Lisp.
Provides the foundation environment with all builtin functions
and their descriptors. The environment supports multiple binding types:
	{:normal, fun} - Fixed-arity function
	{:variadic, fun, identity} - Variadic function with identity value for 0-arg case
	{:variadic_nonempty, name, fun} - Variadic function requiring at least 1 argument
	{:multi_arity, name, tuple_of_funs} - Multiple arities where tuple index = arity - min_arity
	{:collect, fun} - Collects all args into a list and passes to unary function

 Summary

 Types

 binding()

 env()

 Functions

 builtin?(name)

 Check if a name is a builtin function.

 builtins_by_category(atom)

 Get the list of builtin functions for a category.

 category_name(atom)

 Get a human-readable name for a category.

 clojure_namespace?(ns)

 Check if a namespace is a known Clojure-style namespace.

 constant?(ns, name)

 Check if a name is a namespaced constant.

 initial()

 namespace_category(ns)

 Get the category for a Clojure-style namespace.

 Types

 binding()

 @type binding() ::
 {:normal, function()}
 | {:variadic, function(), term()}
 | {:variadic_nonempty, atom(), function()}
 | {:multi_arity, atom(), tuple()}
 | {:collect, function()}
 | {:constant, term()}

 env()

 @type env() :: %{required(atom()) => binding()}

 Functions

 builtin?(name)

 @spec builtin?(atom()) :: boolean()

Check if a name is a builtin function.
Returns true if the given atom is a builtin function name.
Examples
iex> PtcRunner.Lisp.Env.builtin?(:map)
true

iex> PtcRunner.Lisp.Env.builtin?(:filter)
true

iex> PtcRunner.Lisp.Env.builtin?(:my_var)
false

 builtins_by_category(atom)

 @spec builtins_by_category(atom()) :: [atom()]

Get the list of builtin functions for a category.
Used to provide helpful error messages when a function is not available.
Examples
iex> :join in PtcRunner.Lisp.Env.builtins_by_category(:string)
true

iex> :set in PtcRunner.Lisp.Env.builtins_by_category(:set)
true

 category_name(atom)

 @spec category_name(atom()) :: String.t()

Get a human-readable name for a category.
Examples
iex> PtcRunner.Lisp.Env.category_name(:string)
"String"

iex> PtcRunner.Lisp.Env.category_name(:core)
"Core"

 clojure_namespace?(ns)

 @spec clojure_namespace?(atom()) :: boolean()

Check if a namespace is a known Clojure-style namespace.
Examples
iex> PtcRunner.Lisp.Env.clojure_namespace?(:"clojure.string")
true

iex> PtcRunner.Lisp.Env.clojure_namespace?(:str)
true

iex> PtcRunner.Lisp.Env.clojure_namespace?(:my_ns)
false

 constant?(ns, name)

Check if a name is a namespaced constant.

 initial()

 @spec initial() :: env()

 namespace_category(ns)

 @spec namespace_category(atom()) :: atom() | nil

Get the category for a Clojure-style namespace.
Returns :string, :set, or :core.
Examples
iex> PtcRunner.Lisp.Env.namespace_category(:"clojure.string")
:string

iex> PtcRunner.Lisp.Env.namespace_category(:str)
:string

PtcRunner.Lisp.Eval

Evaluates CoreAST into values.
The eval layer recursively interprets CoreAST nodes, resolving variables
from lexical environments, applying builtins and user functions, and
handling control flow.
Module Structure
This module delegates to specialized submodules:
	Eval.Context - Evaluation context struct
	Eval.Patterns - Pattern matching for let bindings
	Eval.Where - Where predicates and comparisons
	Eval.Apply - Function application dispatch
	Eval.Helpers - Type errors and utilities

 Summary

 Types

 env()

 runtime_error()

 tool_executor()

 value()

 Functions

 eval(ast, ctx, memory, env, tool_executor, turn_history \\ [], opts \\ [])

 eval_with_context(ast, ctx, memory, env, tool_executor, turn_history \\ [], opts \\ [])

 Types

 env()

 @type env() :: %{required(atom()) => term()}

 runtime_error()

 @type runtime_error() ::
 {:unbound_var, atom()}
 | {:not_callable, term()}
 | {:arity_mismatch, expected :: integer(), got :: integer()}
 | {:type_error, expected :: String.t(), got :: term()}
 | {:tool_error, tool_name :: String.t(), reason :: term()}
 | {:invalid_keyword_call, atom(), [term()]}
 | {:arity_error, String.t()}
 | {:destructure_error, String.t()}
 | {:cannot_shadow_builtin, atom()}

 tool_executor()

 @type tool_executor() :: (String.t(), map() -> term())

 value()

 @type value() ::
 nil
 | boolean()
 | number()
 | String.t()
 | atom()
 | list()
 | map()
 | MapSet.t()
 | function()
 | {:closure, [PtcRunner.Lisp.CoreAST.pattern()], PtcRunner.Lisp.CoreAST.t(),
 env(), list(), map()}

 Functions

 eval(ast, ctx, memory, env, tool_executor, turn_history \\ [], opts \\ [])

 @spec eval(
 PtcRunner.Lisp.CoreAST.t(),
 map(),
 map(),
 env(),
 tool_executor(),
 list(),
 keyword()
) ::
 {:ok, value(), map()} | {:error, runtime_error()}

 eval_with_context(ast, ctx, memory, env, tool_executor, turn_history \\ [], opts \\ [])

 @spec eval_with_context(
 PtcRunner.Lisp.CoreAST.t(),
 map(),
 map(),
 env(),
 tool_executor(),
 list(),
 keyword()
) :: {:ok, value(), PtcRunner.Lisp.Eval.Context.t()} | {:error, runtime_error()}

PtcRunner.Lisp.Eval.Apply

Function application dispatch for Lisp evaluation.
Handles calling closures, keywords, maps, sets, builtins, and plain functions.
Supported function types
	Keywords as map accessors: (:key map) → Map.get(map, :key)
	Maps as keyword accessors: (map :key) → Map.get(map, :key)
	Sets as membership check: (set x) → x or nil
	Closures: user-defined functions
	Builtins: {:normal, fun}, {:variadic, fun, identity}, etc.
	Plain Erlang functions

 Summary

 Functions

 apply_fun(fun_val, args, eval_ctx, do_eval_fn)

 Applies a function value to a list of arguments.

 closure_to_fun(builtin, eval_context, do_eval_fn)

 Converts Lisp closures to Erlang functions for use with higher-order functions.

 Functions

 apply_fun(fun_val, args, eval_ctx, do_eval_fn)

 @spec apply_fun(term(), [term()], PtcRunner.Lisp.Eval.Context.t(), (term(),
 PtcRunner.Lisp.Eval.Context.t() ->
 {:ok, term(),
 PtcRunner.Lisp.Eval.Context.t()}
 | {:error,
 term()})) ::
 {:ok, term(), PtcRunner.Lisp.Eval.Context.t()} | {:error, term()}

Applies a function value to a list of arguments.

 closure_to_fun(builtin, eval_context, do_eval_fn)

 @spec closure_to_fun(term(), PtcRunner.Lisp.Eval.Context.t(), (term(),
 PtcRunner.Lisp.Eval.Context.t() ->
 term())) :: term()

Converts Lisp closures to Erlang functions for use with higher-order functions.
Creates functions with appropriate arity based on number of patterns.
Also unwraps builtin function tuples.

PtcRunner.Lisp.Eval.Context

Evaluation context for the Lisp interpreter.
Bundles the parameters that flow through recursive evaluation:
	ctx: External data (read-only)
	user_ns: User namespace (mutable bindings from def)
	env: Lexical environment (variable bindings)
	tool_exec: Tool executor function
	turn_history: Previous turn results for multi-turn loops

Limits
	Field	Default	Hard Cap	Purpose
	loop_limit	1,000	10,000	Max loop/recursion iterations
	max_print_length	2,000	—	Max chars per println call

 Summary

 Types

 t()

 tool_call()

 Tool call record for tracing.

 Functions

 append_print(context, message)

 Appends a print message to the context.

 append_tool_call(context, tool_call)

 Appends a tool call record to the context.

 increment_iteration(context)

 Increments the iteration count and checks against the limit.

 merge(ctx1, ctx2)

 Merges two contexts, specifically combining prints and tool calls.
Used to merge results from parallel execution branches (pmap, pcalls).

 merge_env(context, bindings)

 Merges new bindings into the environment.

 new(ctx, user_ns, env, tool_exec, turn_history, opts \\ [])

 Creates a new evaluation context.

 set_loop_limit(context, new_limit)

 Sets a new loop limit, respecting the hard maximum.

 update_user_ns(context, new_user_ns)

 Updates the user namespace in the context.

 Types

 t()

 @type t() :: %PtcRunner.Lisp.Eval.Context{
 ctx: map(),
 env: map(),
 iteration_count: integer(),
 loop_limit: integer(),
 max_print_length: pos_integer(),
 prints: [String.t()],
 tool_calls: [tool_call()],
 tool_exec: (String.t(), map() -> term()),
 turn_history: list(),
 user_ns: map()
}

 tool_call()

 @type tool_call() :: %{
 name: String.t(),
 args: map(),
 result: term(),
 error: String.t() | nil,
 timestamp: DateTime.t(),
 duration_ms: non_neg_integer()
}

Tool call record for tracing.
Fields:
	name: Tool name
	args: Arguments passed to tool
	result: Tool result
	error: Error message if tool failed
	timestamp: When tool was called
	duration_ms: How long tool took

 Functions

 append_print(context, message)

 @spec append_print(t(), String.t()) :: t()

Appends a print message to the context.
Long messages are truncated to max_print_length characters (default: 2000).

 append_tool_call(context, tool_call)

 @spec append_tool_call(t(), tool_call()) :: t()

Appends a tool call record to the context.

 increment_iteration(context)

 @spec increment_iteration(t()) :: {:ok, t()} | {:error, :loop_limit_exceeded}

Increments the iteration count and checks against the limit.

 merge(ctx1, ctx2)

 @spec merge(t(), t()) :: t()

Merges two contexts, specifically combining prints and tool calls.
Used to merge results from parallel execution branches (pmap, pcalls).

 merge_env(context, bindings)

 @spec merge_env(t(), map()) :: t()

Merges new bindings into the environment.

 new(ctx, user_ns, env, tool_exec, turn_history, opts \\ [])

 @spec new(map(), map(), map(), (String.t(), map() -> term()), list(), keyword()) ::
 t()

Creates a new evaluation context.
Options
	:max_print_length - Max characters per println call (default: 2000)

Examples
iex> ctx = PtcRunner.Lisp.Eval.Context.new(%{}, %{}, %{}, fn _, _ -> nil end, [])
iex> ctx.user_ns
%{}

iex> ctx = PtcRunner.Lisp.Eval.Context.new(%{}, %{}, %{}, fn _, _ -> nil end, [], max_print_length: 500)
iex> ctx.max_print_length
500

 set_loop_limit(context, new_limit)

 @spec set_loop_limit(t(), integer()) :: t()

Sets a new loop limit, respecting the hard maximum.

 update_user_ns(context, new_user_ns)

 @spec update_user_ns(t(), map()) :: t()

Updates the user namespace in the context.

PtcRunner.Lisp.Eval.Helpers

Shared helper functions for Lisp evaluation.
Provides type error formatting and type description utilities.

 Summary

 Functions

 describe_type(x)

 Describes the type of a value for error messages.

 format_closure_error(reason)

 Formats closure errors with helpful messages.

 type_error_for_args(fun, args)

 Generates a type error tuple for FunctionClauseError in builtins.

 Functions

 describe_type(x)

 @spec describe_type(term()) :: String.t()

Describes the type of a value for error messages.

 format_closure_error(reason)

 @spec format_closure_error(term()) :: String.t()

Formats closure errors with helpful messages.

 type_error_for_args(fun, args)

 @spec type_error_for_args(function(), [term()]) :: {:type_error, String.t(), term()}

Generates a type error tuple for FunctionClauseError in builtins.

PtcRunner.Lisp.Eval.Patterns

Pattern matching for let bindings in Lisp evaluation.
Handles destructuring patterns including variables, map destructuring,
sequence destructuring, and :as patterns.

 Summary

 Types

 bindings()

 match_result()

 pattern()

 Functions

 match_pattern(arg, value)

 Matches a pattern against a value, returning variable bindings on success.

 Types

 bindings()

 @type bindings() :: %{required(atom()) => term()}

 match_result()

 @type match_result() :: {:ok, bindings()} | {:error, {:destructure_error, String.t()}}

 pattern()

 @type pattern() :: term()

 Functions

 match_pattern(arg, value)

 @spec match_pattern(pattern(), term()) :: match_result()

Matches a pattern against a value, returning variable bindings on success.

PtcRunner.Lisp.Eval.Where

Where predicates and comparison helpers for Lisp evaluation.
Handles building predicates for filtering operations and comparison logic.

 Summary

 Functions

 build_field_accessor(arg)

 Builds a field accessor function from a field path AST node.

 build_pred_combinator(atom, fns)

 Builds a predicate combinator function (:all_of, :any_of, :none_of).

 build_where_predicate(atom, accessor, value)

 Builds a predicate function for where expressions.

 truthy?(arg1)

 Checks if a value is truthy (not nil or false).

 Functions

 build_field_accessor(arg)

 @spec build_field_accessor({:field, list()}) :: (map() -> term())

Builds a field accessor function from a field path AST node.

 build_pred_combinator(atom, fns)

 @spec build_pred_combinator(atom(), [(map() -> boolean())]) :: (map() -> boolean())

Builds a predicate combinator function (:all_of, :any_of, :none_of).

 build_where_predicate(atom, accessor, value)

 @spec build_where_predicate(atom(), (map() -> term()), term()) :: (map() -> boolean())

Builds a predicate function for where expressions.

 truthy?(arg1)

 @spec truthy?(term()) :: boolean()

Checks if a value is truthy (not nil or false).
Examples
iex> PtcRunner.Lisp.Eval.Where.truthy?(nil)
false

iex> PtcRunner.Lisp.Eval.Where.truthy?(false)
false

iex> PtcRunner.Lisp.Eval.Where.truthy?(0)
true

iex> PtcRunner.Lisp.Eval.Where.truthy?("hello")
true

PtcRunner.Lisp.Format

Format PTC-Lisp values for human/LLM display.
Handles special Lisp types that should not expose internal implementation:
	Closures: {:closure, params, body, env, history, metadata} → #fn[x y]
	Builtins: {:normal, fun} etc. → #<builtin>

Works recursively, so closures nested in maps/lists are also formatted.
Examples
iex> PtcRunner.Lisp.Format.to_string({:closure, [{:var, :x}], nil, %{}, [], %{}})
"#fn[x]"

iex> PtcRunner.Lisp.Format.to_string({:normal, &Enum.map/2})
"#<builtin>"

iex> PtcRunner.Lisp.Format.to_string(%{a: 1})
"%{a: 1}"

 Summary

 Functions

 to_clojure(value, opts \\ [])

 Format a Lisp value as Clojure syntax for LLM feedback.

 to_string(value, opts \\ [])

 Format a Lisp value as a string for display.

 Functions

 to_clojure(value, opts \\ [])

 @spec to_clojure(
 term(),
 keyword()
) :: {String.t(), boolean()}

Format a Lisp value as Clojure syntax for LLM feedback.
Produces Clojure-style output that matches the syntax the LLM writes:
	Maps: {:key value} instead of %{key: value}
	Lists: [1 2 3] (space-separated) instead of [1, 2, 3]
	Keywords: :foo (same as Clojure)
	Strings/numbers/booleans: standard literals

Returns {formatted_string, truncated?} tuple.
Options
	:limit - Maximum items to show in collections (default: :infinity)
	:printable_limit - Maximum string bytes to show (default: :infinity)

Examples
iex> PtcRunner.Lisp.Format.to_clojure(42)
{"42", false}

iex> PtcRunner.Lisp.Format.to_clojure([1, 2, 3])
{"[1 2 3]", false}

iex> PtcRunner.Lisp.Format.to_clojure(%{id: 101, count: 45})
{"{:count 45 :id 101}", false}

iex> PtcRunner.Lisp.Format.to_clojure(%{"name" => "Alice", "age" => 30})
{~s({"age" 30 "name" "Alice"}), false}

iex> PtcRunner.Lisp.Format.to_clojure({:closure, [{:var, :x}], nil, %{}, [], %{}})
{"#fn[x]", false}

iex> PtcRunner.Lisp.Format.to_clojure({:var, :x})
{"#'x", false}

iex> PtcRunner.Lisp.Format.to_clojure(nil)
{"nil", false}

iex> PtcRunner.Lisp.Format.to_clojure(:keyword)
{":keyword", false}

iex> PtcRunner.Lisp.Format.to_clojure([%{a: 1}, %{b: 2}])
{"[{:a 1} {:b 2}]", false}

iex> PtcRunner.Lisp.Format.to_clojure([1, 2, 3, 4, 5], limit: 2)
{"[1 2 ...] (5 items, showing first 2)", true}

iex> PtcRunner.Lisp.Format.to_clojure("very long string here", printable_limit: 10)
{~s("very long ..."), true}

iex> {str, _} = PtcRunner.Lisp.Format.to_clojure(%{title: "Hello", _body: "secret"})
iex> str
~s[{:title "Hello"}]

iex> {str, _} = PtcRunner.Lisp.Format.to_clojure(%{title: "Hello", _body: "secret"}, filter_hidden: false)
iex> str
~s[{:_body "secret" :title "Hello"}]

 to_string(value, opts \\ [])

 @spec to_string(
 term(),
 keyword()
) :: String.t()

Format a Lisp value as a string for display.
Options
All options are passed through to Kernel.inspect/2 for regular values:
	:pretty - Use pretty-printing
	:limit - Maximum items to show in collections
	:width - Target width for pretty printing
	:printable_limit - Maximum string bytes to show

Examples
iex> PtcRunner.Lisp.Format.to_string(42)
"42"

iex> PtcRunner.Lisp.Format.to_string({:closure, [{:var, :x}, {:var, :y}], nil, %{}, [], %{}})
"#fn[x y]"

iex> PtcRunner.Lisp.Format.to_string({:var, :my_var})
"#'my_var"

iex> PtcRunner.Lisp.Format.to_string([1, 2, 3], limit: 2)
"[1, 2, ...]"

iex> PtcRunner.Lisp.Format.to_string(%{f: {:closure, [{:var, :x}], nil, %{}, [], %{}}})
"%{f: #fn[x]}"

PtcRunner.Lisp.Formatter

Serialize PTC-Lisp AST to source code string.
Used for:
	Property-based testing (roundtrip: AST -> source -> parse -> AST)
	Debugging (pretty-print generated ASTs)

 Summary

 Functions

 format(n)

 Format an AST node as PTC-Lisp source code

 Functions

 format(n)

 @spec format(term()) :: String.t()

Format an AST node as PTC-Lisp source code

PtcRunner.Lisp.LanguageSpec

Language specification loader for PTC-Lisp.
Loads language spec snippets from priv/prompts/ directory at compile time and
provides compositions for common use cases.
Available Specs
	Key	Description
	:single_shot	Base + single-shot rules
	:multi_turn	Base + multi-turn rules (return/fail, memory)

Raw Snippets
	Key	File	Description
	:base	lisp-base.md	Core language reference
	:addon_single_shot	lisp-addon-single_shot.md	Single-shot mode rules
	:addon_multi_turn	lisp-addon-multi_turn.md	Multi-turn mode rules

Version Metadata
Spec files can include optional metadata headers:
<!-- version: 2 -->
<!-- date: 2025-01-15 -->
<!-- changes: Removed threading examples -->
Access metadata via version/1 and metadata/1.
Usage
For single-turn queries
PtcRunner.Lisp.LanguageSpec.get(:single_shot)

For multi-turn conversations
PtcRunner.Lisp.LanguageSpec.get(:multi_turn)

Raw snippets for custom compositions
PtcRunner.Lisp.LanguageSpec.get(:base) <> my_custom_addon

Use in SubAgent
SubAgent.new(
 prompt: "...",
 system_prompt: %{language_spec: PtcRunner.Lisp.LanguageSpec.get(:single_shot)}
)

 Summary

 Functions

 archived?(key)

 Check if a prompt is archived.

 get(key)

 Get a prompt by key.

 get!(key)

 Get a prompt by key, raising if not found.

 list()

 List all available prompt keys (compositions, snippets, and archived).

 list_current()

 List only current (non-archived) prompt keys.

 list_with_descriptions()

 List all prompts with descriptions.

 metadata(key)

 Get full metadata for a prompt.

 version(key)

 Get the version number for a prompt.

 Functions

 archived?(key)

 @spec archived?(atom()) :: boolean()

Check if a prompt is archived.
Compositions are never archived.
Examples
iex> PtcRunner.Lisp.LanguageSpec.archived?(:single_shot)
false

 get(key)

 @spec get(atom()) :: String.t() | nil

Get a prompt by key.
Supports both raw snippets (:base, :addon_memory) and compositions
(:single_shot, :multi_turn).
Parameters
	key - Atom identifying the prompt

Returns
The prompt content as a string, or nil if not found.
Examples
iex> prompt = PtcRunner.Lisp.LanguageSpec.get(:single_shot)
iex> is_binary(prompt)
true

iex> prompt = PtcRunner.Lisp.LanguageSpec.get(:multi_turn)
iex> String.contains?(prompt, "State Persistence")
true

 get!(key)

 @spec get!(atom()) :: String.t()

Get a prompt by key, raising if not found.
Examples
iex> prompt = PtcRunner.Lisp.LanguageSpec.get!(:single_shot)
iex> is_binary(prompt)
true

 list()

 @spec list() :: [atom()]

List all available prompt keys (compositions, snippets, and archived).
Examples
iex> keys = PtcRunner.Lisp.LanguageSpec.list()
iex> :single_shot in keys
true
iex> :multi_turn in keys
true

 list_current()

 @spec list_current() :: [atom()]

List only current (non-archived) prompt keys.
Examples
iex> keys = PtcRunner.Lisp.LanguageSpec.list_current()
iex> :single_shot in keys
true
iex> :base in keys
true

 list_with_descriptions()

 @spec list_with_descriptions() :: [{atom(), String.t()}]

List all prompts with descriptions.
Returns a list of {key, description} tuples for all available prompts.
Archived prompts have "[archived]" appended to their description.
Examples
iex> list = PtcRunner.Lisp.LanguageSpec.list_with_descriptions()
iex> Enum.any?(list, fn {k, _} -> k == :single_shot end)
true

 metadata(key)

 @spec metadata(atom()) :: map()

Get full metadata for a prompt.
Returns a map with metadata keys like :version, :date, :changes.
For compositions, returns metadata of the first component.
Examples
iex> meta = PtcRunner.Lisp.LanguageSpec.metadata(:base)
iex> is_map(meta)
true

 version(key)

 @spec version(atom()) :: pos_integer()

Get the version number for a prompt.
Returns the version from the prompt's metadata, or 1 if not specified.
For compositions, returns the version of the first component.

PtcRunner.Lisp.Parser

NimbleParsec-based parser for PTC-Lisp.
Transforms source code into AST nodes.

 Summary

 Functions

 parse(source)

 Parse PTC-Lisp source code into AST.

 program(binary, opts \\ [])

 Parses the given binary as program.

 Functions

 parse(source)

 @spec parse(String.t()) ::
 {:ok, PtcRunner.Lisp.AST.t()} | {:error, {:parse_error, String.t()}}

Parse PTC-Lisp source code into AST.
Returns {:ok, ast} or {:error, {:parse_error, message}}.

 program(binary, opts \\ [])

 @spec program(binary(), keyword()) ::
 {:ok, [term()], rest, context, line, byte_offset}
 | {:error, reason, rest, context, line, byte_offset}
when line: {pos_integer(), byte_offset},
 byte_offset: non_neg_integer(),
 rest: binary(),
 reason: String.t(),
 context: map()

Parses the given binary as program.
Returns {:ok, [token], rest, context, position, byte_offset} or
{:error, reason, rest, context, line, byte_offset} where position
describes the location of the program (start position) as {line, offset_to_start_of_line}.
To column where the error occurred can be inferred from byte_offset - offset_to_start_of_line.
Options
	:byte_offset - the byte offset for the whole binary, defaults to 0
	:line - the line and the byte offset into that line, defaults to {1, byte_offset}
	:context - the initial context value. It will be converted to a map

PtcRunner.Lisp.ParserHelpers

Helper functions for parser reductions

 Summary

 Functions

 build_char(s)

 build_keyword(list)

 build_list(arg)

 build_map(arg)

 build_set(arg)

 build_short_fn(arg)

 build_string(chars)

 build_symbol(parts)

 build_var(parts)

 build_vector(arg)

 char_to_string(char)

 parse_float(parts)

 parse_integer(parts)

 Functions

 build_char(s)

 build_keyword(list)

 build_list(arg)

 build_map(arg)

 build_set(arg)

 build_short_fn(arg)

 build_string(chars)

 build_symbol(parts)

 build_var(parts)

 build_vector(arg)

 char_to_string(char)

 parse_float(parts)

 parse_integer(parts)

PtcRunner.Lisp.Runtime

Built-in functions for PTC-Lisp.
Provides collection operations, map operations, arithmetic, string manipulation,
and type predicates. This module acts as the public API and delegates to
focused submodules:
	Runtime.FlexAccess - Flexible key access helpers
	Runtime.Collection - Collection operations (filter, map, reduce, etc.)
	Runtime.MapOps - Map operations (get, assoc, merge, etc.)
	Runtime.String - String manipulation and parsing
	Runtime.Math - Arithmetic operations
	Runtime.Predicates - Type and numeric predicates

 Summary

 Functions

 abs(x)

 See PtcRunner.Lisp.Runtime.Math.abs/1.

 add(args)

 See PtcRunner.Lisp.Runtime.Math.add/1.

 assoc(m, k, v)

 See PtcRunner.Lisp.Runtime.MapOps.assoc/3.

 assoc_in(m, path, v)

 See PtcRunner.Lisp.Runtime.MapOps.assoc_in/3.

 assoc_variadic(args)

 See PtcRunner.Lisp.Runtime.MapOps.assoc_variadic/1.

 avg_by(keyfn, coll)

 See PtcRunner.Lisp.Runtime.Collection.avg_by/2.

 boolean?(x)

 See PtcRunner.Lisp.Runtime.Predicates.boolean?/1.

 ceil(x)

 See PtcRunner.Lisp.Runtime.Math.ceil/1.

 char?(x)

 See PtcRunner.Lisp.Runtime.Predicates.char?/1.

 coll?(x)

 See PtcRunner.Lisp.Runtime.Predicates.coll?/1.

 compare(x, y)

 See PtcRunner.Lisp.Runtime.Math.compare/2.

 concat2(a, b)

 See PtcRunner.Lisp.Runtime.Collection.concat2/2.

 conj(coll, x)

 See PtcRunner.Lisp.Runtime.Collection.conj/2.

 contains?(coll, val)

 See PtcRunner.Lisp.Runtime.Collection.contains?/2.

 count(coll)

 See PtcRunner.Lisp.Runtime.Collection.count/1.

 current_time_millis()

 See PtcRunner.Lisp.Runtime.Interop.current_time_millis/0.

 dec(x)

 See PtcRunner.Lisp.Runtime.Math.dec/1.

 difference(s1, s2)

 See PtcRunner.Lisp.Runtime.Collection.difference/2.

 dissoc(m, k)

 See PtcRunner.Lisp.Runtime.MapOps.dissoc/2.

 dissoc_variadic(args)

 See PtcRunner.Lisp.Runtime.MapOps.dissoc_variadic/1.

 distinct(coll)

 See PtcRunner.Lisp.Runtime.Collection.distinct/1.

 distinct_by(keyfn, coll)

 See PtcRunner.Lisp.Runtime.Collection.distinct_by/2.

 divide(x, y)

 See PtcRunner.Lisp.Runtime.Math.divide/2.

 dot_get_time(dt)

 See PtcRunner.Lisp.Runtime.Interop.dot_get_time/1.

 double(x)

 See PtcRunner.Lisp.Runtime.Math.double/1.

 downcase(s)

 See PtcRunner.Lisp.Runtime.String.downcase/1.

 drop(n, coll)

 See PtcRunner.Lisp.Runtime.Collection.drop/2.

 drop_while(pred, coll)

 See PtcRunner.Lisp.Runtime.Collection.drop_while/2.

 empty?(coll)

 See PtcRunner.Lisp.Runtime.Collection.empty?/1.

 ends_with?(s, suffix)

 See PtcRunner.Lisp.Runtime.String.ends_with?/2.

 entries(m)

 See PtcRunner.Lisp.Runtime.MapOps.entries/1.

 even?(x)

 See PtcRunner.Lisp.Runtime.Predicates.even?/1.

 every?(pred, coll)

 See PtcRunner.Lisp.Runtime.Collection.every?/2.

 ffirst(coll)

 See PtcRunner.Lisp.Runtime.Collection.ffirst/1.

 filter(pred, coll)

 See PtcRunner.Lisp.Runtime.Collection.filter/2.

 find(pred, coll)

 See PtcRunner.Lisp.Runtime.Collection.find/2.

 first(coll)

 See PtcRunner.Lisp.Runtime.Collection.first/1.

 flatten(coll)

 See PtcRunner.Lisp.Runtime.Collection.flatten/1.

 flex_fetch(map, key)

 See PtcRunner.Lisp.Runtime.FlexAccess.flex_fetch/2.

 flex_get(map, key)

 See PtcRunner.Lisp.Runtime.FlexAccess.flex_get/2.

 flex_get_in(data, path)

 See PtcRunner.Lisp.Runtime.FlexAccess.flex_get_in/2.

 flex_put_in(data, path, value)

 See PtcRunner.Lisp.Runtime.FlexAccess.flex_put_in/3.

 flex_update_in(data, path, func)

 See PtcRunner.Lisp.Runtime.FlexAccess.flex_update_in/3.

 float(x)

 See PtcRunner.Lisp.Runtime.Math.float/1.

 floor(x)

 See PtcRunner.Lisp.Runtime.Math.floor/1.

 fnext(coll)

 See PtcRunner.Lisp.Runtime.Collection.fnext/1.

 fnil(f, default)

 See PtcRunner.Lisp.Runtime.Predicates.fnil/2.

 frequencies(coll)

 See PtcRunner.Lisp.Runtime.Collection.frequencies/1.

 get(m, k)

 See PtcRunner.Lisp.Runtime.MapOps.get/2.

 get(m, k, default)

 See PtcRunner.Lisp.Runtime.MapOps.get/3.

 get_in(m, path)

 See PtcRunner.Lisp.Runtime.MapOps.get_in/2.

 get_in(m, path, default)

 See PtcRunner.Lisp.Runtime.MapOps.get_in/3.

 group_by(keyfn, coll)

 See PtcRunner.Lisp.Runtime.Collection.group_by/2.

 gt(x, y)

 See PtcRunner.Lisp.Runtime.Math.gt/2.

 gte(x, y)

 See PtcRunner.Lisp.Runtime.Math.gte/2.

 identity(x)

 See PtcRunner.Lisp.Runtime.Predicates.identity/1.

 inc(x)

 See PtcRunner.Lisp.Runtime.Math.inc/1.

 includes?(s, substring)

 See PtcRunner.Lisp.Runtime.String.includes?/2.

 int(x)

 See PtcRunner.Lisp.Runtime.Math.int/1.

 interleave(c1, c2)

 See PtcRunner.Lisp.Runtime.Collection.interleave/2.

 interpose(sep, coll)

 See PtcRunner.Lisp.Runtime.Collection.interpose/2.

 intersection(s1, s2)

 See PtcRunner.Lisp.Runtime.Collection.intersection/2.

 into(to, from)

 See PtcRunner.Lisp.Runtime.Collection.into/2.

 java_util_date()

 See PtcRunner.Lisp.Runtime.Interop.java_util_date/0.

 java_util_date(ms)

 See PtcRunner.Lisp.Runtime.Interop.java_util_date/1.

 join(coll)

 See PtcRunner.Lisp.Runtime.String.join/1.

 join(separator, coll)

 See PtcRunner.Lisp.Runtime.String.join/2.

 key(entry)

 See PtcRunner.Lisp.Runtime.MapOps.key/1.

 keys(m)

 See PtcRunner.Lisp.Runtime.MapOps.keys/1.

 keyword?(x)

 See PtcRunner.Lisp.Runtime.Predicates.keyword?/1.

 last(coll)

 See PtcRunner.Lisp.Runtime.Collection.last/1.

 local_date_parse(s)

 See PtcRunner.Lisp.Runtime.Interop.local_date_parse/1.

 lt(x, y)

 See PtcRunner.Lisp.Runtime.Math.lt/2.

 lte(x, y)

 See PtcRunner.Lisp.Runtime.Math.lte/2.

 map(f, coll)

 See PtcRunner.Lisp.Runtime.Collection.map/2.

 map(f, coll1, coll2)

 See PtcRunner.Lisp.Runtime.Collection.map/3.

 map(f, coll1, coll2, coll3)

 See PtcRunner.Lisp.Runtime.Collection.map/4.

 map?(x)

 See PtcRunner.Lisp.Runtime.Predicates.map?/1.

 map_indexed(f, coll)

 See PtcRunner.Lisp.Runtime.Collection.map_indexed/2.

 mapv(f, coll)

 See PtcRunner.Lisp.Runtime.Collection.mapv/2.

 mapv(f, coll1, coll2)

 See PtcRunner.Lisp.Runtime.Collection.mapv/3.

 mapv(f, coll1, coll2, coll3)

 See PtcRunner.Lisp.Runtime.Collection.mapv/4.

 max(x, y)

 See PtcRunner.Lisp.Runtime.Math.max/2.

 max_by(keyfn, coll)

 See PtcRunner.Lisp.Runtime.Collection.max_by/2.

 max_key_variadic(args)

 See PtcRunner.Lisp.Runtime.Collection.max_key_variadic/1.

 merge(m1, m2)

 See PtcRunner.Lisp.Runtime.MapOps.merge/2.

 min(x, y)

 See PtcRunner.Lisp.Runtime.Math.min/2.

 min_by(keyfn, coll)

 See PtcRunner.Lisp.Runtime.Collection.min_by/2.

 min_key_variadic(args)

 See PtcRunner.Lisp.Runtime.Collection.min_key_variadic/1.

 mod(x, y)

 See PtcRunner.Lisp.Runtime.Math.mod/2.

 multiply(args)

 See PtcRunner.Lisp.Runtime.Math.multiply/1.

 neg?(x)

 See PtcRunner.Lisp.Runtime.Predicates.neg?/1.

 next(coll)

 See PtcRunner.Lisp.Runtime.Collection.next/1.

 nfirst(coll)

 See PtcRunner.Lisp.Runtime.Collection.nfirst/1.

 nil?(x)

 See PtcRunner.Lisp.Runtime.Predicates.nil?/1.

 nnext(coll)

 See PtcRunner.Lisp.Runtime.Collection.nnext/1.

 not_(x)

 See PtcRunner.Lisp.Runtime.Predicates.not_/1.

 not_any?(pred, coll)

 See PtcRunner.Lisp.Runtime.Collection.not_any?/2.

 not_empty(coll)

 See PtcRunner.Lisp.Runtime.Collection.not_empty/1.

 not_eq(x, y)

 See PtcRunner.Lisp.Runtime.Math.not_eq/2.

 nth(coll, idx)

 See PtcRunner.Lisp.Runtime.Collection.nth/2.

 number?(x)

 See PtcRunner.Lisp.Runtime.Predicates.number?/1.

 odd?(x)

 See PtcRunner.Lisp.Runtime.Predicates.odd?/1.

 parse_double(s)

 See PtcRunner.Lisp.Runtime.String.parse_double/1.

 parse_long(s)

 See PtcRunner.Lisp.Runtime.String.parse_long/1.

 partition(n, coll)

 See PtcRunner.Lisp.Runtime.Collection.partition/2.

 partition(n, step, coll)

 See PtcRunner.Lisp.Runtime.Collection.partition/3.

 pluck(key, coll)

 See PtcRunner.Lisp.Runtime.Collection.pluck/2.

 pos?(x)

 See PtcRunner.Lisp.Runtime.Predicates.pos?/1.

 pow(x, y)

 See PtcRunner.Lisp.Runtime.Math.pow/2.

 range(end_val)

 See PtcRunner.Lisp.Runtime.Collection.range/1.

 range(start, end_val)

 See PtcRunner.Lisp.Runtime.Collection.range/2.

 range(start, end_val, step)

 See PtcRunner.Lisp.Runtime.Collection.range/3.

 re_find(re, s)

 See PtcRunner.Lisp.Runtime.Regex.re_find/2.

 re_matches(re, s)

 See PtcRunner.Lisp.Runtime.Regex.re_matches/2.

 re_pattern(s)

 See PtcRunner.Lisp.Runtime.Regex.re_pattern/1.

 re_seq(re, s)

 See PtcRunner.Lisp.Runtime.Regex.re_seq/2.

 re_split(re, s)

 See PtcRunner.Lisp.Runtime.Regex.re_split/2.

 reduce(f, coll)

 See PtcRunner.Lisp.Runtime.Collection.reduce/2.

 reduce(f, init, coll)

 See PtcRunner.Lisp.Runtime.Collection.reduce/3.

 regex?(x)

 See PtcRunner.Lisp.Runtime.Predicates.regex?/1.

 remainder(x, y)

 See PtcRunner.Lisp.Runtime.Math.remainder/2.

 remove(pred, coll)

 See PtcRunner.Lisp.Runtime.Collection.remove/2.

 replace(s, pattern, replacement)

 See PtcRunner.Lisp.Runtime.String.replace/3.

 rest(coll)

 See PtcRunner.Lisp.Runtime.Collection.rest/1.

 reverse(coll)

 See PtcRunner.Lisp.Runtime.Collection.reverse/1.

 round(x)

 See PtcRunner.Lisp.Runtime.Math.round/1.

 second(coll)

 See PtcRunner.Lisp.Runtime.Collection.second/1.

 select_keys(m, ks)

 See PtcRunner.Lisp.Runtime.MapOps.select_keys/2.

 seq(coll)

 See PtcRunner.Lisp.Runtime.Collection.seq/1.

 set(coll)

 See PtcRunner.Lisp.Runtime.Predicates.set/1.

 set?(x)

 See PtcRunner.Lisp.Runtime.Predicates.set?/1.

 some(pred, coll)

 See PtcRunner.Lisp.Runtime.Collection.some/2.

 some?(x)

 See PtcRunner.Lisp.Runtime.Predicates.some?/1.

 sort(coll)

 See PtcRunner.Lisp.Runtime.Collection.sort/1.

 sort(comp, coll)

 See PtcRunner.Lisp.Runtime.Collection.sort/2.

 sort_by(keyfn, coll)

 See PtcRunner.Lisp.Runtime.Collection.sort_by/2.

 sort_by(keyfn, comp, coll)

 See PtcRunner.Lisp.Runtime.Collection.sort_by/3.

 split(s, separator)

 See PtcRunner.Lisp.Runtime.String.split/2.

 split_lines(s)

 See PtcRunner.Lisp.Runtime.String.split_lines/1.

 sqrt(x)

 See PtcRunner.Lisp.Runtime.Math.sqrt/1.

 starts_with?(s, prefix)

 See PtcRunner.Lisp.Runtime.String.starts_with?/2.

 str2(a, b)

 See PtcRunner.Lisp.Runtime.String.str2/2.

 string?(x)

 See PtcRunner.Lisp.Runtime.Predicates.string?/1.

 subs(s, start)

 See PtcRunner.Lisp.Runtime.String.subs/2.

 subs(s, start, end_idx)

 See PtcRunner.Lisp.Runtime.String.subs/3.

 subtract(args)

 See PtcRunner.Lisp.Runtime.Math.subtract/1.

 sum_by(keyfn, coll)

 See PtcRunner.Lisp.Runtime.Collection.sum_by/2.

 take(n, coll)

 See PtcRunner.Lisp.Runtime.Collection.take/2.

 take_while(pred, coll)

 See PtcRunner.Lisp.Runtime.Collection.take_while/2.

 trim(s)

 See PtcRunner.Lisp.Runtime.String.trim/1.

 trunc(x)

 See PtcRunner.Lisp.Runtime.Math.trunc/1.

 union(s1, s2)

 See PtcRunner.Lisp.Runtime.Collection.union/2.

 upcase(s)

 See PtcRunner.Lisp.Runtime.String.upcase/1.

 update(m, k, f)

 See PtcRunner.Lisp.Runtime.MapOps.update/3.

 update_in(m, path, f)

 See PtcRunner.Lisp.Runtime.MapOps.update_in/3.

 update_in_variadic(args)

 See PtcRunner.Lisp.Runtime.MapOps.update_in_variadic/1.

 update_vals(m, f)

 See PtcRunner.Lisp.Runtime.MapOps.update_vals/2.

 update_variadic(args)

 See PtcRunner.Lisp.Runtime.MapOps.update_variadic/1.

 val(entry)

 See PtcRunner.Lisp.Runtime.MapOps.val/1.

 vals(m)

 See PtcRunner.Lisp.Runtime.MapOps.vals/1.

 vec(coll)

 See PtcRunner.Lisp.Runtime.Predicates.vec/1.

 vector?(x)

 See PtcRunner.Lisp.Runtime.Predicates.vector?/1.

 zero?(x)

 See PtcRunner.Lisp.Runtime.Predicates.zero?/1.

 zip(c1, c2)

 See PtcRunner.Lisp.Runtime.Collection.zip/2.

 Functions

 abs(x)

See PtcRunner.Lisp.Runtime.Math.abs/1.

 add(args)

See PtcRunner.Lisp.Runtime.Math.add/1.

 assoc(m, k, v)

See PtcRunner.Lisp.Runtime.MapOps.assoc/3.

 assoc_in(m, path, v)

See PtcRunner.Lisp.Runtime.MapOps.assoc_in/3.

 assoc_variadic(args)

See PtcRunner.Lisp.Runtime.MapOps.assoc_variadic/1.

 avg_by(keyfn, coll)

See PtcRunner.Lisp.Runtime.Collection.avg_by/2.

 boolean?(x)

See PtcRunner.Lisp.Runtime.Predicates.boolean?/1.

 ceil(x)

See PtcRunner.Lisp.Runtime.Math.ceil/1.

 char?(x)

See PtcRunner.Lisp.Runtime.Predicates.char?/1.

 coll?(x)

See PtcRunner.Lisp.Runtime.Predicates.coll?/1.

 compare(x, y)

See PtcRunner.Lisp.Runtime.Math.compare/2.

 concat2(a, b)

See PtcRunner.Lisp.Runtime.Collection.concat2/2.

 conj(coll, x)

See PtcRunner.Lisp.Runtime.Collection.conj/2.

 contains?(coll, val)

See PtcRunner.Lisp.Runtime.Collection.contains?/2.

 count(coll)

See PtcRunner.Lisp.Runtime.Collection.count/1.

 current_time_millis()

See PtcRunner.Lisp.Runtime.Interop.current_time_millis/0.

 dec(x)

See PtcRunner.Lisp.Runtime.Math.dec/1.

 difference(s1, s2)

See PtcRunner.Lisp.Runtime.Collection.difference/2.

 dissoc(m, k)

See PtcRunner.Lisp.Runtime.MapOps.dissoc/2.

 dissoc_variadic(args)

See PtcRunner.Lisp.Runtime.MapOps.dissoc_variadic/1.

 distinct(coll)

See PtcRunner.Lisp.Runtime.Collection.distinct/1.

 distinct_by(keyfn, coll)

See PtcRunner.Lisp.Runtime.Collection.distinct_by/2.

 divide(x, y)

See PtcRunner.Lisp.Runtime.Math.divide/2.

 dot_get_time(dt)

See PtcRunner.Lisp.Runtime.Interop.dot_get_time/1.

 double(x)

See PtcRunner.Lisp.Runtime.Math.double/1.

 downcase(s)

See PtcRunner.Lisp.Runtime.String.downcase/1.

 drop(n, coll)

See PtcRunner.Lisp.Runtime.Collection.drop/2.

 drop_while(pred, coll)

See PtcRunner.Lisp.Runtime.Collection.drop_while/2.

 empty?(coll)

See PtcRunner.Lisp.Runtime.Collection.empty?/1.

 ends_with?(s, suffix)

See PtcRunner.Lisp.Runtime.String.ends_with?/2.

 entries(m)

See PtcRunner.Lisp.Runtime.MapOps.entries/1.

 even?(x)

See PtcRunner.Lisp.Runtime.Predicates.even?/1.

 every?(pred, coll)

See PtcRunner.Lisp.Runtime.Collection.every?/2.

 ffirst(coll)

See PtcRunner.Lisp.Runtime.Collection.ffirst/1.

 filter(pred, coll)

See PtcRunner.Lisp.Runtime.Collection.filter/2.

 find(pred, coll)

See PtcRunner.Lisp.Runtime.Collection.find/2.

 first(coll)

See PtcRunner.Lisp.Runtime.Collection.first/1.

 flatten(coll)

See PtcRunner.Lisp.Runtime.Collection.flatten/1.

 flex_fetch(map, key)

See PtcRunner.Lisp.Runtime.FlexAccess.flex_fetch/2.

 flex_get(map, key)

See PtcRunner.Lisp.Runtime.FlexAccess.flex_get/2.

 flex_get_in(data, path)

See PtcRunner.Lisp.Runtime.FlexAccess.flex_get_in/2.

 flex_put_in(data, path, value)

See PtcRunner.Lisp.Runtime.FlexAccess.flex_put_in/3.

 flex_update_in(data, path, func)

See PtcRunner.Lisp.Runtime.FlexAccess.flex_update_in/3.

 float(x)

See PtcRunner.Lisp.Runtime.Math.float/1.

 floor(x)

See PtcRunner.Lisp.Runtime.Math.floor/1.

 fnext(coll)

See PtcRunner.Lisp.Runtime.Collection.fnext/1.

 fnil(f, default)

See PtcRunner.Lisp.Runtime.Predicates.fnil/2.

 frequencies(coll)

See PtcRunner.Lisp.Runtime.Collection.frequencies/1.

 get(m, k)

See PtcRunner.Lisp.Runtime.MapOps.get/2.

 get(m, k, default)

See PtcRunner.Lisp.Runtime.MapOps.get/3.

 get_in(m, path)

See PtcRunner.Lisp.Runtime.MapOps.get_in/2.

 get_in(m, path, default)

See PtcRunner.Lisp.Runtime.MapOps.get_in/3.

 group_by(keyfn, coll)

See PtcRunner.Lisp.Runtime.Collection.group_by/2.

 gt(x, y)

See PtcRunner.Lisp.Runtime.Math.gt/2.

 gte(x, y)

See PtcRunner.Lisp.Runtime.Math.gte/2.

 identity(x)

See PtcRunner.Lisp.Runtime.Predicates.identity/1.

 inc(x)

See PtcRunner.Lisp.Runtime.Math.inc/1.

 includes?(s, substring)

See PtcRunner.Lisp.Runtime.String.includes?/2.

 int(x)

See PtcRunner.Lisp.Runtime.Math.int/1.

 interleave(c1, c2)

See PtcRunner.Lisp.Runtime.Collection.interleave/2.

 interpose(sep, coll)

See PtcRunner.Lisp.Runtime.Collection.interpose/2.

 intersection(s1, s2)

See PtcRunner.Lisp.Runtime.Collection.intersection/2.

 into(to, from)

See PtcRunner.Lisp.Runtime.Collection.into/2.

 java_util_date()

See PtcRunner.Lisp.Runtime.Interop.java_util_date/0.

 java_util_date(ms)

See PtcRunner.Lisp.Runtime.Interop.java_util_date/1.

 join(coll)

See PtcRunner.Lisp.Runtime.String.join/1.

 join(separator, coll)

See PtcRunner.Lisp.Runtime.String.join/2.

 key(entry)

See PtcRunner.Lisp.Runtime.MapOps.key/1.

 keys(m)

See PtcRunner.Lisp.Runtime.MapOps.keys/1.

 keyword?(x)

See PtcRunner.Lisp.Runtime.Predicates.keyword?/1.

 last(coll)

See PtcRunner.Lisp.Runtime.Collection.last/1.

 local_date_parse(s)

See PtcRunner.Lisp.Runtime.Interop.local_date_parse/1.

 lt(x, y)

See PtcRunner.Lisp.Runtime.Math.lt/2.

 lte(x, y)

See PtcRunner.Lisp.Runtime.Math.lte/2.

 map(f, coll)

See PtcRunner.Lisp.Runtime.Collection.map/2.

 map(f, coll1, coll2)

See PtcRunner.Lisp.Runtime.Collection.map/3.

 map(f, coll1, coll2, coll3)

See PtcRunner.Lisp.Runtime.Collection.map/4.

 map?(x)

See PtcRunner.Lisp.Runtime.Predicates.map?/1.

 map_indexed(f, coll)

See PtcRunner.Lisp.Runtime.Collection.map_indexed/2.

 mapv(f, coll)

See PtcRunner.Lisp.Runtime.Collection.mapv/2.

 mapv(f, coll1, coll2)

See PtcRunner.Lisp.Runtime.Collection.mapv/3.

 mapv(f, coll1, coll2, coll3)

See PtcRunner.Lisp.Runtime.Collection.mapv/4.

 max(x, y)

See PtcRunner.Lisp.Runtime.Math.max/2.

 max_by(keyfn, coll)

See PtcRunner.Lisp.Runtime.Collection.max_by/2.

 max_key_variadic(args)

See PtcRunner.Lisp.Runtime.Collection.max_key_variadic/1.

 merge(m1, m2)

See PtcRunner.Lisp.Runtime.MapOps.merge/2.

 min(x, y)

See PtcRunner.Lisp.Runtime.Math.min/2.

 min_by(keyfn, coll)

See PtcRunner.Lisp.Runtime.Collection.min_by/2.

 min_key_variadic(args)

See PtcRunner.Lisp.Runtime.Collection.min_key_variadic/1.

 mod(x, y)

See PtcRunner.Lisp.Runtime.Math.mod/2.

 multiply(args)

See PtcRunner.Lisp.Runtime.Math.multiply/1.

 neg?(x)

See PtcRunner.Lisp.Runtime.Predicates.neg?/1.

 next(coll)

See PtcRunner.Lisp.Runtime.Collection.next/1.

 nfirst(coll)

See PtcRunner.Lisp.Runtime.Collection.nfirst/1.

 nil?(x)

See PtcRunner.Lisp.Runtime.Predicates.nil?/1.

 nnext(coll)

See PtcRunner.Lisp.Runtime.Collection.nnext/1.

 not_(x)

See PtcRunner.Lisp.Runtime.Predicates.not_/1.

 not_any?(pred, coll)

See PtcRunner.Lisp.Runtime.Collection.not_any?/2.

 not_empty(coll)

See PtcRunner.Lisp.Runtime.Collection.not_empty/1.

 not_eq(x, y)

See PtcRunner.Lisp.Runtime.Math.not_eq/2.

 nth(coll, idx)

See PtcRunner.Lisp.Runtime.Collection.nth/2.

 number?(x)

See PtcRunner.Lisp.Runtime.Predicates.number?/1.

 odd?(x)

See PtcRunner.Lisp.Runtime.Predicates.odd?/1.

 parse_double(s)

See PtcRunner.Lisp.Runtime.String.parse_double/1.

 parse_long(s)

See PtcRunner.Lisp.Runtime.String.parse_long/1.

 partition(n, coll)

See PtcRunner.Lisp.Runtime.Collection.partition/2.

 partition(n, step, coll)

See PtcRunner.Lisp.Runtime.Collection.partition/3.

 pluck(key, coll)

See PtcRunner.Lisp.Runtime.Collection.pluck/2.

 pos?(x)

See PtcRunner.Lisp.Runtime.Predicates.pos?/1.

 pow(x, y)

See PtcRunner.Lisp.Runtime.Math.pow/2.

 range(end_val)

See PtcRunner.Lisp.Runtime.Collection.range/1.

 range(start, end_val)

See PtcRunner.Lisp.Runtime.Collection.range/2.

 range(start, end_val, step)

See PtcRunner.Lisp.Runtime.Collection.range/3.

 re_find(re, s)

See PtcRunner.Lisp.Runtime.Regex.re_find/2.

 re_matches(re, s)

See PtcRunner.Lisp.Runtime.Regex.re_matches/2.

 re_pattern(s)

See PtcRunner.Lisp.Runtime.Regex.re_pattern/1.

 re_seq(re, s)

See PtcRunner.Lisp.Runtime.Regex.re_seq/2.

 re_split(re, s)

See PtcRunner.Lisp.Runtime.Regex.re_split/2.

 reduce(f, coll)

See PtcRunner.Lisp.Runtime.Collection.reduce/2.

 reduce(f, init, coll)

See PtcRunner.Lisp.Runtime.Collection.reduce/3.

 regex?(x)

See PtcRunner.Lisp.Runtime.Predicates.regex?/1.

 remainder(x, y)

See PtcRunner.Lisp.Runtime.Math.remainder/2.

 remove(pred, coll)

See PtcRunner.Lisp.Runtime.Collection.remove/2.

 replace(s, pattern, replacement)

See PtcRunner.Lisp.Runtime.String.replace/3.

 rest(coll)

See PtcRunner.Lisp.Runtime.Collection.rest/1.

 reverse(coll)

See PtcRunner.Lisp.Runtime.Collection.reverse/1.

 round(x)

See PtcRunner.Lisp.Runtime.Math.round/1.

 second(coll)

See PtcRunner.Lisp.Runtime.Collection.second/1.

 select_keys(m, ks)

See PtcRunner.Lisp.Runtime.MapOps.select_keys/2.

 seq(coll)

See PtcRunner.Lisp.Runtime.Collection.seq/1.

 set(coll)

See PtcRunner.Lisp.Runtime.Predicates.set/1.

 set?(x)

See PtcRunner.Lisp.Runtime.Predicates.set?/1.

 some(pred, coll)

See PtcRunner.Lisp.Runtime.Collection.some/2.

 some?(x)

See PtcRunner.Lisp.Runtime.Predicates.some?/1.

 sort(coll)

See PtcRunner.Lisp.Runtime.Collection.sort/1.

 sort(comp, coll)

See PtcRunner.Lisp.Runtime.Collection.sort/2.

 sort_by(keyfn, coll)

See PtcRunner.Lisp.Runtime.Collection.sort_by/2.

 sort_by(keyfn, comp, coll)

See PtcRunner.Lisp.Runtime.Collection.sort_by/3.

 split(s, separator)

See PtcRunner.Lisp.Runtime.String.split/2.

 split_lines(s)

See PtcRunner.Lisp.Runtime.String.split_lines/1.

 sqrt(x)

See PtcRunner.Lisp.Runtime.Math.sqrt/1.

 starts_with?(s, prefix)

See PtcRunner.Lisp.Runtime.String.starts_with?/2.

 str2(a, b)

See PtcRunner.Lisp.Runtime.String.str2/2.

 string?(x)

See PtcRunner.Lisp.Runtime.Predicates.string?/1.

 subs(s, start)

See PtcRunner.Lisp.Runtime.String.subs/2.

 subs(s, start, end_idx)

See PtcRunner.Lisp.Runtime.String.subs/3.

 subtract(args)

See PtcRunner.Lisp.Runtime.Math.subtract/1.

 sum_by(keyfn, coll)

See PtcRunner.Lisp.Runtime.Collection.sum_by/2.

 take(n, coll)

See PtcRunner.Lisp.Runtime.Collection.take/2.

 take_while(pred, coll)

See PtcRunner.Lisp.Runtime.Collection.take_while/2.

 trim(s)

See PtcRunner.Lisp.Runtime.String.trim/1.

 trunc(x)

See PtcRunner.Lisp.Runtime.Math.trunc/1.

 union(s1, s2)

See PtcRunner.Lisp.Runtime.Collection.union/2.

 upcase(s)

See PtcRunner.Lisp.Runtime.String.upcase/1.

 update(m, k, f)

See PtcRunner.Lisp.Runtime.MapOps.update/3.

 update_in(m, path, f)

See PtcRunner.Lisp.Runtime.MapOps.update_in/3.

 update_in_variadic(args)

See PtcRunner.Lisp.Runtime.MapOps.update_in_variadic/1.

 update_vals(m, f)

See PtcRunner.Lisp.Runtime.MapOps.update_vals/2.

 update_variadic(args)

See PtcRunner.Lisp.Runtime.MapOps.update_variadic/1.

 val(entry)

See PtcRunner.Lisp.Runtime.MapOps.val/1.

 vals(m)

See PtcRunner.Lisp.Runtime.MapOps.vals/1.

 vec(coll)

See PtcRunner.Lisp.Runtime.Predicates.vec/1.

 vector?(x)

See PtcRunner.Lisp.Runtime.Predicates.vector?/1.

 zero?(x)

See PtcRunner.Lisp.Runtime.Predicates.zero?/1.

 zip(c1, c2)

See PtcRunner.Lisp.Runtime.Collection.zip/2.

PtcRunner.Lisp.Runtime.Callable

Dispatch helper for calling Lisp functions from Collection operations.
This module provides a unified call/2 function that correctly dispatches
to all builtin types (normal, variadic, variadic_nonempty, multi_arity, collect)
as well as plain Erlang functions.
This solves the problem where closure_to_fun unwrapped variadic builtin tuples
into raw 2-arity functions, causing HOFs to fail when calling functions with
different arities:
(map + [1 2] [10 20] [100 200]) ;; 3 args - now works
(map + [[1 2] [3 4]]) ;; 1 arg via (apply + pair) - now works
(filter + [0 1 2]) ;; 1 arg - now works
(map range [1 2 3]) ;; multi_arity - now works

 Summary

 Functions

 call(f, args)

 Functions

 call(f, args)

 @spec call(term(), [term()]) :: term()

PtcRunner.Lisp.Runtime.Collection

Collection operations for PTC-Lisp runtime.
Provides filtering, mapping, sorting, and other collection manipulation functions.

 Summary

 Functions

 avg_by(key, coll)

 concat2(a, b)

 conj(list, x)

 contains?(set, val)

 count(set)

 difference(s1, s2)

 distinct(coll)

 distinct_by(key, coll)

 drop(n, coll)

 drop_while(key, coll)

 empty?(set)

 every?(key, coll)

 ffirst(coll)

 filter(pred, set)

 find(key, coll)

 first(coll)

 flatten(coll)

 fnext(coll)

 frequencies(coll)

 group_by(key, coll)

 interleave(c1, c2)

 interpose(sep, coll)

 Returns a list with sep inserted between each element.

 intersection(s1, s2)

 into(to, from)

 last(coll)

 map(key, coll)

 map(f, coll1, coll2)

 map(f, coll1, coll2, coll3)

 map_indexed(f, coll)

 mapv(key, coll)

 mapv(f, coll1, coll2)

 mapv(f, coll1, coll2, coll3)

 max_by(key, coll)

 max_key_variadic(list)

 Returns the x for which (f x) is greatest. Matches Clojure's max-key.

 min_by(key, coll)

 min_key_variadic(list)

 Returns the x for which (f x) is least. Matches Clojure's min-key.

 next(coll)

 nfirst(coll)

 nnext(coll)

 not_any?(key, coll)

 not_empty(coll)

 nth(coll, idx)

 partition(n, coll)

 partition(n, step, coll)

 pluck(key, coll)

 range(end_val)

 range(start, end_val)

 range(start, end_val, step)

 reduce(f, coll)

 reduce(f, init, coll)

 remove(pred, set)

 rest(coll)

 reverse(coll)

 second(coll)

 seq(coll)

 some(key, coll)

 sort(coll)

 sort(comp, coll)

 sort_by(key, coll)

 sort_by(key, comp, coll)

 sum_by(key, coll)

 take(n, coll)

 take_while(key, coll)

 union(s1, s2)

 zip(c1, c2)

 Functions

 avg_by(key, coll)

 concat2(a, b)

 conj(list, x)

 contains?(set, val)

 count(set)

 difference(s1, s2)

 distinct(coll)

 distinct_by(key, coll)

 drop(n, coll)

 drop_while(key, coll)

 empty?(set)

 every?(key, coll)

 ffirst(coll)

 filter(pred, set)

 find(key, coll)

 first(coll)

 flatten(coll)

 fnext(coll)

 frequencies(coll)

 group_by(key, coll)

 interleave(c1, c2)

 interpose(sep, coll)

Returns a list with sep inserted between each element.
Examples
iex> PtcRunner.Lisp.Runtime.Collection.interpose(", ", ["a", "b", "c"])
["a", ", ", "b", ", ", "c"]

iex> PtcRunner.Lisp.Runtime.Collection.interpose(:x, [1])
[1]

iex> PtcRunner.Lisp.Runtime.Collection.interpose(:x, [])
[]

iex> PtcRunner.Lisp.Runtime.Collection.interpose(:x, nil)
[]

iex> PtcRunner.Lisp.Runtime.Collection.interpose(nil, [1, 2, 3])
[1, nil, 2, nil, 3]

 intersection(s1, s2)

 into(to, from)

 last(coll)

 map(key, coll)

 map(f, coll1, coll2)

 map(f, coll1, coll2, coll3)

 map_indexed(f, coll)

 mapv(key, coll)

 mapv(f, coll1, coll2)

 mapv(f, coll1, coll2, coll3)

 max_by(key, coll)

 max_key_variadic(list)

Returns the x for which (f x) is greatest. Matches Clojure's max-key.
Examples
iex> PtcRunner.Lisp.Runtime.Collection.max_key_variadic([&String.length/1, "a", "abc", "ab"])
"abc"

 min_by(key, coll)

 min_key_variadic(list)

Returns the x for which (f x) is least. Matches Clojure's min-key.
Examples
iex> PtcRunner.Lisp.Runtime.Collection.min_key_variadic([&String.length/1, "a", "abc", "ab"])
"a"

 next(coll)

 nfirst(coll)

 nnext(coll)

 not_any?(key, coll)

 not_empty(coll)

 nth(coll, idx)

 partition(n, coll)

 partition(n, step, coll)

 pluck(key, coll)

 range(end_val)

 range(start, end_val)

 range(start, end_val, step)

 reduce(f, coll)

 reduce(f, init, coll)

 remove(pred, set)

 rest(coll)

 reverse(coll)

 second(coll)

 seq(coll)

 some(key, coll)

 sort(coll)

 sort(comp, coll)

 sort_by(key, coll)

 sort_by(key, comp, coll)

 sum_by(key, coll)

 take(n, coll)

 take_while(key, coll)

 union(s1, s2)

 zip(c1, c2)

PtcRunner.Lisp.Runtime.FlexAccess

Flexible key access helpers for PTC-Lisp runtime.
These helpers allow accessing map keys using either atom or string versions,
providing seamless interoperability between different key formats.

 Summary

 Functions

 flex_fetch(map, key)

 Flexible key fetch: try both atom and string versions of the key.
Returns {:ok, value} if found, :error if missing.
Use this when you need to distinguish between nil values and missing keys.

 flex_fetch_in(data, arg2)

 Flexible nested key fetch: try both atom and string versions at each level.
Returns {:ok, value} if found, :error if missing.

 flex_get(map, key)

 Flexible key access: try both atom and string versions of the key.
Returns the value if found, nil if missing.
Use this for simple lookups where you don't need to distinguish between nil values and missing keys.

 flex_get_in(data, arg2)

 Flexible nested key access: try both atom and string versions at each level.

 flex_put_in(data, path, v)

 Flexible nested key insertion: creates intermediate maps as needed at each level.
Aligns with Clojure's assoc-in behavior.

 flex_update_in(data, path, f)

 Flexible nested key update: creates intermediate maps as needed at each level.
Aligns with Clojure's update-in behavior.

 Functions

 flex_fetch(map, key)

Flexible key fetch: try both atom and string versions of the key.
Returns {:ok, value} if found, :error if missing.
Use this when you need to distinguish between nil values and missing keys.

 flex_fetch_in(data, arg2)

Flexible nested key fetch: try both atom and string versions at each level.
Returns {:ok, value} if found, :error if missing.

 flex_get(map, key)

Flexible key access: try both atom and string versions of the key.
Returns the value if found, nil if missing.
Use this for simple lookups where you don't need to distinguish between nil values and missing keys.

 flex_get_in(data, arg2)

Flexible nested key access: try both atom and string versions at each level.

 flex_put_in(data, path, v)

Flexible nested key insertion: creates intermediate maps as needed at each level.
Aligns with Clojure's assoc-in behavior.

 flex_update_in(data, path, f)

Flexible nested key update: creates intermediate maps as needed at each level.
Aligns with Clojure's update-in behavior.

PtcRunner.Lisp.Runtime.Interop

Simulated Java interop for PTC-Lisp.

 Summary

 Functions

 current_time_millis()

 Simulates System/currentTimeMillis.

 dot_get_time(dt)

 Simulates .getTime method on java.util.Date.

 java_util_date()

 Constructs a java.util.Date.
If no args, returns now.
If one arg (number or string), returns date accordingly.

 java_util_date(ts)

 local_date_parse(s)

 Simulates java.time.LocalDate/parse.
Only supports ISO-8601 YYYY-MM-DD.

 Functions

 current_time_millis()

Simulates System/currentTimeMillis.

 dot_get_time(dt)

Simulates .getTime method on java.util.Date.

 java_util_date()

Constructs a java.util.Date.
If no args, returns now.
If one arg (number or string), returns date accordingly.

 java_util_date(ts)

 local_date_parse(s)

Simulates java.time.LocalDate/parse.
Only supports ISO-8601 YYYY-MM-DD.

PtcRunner.Lisp.Runtime.MapOps

Map operations for PTC-Lisp runtime.
Provides get, assoc, update, merge, and other map manipulation functions.

 Summary

 Functions

 assoc(m, k, v)

 assoc_in(m, path, v)

 assoc_variadic(args)

 Associate key-value pairs with a map.

 dissoc(m, k)

 dissoc_variadic(list)

 Remove keys from a map.

 entries(m)

 Convert map to a list of [key, value] pairs, sorted by key.

 get(m, k)

 get(m, k, default)

 get_in(m, path)

 get_in(m, path, default)

 key(list)

 Returns the key from a map entry (2-element vector).

 keys(m)

 merge(m1, m2)

 select_keys(m, ks)

 update(m, k, f)

 update_in(m, path, f)

 update_in_variadic(list)

 Update a nested value in a map by applying a function.

 update_vals(m, f)

 Apply a function to each value in a map, returning a new map with the same keys.
Matches Clojure 1.11's update-vals signature: (update-vals m f)

 update_variadic(list)

 Update a value in a map by applying a function.

 val(list)

 Returns the value from a map entry (2-element vector).

 vals(m)

 Functions

 assoc(m, k, v)

 assoc_in(m, path, v)

 assoc_variadic(args)

Associate key-value pairs with a map.
Supports both standard 3-arg form and variadic form with multiple pairs:
	(assoc m k v)
	(assoc m k1 v1 k2 v2 k3 v3)

Examples
iex> PtcRunner.Lisp.Runtime.MapOps.assoc_variadic([%{a: 1}, :b, 2])
%{a: 1, b: 2}

iex> PtcRunner.Lisp.Runtime.MapOps.assoc_variadic([%{}, :a, 1, :b, 2, :c, 3])
%{a: 1, b: 2, c: 3}

 dissoc(m, k)

 dissoc_variadic(list)

Remove keys from a map.
Supports both 2-arg form and variadic form with multiple keys:
	(dissoc m k)
	(dissoc m k1 k2 k3)

Examples
iex> PtcRunner.Lisp.Runtime.MapOps.dissoc_variadic([%{a: 1, b: 2}, :a])
%{b: 2}

iex> PtcRunner.Lisp.Runtime.MapOps.dissoc_variadic([%{a: 1, b: 2, c: 3}, :a, :c])
%{b: 2}

 entries(m)

Convert map to a list of [key, value] pairs, sorted by key.

 get(m, k)

 get(m, k, default)

 get_in(m, path)

 get_in(m, path, default)

 key(list)

Returns the key from a map entry (2-element vector).
Examples
iex> PtcRunner.Lisp.Runtime.MapOps.key([:a, 1])
:a

 keys(m)

 merge(m1, m2)

 select_keys(m, ks)

 update(m, k, f)

 update_in(m, path, f)

 update_in_variadic(list)

Update a nested value in a map by applying a function.
Supports Clojure-style extra arguments that are passed to the function:
	(update-in m path f) - calls (f old-val)
	(update-in m path f arg1) - calls (f old-val arg1)

Examples
iex> PtcRunner.Lisp.Runtime.MapOps.update_in_variadic([%{a: %{b: 1}}, [:a, :b], &Kernel.+/2, 5])
%{a: %{b: 6}}

 update_vals(m, f)

Apply a function to each value in a map, returning a new map with the same keys.
Matches Clojure 1.11's update-vals signature: (update-vals m f)
Examples
iex> PtcRunner.Lisp.Runtime.MapOps.update_vals(%{a: [1, 2], b: [3]}, &length/1)
%{a: 2, b: 1}

iex> PtcRunner.Lisp.Runtime.MapOps.update_vals(%{}, &length/1)
%{}

 update_variadic(list)

Update a value in a map by applying a function.
Supports Clojure-style extra arguments that are passed to the function:
	(update m k f) - calls (f old-val)
	(update m k f arg1) - calls (f old-val arg1)
	(update m k f arg1 arg2) - calls (f old-val arg1 arg2)

Examples
iex> PtcRunner.Lisp.Runtime.MapOps.update_variadic([%{n: 1}, :n, &Kernel.+/2, 5])
%{n: 6}

iex> PtcRunner.Lisp.Runtime.MapOps.update_variadic([%{n: nil}, :n, &PtcRunner.Lisp.Runtime.Predicates.fnil(&Kernel.+/2, 0), 5])
%{n: 5}

 val(list)

Returns the value from a map entry (2-element vector).
Examples
iex> PtcRunner.Lisp.Runtime.MapOps.val([:a, 1])
1

 vals(m)

PtcRunner.Lisp.Runtime.Math

Arithmetic operations for PTC-Lisp runtime.
Provides basic math operations: addition, subtraction, multiplication, division,
and utility functions like floor, ceil, round, etc.

 Summary

 Functions

 abs(x)

 add(args)

 add(x, y)

 ceil(x)

 compare(x, y)

 dec(x)

 divide(x, y)

 double(x)

 eq(x, y)

 float(x)

 floor(x)

 gt(x, y)

 gte(x, y)

 inc(x)

 int(x)

 lt(x, y)

 lte(x, y)

 max(x, y)

 min(x, y)

 mod(x, y)

 Modulus with floored division (toward negative infinity).

 multiply(args)

 multiply(x, y)

 not_eq(x, y)

 pow(x, y)

 remainder(x, y)

 Remainder with truncated division (toward zero).

 round(x)

 sqrt(x)

 subtract(list)

 subtract(x, y)

 trunc(x)

 Functions

 abs(x)

 add(args)

 add(x, y)

 ceil(x)

 compare(x, y)

 dec(x)

 divide(x, y)

 double(x)

 eq(x, y)

 float(x)

 floor(x)

 gt(x, y)

 gte(x, y)

 inc(x)

 int(x)

 lt(x, y)

 lte(x, y)

 max(x, y)

 min(x, y)

 mod(x, y)

Modulus with floored division (toward negative infinity).
The result has the same sign as the divisor (y).
Matches Clojure's mod function.

 multiply(args)

 multiply(x, y)

 not_eq(x, y)

 pow(x, y)

 remainder(x, y)

Remainder with truncated division (toward zero).
The result has the same sign as the dividend (x).
Matches Clojure's rem function.

 round(x)

 sqrt(x)

 subtract(list)

 subtract(x, y)

 trunc(x)

PtcRunner.Lisp.Runtime.Predicates

Type predicates, numeric predicates, and logic operations for PTC-Lisp runtime.
Provides type checking functions (nil?, string?, map?, etc.) and numeric predicates
(zero?, pos?, neg?, even?, odd?).

 Summary

 Functions

 boolean?(x)

 char?(x)

 coll?(x)

 even?(x)

 fnil(f, default)

 Returns a function that replaces nil first argument with a default value.

 identity(x)

 Identity function: returns its argument unchanged.
Useful as a default function argument or for composition.

 keyword?(x)

 map?(x)

 neg?(x)

 nil?(x)

 not_(x)

 number?(x)

 odd?(x)

 pos?(x)

 regex?(x)

 set(coll)

 Convert collection to set

 set?(x)

 some?(x)

 string?(x)

 vec(coll)

 Convert collection to vector (list)

 vector?(x)

 zero?(x)

 Functions

 boolean?(x)

 char?(x)

 coll?(x)

 even?(x)

 fnil(f, default)

Returns a function that replaces nil first argument with a default value.
Automatically detects arity of the wrapped function and returns a function
with matching arity. Supports plain functions and builtin tuples.
Commonly used with update: (update m :count (fnil inc 0)) or
(update m :count (fnil + 0) 5) to provide default values for nil.
Examples
iex> f = PtcRunner.Lisp.Runtime.Predicates.fnil(&Kernel.+/2, 0)
iex> f.(nil, 5)
5
iex> f.(3, 5)
8

iex> f = PtcRunner.Lisp.Runtime.Predicates.fnil(&(&1 + 1), 0)
iex> f.(nil)
1
iex> f.(5)
6

 identity(x)

Identity function: returns its argument unchanged.
Useful as a default function argument or for composition.

 keyword?(x)

 map?(x)

 neg?(x)

 nil?(x)

 not_(x)

 number?(x)

 odd?(x)

 pos?(x)

 regex?(x)

 set(coll)

Convert collection to set

 set?(x)

 some?(x)

 string?(x)

 vec(coll)

Convert collection to vector (list)

 vector?(x)

 zero?(x)

PtcRunner.Lisp.Runtime.Regex

Minimal, safe Regex support for PTC-Lisp.
Uses Erlang's :re directly with match limits for ReDoS protection.

 Summary

 Functions

 re_find(arg, s)

 Find first match of regex in string.
Returns string if no groups, or vector of [full match, group1, ...] if groups.

 re_matches(arg, s)

 Returns match if regex matches the entire string.

 re_pattern(s)

 Compile a string into a regex.
Returns opaque {:re_mp, mp, anchored_mp, source} tuple.
Both normal and anchored versions are pre-compiled for performance and safety.

 re_seq(arg, s)

 Find all matches of regex in string.
Returns list of matches (empty list if no matches).

 re_split(arg, s)

 Split string by regex pattern.
Returns list of substrings.

 Functions

 re_find(arg, s)

Find first match of regex in string.
Returns string if no groups, or vector of [full match, group1, ...] if groups.

 re_matches(arg, s)

Returns match if regex matches the entire string.

 re_pattern(s)

Compile a string into a regex.
Returns opaque {:re_mp, mp, anchored_mp, source} tuple.
Both normal and anchored versions are pre-compiled for performance and safety.

 re_seq(arg, s)

Find all matches of regex in string.
Returns list of matches (empty list if no matches).
Examples
(re-seq (re-pattern "\d+") "a1b2c3") => ["1" "2" "3"]
(re-seq (re-pattern "(\d)(\w)") "1a2b") => [["1a" "1" "a"] ["2b" "2" "b"]]

 re_split(arg, s)

Split string by regex pattern.
Returns list of substrings.
Examples
(re-split (re-pattern "\s+") "a b c") => ["a" "b" "c"]
(re-split (re-pattern ",") "a,b,c") => ["a" "b" "c"]

PtcRunner.Lisp.Runtime.SpecialValues

Unified handling for IEEE 754 special values (Infinity, NaN) in PTC-Lisp.

 Summary

 Functions

 any_infinite?(args)

 Check if any argument is infinite.

 any_infinite?(x, y)

 any_nan?(args)

 Propagation rules: any NaN input results in NaN.

 any_nan?(x, y)

 infinite?(x)

 nan?(x)

 neg_infinite?(x)

 pos_infinite?(x)

 special?(x)

 Functions

 any_infinite?(args)

Check if any argument is infinite.

 any_infinite?(x, y)

 any_nan?(args)

Propagation rules: any NaN input results in NaN.

 any_nan?(x, y)

 infinite?(x)

 nan?(x)

 neg_infinite?(x)

 pos_infinite?(x)

 special?(x)

PtcRunner.Lisp.Runtime.String

String manipulation and parsing operations for PTC-Lisp runtime.
Provides string concatenation, substring, join, split, and parsing functions.

 Summary

 Functions

 downcase(s)

 Convert string to lowercase.

 ends_with?(s, suffix)

 Check if string ends with suffix.

 includes?(s, substring)

 Check if string contains substring.

 join(coll)

 Join a collection into a string with optional separator.

 join(separator, coll)

 parse_double(s)

 Parse string to float. Returns nil on failure.
Matches Clojure 1.11+ parse-double behavior.

 parse_long(s)

 Parse string to integer. Returns nil on failure.
Matches Clojure 1.11+ parse-long behavior.

 replace(s, pattern, replacement)

 Replace all occurrences of a pattern in a string.

 split(s, separator)

 Split a string by separator.

 split_lines(s)

 Split a string into a list of lines.

 starts_with?(s, prefix)

 Check if string starts with prefix.

 str2(a, b)

 Convert one or more values to string and concatenate.

 subs(s, start)

 Return substring starting at index (2-arity) or from start to end (3-arity).

 subs(s, start, end_idx)

 trim(s)

 Trim leading and trailing whitespace.

 upcase(s)

 Convert string to uppercase.

 Functions

 downcase(s)

Convert string to lowercase.
	(downcase "HELLO") returns "hello"
	(downcase "") returns ""

 ends_with?(s, suffix)

Check if string ends with suffix.
	(ends-with? "hello" "lo") returns true
	(ends-with? "hello" "x") returns false
	(ends-with? "hello" "") returns true

 includes?(s, substring)

Check if string contains substring.
	(includes? "hello" "ll") returns true
	(includes? "hello" "x") returns false
	(includes? "hello" "") returns true

 join(coll)

Join a collection into a string with optional separator.
	(join ["a" "b" "c"]) returns "abc"
	(join ", " ["a" "b" "c"]) returns "a, b, c"
	(join "-" [1 2 3]) returns "1-2-3"
	(join ", " []) returns ""

 join(separator, coll)

 parse_double(s)

Parse string to float. Returns nil on failure.
Matches Clojure 1.11+ parse-double behavior.

 parse_long(s)

Parse string to integer. Returns nil on failure.
Matches Clojure 1.11+ parse-long behavior.

 replace(s, pattern, replacement)

Replace all occurrences of a pattern in a string.
	(replace "hello" "l" "L") returns "heLLo"
	(replace "aaa" "a" "b") returns "bbb"

 split(s, separator)

Split a string by separator.
	(split "a,b,c" ",") returns ["a" "b" "c"]
	(split "hello" "") returns ["h" "e" "l" "l" "o"]
	(split "a,,b" ",") returns ["a" "" "b"]

 split_lines(s)

Split a string into a list of lines.
	(split-lines "line1
line2
line3") returns ["line1" "line2" "line3"]
	Does not return trailing empty lines.

 starts_with?(s, prefix)

Check if string starts with prefix.
	(starts-with? "hello" "he") returns true
	(starts-with? "hello" "x") returns false
	(starts-with? "hello" "") returns true

 str2(a, b)

Convert one or more values to string and concatenate.
	(str) returns ""
	(str "hello") returns "hello"
	(str "a" "b") returns "ab"
	(str 42) returns "42"
	(str nil) returns "" (not "nil")
	(str :keyword) returns ":keyword"
	(str true) returns "true"

Binary reducer used with :variadic binding type.

 subs(s, start)

Return substring starting at index (2-arity) or from start to end (3-arity).
	(subs "hello" 1) returns "ello"
	(subs "hello" 1 3) returns "el"
	(subs "hello" 0 0) returns ""
	Out of bounds returns truncated result
	Negative indices are clamped to 0

 subs(s, start, end_idx)

 trim(s)

Trim leading and trailing whitespace.
	(trim " hello ") returns "hello"
	(trim "
 text
") returns "text"

 upcase(s)

Convert string to uppercase.
	(upcase "hello") returns "HELLO"
	(upcase "") returns ""

PtcRunner.Lisp.SpecValidator

Validates PTC-Lisp specification against implementation.
Extracts examples from the PTC-Lisp specification and verifies that
actual execution matches expected results. Helps detect drift between
the specification and implementation.
Usage
Validate all examples in specification
PtcRunner.Lisp.SpecValidator.validate_spec()

Validate a single example
PtcRunner.Lisp.SpecValidator.validate_example("(+ 1 2)", 3)

Get all examples from spec
examples = PtcRunner.Lisp.SpecValidator.extract_examples()

 Summary

 Functions

 examples_hash()

 Get a hash of all examples in the specification.

 extract_examples()

 Extract all examples from the specification.

 extract_examples(content)

 Extract examples from specification content string.

 negative_tests()

 Get negative test cases for Section 13 (unsupported features).

 section_hashes()

 Get hashes for each section of the specification.

 validate_example(code, expected)

 Validate a single example: code should produce expected result.

 validate_negative_test(code, expected_error_type)

 Validate a negative test case (should fail with specific error).

 validate_spec()

 Validate all examples in the PTC-Lisp specification.

 Functions

 examples_hash()

 @spec examples_hash() :: {:ok, String.t()} | {:error, String.t()}

Get a hash of all examples in the specification.
Used to detect changes to the specification over time.

 extract_examples()

 @spec extract_examples() :: {:ok, map()} | {:error, String.t()}

Extract all examples from the specification.
Returns a map with categorized examples:
	examples - Testable examples as {code, expected, section} tuples
	todos - TODO markers as {code, description, section} tuples
	bugs - BUG markers as {code, description, section} tuples
	skipped - Count of illustrative examples (using ...)

Returns
{:ok, %{
 examples: [{"(+ 1 2)", 3, "## Section"}, ...],
 todos: [{"(code)", "description", "## Section"}, ...],
 bugs: [],
 skipped: 2
}}

 extract_examples(content)

 @spec extract_examples(String.t()) :: map()

Extract examples from specification content string.
Parses the markdown content and extracts code examples with expected values,
TODO markers, BUG markers, and counts skipped illustrative examples.
Parameters
	content - The specification markdown content as a string

Returns
%{
 examples: [{"(+ 1 2)", 3, "## Section"}, ...],
 todos: [{"(code)", "description", "## Section"}, ...],
 bugs: [],
 skipped: 2
}

 negative_tests()

 @spec negative_tests() :: [tuple()]

Get negative test cases for Section 13 (unsupported features).
Returns a list of tuples: {feature_name, code, expected_error_type}.
These programs should all fail with specific error types.
Returns
[
 {"lazy-seq", "(lazy-seq [1])", :unbound_var},
 {"partial", "(partial + 1)", :unbound_var},
 ...
]

 section_hashes()

 @spec section_hashes() :: {:ok, map()} | {:error, String.t()}

Get hashes for each section of the specification.
Returns a map of section headers to their content hashes.
Used to detect drift in specific sections of the spec.
Returns
{:ok, %{
 "## 1. Overview" => "hash1",
 "## 2. Lexical Structure" => "hash2",
 ...
}}

 validate_example(code, expected)

 @spec validate_example(String.t(), any()) :: :ok | {:error, String.t()}

Validate a single example: code should produce expected result.
Returns :ok if validation passes, {:error, reason} otherwise.
Examples
iex> PtcRunner.Lisp.SpecValidator.validate_example("(+ 1 2)", 3)
:ok

iex> PtcRunner.Lisp.SpecValidator.validate_example("(+ 1 2)", 4)
{:error, "Expected 4 but got 3"}

 validate_negative_test(code, expected_error_type)

 @spec validate_negative_test(String.t(), atom()) :: :ok | {:error, String.t()}

Validate a negative test case (should fail with specific error).
Returns :ok if the code fails with the expected error type,
{:error, reason} otherwise.

 validate_spec()

 @spec validate_spec() :: {:ok, map()} | {:error, String.t()}

Validate all examples in the PTC-Lisp specification.
Returns a summary of results with counts of passed, failed, skipped examples,
as well as TODO and BUG markers found in the spec.
Returns
{:ok, %{
 passed: 95,
 failed: 0,
 skipped: 2,
 todos: [{"(code)", "description", "## Section"}, ...],
 bugs: [],
 failures: [...]
}}

PtcRunner.Lisp.SymbolCounter

Counts unique user-defined symbols and keywords in a parsed Lisp AST.
Used to enforce the max_symbols limit, preventing atom table exhaustion
from malicious programs that create many unique symbols/keywords.
Core language symbols (special forms like if, let, fn) are excluded
from the count since they're predefined and don't contribute to atom exhaustion.

 Summary

 Functions

 count(ast)

 Counts unique non-core symbols and keywords in the AST.

 Functions

 count(ast)

 @spec count(term()) :: non_neg_integer()

Counts unique non-core symbols and keywords in the AST.
Returns the count of unique user-defined atoms that would be created
when parsing/evaluating the program.
Examples
iex> {:ok, ast} = PtcRunner.Lisp.Parser.parse("{:a 1 :b 2}")
iex> PtcRunner.Lisp.SymbolCounter.count(ast)
2

iex> {:ok, ast} = PtcRunner.Lisp.Parser.parse("{:a 1 :a 2}")
iex> PtcRunner.Lisp.SymbolCounter.count(ast)
1

iex> {:ok, ast} = PtcRunner.Lisp.Parser.parse("(if true 1 2)")
iex> PtcRunner.Lisp.SymbolCounter.count(ast)
0

PtcRunner.Sandbox

Executes programs in isolated BEAM processes with resource limits.
Spawns isolated processes with configurable timeout and memory limits,
ensuring safe program execution.
Resource Limits
	Resource	Default	Option
	Timeout	1,000 ms	:timeout
	Max Heap	~10 MB (1,250,000 words)	:max_heap

Configuration
Limits can be set per-call:
PtcRunner.Json.run(program, timeout: 5000, max_heap: 5_000_000)
Or as application-level defaults in config.exs:
config :ptc_runner,
 default_timeout: 2000,
 default_max_heap: 2_500_000

 Summary

 Types

 eval_fn()

 Evaluator function that takes AST and context and returns result with memory.

 metrics()

 Execution metrics for a program run.

 Functions

 execute(ast, context, opts \\ [])

 Executes an AST in an isolated sandbox process.

 Types

 eval_fn()

 @type eval_fn() :: (any(), PtcRunner.Context.t() ->
 {:ok, any(), map()}
 | {:error, {atom(), String.t()} | {atom(), String.t(), any()}})

Evaluator function that takes AST and context and returns result with memory.

 metrics()

 @type metrics() :: %{duration_ms: integer(), memory_bytes: integer()}

Execution metrics for a program run.

 Functions

 execute(ast, context, opts \\ [])

 @spec execute(any(), PtcRunner.Context.t(), keyword()) ::
 {:ok, any(), metrics(), map()}
 | {:error,
 {atom(), non_neg_integer()}
 | {atom(), String.t()}
 | {atom(), String.t(), any()}}

Executes an AST in an isolated sandbox process.
Arguments
	ast: The AST to execute
	context: The execution context
	opts: Options (timeout, max_heap, eval_fn)	:eval_fn - Custom evaluator function (default: Interpreter.eval/2)
	:timeout - Timeout in milliseconds (default: 1000)
	:max_heap - Max heap size in words (default: 1_250_000)

Returns
	{:ok, result, metrics, memory} on success
	{:error, reason} on failure

PtcRunner.Schema

Declarative schema module that defines all DSL operations.
This module serves as the single source of truth for operation definitions,
supporting validation, JSON Schema generation, and documentation.

 Summary

 Functions

 get_operation(operation_name)

 Get operation definition by name.

 operations()

 Returns all operation definitions.

 to_json_schema()

 Generate a JSON Schema (draft-07) for the PTC DSL.

 to_llm_schema()

 Generate a flattened JSON Schema optimized for LLM structured output.

 to_prompt(opts \\ [])

 Generate a concise prompt describing PTC operations for LLM text mode.

 valid_operation_names()

 Returns a sorted list of valid operation names.

 Functions

 get_operation(operation_name)

 @spec get_operation(String.t()) :: {:ok, map()} | :error

Get operation definition by name.
Arguments
	operation_name: The name of the operation

Returns
	{:ok, definition} if the operation exists
	:error if the operation is unknown

 operations()

 @spec operations() :: map()

Returns all operation definitions.
Returns
 A map where keys are operation names and values are operation definitions.

 to_json_schema()

 @spec to_json_schema() :: map()

Generate a JSON Schema (draft-07) for the PTC DSL.
Returns
 A map representing the JSON Schema that can be encoded to JSON.

 to_llm_schema()

 @spec to_llm_schema() :: map()

Generate a flattened JSON Schema optimized for LLM structured output.
This schema uses anyOf to list all operations at the top level, avoiding
the recursive $ref patterns that LLMs struggle with. The schema is designed
to work with ReqLLM.generate_object! for structured output mode.
Returns
 A map representing the flattened JSON Schema for the PTC DSL.

 to_prompt(opts \\ [])

 @spec to_prompt(keyword()) :: String.t()

Generate a concise prompt describing PTC operations for LLM text mode.
This produces a human-readable description of operations suitable for system
prompts. Includes operation reference, memory contract, key rules, and examples.
Options
	:examples - number of full JSON examples to include (default: 3)

Returns
 A string containing operation descriptions and examples.

 valid_operation_names()

 @spec valid_operation_names() :: [String.t()]

Returns a sorted list of valid operation names.
Returns
 A list of operation names in sorted order.

PtcRunner.Step

Result of executing a PTC program or SubAgent mission.
Returned by both PtcRunner.Lisp.run/2 and PtcRunner.SubAgent.run/2.
Fields
return
The computed result value on success.
	Type: term() | nil

	Set when: Mission/program completed successfully
	Nil when: Execution failed (check fail field)

fail
Error information on failure. See fail/0 for the structure.
	Type: t:fail/0 | nil

	Set when: Execution failed
	Nil when: Execution succeeded

memory
Final memory state after execution.
	Type: map()
	Always set: Contains accumulated memory from all operations
	Access in PTC-Lisp: values available as plain symbols

signature
The contract used for validation.
	Type: String.t() | nil

	Set when: Signature was provided to run/2
	Used for: Type propagation when chaining steps

usage
Execution metrics. See usage/0 for available fields.
	Type: t:usage/0 | nil

	Set when: Execution completed (success or failure after running)
	Nil when: Early validation failure (before execution)

turns
List of Turn structs capturing each LLM interaction cycle. See PtcRunner.Turn.
	Type: [PtcRunner.Turn.t()] | nil

	Set when: SubAgent execution
	Nil when: Lisp execution

trace_id
Unique identifier for this execution (for tracing correlation).
	Type: String.t() | nil

	Set when: SubAgent execution (32-character hex string)
	Nil when: Lisp execution
	Used for: Correlating traces in parallel and nested agent executions

parent_trace_id
ID of parent trace for nested agent calls.
	Type: String.t() | nil

	Set when: This agent was spawned by another agent
	Nil when: Root-level execution (no parent)
	Used for: Linking child executions to their parent

See PtcRunner.Tracer for trace generation and management.
field_descriptions
Descriptions for signature fields, propagated from SubAgent.
	Type: map() | nil

	Set when: SubAgent had field_descriptions option
	Nil when: No field descriptions provided
	Used for: Passing field documentation through chained executions

messages
Full conversation history in OpenAI format.
	Type: [t:message/0] | nil

	Set when: collect_messages: true option passed to SubAgent.run/2
	Nil when: collect_messages: false (default)
	Used for: Debugging, persistence, and displaying the LLM conversation

Error Reasons
Complete list of error reasons in step.fail.reason:
	Reason	Source	Description
	:parse_error	Lisp	Invalid PTC-Lisp syntax
	:analysis_error	Lisp	Semantic error (undefined variable, etc.)
	:eval_error	Lisp	Runtime error (division by zero, etc.)
	:timeout	Both	Execution exceeded time limit
	:memory_exceeded	Both	Process exceeded heap limit
	:validation_error	Both	Input or output doesn't match signature
	:tool_error	SubAgent	Tool raised an exception
	:tool_not_found	SubAgent	Called non-existent tool
	:reserved_tool_name	SubAgent	Attempted to register return or fail
	:max_turns_exceeded	SubAgent	Turn limit reached without termination
	:max_depth_exceeded	SubAgent	Nested agent depth limit exceeded
	:turn_budget_exhausted	SubAgent	Total turn budget exhausted
	:mission_timeout	SubAgent	Total mission duration exceeded
	:llm_error	SubAgent	LLM callback failed after retries
	:llm_required	SubAgent	LLM option is required for agent execution
	:no_code_found	SubAgent	No PTC-Lisp code found in LLM response
	:llm_not_found	SubAgent	LLM atom not in registry
	:llm_registry_required	SubAgent	Atom LLM used without registry
	:invalid_llm	SubAgent	Registry value not a function
	:chained_failure	SubAgent	Chained onto a failed step
	:template_error	SubAgent	Template placeholder missing
	Custom atoms	SubAgent	From (fail {:reason :custom ...})

Usage Patterns
Success Check
case SubAgent.run(prompt, opts) do
 {:ok, step} ->
 IO.puts("Result: #{inspect(step.return)}")
 IO.puts("Took #{step.usage.duration_ms}ms")

 {:error, step} ->
 IO.puts("Failed: #{step.fail.reason} - #{step.fail.message}")
end
Chaining Steps
Pass a successful step's return and signature to the next step:
{:ok, step1} = SubAgent.run("Find emails",
 signature: "() -> {count :int, _ids [:int]}",
 llm: llm
)

Option 1: Explicit
{:ok, step2} = SubAgent.run("Process emails",
 context: step1.return,
 context_signature: step1.signature,
 llm: llm
)

Option 2: Auto-extraction (SubAgent only)
{:ok, step2} = SubAgent.run("Process emails",
 context: step1, # Extracts return and signature automatically
 llm: llm
)
Accessing Firewalled Data
Fields prefixed with _ are hidden from LLM history but available in return:
{:ok, step} = SubAgent.run("Find emails",
 signature: "() -> {count :int, _email_ids [:int]}",
 llm: llm
)

step.return.count #=> 5 (visible to LLM)
step.return._email_ids #=> [101, 102, 103, 104, 105] (hidden from LLM)

 Summary

 Types

 fail()

 Error information on failure.

 message()

 A single message in OpenAI format.

 t()

 Step result struct.

 tool_call()

 Tool call information in trace.

 usage()

 Execution metrics.

 Functions

 error(reason, message, memory)

 Creates a new failed Step.

 error(reason, message, memory, details)

 Creates a failed Step with additional details.

 ok(return, memory)

 Creates a new successful Step.

 Types

 fail()

 @type fail() :: %{
 :reason => atom(),
 :message => String.t(),
 optional(:op) => String.t(),
 optional(:details) => map()
}

Error information on failure.
Fields:
	reason: Machine-readable error code (atom)
	message: Human-readable description
	op: Optional operation/tool that failed
	details: Optional additional context

 message()

 @type message() :: %{role: :system | :user | :assistant, content: String.t()}

A single message in OpenAI format.
Fields:
	role: The message role (:system, :user, or :assistant)
	content: The message content

 t()

 @type t() :: %PtcRunner.Step{
 fail: fail() | nil,
 field_descriptions: map() | nil,
 memory: map(),
 messages: [message()] | nil,
 original_prompt: term(),
 parent_trace_id: String.t() | nil,
 prints: [String.t()],
 prompt: String.t() | nil,
 return: term() | nil,
 signature: String.t() | nil,
 tool_calls: [tool_call()],
 tools: map() | nil,
 trace_id: String.t() | nil,
 turns: [PtcRunner.Turn.t()] | nil,
 usage: usage() | nil
}

Step result struct.
One of return or fail will be set, but never both:
	Success: return is set, fail is nil
	Failure: fail is set, return is nil

The trace_id and parent_trace_id fields are used for tracing correlation
in parallel and nested agent executions. See PtcRunner.Tracer for details.

 tool_call()

 @type tool_call() :: %{
 name: String.t(),
 args: map(),
 result: term(),
 error: String.t() | nil,
 timestamp: DateTime.t(),
 duration_ms: non_neg_integer()
}

Tool call information in trace.
Fields:
	name: Tool name
	args: Arguments passed to tool
	result: Tool result
	error: Error message if tool failed
	timestamp: When tool was called
	duration_ms: How long tool took

 usage()

 @type usage() :: %{
 :duration_ms => non_neg_integer(),
 :memory_bytes => non_neg_integer(),
 optional(:turns) => pos_integer(),
 optional(:input_tokens) => non_neg_integer(),
 optional(:output_tokens) => non_neg_integer(),
 optional(:total_tokens) => non_neg_integer(),
 optional(:llm_requests) => non_neg_integer(),
 optional(:schema_used) => boolean(),
 optional(:schema_bytes) => non_neg_integer()
}

Execution metrics.
Fields:
	duration_ms: Total execution time
	memory_bytes: Peak memory usage
	turns: Number of LLM turns used (SubAgent only, optional)
	input_tokens: Total input tokens (SubAgent only, optional)
	output_tokens: Total output tokens (SubAgent only, optional)
	total_tokens: Input + output tokens (SubAgent only, optional)
	llm_requests: Number of LLM API calls (SubAgent only, optional)
	schema_used: Whether JSON schema was sent to LLM (JSON mode only, optional)
	schema_bytes: Size of JSON schema in bytes (JSON mode only, optional)

 Functions

 error(reason, message, memory)

 @spec error(atom(), String.t(), map()) :: t()

Creates a new failed Step.
Examples
iex> step = PtcRunner.Step.error(:timeout, "Execution exceeded time limit", %{})
iex> step.fail.reason
:timeout
iex> step.return
nil

 error(reason, message, memory, details)

 @spec error(atom(), String.t(), map(), map()) :: t()

Creates a failed Step with additional details.
Examples
iex> PtcRunner.Step.error(:validation_failed, "Invalid input", %{}, %{field: "name"})
%PtcRunner.Step{
 return: nil,
 fail: %{reason: :validation_failed, message: "Invalid input", details: %{field: "name"}},
 memory: %{},
 signature: nil,
 usage: nil,
 turns: nil,
 trace_id: nil,
 parent_trace_id: nil,
 field_descriptions: nil
}

 ok(return, memory)

 @spec ok(term(), map()) :: t()

Creates a new successful Step.
Examples
iex> step = PtcRunner.Step.ok(%{count: 5}, %{})
iex> step.return
%{count: 5}
iex> step.fail
nil

PtcRunner.SubAgent

SubAgent definition for PtcRunner.
A SubAgent is an isolated worker that executes tasks using PTC-Lisp programs
generated by an LLM. SubAgents are defined as structs via new/1, separating
definition from execution.
Execution Modes
SubAgent supports two execution modes, determined by configuration:
	Mode	Condition	Behavior
	Single-shot	max_turns == 1 and tools == %{}	One LLM call, expression evaluated, result returned
	Loop	Otherwise	Full loop with tools, memory, and multi-turn

Fields
	prompt - String.t(), required, template with {{placeholder}} support (describes the task)
	signature - String.t() | nil, optional, contract for inputs/outputs

	tools - map(), callable tools (default: %{})
	max_turns - pos_integer(), maximum LLM calls (default: 5)
	prompt_limit - map() | nil, truncation config for LLM view

	mission_timeout - pos_integer() | nil, max ms for entire execution

	llm_retry - map() | nil, infrastructure retry config

	llm - atom() | function() | nil, optional LLM override

	system_prompt - system_prompt_opts() | nil, system prompt customization

	memory_limit - pos_integer() | nil, max bytes for memory map (default: 1MB)

	max_depth - pos_integer(), max nesting depth for SubAgents (default: 3)
	turn_budget - pos_integer(), total turns across all nested agents (default: 20)
	description - String.t() | nil, human-readable description for external documentation

	field_descriptions - map() | nil, descriptions for signature fields (keys are field names)

	context_descriptions - map() | nil, descriptions for context variables (keys are field names)

	format_options - keyword list controlling output truncation (see format_options/0)
	float_precision - non_neg_integer(), decimal places for floats in results and context (default: 2)
	compression - compression_opts(), compression strategy for turn history (default: nil)

Tool Resolution
Tools in the tools map can be:
	Format	Description
	fn args -> result end	Simple function
	{fn, meta}	Function with metadata (signature, description)
	%SubAgentTool{}	Wrapped SubAgent (via as_tool/2)
	%LLMTool{}	LLM-powered tool (via LLMTool.new/1)

See PtcRunner.Tool for normalization details.
LLM Resolution
When using atom LLMs (like :haiku or :sonnet), provide an llm_registry map
at the top level. The registry is automatically inherited by all nested agents.
Resolution order:
	agent.llm - Set in SubAgent struct
	as_tool(..., llm:) - Bound at tool creation
	Parent's LLM - Inherited from calling agent
	llm option - Required at top level

Examples
Minimal SubAgent with just a prompt:
iex> agent = PtcRunner.SubAgent.new(prompt: "Analyze the data")
iex> agent.prompt
"Analyze the data"
iex> agent.max_turns
5
iex> agent.tools
%{}
SubAgent with all options:
iex> email_tools = %{"list_emails" => fn _args -> [] end}
iex> agent = PtcRunner.SubAgent.new(
...> prompt: "Find urgent emails for {{user}}",
...> signature: "(user :string) -> {count :int, _ids [:int]}",
...> tools: email_tools,
...> max_turns: 10
...>)
iex> agent.prompt
"Find urgent emails for {{user}}"
iex> agent.max_turns
10

 Summary

 Types

 compression_opts()

 Compression strategy configuration.

 format_options()

 Output format options for truncation and display.

 language_spec()

 Language spec for system prompts.

 llm_callback()

 llm_registry()

 llm_response()

 LLM response format.

 output_mode()

 Output mode for SubAgent execution.

 system_prompt_opts()

 t()

 Functions

 as_tool(agent, opts \\ [])

 Wraps a SubAgent as a tool callable by other agents.

 compile(agent, opts)

 See PtcRunner.SubAgent.Compiler.compile/2.

 default_format_options()

 Returns the default format options.

 new(opts)

 Creates a SubAgent struct from keyword options.

 preview_prompt(agent, opts \\ [])

 Preview the system and user prompts that would be sent to the LLM.

 run(agent_or_prompt, opts \\ [])

 Executes a SubAgent with the given options.

 run!(agent, opts \\ [])

 Bang variant of run/2 that raises on failure.

 then!(step, agent, opts \\ [])

 Chains agents in a pipeline, passing the previous step as context.

 unwrap_sentinels(step)

 Unwraps internal sentinel values from a search result.

 Types

 compression_opts()

 @type compression_opts() :: nil | false | true | module() | {module(), keyword()}

Compression strategy configuration.
Can be:
	nil or false - Compression disabled (default)
	true - Use default strategy (SingleUserCoalesced) with default options
	Module - Use custom strategy module with default options
	{Module, opts} - Use custom strategy module with custom options

See PtcRunner.SubAgent.Compression for details.

 format_options()

 @type format_options() :: [
 feedback_limit: pos_integer(),
 feedback_max_chars: pos_integer(),
 history_max_bytes: pos_integer(),
 result_limit: pos_integer(),
 result_max_chars: pos_integer(),
 max_print_length: pos_integer()
]

Output format options for truncation and display.
Fields:
	feedback_limit - Max collection items in turn feedback (default: 10)
	feedback_max_chars - Max chars in turn feedback (default: 512)
	history_max_bytes - Truncation limit for *1/*2/*3 history (default: 512)
	result_limit - Inspect :limit for final result (default: 50)
	result_max_chars - Final string truncation (default: 500)
	max_print_length - Max chars per println call (default: 2000)

 language_spec()

 @type language_spec() :: String.t() | atom() | (map() -> String.t())

Language spec for system prompts.
Can be:
	String: used as-is
	Atom: resolved via PtcRunner.Lisp.LanguageSpec.get!/1 (e.g., :minimal, :default)
	Function: callback receiving context map with :turn, :model, :memory, :messages

 llm_callback()

 @type llm_callback() :: (map() -> {:ok, llm_response()} | {:error, term()})

 llm_registry()

 @type llm_registry() :: %{required(atom()) => llm_callback()}

 llm_response()

 @type llm_response() ::
 String.t()
 | %{
 :content => String.t(),
 optional(:tokens) => %{
 optional(:input) => pos_integer(),
 optional(:output) => pos_integer()
 }
 }

LLM response format.
Can be either a plain string (backward compatible) or a map with content and optional tokens.
When tokens are provided, they are included in telemetry measurements and accumulated in Step.usage.

 output_mode()

 @type output_mode() :: :ptc_lisp | :json

Output mode for SubAgent execution.
	:ptc_lisp - Default. LLM generates PTC-Lisp code that is executed.
	:json - LLM generates JSON directly matching the signature's return type.

 system_prompt_opts()

 @type system_prompt_opts() ::
 %{
 optional(:prefix) => String.t(),
 optional(:suffix) => String.t(),
 optional(:language_spec) => language_spec(),
 optional(:output_format) => String.t()
 }
 | (String.t() -> String.t())
 | String.t()

 t()

 @type t() :: %PtcRunner.SubAgent{
 compression: compression_opts(),
 context_descriptions: map() | nil,
 description: String.t() | nil,
 field_descriptions: map() | nil,
 float_precision: non_neg_integer(),
 format_options: format_options(),
 llm: atom() | (map() -> {:ok, llm_response()} | {:error, term()}) | nil,
 llm_retry: map() | nil,
 max_depth: pos_integer(),
 max_turns: pos_integer(),
 memory_limit: pos_integer() | nil,
 mission_timeout: pos_integer() | nil,
 output: output_mode(),
 parsed_signature: {:signature, list(), term()} | nil,
 prompt: String.t(),
 prompt_limit: map() | nil,
 signature: String.t() | nil,
 system_prompt: system_prompt_opts() | nil,
 timeout: pos_integer(),
 tools: map(),
 turn_budget: pos_integer()
}

 Functions

 as_tool(agent, opts \\ [])

 @spec as_tool(
 t(),
 keyword()
) :: PtcRunner.SubAgent.SubAgentTool.t()

Wraps a SubAgent as a tool callable by other agents.
Returns a SubAgentTool struct that parent agents can include
in their tools map. When called, the wrapped agent inherits
LLM and registry from the parent unless overridden.
Options
	:llm - Bind specific LLM (atom or function). Overrides parent inheritance.
	:description - Override agent's description (falls back to agent.description)
	:name - Suggested tool name (informational, not enforced by the struct)

Description Requirement
A description is required for tools. It can be provided either:
	On the SubAgent via new(description: "..."), or
	Via the :description option when calling as_tool/2

Raises ArgumentError if neither is provided.
LLM Resolution
When the tool is called, the LLM is resolved in priority order:
	agent.llm - The agent's own LLM override (highest priority)
	bound_llm - LLM bound via the :llm option
	Parent's llm - Inherited from the calling agent (lowest priority)

Examples
iex> child = PtcRunner.SubAgent.new(
...> prompt: "Double {{n}}",
...> signature: "(n :int) -> {result :int}",
...> description: "Doubles a number"
...>)
iex> tool = PtcRunner.SubAgent.as_tool(child)
iex> tool.signature
"(n :int) -> {result :int}"
iex> tool.description
"Doubles a number"

iex> child = PtcRunner.SubAgent.new(prompt: "Process data", description: "Default desc")
iex> tool = PtcRunner.SubAgent.as_tool(child, llm: :haiku, description: "Processes data")
iex> tool.bound_llm
:haiku
iex> tool.description
"Processes data"

iex> child = PtcRunner.SubAgent.new(prompt: "Analyze {{text}}", signature: "(text :string) -> :string", description: "Analyzes text")
iex> tool = PtcRunner.SubAgent.as_tool(child, name: "analyzer")
iex> tool.signature
"(text :string) -> :string"

iex> child = PtcRunner.SubAgent.new(prompt: "No description")
iex> PtcRunner.SubAgent.as_tool(child)
** (ArgumentError) as_tool requires description to be set - pass description: option or set description on the SubAgent

 compile(agent, opts)

See PtcRunner.SubAgent.Compiler.compile/2.

 default_format_options()

 @spec default_format_options() :: format_options()

Returns the default format options.

 new(opts)

 @spec new(keyword()) :: t()

Creates a SubAgent struct from keyword options.
Raises ArgumentError if validation fails (missing required fields or invalid types).
Parameters
	opts - Keyword list of options

Required Options
	prompt - String template describing what to accomplish (supports {{placeholder}} expansion)

Optional Options
	signature - String contract defining expected inputs and outputs
	tools - Map of callable tools (default: %{})
	max_turns - Positive integer for maximum LLM calls (default: 5)
	prompt_limit - Map with truncation config for LLM view
	timeout - Positive integer for max milliseconds per Lisp execution (default: 1000)
	mission_timeout - Positive integer for max milliseconds for entire execution
	llm_retry - Map with infrastructure retry config
	llm - Atom or function for optional LLM override
	system_prompt - System prompt customization (map, function, or string)
	memory_limit - Positive integer for max bytes for memory map (default: 1MB = 1,048,576 bytes)
	description - String describing the agent's purpose (for external docs)
	field_descriptions - Map of field names to descriptions for signature fields
	context_descriptions - Map of context variable names to descriptions (shown in Data Inventory)
	format_options - Keyword list controlling output truncation (merged with defaults)
	float_precision - Non-negative integer for decimal places in floats (default: 2)
	compression - Compression strategy for turn history (see compression_opts/0)

Returns
A %SubAgent{} struct.
Raises
	ArgumentError - if prompt is missing or not a string, max_turns is not positive, tools is not a map, any optional field has an invalid type, or prompt placeholders don't match signature parameters (when signature is provided)

Examples
iex> agent = PtcRunner.SubAgent.new(prompt: "Analyze the data")
iex> agent.prompt
"Analyze the data"

iex> email_tools = %{"list_emails" => fn _args -> [] end}
iex> agent = PtcRunner.SubAgent.new(
...> prompt: "Find urgent emails for {{user}}",
...> signature: "(user :string) -> {count :int, _ids [:int]}",
...> tools: email_tools,
...> max_turns: 10
...>)
iex> agent.max_turns
10

 preview_prompt(agent, opts \\ [])

 @spec preview_prompt(
 t(),
 keyword()
) :: %{
 system: String.t(),
 user: String.t(),
 tool_schemas: [map()],
 schema: map() | nil
}

Preview the system and user prompts that would be sent to the LLM.
This function generates and returns the prompts without executing the agent,
useful for debugging prompt generation, verifying template expansion, and
reviewing what the LLM will see.
Parameters
	agent - A %SubAgent{} struct
	opts - Keyword list with:	context - Context map for template expansion (default: %{})

Returns
A map with:
	:system - The static system prompt (cacheable - does NOT include mission)
	:user - The full first user message (context sections + mission)
	:tool_schemas - List of tool schema maps with name, signature, and description fields
	:schema - JSON schema for the return type (JSON mode only, nil for PTC-Lisp)

Examples
iex> agent = PtcRunner.SubAgent.new(
...> prompt: "Find emails for {{user}}",
...> signature: "(user :string) -> {count :int}",
...> tools: %{"list_emails" => fn _ -> [] end}
...>)
iex> preview = PtcRunner.SubAgent.preview_prompt(agent, context: %{user: "alice"})
iex> preview.user =~ "Find emails for alice"
true
iex> preview.user =~ "# Mission"
true
iex> preview.system =~ "PTC-Lisp"
true
iex> preview.system =~ "# Mission"
false

 run(agent_or_prompt, opts \\ [])

 @spec run(
 t() | String.t(),
 keyword()
) :: {:ok, PtcRunner.Step.t()} | {:error, PtcRunner.Step.t()}

Executes a SubAgent with the given options.
Returns a Step struct containing the result, metrics, and execution trace.
Parameters
	agent - A %SubAgent{} struct or a string prompt (for convenience)
	opts - Keyword list of runtime options

Runtime Options
	llm - Required. LLM callback function (map() -> {:ok, String.t()} | {:error, term()}) or atom

	llm_registry - Map of atom to LLM callback for atom-based LLM references (default: %{})
	context - Map of input data (default: %{})
	debug - Deprecated, no longer needed. Turn structs always capture raw_response.
Use SubAgent.Debug.print_trace(step, raw: true) to view full LLM output.
	trace - Trace collection mode (default: true):	true - Always collect trace in Step
	false - Never collect trace
	:on_error - Only include trace when execution fails

	llm_retry - Optional map to configure retry behavior for transient LLM failures:	max_attempts - Maximum retry attempts (default: 1, meaning no retries unless explicitly configured)
	backoff - Backoff strategy: :exponential, :linear, or :constant (default: :exponential)
	base_delay - Base delay in milliseconds (default: 1000)
	retryable_errors - List of error types to retry (default: [:rate_limit, :timeout, :server_error])

	collect_messages - Capture full conversation history in Step.messages (default: false).
When enabled, messages are in OpenAI format: [%{role: :system | :user | :assistant, content: String.t()}]
	Other options from agent definition can be overridden

LLM Registry
When using atom LLMs (like :haiku or :sonnet), provide an llm_registry map:
registry = %{
 haiku: fn input -> MyApp.LLM.haiku(input) end,
 sonnet: fn input -> MyApp.LLM.sonnet(input) end
}

SubAgent.run(agent, llm: :sonnet, llm_registry: registry)
The registry is automatically inherited by all child SubAgents, so you only need
to provide it once at the top level.
Returns
	{:ok, Step.t()} on success
	{:error, Step.t()} on failure

Examples
Using a SubAgent struct
iex> agent = PtcRunner.SubAgent.new(prompt: "Calculate {{x}} + {{y}}", max_turns: 1)
iex> llm = fn %{messages: [%{content: _prompt}]} -> {:ok, "```clojure\n(+ data/x data/y)\n```"} end
iex> {:ok, step} = PtcRunner.SubAgent.run(agent, llm: llm, context: %{x: 5, y: 3})
iex> step.return
8

Using string convenience form
iex> llm = fn %{messages: [%{content: _prompt}]} -> {:ok, "```clojure\n42\n```"} end
iex> {:ok, step} = PtcRunner.SubAgent.run("Return 42", max_turns: 1, llm: llm)
iex> step.return
42

Using atom LLM with registry
iex> registry = %{test: fn %{messages: [%{content: _}]} -> {:ok, "```clojure\n100\n```"} end}
iex> {:ok, step} = PtcRunner.SubAgent.run("Test", max_turns: 1, llm: :test, llm_registry: registry)
iex> step.return
100

 run!(agent, opts \\ [])

 @spec run!(
 t() | String.t(),
 keyword()
) :: PtcRunner.Step.t()

Bang variant of run/2 that raises on failure.
Returns the Step struct directly instead of {:ok, step}. Raises
SubAgentError if execution fails.
Examples
iex> agent = PtcRunner.SubAgent.new(prompt: "Say hello", max_turns: 1)
iex> mock_llm = fn _ -> {:ok, "```clojure\n\"Hello!\"\n```"} end
iex> step = PtcRunner.SubAgent.run!(agent, llm: mock_llm)
iex> step.return
"Hello!"

Failure case (using loop mode)
iex> agent = PtcRunner.SubAgent.new(prompt: "Fail", max_turns: 2)
iex> mock_llm = fn _ -> {:ok, ~S|(fail {:reason :test :message "Error"})|} end
iex> PtcRunner.SubAgent.run!(agent, llm: mock_llm)
** (PtcRunner.SubAgentError) SubAgent failed: failed - %{message: "Error", reason: :test}

 then!(step, agent, opts \\ [])

 @spec then!(PtcRunner.Step.t(), t() | String.t(), keyword()) :: PtcRunner.Step.t()

Chains agents in a pipeline, passing the previous step as context.
Equivalent to run!(agent, Keyword.put(opts, :context, step)). Enables
pipeline-style composition where each agent receives the previous agent's
return value as input.
Examples
iex> doubler = PtcRunner.SubAgent.new(
...> prompt: "Double {{n}}",
...> signature: "(n :int) -> {result :int}",
...> max_turns: 1
...>)
iex> adder = PtcRunner.SubAgent.new(
...> prompt: "Add 10 to {{result}}",
...> signature: "(result :int) -> {final :int}",
...> max_turns: 1
...>)
iex> mock_llm = fn %{messages: msgs} ->
...> content = msgs |> List.last() |> Map.get(:content)
...> cond do
...> content =~ "Double" -> {:ok, "```clojure\n{:result (* 2 data/n)}\n```"}
...> content =~ "Add 10" -> {:ok, "```clojure\n{:final (+ data/result 10)}\n```"}
...> end
...> end
iex> result = PtcRunner.SubAgent.run!(doubler, llm: mock_llm, context: %{n: 5})
...> |> PtcRunner.SubAgent.then!(adder, llm: mock_llm)
iex> result.return.final
20

 unwrap_sentinels(step)

 @spec unwrap_sentinels(PtcRunner.Step.t()) ::
 {:ok, PtcRunner.Step.t()} | {:error, PtcRunner.Step.t()}

Unwraps internal sentinel values from a search result.
Handles:
	{:__ptc_return__, value} -> {:ok, step_with_raw_value}
	{:__ptc_fail__, value} -> {:error, error_step}

Used by single-shot mode and compiled agents to provide clean results.

PtcRunner.SubAgent.CompiledAgent

A compiled SubAgent with pre-derived PTC-Lisp logic.
Created via SubAgent.compile/2, this struct stores PTC-Lisp code derived
once by an LLM. The compiled agent can then be executed many times without
further LLM calls, making it efficient for processing many items with
deterministic logic.
Use Cases
	Processing batch data with consistent logic (e.g., scoring reports)
	Agents with pure tools that don't require LLM decisions at runtime
	Workflows where the logic is derived once and reused many times

Limitations
CompiledAgents can only use pure Elixir tools. They cannot include:
	LLMTool - requires LLM at execution time
	SubAgentTool - requires LLM at execution time

See SubAgent.compile/2 for compilation details.
Fields
	source - Inspectable PTC-Lisp source code (String)
	signature - Functional contract copied from agent (String)
	execute - Pre-bound executor function (map() -> result)
	metadata - Compilation metadata (see metadata/0)
	field_descriptions - Descriptions for signature fields (Map, optional)

Examples
Compile and execute:
iex> tools = %{"double" => fn %{n: n} -> n * 2 end}
iex> agent = PtcRunner.SubAgent.new(
...> prompt: "Double the input number {{n}}",
...> signature: "(n :int) -> {result :int}",
...> tools: tools,
...> max_turns: 1
...>)
iex> mock_llm = fn _ -> {:ok, ~S|(return {:result (tool/double {:n data/n})})|} end
iex> {:ok, compiled} = PtcRunner.SubAgent.compile(agent, llm: mock_llm, sample: %{n: 5})
iex> compiled.signature
"(n :int) -> {result :int}"
iex> compiled.source
~S|(return {:result (tool/double {:n data/n})})|
iex> result = compiled.execute.(%{n: 10})
iex> result.return.result
20

 Summary

 Types

 metadata()

 Metadata captured during compilation.

 t()

 CompiledAgent struct.

 Functions

 as_tool(compiled_agent)

 Wraps a compiled agent as a callable tool.

 Types

 metadata()

 @type metadata() :: %{
 compiled_at: DateTime.t(),
 tokens_used: non_neg_integer(),
 turns: pos_integer(),
 llm_model: String.t() | nil
}

Metadata captured during compilation.
Fields:
	compiled_at - UTC timestamp when compilation completed
	tokens_used - Total tokens consumed during compilation
	turns - Number of LLM turns used during compilation
	llm_model - Model identifier if available from LLM response

 t()

 @type t() :: %PtcRunner.SubAgent.CompiledAgent{
 execute: (map() -> PtcRunner.Step.t()),
 field_descriptions: map() | nil,
 metadata: metadata(),
 signature: String.t() | nil,
 source: String.t()
}

CompiledAgent struct.
Fields:
	source - PTC-Lisp program source code
	signature - Type signature for inputs/outputs
	execute - Function that executes the program (map() -> Step.t())
	metadata - Compilation metadata
	field_descriptions - Descriptions for signature fields

 Functions

 as_tool(compiled_agent)

 @spec as_tool(t()) :: %{
 type: :compiled,
 execute: (map() -> PtcRunner.Step.t()),
 signature: String.t() | nil
}

Wraps a compiled agent as a callable tool.
The resulting tool can be used in parent agents. When called, it executes
the compiled PTC-Lisp program without making any LLM calls.
Examples
iex> tools = %{"double" => fn %{n: n} -> n * 2 end}
iex> agent = PtcRunner.SubAgent.new(
...> prompt: "Double {{n}}",
...> signature: "(n :int) -> {result :int}",
...> tools: tools,
...> max_turns: 1
...>)
iex> mock_llm = fn _ -> {:ok, ~S|(return {:result (tool/double {:n data/n})})|} end
iex> {:ok, compiled} = PtcRunner.SubAgent.compile(agent, llm: mock_llm, sample: %{n: 1})
iex> tool = PtcRunner.SubAgent.CompiledAgent.as_tool(compiled)
iex> tool.type
:compiled
iex> result = tool.execute.(%{n: 5})
iex> result.return.result
10

PtcRunner.SubAgent.Compiler

Compilation logic for SubAgents.
This module provides the compile/2 function that transforms a SubAgent into
a CompiledAgent by running it once with an LLM to derive the PTC-Lisp program.
The resulting CompiledAgent can then be executed many times without further LLM calls.
See PtcRunner.SubAgent.compile/2 for the public API.

 Summary

 Functions

 compile(agent, opts)

 Compiles a SubAgent into a reusable PTC-Lisp function.

 Functions

 compile(agent, opts)

 @spec compile(
 PtcRunner.SubAgent.t(),
 keyword()
) :: {:ok, PtcRunner.SubAgent.CompiledAgent.t()} | {:error, PtcRunner.Step.t()}

Compiles a SubAgent into a reusable PTC-Lisp function.
The LLM is called once during compilation to derive the logic. The resulting
CompiledAgent can then be executed many times without further LLM calls,
making it efficient for processing many items with deterministic logic.
Restrictions
Only agents with pure tools can be compiled. Agents with LLM-dependent tools
will raise ArgumentError:
	LLMTool - requires LLM at execution time
	SubAgentTool - requires LLM at execution time

Options
	llm - Required. LLM callback used once during compilation. Can be a function or atom.
	llm_registry - Required if llm is an atom. Maps atoms to LLM callbacks.
	sample - Optional sample data to help LLM understand the input structure (default: %{})

Returns
	{:ok, CompiledAgent.t()} - Successfully compiled agent
	{:error, Step.t()} - Compilation failed (agent execution failed)

Examples
iex> tools = %{"double" => fn %{n: n} -> n * 2 end}
iex> agent = PtcRunner.SubAgent.new(
...> prompt: "Double the input number {{n}}",
...> signature: "(n :int) -> {result :int}",
...> tools: tools,
...> max_turns: 1
...>)
iex> mock_llm = fn _ -> {:ok, ~S|(return {:result (tool/double {:n data/n})})|} end
iex> {:ok, compiled} = PtcRunner.SubAgent.Compiler.compile(agent, llm: mock_llm, sample: %{n: 5})
iex> compiled.signature
"(n :int) -> {result :int}"
iex> is_binary(compiled.source)
true
iex> is_function(compiled.execute, 1)
true
iex> result = compiled.execute.(%{n: 10})
iex> result.return.result
20
Rejects agents with LLM-dependent tools:
iex> alias PtcRunner.SubAgent.LLMTool
iex> tools = %{"classify" => LLMTool.new(prompt: "Classify {{x}}", signature: "(x :string) -> :string")}
iex> agent = PtcRunner.SubAgent.new(prompt: "Process {{item}}", signature: "(item :string) -> {category :string}", tools: tools)
iex> PtcRunner.SubAgent.Compiler.compile(agent, llm: fn _ -> {:ok, ""} end)
** (ArgumentError) cannot compile agent with LLM-dependent tool: classify

PtcRunner.SubAgent.Compression behaviour

Behaviour for message history compression strategies.
Compression strategies transform turn history into LLM messages at render time.
This enables various prompt optimization techniques like coalescing multiple turns
into a single USER message.
Strategy Pattern
Strategies implement to_messages/3 which receives:
	turns - List of completed turns to compress
	memory - Accumulated definitions from all turns
	opts - Rendering options (mission, tools, data, limits, etc.)

Configuration
Use normalize/1 to handle the various compression option formats:
Disabled (default)
normalize(nil) # => {nil, []}
normalize(false) # => {nil, []}

Enabled with defaults
normalize(true) # => {SingleUserCoalesced, [println_limit: 15, tool_call_limit: 20]}

Custom strategy or options
normalize(MyStrategy) # => {MyStrategy, [println_limit: 15, ...]}
normalize({MyStrategy, opts}) # => {MyStrategy, merged_opts}

 Summary

 Types

 message()

 An LLM message with role and content.

 opts()

 Options passed to compression strategies.

 stats()

 Statistics about what compression did.

 Callbacks

 name()

 Human-readable name for this compression strategy.

 to_messages(turns, memory, opts)

 Render turns into LLM messages with compression statistics.

 Functions

 default_opts()

 Returns the default compression options.

 normalize(module)

 Normalize compression configuration into {strategy, opts} tuple.

 Types

 message()

 @type message() :: %{role: :system | :user | :assistant, content: String.t()}

An LLM message with role and content.

 opts()

 @type opts() :: [
 prompt: String.t(),
 system_prompt: String.t(),
 tools: map(),
 data: map(),
 println_limit: non_neg_integer(),
 tool_call_limit: non_neg_integer(),
 turns_left: non_neg_integer()
]

Options passed to compression strategies.
	mission - The agent's mission/prompt text
	system_prompt - Static system prompt content
	tools - Map of available tools
	data - Input data provided to the agent
	println_limit - Max println calls to include (default: 15)
	tool_call_limit - Max tool calls to include (default: 20)
	turns_left - Remaining turns for the agent

 stats()

 @type stats() :: %{
 enabled: boolean(),
 strategy: String.t(),
 turns_compressed: non_neg_integer(),
 tool_calls_total: non_neg_integer(),
 tool_calls_shown: non_neg_integer(),
 tool_calls_dropped: non_neg_integer(),
 printlns_total: non_neg_integer(),
 printlns_shown: non_neg_integer(),
 printlns_dropped: non_neg_integer(),
 error_turns_collapsed: non_neg_integer()
}

Statistics about what compression did.
Returned alongside messages to report exactly what was dropped or collapsed.

 Callbacks

 name()

 @callback name() :: String.t()

Human-readable name for this compression strategy.

 to_messages(turns, memory, opts)

 @callback to_messages(
 turns :: [PtcRunner.Turn.t()],
 memory :: map(),
 opts :: opts()
) :: {[message()], stats()}

Render turns into LLM messages with compression statistics.
Returns a tuple of {messages, stats} where stats reports exactly what
the compression did (items dropped, errors collapsed, etc.).
Compression is a pure function - same inputs always produce the same output.
Turn count is derived from length(turns), not message count.

 Functions

 default_opts()

 @spec default_opts() :: keyword()

Returns the default compression options.
Examples
iex> PtcRunner.SubAgent.Compression.default_opts()
[println_limit: 15, tool_call_limit: 20]

 normalize(module)

 @spec normalize(boolean() | module() | {module(), keyword()} | nil) ::
 {module() | nil, keyword()}

Normalize compression configuration into {strategy, opts} tuple.
Handles various configuration formats:
	nil or false - Compression disabled, returns {nil, []}
	true - Use default strategy with default options
	Module - Use custom strategy with default options
	{Module, opts} - Use custom strategy with merged options

Examples
iex> PtcRunner.SubAgent.Compression.normalize(nil)
{nil, []}

iex> PtcRunner.SubAgent.Compression.normalize(false)
{nil, []}

iex> {strategy, opts} = PtcRunner.SubAgent.Compression.normalize(true)
iex> strategy
PtcRunner.SubAgent.Compression.SingleUserCoalesced
iex> opts[:println_limit]
15
iex> opts[:tool_call_limit]
20

iex> {strategy, _opts} = PtcRunner.SubAgent.Compression.normalize(SomeStrategy)
iex> strategy
SomeStrategy

iex> {strategy, opts} = PtcRunner.SubAgent.Compression.normalize({SomeStrategy, println_limit: 5})
iex> strategy
SomeStrategy
iex> opts[:println_limit]
5
iex> opts[:tool_call_limit]
20

PtcRunner.SubAgent.Compression.SingleUserCoalesced

Default compression strategy that coalesces all context into a single USER message.
This strategy transforms multi-turn execution history into a compact, LLM-optimized
format. The output structure is:
[
 %{role: :system, content: system_prompt},
 %{role: :user, content: mission + namespaces + history + errors + turns_left}
]
Content Order in USER Message
	Mission text (always first, never removed)
	Namespace sections (tools, data/, user/)
	Expected output (return format from signature)
	Execution history (tool calls made, println output)
	Conditional error display (only if last turn failed)
	Turns indicator ("Turns left: N" or "FINAL TURN - ...")

Error Handling
Uses conditional collapsing based on recovery status:
	If last turn failed: shows most recent error only
	If last turn succeeded: collapses all errors (no error section)

PtcRunner.SubAgent.Debug

Debug helpers for visualizing SubAgent execution.
Provides functions to pretty-print execution traces and agent chains,
making it easier to understand what happened during agent execution.
Raw Mode
Use print_trace(step, raw: true) to see the complete LLM interaction:
	Raw Input: Messages sent to the LLM (excluding system prompt)
	Raw Response: Full LLM output including reasoning
	Lines shown exactly as-is (no wrapping or truncation)

For all messages including the system prompt, use messages: true instead.
Note: messages: true wraps long lines to 160 chars.
View Modes
	View	Description
	:turns (default)	Show programs + results from Turn structs
	:compressed	Show what the LLM sees (compressed format)

Examples
Default compact view
{:ok, step} = SubAgent.run(agent, llm: llm)
SubAgent.Debug.print_trace(step)

Include raw input and raw response
SubAgent.Debug.print_trace(step, raw: true)

Show all messages including system prompt
SubAgent.Debug.print_trace(step, messages: true)

Show compressed view (what LLM sees)
SubAgent.Debug.print_trace(step, view: :compressed)

Print agent chain
SubAgent.Debug.print_chain([step1, step2, step3])

 Summary

 Functions

 print_chain(steps)

 Pretty-print a chain of SubAgent executions.

 print_trace(step, opts \\ [])

 Pretty-print a SubAgent execution trace.

 Functions

 print_chain(steps)

 @spec print_chain([PtcRunner.Step.t()]) :: :ok

Pretty-print a chain of SubAgent executions.
Shows the flow of data between multiple agent steps in a pipeline.
Parameters
	steps - List of %Step{} structs representing a chain

Examples
iex> step1 = PtcRunner.SubAgent.run!(agent1, llm: llm)
iex> step2 = PtcRunner.SubAgent.then!(step1, agent2, llm: llm)
iex> PtcRunner.SubAgent.Debug.print_chain([step1, step2])
:ok

 print_trace(step, opts \\ [])

 @spec print_trace(
 PtcRunner.Step.t(),
 keyword()
) :: :ok

Pretty-print a SubAgent execution trace.
Displays each turn with its program, tool calls, and results
in a formatted box-drawing style.
Parameters
	step - A %Step{} struct with trace data
	opts - Keyword list of options:	view - :turns (default) or :compressed - perspective to render
	raw - Include raw input (messages, excluding system prompt) and raw response (default: false)
	messages - Show all messages sent to LLM including system prompt (default: false)
	usage - Show token usage, tool call statistics, and compression summary (default: false)

Examples
Default compact view
iex> {:ok, step} = PtcRunner.SubAgent.run(agent, llm: llm, context: %{})
iex> PtcRunner.SubAgent.Debug.print_trace(step)
:ok

Include raw LLM response
iex> PtcRunner.SubAgent.Debug.print_trace(step, raw: true)
:ok

Show compressed view
iex> PtcRunner.SubAgent.Debug.print_trace(step, view: :compressed)
:ok

Show messages sent to LLM (verify compression)
iex> PtcRunner.SubAgent.Debug.print_trace(step, messages: true)
:ok

Show token usage
iex> PtcRunner.SubAgent.Debug.print_trace(step, usage: true)
:ok

PtcRunner.SubAgent.JsonParser

Extracts JSON from LLM responses, handling common formatting quirks.
LLMs often wrap JSON in markdown code blocks, add explanatory text,
or include trailing commentary. This module extracts the JSON content
following a priority order:
	JSON in json code block 2. JSON in code block (no language)
	Raw JSON object (starts with {)
	Raw JSON array (starts with [)

Examples
iex> PtcRunner.SubAgent.JsonParser.parse(~s|{"name": "Alice"}|)
{:ok, %{"name" => "Alice"}}

iex> PtcRunner.SubAgent.JsonParser.parse("```json\n{\"a\": 1}\n```")
{:ok, %{"a" => 1}}

iex> PtcRunner.SubAgent.JsonParser.parse("Here's the result: {\"x\": 5}")
{:ok, %{"x" => 5}}

iex> PtcRunner.SubAgent.JsonParser.parse("No JSON here")
{:error, :no_json_found}

 Summary

 Functions

 parse(response)

 Parse JSON from an LLM response string.

 Functions

 parse(response)

 @spec parse(String.t()) :: {:ok, term()} | {:error, :no_json_found | :invalid_json}

Parse JSON from an LLM response string.
Extracts JSON from code blocks or raw content, handling common LLM
formatting quirks like trailing text or explanation prefixes.
Returns {:ok, term()} with the parsed JSON data, or an error tuple.
Error Types
	{:error, :no_json_found} - No JSON structure detected in the response
	{:error, :invalid_json} - JSON was found but failed to parse

Examples
iex> PtcRunner.SubAgent.JsonParser.parse(~s|{"count": 42}|)
{:ok, %{"count" => 42}}

iex> PtcRunner.SubAgent.JsonParser.parse("[1, 2, 3]")
{:ok, [1, 2, 3]}

iex> PtcRunner.SubAgent.JsonParser.parse("```json\n{\"valid\": true}\n```")
{:ok, %{"valid" => true}}

iex> PtcRunner.SubAgent.JsonParser.parse("plain text")
{:error, :no_json_found}

iex> PtcRunner.SubAgent.JsonParser.parse("```json\n{invalid}\n```")
{:error, :invalid_json}

PtcRunner.SubAgent.LLMResolver

LLM resolution and invocation for SubAgents.
Handles calling LLMs that can be either functions or atoms, with support for
LLM registry lookups for atom-based LLM references (like :haiku or :sonnet).
LLM responses are normalized to a consistent format:
	Plain string responses become %{content: string, tokens: nil}
	Map responses with :content key preserve tokens if present

 Summary

 Types

 normalized_response()

 Normalized LLM response with content and optional token counts.

 Functions

 normalize_response(response)

 Normalize an LLM response to a consistent format.

 resolve(llm, input, registry)

 Resolve and invoke an LLM, handling both functions and atom references.

 total_tokens(tokens)

 Calculate total tokens from input and output token counts.

 Types

 normalized_response()

 @type normalized_response() :: %{
 content: String.t(),
 tokens: %{input: pos_integer(), output: pos_integer()} | nil
}

Normalized LLM response with content and optional token counts.

 Functions

 normalize_response(response)

 @spec normalize_response(String.t() | map()) :: normalized_response()

Normalize an LLM response to a consistent format.
Examples
iex> PtcRunner.SubAgent.LLMResolver.normalize_response("hello")
%{content: "hello", tokens: nil}

iex> PtcRunner.SubAgent.LLMResolver.normalize_response(%{content: "hello"})
%{content: "hello", tokens: nil}

iex> PtcRunner.SubAgent.LLMResolver.normalize_response(%{content: "hello", tokens: %{input: 10, output: 5}})
%{content: "hello", tokens: %{input: 10, output: 5}}

 resolve(llm, input, registry)

 @spec resolve(atom() | (map() -> {:ok, term()} | {:error, term()}), map(), map()) ::
 {:ok, normalized_response()} | {:error, term()}

Resolve and invoke an LLM, handling both functions and atom references.
Normalizes the LLM response to always return a map with :content and :tokens keys.
This provides a consistent interface for callers regardless of whether the LLM
callback returns a plain string or a map with token information.
Parameters
	llm - Either a function/1 or an atom referencing the registry
	input - The LLM input map to pass to the callback
	registry - Map of atom to LLM callback for atom-based LLM references

Returns
	{:ok, %{content: String.t(), tokens: map() | nil}} - Normalized response on success

	{:error, reason} - Error tuple with reason on failure

Examples
iex> llm = fn %{messages: [%{content: _}]} -> {:ok, "result"} end
iex> PtcRunner.SubAgent.LLMResolver.resolve(llm, %{messages: [%{content: "test"}]}, %{})
{:ok, %{content: "result", tokens: nil}}

iex> llm = fn _ -> {:ok, %{content: "result", tokens: %{input: 10, output: 5}}} end
iex> PtcRunner.SubAgent.LLMResolver.resolve(llm, %{messages: []}, %{})
{:ok, %{content: "result", tokens: %{input: 10, output: 5}}}

iex> registry = %{haiku: fn %{messages: _} -> {:ok, "response"} end}
iex> PtcRunner.SubAgent.LLMResolver.resolve(:haiku, %{messages: [%{content: "test"}]}, registry)
{:ok, %{content: "response", tokens: nil}}

 total_tokens(tokens)

 @spec total_tokens(map()) :: non_neg_integer()

Calculate total tokens from input and output token counts.
Examples
iex> PtcRunner.SubAgent.LLMResolver.total_tokens(%{input: 10, output: 5})
15

iex> PtcRunner.SubAgent.LLMResolver.total_tokens(%{input: 0, output: 0})
0

iex> PtcRunner.SubAgent.LLMResolver.total_tokens(%{})
0

PtcRunner.SubAgent.LLMTool

LLM-powered tools for classification, evaluation, and judgment.
LLMTool allows you to create tools that use an LLM to make decisions or
generate structured outputs. The tool is configured with a prompt template
and signature that defines its inputs and outputs.
Use Cases
LLMTool is ideal for:
	Classification - Categorize inputs (sentiment, priority, type)
	Evaluation - Score quality, relevance, urgency
	Judgment - Make yes/no decisions with reasoning
	Extraction - Pull structured data from text

For complex multi-step tasks, use SubAgent.as_tool/2 instead.
LLM Inheritance
The :llm option controls which LLM is used:
	Value	Behavior
	:caller (default)	Inherit from calling agent
	:haiku, :sonnet	Specific model via registry
	fn input -> result end	Custom LLM function

The :caller atom is only valid for LLMTool and explicitly signals
"use whatever LLM the calling agent is using."
Execution
LLMTool executes as a single-shot SubAgent when called:
	Arguments validated against signature parameters
	Template expanded with arguments
	LLM called for response
	Response parsed as PTC-Lisp, executed
	Result validated against signature return type

Examples
iex> PtcRunner.SubAgent.LLMTool.new(
...> prompt: "Is {{email}} urgent for {{tier}} customer?",
...> signature: "(email :string, tier :string) -> {urgent :bool, reason :string}"
...>)
%PtcRunner.SubAgent.LLMTool{
 prompt: "Is {{email}} urgent for {{tier}} customer?",
 signature: "(email :string, tier :string) -> {urgent :bool, reason :string}",
 llm: :caller,
 description: nil,
 tools: nil
}

iex> PtcRunner.SubAgent.LLMTool.new(
...> prompt: "Classify {{text}}",
...> signature: "(text :string) -> {category :string}",
...> llm: :haiku,
...> description: "Classifies text into categories"
...>)
%PtcRunner.SubAgent.LLMTool{
 prompt: "Classify {{text}}",
 signature: "(text :string) -> {category :string}",
 llm: :haiku,
 description: "Classifies text into categories",
 tools: nil
}

 Summary

 Types

 t()

 Functions

 new(opts)

 Create a new LLMTool with validation.

 Types

 t()

 @type t() :: %PtcRunner.SubAgent.LLMTool{
 description: String.t() | nil,
 llm: :caller | atom() | function() | nil,
 prompt: String.t(),
 signature: String.t(),
 tools: map() | nil
}

 Functions

 new(opts)

 @spec new(keyword()) :: t()

Create a new LLMTool with validation.
Options
	:prompt (required) - Template with {{placeholder}} references
	:signature (required) - Contract (inputs validated against placeholders)
	:llm - :caller (default), atom (registry lookup), or function
	:description - For schema generation
	:tools - If provided, runs as multi-turn agent

Examples
iex> PtcRunner.SubAgent.LLMTool.new(prompt: "Hello {{name}}", signature: "(name :string) -> :string")
%PtcRunner.SubAgent.LLMTool{prompt: "Hello {{name}}", signature: "(name :string) -> :string", llm: :caller, description: nil, tools: nil}

iex> PtcRunner.SubAgent.LLMTool.new(prompt: "Hi", signature: ":string")
%PtcRunner.SubAgent.LLMTool{prompt: "Hi", signature: ":string", llm: :caller, description: nil, tools: nil}

PtcRunner.SubAgent.Loop

Core agentic loop that manages LLM↔tool cycles.
The loop repeatedly calls the LLM, parses PTC-Lisp from the response,
executes it, and continues until return/fail is called or max_turns is exceeded.
Flow
	Build LLM input with system prompt, messages, and tool names
	Call LLM to get response (resolving atoms via llm_registry if needed)
	Parse PTC-Lisp code from response (code blocks or raw s-expressions)
	Execute code via Lisp.run/2
	Check for return/fail or continue to next turn
	Build trace entry and update message history
	Merge execution results into context for next turn

Termination Conditions
The loop terminates when any of these occur:
	Condition	Result	Reason
	(return value) called	{:ok, step}	Normal completion
	(fail error) called	{:error, step}	Explicit failure
	max_turns exceeded	{:error, step}	:max_turns_exceeded
	max_depth exceeded	{:error, step}	:max_depth_exceeded
	turn_budget exhausted	{:error, step}	:turn_budget_exhausted
	mission_timeout exceeded	{:error, step}	:mission_timeout
	LLM error after retries	{:error, step}	:llm_error

Memory Handling
Memory persists across turns within a single run/2 call. After each successful
Lisp execution:
	Lisp.run/2 applies the memory contract (see PtcRunner.Lisp for details)
	step.memory contains the updated memory state
	Loop updates state.memory for the next turn
	Memory is merged into context via state.context

The memory contract determines how return values affect memory:
	Non-map returns: no memory update
	Map without :return: merged into memory
	Map with :return: rest merged, :return value returned

See PtcRunner.Lisp.run/2 for the authoritative memory contract documentation.
LLM Inheritance
Child SubAgents inherit the llm_registry from their parent, enabling atom-based
LLM references (like :haiku or :sonnet) to work throughout the agent hierarchy.
The registry only needs to be provided once at the top-level SubAgent.run/2 call.
Resolution order for LLM selection:
	agent.llm - Set in SubAgent struct
	as_tool(..., llm:) - Bound at tool creation
	Parent's LLM - Inherited from calling agent
	Required at top level

This is an internal module called by SubAgent.run/2.

 Summary

 Functions

 run(agent, opts)

 Execute a SubAgent in loop mode (multi-turn with tools).

 Functions

 run(agent, opts)

 @spec run(
 PtcRunner.SubAgent.t(),
 keyword()
) :: {:ok, PtcRunner.Step.t()} | {:error, PtcRunner.Step.t()}

Execute a SubAgent in loop mode (multi-turn with tools).
Parameters
	agent - A %SubAgent{} struct
	opts - Keyword list with:	llm - Required. LLM callback function
	context - Initial context map (default: %{})
	cache - Enable prompt caching (default: false). When true, the LLM callback receives
cache: true in its input map. The callback should pass this to the provider to enable
caching of system prompts for cost savings on multi-turn agents.
	debug - Deprecated, no longer needed. Turn structs always capture raw_response.
Use SubAgent.Debug.print_trace(step, raw: true) to view full LLM output.
	trace - Trace filtering: true (always), false (never), :on_error (only on failure) (default: true)
	collect_messages - Capture full conversation history in Step.messages (default: false).
When enabled, messages are in OpenAI format: [%{role: :system | :user | :assistant, content: String.t()}]
	llm_retry - Optional retry configuration map with:	max_attempts - Maximum number of retry attempts (default: 1, meaning no retries unless explicitly configured)
	backoff - Backoff strategy: :exponential, :linear, or :constant (default: :exponential)
	base_delay - Base delay in milliseconds (default: 1000)
	retryable_errors - List of error types to retry (default: [:rate_limit, :timeout, :server_error])

Returns
	{:ok, Step.t()} on success (when return is called)
	{:error, Step.t()} on failure (when fail is called or max_turns exceeded)

Examples
iex> agent = PtcRunner.SubAgent.new(prompt: "Add {{x}} and {{y}}", tools: %{}, max_turns: 2)
iex> llm = fn %{messages: _} -> {:ok, "```clojure\n(return {:result (+ data/x data/y)})\n```"} end
iex> {:ok, step} = PtcRunner.SubAgent.Loop.run(agent, llm: llm, context: %{x: 5, y: 3})
iex> step.return
%{result: 8}

PtcRunner.SubAgent.Loop.JsonMode

Execution loop for JSON output mode.
JSON mode is a simpler alternative to PTC-Lisp execution where the LLM
returns structured JSON directly, validated against the agent's signature.
Flow
	Build prompt using JSON templates (no PTC-Lisp spec)
	Call LLM with %{output: :json, schema: ...} in input
	Parse JSON from response
	Validate against signature
	If invalid and turns remaining → retry with error feedback
	Return Step struct with parsed JSON (atom keys)

Differences from PTC-Lisp Mode
	Aspect	PTC-Lisp	JSON Mode
	System prompt	Full spec + tool docs	Minimal (json-system.md)
	Response parsing	ResponseHandler.parse	Jason.decode
	Execution	Lisp.run/2	None (direct validation)
	Return value	From (return ...)	Parsed JSON
	Memory	Accumulated	Always %{}
	Retries	On execution error	On validation error

This is an internal module called by SubAgent.run/2 when output: :json.

 Summary

 Functions

 preview_prompt(agent, context)

 Generate a preview of the JSON mode prompts.

 run(agent, llm, state)

 Execute a SubAgent in JSON mode.

 Functions

 preview_prompt(agent, context)

 @spec preview_prompt(PtcRunner.SubAgent.t(), map()) :: %{
 system: String.t(),
 user: String.t(),
 schema: map() | nil
}

Generate a preview of the JSON mode prompts.
Returns the system and user messages that would be sent to the LLM,
plus the JSON schema used for validation.

 run(agent, llm, state)

 @spec run(PtcRunner.SubAgent.t(), term(), map()) ::
 {:ok, PtcRunner.Step.t()} | {:error, PtcRunner.Step.t()}

Execute a SubAgent in JSON mode.
Parameters
	agent - A %SubAgent{} struct with output: :json
	llm - LLM callback function
	state - Initial loop state from Loop.run/2

Returns
	{:ok, Step.t()} on success
	{:error, Step.t()} on failure

PtcRunner.SubAgent.Loop.LLMRetry

LLM retry logic with configurable backoff strategies.
This module handles retrying failed LLM calls based on error classification
and backoff configuration. It supports exponential, linear, and constant
backoff strategies.
Configuration
Retry behavior is configured via a map with the following keys:
	max_attempts - Maximum number of attempts (default: 1, no retries)
	backoff - Backoff strategy: :exponential, :linear, or :constant (default: :exponential)
	base_delay - Base delay in milliseconds (default: 1000)
	retryable_errors - List of error types to retry (default: [:rate_limit, :timeout, :server_error])

Error Classification
Errors are classified into the following types:
	:rate_limit - HTTP 429 errors
	:server_error - HTTP 5xx errors
	:client_error - HTTP 4xx errors (not retryable by default)
	:timeout - Timeout errors
	:config_error - LLM configuration errors
	:unknown - Unclassified errors

 Summary

 Functions

 calculate_delay(arg1, attempt)

 Calculate delay based on backoff strategy.

 call_with_retry(llm, input, llm_registry, retry_config, attempt \\ 1)

 Call LLM with retry logic based on retry configuration.

 classify_error(arg1)

 Classify error type for retry decision.

 retryable?(reason, config)

 Determine if an error should be retried based on configuration.

 Functions

 calculate_delay(arg1, attempt)

 @spec calculate_delay(map(), pos_integer()) :: pos_integer()

Calculate delay based on backoff strategy.
Examples
iex> PtcRunner.SubAgent.Loop.LLMRetry.calculate_delay(%{backoff: :constant, base_delay: 100}, 3)
100

iex> PtcRunner.SubAgent.Loop.LLMRetry.calculate_delay(%{backoff: :linear, base_delay: 100}, 3)
300

 call_with_retry(llm, input, llm_registry, retry_config, attempt \\ 1)

Call LLM with retry logic based on retry configuration.
Parameters
	llm - LLM callback function or atom reference
	input - LLM input map
	llm_registry - Registry for resolving atom LLM references
	retry_config - Optional retry configuration map

Returns
	{:ok, response} on success
	{:error, reason} on failure after all retries exhausted

 classify_error(arg1)

 @spec classify_error(term()) :: atom()

Classify error type for retry decision.
Examples
iex> PtcRunner.SubAgent.Loop.LLMRetry.classify_error({:http_error, 429, "rate limited"})
:rate_limit

iex> PtcRunner.SubAgent.Loop.LLMRetry.classify_error({:http_error, 500, "server error"})
:server_error

iex> PtcRunner.SubAgent.Loop.LLMRetry.classify_error(:timeout)
:timeout

 retryable?(reason, config)

 @spec retryable?(term(), map()) :: boolean()

Determine if an error should be retried based on configuration.
Examples
iex> PtcRunner.SubAgent.Loop.LLMRetry.retryable?({:http_error, 429, "rate limited"}, %{})
true

iex> PtcRunner.SubAgent.Loop.LLMRetry.retryable?({:http_error, 400, "bad request"}, %{})
false

PtcRunner.SubAgent.Loop.Metrics

Telemetry, tracing, and usage metrics for SubAgent execution.
This module handles:
	Token accumulation across LLM calls
	Final usage statistics (duration, memory, turns, tokens)
	Trace entry construction with optional debug info
	Turn struct construction for execution history
	Trace filtering based on execution result

 Summary

 Functions

 accumulate_tokens(state, tokens)

 Accumulate tokens from an LLM call into state.

 apply_trace_filter(trace, trace_mode, is_error)

 Apply trace filtering based on trace_mode and execution result.

 build_final_usage(state, duration_ms, memory_bytes, turn_offset \\ 0)

 Build final usage map with token counts from accumulated state.

 build_token_measurements(tokens)

 Build token measurements map for telemetry.

 build_turn(state, raw_response, program, result, opts \\ [])

 Build a Turn struct for the current execution cycle.

 build_turn_measurements(duration, tokens)

 Build measurements for turn stop event with optional tokens.

 emit_turn_stop_if_final(result, agent, state, turn_start)

 Emit turn stop event only for final results (not loop continuations).

 estimate_tokens(text)

 Estimate token count for a text string.

 Functions

 accumulate_tokens(state, tokens)

 @spec accumulate_tokens(map(), map() | nil) :: map()

Accumulate tokens from an LLM call into state.
Parameters
	state - Current loop state
	tokens - Token counts map with :input, :output, :cache_creation, :cache_read keys, or nil

Returns
Updated state with accumulated token counts.

 apply_trace_filter(trace, trace_mode, is_error)

 @spec apply_trace_filter(list() | nil, boolean() | :on_error, boolean()) ::
 list() | nil

Apply trace filtering based on trace_mode and execution result.
Filter Modes
	true - Always include trace
	false - Never include trace (returns nil)
	:on_error - Include trace only when is_error is true

 build_final_usage(state, duration_ms, memory_bytes, turn_offset \\ 0)

 @spec build_final_usage(map(), non_neg_integer(), non_neg_integer(), integer()) ::
 map()

Build final usage map with token counts from accumulated state.
Parameters
	state - Current loop state with accumulated metrics
	duration_ms - Total execution duration in milliseconds
	memory_bytes - Memory used in bytes
	turn_offset - Offset for turn count (0 for completed turns, -1 for pre-turn failures)

Returns
Map with usage statistics including cache token metrics and compression stats when available.

 build_token_measurements(tokens)

 @spec build_token_measurements(map() | nil) :: map()

Build token measurements map for telemetry.

 build_turn(state, raw_response, program, result, opts \\ [])

 @spec build_turn(map(), String.t(), String.t() | nil, term(), keyword()) ::
 PtcRunner.Turn.t()

Build a Turn struct for the current execution cycle.
Creates either a success or failure Turn based on the success? option.
Parameters
	state - Current loop state (used for turn number and messages)
	raw_response - Full LLM response text
	program - PTC-Lisp program that was executed (or nil if parsing failed)
	result - Execution result or error
	opts - Keyword options:	success? - Whether this turn succeeded (default: true)
	prints - Captured println output (default: [])
	tool_calls - Tool invocations made during this turn (default: [])
	memory - Memory state after this turn (default: state.memory)

Returns
A %Turn{} struct.

 build_turn_measurements(duration, tokens)

 @spec build_turn_measurements(integer(), map() | nil) :: map()

Build measurements for turn stop event with optional tokens.

 emit_turn_stop_if_final(result, agent, state, turn_start)

 @spec emit_turn_stop_if_final(term(), PtcRunner.SubAgent.t(), map(), integer()) :: :ok

Emit turn stop event only for final results (not loop continuations).
Emits [:sub_agent, :turn, :stop] telemetry event with duration and optional token counts.

 estimate_tokens(text)

 @spec estimate_tokens(String.t() | nil) :: non_neg_integer()

Estimate token count for a text string.
Uses a simple approximation of ~4 characters per token, which is
reasonably accurate for most LLM tokenizers (within ~10-20%).
Examples
iex> PtcRunner.SubAgent.Loop.Metrics.estimate_tokens("Hello world")
2

iex> PtcRunner.SubAgent.Loop.Metrics.estimate_tokens("")
0

iex> PtcRunner.SubAgent.Loop.Metrics.estimate_tokens(nil)
0

PtcRunner.SubAgent.Loop.ResponseHandler

Response parsing and validation for LLM responses.
This module handles extracting PTC-Lisp code from LLM responses and
formatting execution results for LLM feedback.
Parsing Strategy
	Try extracting from clojure orlisp code blocks
	Fall back to raw s-expression starting with '('
	Multiple code blocks are wrapped in a (do ...) form

 Summary

 Functions

 format_error_for_llm(fail)

 Format error for LLM feedback.

 format_execution_result(result, format_options \\ [])

 Format execution result for LLM feedback.

 format_result(result, format_options \\ [])

 Format final result for caller.

 parse(response)

 Parse PTC-Lisp from LLM response.

 truncate_for_history(value, opts \\ [])

 Truncate a result value for storage in turn history.

 Functions

 format_error_for_llm(fail)

 @spec format_error_for_llm(map()) :: String.t()

Format error for LLM feedback.

 format_execution_result(result, format_options \\ [])

 @spec format_execution_result(
 term(),
 keyword()
) :: {String.t(), boolean()}

Format execution result for LLM feedback.
REPL-style output: just the expression result, no prefix.
Use def to explicitly store values that persist across turns.
Returns {formatted_string, truncated?} tuple.
Options
Uses format_options from SubAgent:
	:feedback_limit - Max collection items (default: 10)
	:feedback_max_chars - Max chars in feedback (default: 512)

Examples
iex> PtcRunner.SubAgent.Loop.ResponseHandler.format_execution_result(42)
{"42", false}

iex> PtcRunner.SubAgent.Loop.ResponseHandler.format_execution_result(%{count: 5})
{"{:count 5}", false}

 format_result(result, format_options \\ [])

 @spec format_result(
 term(),
 keyword()
) :: String.t()

Format final result for caller.
Uses format_options from SubAgent:
	:result_limit - Inspect limit for collections (default: 50)
	:result_max_chars - Max chars in result (default: 500)

Examples
iex> PtcRunner.SubAgent.Loop.ResponseHandler.format_result(42)
"42"

iex> PtcRunner.SubAgent.Loop.ResponseHandler.format_result(3.14159)
"3.14"

iex> PtcRunner.SubAgent.Loop.ResponseHandler.format_result([1, 2, 3])
"[1, 2, 3]"

 parse(response)

 @spec parse(String.t()) :: {:ok, String.t()} | {:error, :no_code_in_response}

Parse PTC-Lisp from LLM response.
Sanitizes LLM output by removing invisible Unicode characters (BOM, zero-width
spaces) and normalizing smart quotes to ASCII equivalents.
Examples
iex> PtcRunner.SubAgent.Loop.ResponseHandler.parse("```clojure\n(+ 1 2)\n```")
{:ok, "(+ 1 2)"}

iex> PtcRunner.SubAgent.Loop.ResponseHandler.parse("(return {:result 42})")
{:ok, "(return {:result 42})"}

iex> PtcRunner.SubAgent.Loop.ResponseHandler.parse("I'm thinking about this...")
{:error, :no_code_in_response}
Returns
	{:ok, code} - Successfully extracted code string
	{:error, :no_code_in_response} - No valid PTC-Lisp found

 truncate_for_history(value, opts \\ [])

 @spec truncate_for_history(
 term(),
 keyword()
) :: term()

Truncate a result value for storage in turn history.
Large results are truncated to prevent memory bloat. The default limit is 1KB.
Truncation preserves structure where possible:
	Lists: keeps first N elements that fit
	Maps: keeps first N key-value pairs that fit
	Strings: truncates with "..." suffix
	Other values: converted to truncated string representation

Options
	:max_bytes - Maximum size in bytes (default: 1024)

Examples
iex> PtcRunner.SubAgent.Loop.ResponseHandler.truncate_for_history([1, 2, 3])
[1, 2, 3]

iex> result = PtcRunner.SubAgent.Loop.ResponseHandler.truncate_for_history(String.duplicate("x", 2000))
iex> byte_size(result) <= 1024
true

PtcRunner.SubAgent.Loop.ReturnValidation

Return type validation for SubAgent execution.
Validates return values against the agent's parsed signature and
formats validation errors for LLM feedback.

 Summary

 Functions

 format_error_for_llm(agent, actual_value, errors)

 Format validation error for LLM feedback.

 validate(map, value)

 Validate return value against agent's parsed signature.

 Functions

 format_error_for_llm(agent, actual_value, errors)

 @spec format_error_for_llm(PtcRunner.SubAgent.t(), term(), [
 PtcRunner.SubAgent.Signature.validation_error()
]) :: String.t()

Format validation error for LLM feedback.
Builds an actionable error message that helps the LLM fix the return type.

 validate(map, value)

 @spec validate(PtcRunner.SubAgent.t(), term()) ::
 :ok | {:error, [PtcRunner.SubAgent.Signature.validation_error()]}

Validate return value against agent's parsed signature.
Returns :ok or {:error, [validation_error()]}.

PtcRunner.SubAgent.Loop.ToolNormalizer

Tool preparation and wrapping for SubAgent execution.
This module normalizes tools from various formats into executable functions
and wraps them with telemetry events for observability.
Tool Types
	SubAgentTool - Wrapped child agents that inherit context and limits
	Function/1 - Direct tool functions that receive args map
	Other values - Passed through unchanged

Wrapping Behavior
Tool functions are wrapped to:
	Handle return value normalization ({:ok, value}, {:error, reason}, or raw values)
	Emit telemetry events on tool start/stop
	Inherit runtime context for nested SubAgents

 Summary

 Functions

 normalize(tools, state, agent)

 Normalize tools map to convert SubAgentTool instances into executable functions.

 wrap_return(name, func)

 Wrap a regular tool function to handle various return formats.

 wrap_sub_agent_tool(name, tool, state)

 Wrap a SubAgentTool in a function closure that executes the child agent.

 wrap_with_telemetry(name, func, agent)

 Wrap a tool function with telemetry events.

 Functions

 normalize(tools, state, agent)

 @spec normalize(map(), map(), PtcRunner.SubAgent.t()) :: map()

Normalize tools map to convert SubAgentTool instances into executable functions.
Each tool is wrapped with telemetry events and return value normalization.
Parameters
	tools - Map of tool name to tool definition
	state - Current loop state (for context inheritance)
	agent - Parent agent (for telemetry metadata)

Returns
Map of tool names to wrapped executable functions.

 wrap_return(name, func)

 @spec wrap_return(String.t(), function()) :: function()

Wrap a regular tool function to handle various return formats.
Converts:
	{:ok, value} -> value
	{:error, reason} -> raises with error message
	value -> value (pass-through)

 wrap_sub_agent_tool(name, tool, state)

 @spec wrap_sub_agent_tool(String.t(), PtcRunner.SubAgent.SubAgentTool.t(), map()) ::
 function()

Wrap a SubAgentTool in a function closure that executes the child agent.
The wrapped function:
	Resolves LLM in priority order: agent.llm > bound_llm > parent's llm
	Inherits llm_registry, nesting_depth, remaining_turns, and mission_deadline
	Returns the child agent's return value or raises on failure

 wrap_with_telemetry(name, func, agent)

 @spec wrap_with_telemetry(String.t(), function(), PtcRunner.SubAgent.t()) ::
 function()

Wrap a tool function with telemetry events.
Emits [:sub_agent, :tool, :start] and [:sub_agent, :tool, :stop] events.

PtcRunner.SubAgent.Loop.TurnFeedback

Turn feedback formatting for SubAgent execution.
Formats execution results and turn state information for LLM feedback.

 Summary

 Functions

 append_turn_info(message, agent, state)

 Append turn progress info to a feedback message.

 format(agent, state, lisp_step)

 Format execution result feedback for the next LLM turn.

 Functions

 append_turn_info(message, agent, state)

 @spec append_turn_info(String.t(), PtcRunner.SubAgent.t(), map()) :: String.t()

Append turn progress info to a feedback message.
For multi-turn agents, adds remaining turn count and final turn warnings.

 format(agent, state, lisp_step)

 @spec format(PtcRunner.SubAgent.t(), map(), map()) :: {String.t(), boolean()}

Format execution result feedback for the next LLM turn.
Returns {feedback_string, truncated?}.
Only shows explicit println output - the LLM must be intentional about what it inspects.

PtcRunner.SubAgent.Namespace

Renders namespaces for the USER message (REPL with Prelude model).
Coordinates rendering of:
	tool/ : Available tools (from agent config, stable)
	data/ : Input data (from agent config, stable)
	user/ : LLM definitions (prelude, grows each turn)

 Summary

 Functions

 render(config)

 Render all namespaces as a single string.

 Functions

 render(config)

 @spec render(map()) :: String.t()

Render all namespaces as a single string.
Config keys
	tools - Map of tool name to tool struct (for tool/ namespace)
	data - Map of input data (for data/ namespace)
	field_descriptions - Map of field names to description strings (for data/)
	context_signature - Parsed signature for type information (for data/)
	memory - Map of LLM definitions (for user/ namespace)
	has_println - Boolean, controls sample display in user/ namespace

Always includes the tools section (showing available tools or "No tools available").
Examples
iex> PtcRunner.SubAgent.Namespace.render(%{})
";; No tools available"

iex> tool = %PtcRunner.Tool{name: "search", signature: "(query :string) -> :string"}
iex> PtcRunner.SubAgent.Namespace.render(%{tools: %{"search" => tool}})
";; === tools ===\ntool/search(query string) -> string"

iex> PtcRunner.SubAgent.Namespace.render(%{data: %{count: 42}})
";; No tools available\n\n;; === data/ ===\ndata/count ; integer, sample: 42"

iex> PtcRunner.SubAgent.Namespace.render(%{memory: %{total: 100}, has_println: false})
";; No tools available\n\n;; === user/ (your prelude) ===\ntotal ; = integer, sample: 100"

PtcRunner.SubAgent.Namespace.Data

Renders the data/ namespace section.

 Summary

 Functions

 render(data, opts \\ [])

 Render data/ namespace section for USER message.

 Functions

 render(data, opts \\ [])

 @spec render(
 map(),
 keyword()
) :: String.t() | nil

Render data/ namespace section for USER message.
Returns nil for empty data maps, otherwise a formatted string with header
and entries showing type label and truncated sample.
Options
	:field_descriptions - Map of field names to description strings
	:context_signature - Parsed signature for type information
	:sample_limit - Max items to show in collections (default: 3)
	:sample_printable_limit - Max chars for strings (default: 80)

Examples
iex> PtcRunner.SubAgent.Namespace.Data.render(%{})
nil

iex> PtcRunner.SubAgent.Namespace.Data.render(%{count: 42})
";; === data/ ===\ndata/count ; integer, sample: 42"

iex> PtcRunner.SubAgent.Namespace.Data.render(%{_token: "secret"})
";; === data/ ===\ndata/_token ; string, [Hidden] [Firewalled]"

iex> PtcRunner.SubAgent.Namespace.Data.render(%{x: 5}, field_descriptions: %{x: "Input value"})
";; === data/ ===\ndata/x ; integer, sample: 5 -- Input value"

PtcRunner.SubAgent.Namespace.ExecutionHistory

Renders tool call history and println output.

 Summary

 Functions

 render_output(prints, limit, bool)

 Render println output from successful turns.

 render_tool_calls(tool_calls, limit)

 Render tool calls made during successful turns.

 Functions

 render_output(prints, limit, bool)

 @spec render_output([String.t()], non_neg_integer(), boolean()) :: String.t() | nil

Render println output from successful turns.
Returns nil when has_println is false (no output section needed),
otherwise a formatted list with header and output lines.
Examples
iex> PtcRunner.SubAgent.Namespace.ExecutionHistory.render_output([], 15, false)
nil

iex> PtcRunner.SubAgent.Namespace.ExecutionHistory.render_output(["hello", "world"], 15, true)
";; Output:\nhello\nworld"

 render_tool_calls(tool_calls, limit)

 @spec render_tool_calls([map()], non_neg_integer()) :: String.t()

Render tool calls made during successful turns.
Returns ;; No tool calls made for empty list, otherwise formatted list
with header and entries.
Hidden fields (keys starting with _) are filtered out by Format.to_clojure.
Examples
iex> PtcRunner.SubAgent.Namespace.ExecutionHistory.render_tool_calls([], 20)
";; No tool calls made"

iex> call = %{name: "search", args: %{query: "hello"}}
iex> PtcRunner.SubAgent.Namespace.ExecutionHistory.render_tool_calls([call], 20)
";; Tool calls made:\n; search({:query \"hello\"})"

iex> call = %{name: "search", args: %{query: "test", _token: "secret123"}}
iex> PtcRunner.SubAgent.Namespace.ExecutionHistory.render_tool_calls([call], 20)
";; Tool calls made:\n; search({:query \"test\"})"

PtcRunner.SubAgent.Namespace.Tool

Renders available tools for the USER message namespace section.

 Summary

 Functions

 render(tools)

 Render tools section for USER message.

 Functions

 render(tools)

 @spec render(map()) :: String.t()

Render tools section for USER message.
Returns a formatted string showing available tools or a message indicating
no tools are available. When tools exist, shows header and entries with
tool calling syntax, parameters, and return type.
Tools are called using tool/ prefix: (tool/tool-name {:param value})
Accepts raw tool formats (fn, {fn, sig}, {fn, opts}) and normalizes them.
Examples
iex> PtcRunner.SubAgent.Namespace.Tool.render(%{})
";; No tools available"

iex> tool = %PtcRunner.Tool{name: "get-inventory", signature: "-> :map"}
iex> PtcRunner.SubAgent.Namespace.Tool.render(%{"get-inventory" => tool})
";; === tools ===\ntool/get-inventory() -> map"

iex> tool = %PtcRunner.Tool{name: "search", signature: "(query :string, limit :int) -> [:string]"}
iex> PtcRunner.SubAgent.Namespace.Tool.render(%{"search" => tool})
";; === tools ===\ntool/search(query string, limit int) -> [string]"

iex> tool = %PtcRunner.Tool{name: "analyze", signature: "-> :map", description: "Analyze data"}
iex> PtcRunner.SubAgent.Namespace.Tool.render(%{"analyze" => tool})
";; === tools ===\ntool/analyze() -> map ; Analyze data"

PtcRunner.SubAgent.Namespace.TypeVocabulary

Converts Elixir values to human-readable type labels.

 Summary

 Functions

 type_of(list)

 Returns a type label for any value.

 Functions

 type_of(list)

 @spec type_of(term()) :: String.t()

Returns a type label for any value.
Examples
iex> PtcRunner.SubAgent.Namespace.TypeVocabulary.type_of([])
"list[0]"

iex> PtcRunner.SubAgent.Namespace.TypeVocabulary.type_of([1, 2, 3])
"list[3]"

iex> PtcRunner.SubAgent.Namespace.TypeVocabulary.type_of(%{})
"map[0]"

iex> PtcRunner.SubAgent.Namespace.TypeVocabulary.type_of(%{a: 1})
"map[1]"

iex> PtcRunner.SubAgent.Namespace.TypeVocabulary.type_of(MapSet.new([1, 2]))
"set[2]"

iex> PtcRunner.SubAgent.Namespace.TypeVocabulary.type_of({:closure, [], nil, %{}, [], %{}})
"#fn[...]"

iex> PtcRunner.SubAgent.Namespace.TypeVocabulary.type_of("hello")
"string"

iex> PtcRunner.SubAgent.Namespace.TypeVocabulary.type_of(42)
"integer"

iex> PtcRunner.SubAgent.Namespace.TypeVocabulary.type_of(3.14)
"float"

iex> PtcRunner.SubAgent.Namespace.TypeVocabulary.type_of(true)
"boolean"

iex> PtcRunner.SubAgent.Namespace.TypeVocabulary.type_of(false)
"boolean"

iex> PtcRunner.SubAgent.Namespace.TypeVocabulary.type_of(:foo)
"keyword"

iex> PtcRunner.SubAgent.Namespace.TypeVocabulary.type_of(nil)
"nil"

iex> PtcRunner.SubAgent.Namespace.TypeVocabulary.type_of(fn -> :ok end)
"fn"

PtcRunner.SubAgent.Namespace.User

Renders the user/ namespace section (LLM-defined functions and values).

 Summary

 Functions

 render(memory, opts)

 Render user/ namespace section for USER message.

 Functions

 render(memory, opts)

 @spec render(
 map(),
 keyword()
) :: String.t() | nil

Render user/ namespace section for USER message.
Returns nil for empty memory maps, otherwise a formatted string with header
and entries showing functions (with params and optional return type) and values
(with type and optional sample).
Functions are listed first, then values, both sorted alphabetically (DEF-009).
Samples are only shown when has_println is false (SAM-001, SAM-002).
Options
	:has_println - Boolean, controls whether samples are shown (default: false)
	:sample_limit - Max items to show in collections (default: 3)
	:sample_printable_limit - Max chars for strings (default: 80)

Examples
iex> PtcRunner.SubAgent.Namespace.User.render(%{}, [])
nil

iex> closure = {:closure, [{:var, :x}], nil, %{}, [], %{}}
iex> PtcRunner.SubAgent.Namespace.User.render(%{double: closure}, [])
";; === user/ (your prelude) ===\n(double [x])"

iex> closure = {:closure, [{:var, :x}], nil, %{}, [], %{return_type: "integer"}}
iex> PtcRunner.SubAgent.Namespace.User.render(%{double: closure}, [])
";; === user/ (your prelude) ===\n(double [x]) -> integer"

iex> closure = {:closure, [{:var, :x}], nil, %{}, [], %{docstring: "Doubles x"}}
iex> PtcRunner.SubAgent.Namespace.User.render(%{double: closure}, [])
";; === user/ (your prelude) ===\n(double [x]) ; \"Doubles x\""

iex> closure = {:closure, [{:var, :x}], nil, %{}, [], %{docstring: "Doubles x", return_type: "integer"}}
iex> PtcRunner.SubAgent.Namespace.User.render(%{double: closure}, [])
";; === user/ (your prelude) ===\n(double [x]) ; \"Doubles x\" -> integer"

iex> PtcRunner.SubAgent.Namespace.User.render(%{total: 42}, [])
";; === user/ (your prelude) ===\ntotal ; = integer, sample: 42"

iex> PtcRunner.SubAgent.Namespace.User.render(%{total: 42}, has_println: true)
";; === user/ (your prelude) ===\ntotal ; = integer"

iex> PtcRunner.SubAgent.Namespace.User.render(%{_secret: "token123"}, [])
";; === user/ (your prelude) ===\n_secret ; = string, [Hidden]"

PtcRunner.SubAgent.PromptExpander

Template string expansion with placeholder validation.
Provides functions to:
	Extract placeholders from template strings
	Expand templates by replacing placeholders with values from a context map

Placeholder Syntax
Placeholders use {{variable}} syntax and support nested access with dot notation:
	Simple: {{name}}
	Nested: {{user.name}} or {{items.count}}

Examples
iex> PtcRunner.SubAgent.PromptExpander.expand("Hello {{name}}", %{name: "Alice"})
{:ok, "Hello Alice"}

iex> PtcRunner.SubAgent.PromptExpander.expand("User {{user.name}}", %{user: %{name: "Bob"}})
{:ok, "User Bob"}

iex> PtcRunner.SubAgent.PromptExpander.expand("Hello {{name}}", %{})
{:error, {:missing_keys, ["name"]}}

iex> PtcRunner.SubAgent.PromptExpander.extract_placeholders("Hello {{name}}, you have {{items.count}} items")
[%{path: ["name"], type: :simple}, %{path: ["items", "count"], type: :simple}]

 Summary

 Functions

 expand(template, context, opts \\ [])

 Expand a template by replacing placeholders with values from the context.

 expand_annotated(template, context)

 Expand a template with annotations showing where substitutions occurred.

 extract_placeholder_names(template)

 Extract placeholder names from a template string as a flat list.

 extract_placeholders(template)

 Extract placeholders from a template string.

 extract_signature_params(signature)

 Extract parameter names from a SubAgent signature string.

 Functions

 expand(template, context, opts \\ [])

 @spec expand(String.t(), map(), keyword()) ::
 {:ok, String.t()} | {:error, {:missing_keys, [String.t()]}}

Expand a template by replacing placeholders with values from the context.
Returns {:ok, expanded_string} on success, or {:error, {:missing_keys, keys}}
if any placeholders cannot be resolved (when on_missing: :error).
The context map can use either atom or string keys. Values are converted to
strings using to_string/1.
Options
	on_missing: Controls behavior when a placeholder key is missing from the context.	:error (default) - Returns {:error, {:missing_keys, [...]}} if any keys are missing
	:keep - Leaves missing placeholders unchanged in the output (e.g., "{{name}}")

Examples
iex> PtcRunner.SubAgent.PromptExpander.expand("Hello {{name}}", %{name: "Alice"})
{:ok, "Hello Alice"}

iex> PtcRunner.SubAgent.PromptExpander.expand("Count: {{count}}", %{count: 42})
{:ok, "Count: 42"}

iex> PtcRunner.SubAgent.PromptExpander.expand("{{a.b.c}}", %{a: %{b: %{c: "deep"}}})
{:ok, "deep"}

iex> PtcRunner.SubAgent.PromptExpander.expand("Hello", %{})
{:ok, "Hello"}

iex> PtcRunner.SubAgent.PromptExpander.expand("", %{})
{:ok, ""}

iex> PtcRunner.SubAgent.PromptExpander.expand("{{missing}}", %{})
{:error, {:missing_keys, ["missing"]}}

iex> PtcRunner.SubAgent.PromptExpander.expand("{{a}} and {{b}}", %{a: "1"})
{:error, {:missing_keys, ["b"]}}

iex> PtcRunner.SubAgent.PromptExpander.expand("{{missing}}", %{}, on_missing: :keep)
{:ok, "{{missing}}"}

iex> PtcRunner.SubAgent.PromptExpander.expand("{{a}} and {{b}}", %{a: "1"}, on_missing: :keep)
{:ok, "1 and {{b}}"}

 expand_annotated(template, context)

 @spec expand_annotated(String.t(), map()) ::
 {:ok, String.t()} | {:error, {:missing_keys, [String.t()]}}

Expand a template with annotations showing where substitutions occurred.
Returns an annotated string where substituted values are wrapped with ~{data/...}
syntax to make it clear which parts came from template variables. This is useful
for debugging to distinguish dynamic values from hardcoded text.
Examples
iex> PtcRunner.SubAgent.PromptExpander.expand_annotated("Hello {{name}}", %{name: "Alice"})
{:ok, "Hello ~{data/name}"}

iex> PtcRunner.SubAgent.PromptExpander.expand_annotated("Count: {{count}}", %{count: 42})
{:ok, "Count: ~{data/count}"}

iex> PtcRunner.SubAgent.PromptExpander.expand_annotated("{{a.b}}", %{a: %{b: "deep"}})
{:ok, "~{data/a.b}"}

iex> PtcRunner.SubAgent.PromptExpander.expand_annotated("Hello", %{})
{:ok, "Hello"}

iex> PtcRunner.SubAgent.PromptExpander.expand_annotated("{{missing}}", %{})
{:error, {:missing_keys, ["missing"]}}

 extract_placeholder_names(template)

 @spec extract_placeholder_names(String.t()) :: [String.t()]

Extract placeholder names from a template string as a flat list.
This is a convenience wrapper around extract_placeholders/1 that returns
only the placeholder names as flat strings (e.g., "name", "user.name").
Examples
iex> PtcRunner.SubAgent.PromptExpander.extract_placeholder_names("Hello {{name}}")
["name"]

iex> PtcRunner.SubAgent.PromptExpander.extract_placeholder_names("{{user.name}} has {{count}} items")
["user.name", "count"]

iex> PtcRunner.SubAgent.PromptExpander.extract_placeholder_names("No placeholders here")
[]

iex> PtcRunner.SubAgent.PromptExpander.extract_placeholder_names("{{name}} and {{name}}")
["name"]

 extract_placeholders(template)

 @spec extract_placeholders(String.t()) :: [%{path: [String.t()], type: :simple}]

Extract placeholders from a template string.
Returns a list of unique placeholder structs, each containing:
	path: List of strings representing the nested path (e.g., ["user", "name"])
	type: Always :simple (iteration type is out of scope)

Examples
iex> PtcRunner.SubAgent.PromptExpander.extract_placeholders("Hello {{name}}")
[%{path: ["name"], type: :simple}]

iex> PtcRunner.SubAgent.PromptExpander.extract_placeholders("{{user.name}} has {{count}} items")
[%{path: ["user", "name"], type: :simple}, %{path: ["count"], type: :simple}]

iex> PtcRunner.SubAgent.PromptExpander.extract_placeholders("No placeholders here")
[]

iex> PtcRunner.SubAgent.PromptExpander.extract_placeholders("{{name}} and {{name}}")
[%{path: ["name"], type: :simple}]

 extract_signature_params(signature)

 @spec extract_signature_params(String.t()) :: [String.t()]

Extract parameter names from a SubAgent signature string.
Parses the signature and returns a list of parameter names.
Returns an empty list if the signature cannot be parsed.
Examples
iex> PtcRunner.SubAgent.PromptExpander.extract_signature_params("(user :string) -> :string")
["user"]

iex> PtcRunner.SubAgent.PromptExpander.extract_signature_params("(name :string, age :int) -> :string")
["name", "age"]

iex> PtcRunner.SubAgent.PromptExpander.extract_signature_params("invalid signature")
[]

PtcRunner.SubAgent.Sigils

Sigils for SubAgent templates.
~T Sigil
The ~T sigil creates a PtcRunner.Template struct at compile time with
extracted placeholders.
Examples
import PtcRunner.SubAgent.Sigils

~T"Hello {{name}}"
#=> %PtcRunner.Template{
#=> template: "Hello {{name}}",
#=> placeholders: [%{path: ["name"], type: :simple}]
#=> }

~T"User {{user.name}} has {{count}} items"
#=> %PtcRunner.Template{
#=> template: "User {{user.name}} has {{count}} items",
#=> placeholders: [
#=> %{path: ["user", "name"], type: :simple},
#=> %{path: ["count"], type: :simple}
#=>]
#=> }
The sigil also supports heredoc syntax:
~T"""
Hello {{name}},

You have {{items.count}} items.
"""
Use PtcRunner.SubAgent.PromptExpander.expand/2 to expand the template with values.
Note on Elixir's Built-in ~T Sigil
Elixir has a built-in ~T sigil for Time structs (e.g., ~T[00:00:00]).
When you import this module, our ~T sigil shadows the built-in one.
This is safe in practice because:
	The built-in ~T uses square brackets: ~T[00:00:00]
	Our ~T uses double quotes: ~T"Hello {{name}}"
	Files using Time literals typically don't import this module

If you need both in the same file, you can use Time.new!/3 instead of
the Time sigil, or explicitly qualify the Time sigil with import Kernel, only: [sigil_T: 2].

 Summary

 Functions

 sigil_T(arg, modifiers)

 Creates a Template struct with compile-time placeholder extraction.

 Functions

 sigil_T(arg, modifiers)

 (macro)

Creates a Template struct with compile-time placeholder extraction.
Examples
Note: Due to Elixir's built-in ~T sigil for Time, doctests cannot be used
here without import conflicts. See the test file for usage examples.
import PtcRunner.SubAgent.Sigils
template = ~T"Hello {{name}}"
template.template
#=> "Hello {{name}}"
template.placeholders
#=> [%{path: ["name"], type: :simple}]

PtcRunner.SubAgent.Signature

Signature parsing and validation for SubAgents.
Signatures define the contract between agents and tools:
	Input parameters - What the caller must provide
	Output type - What the callee will return

Signature Format
Full format: (params) -> output
Shorthand: output (equivalent to () -> output)
Types
	Primitives: :string, :int, :float, :bool, :keyword, :any
	Collections: [:type] (list), {field :type} (map), :map (untyped map)
	Optional: :type? (nullable field or parameter)

Examples
iex> {:ok, sig} = Signature.parse("(name :string) -> {greeting :string}")
iex> sig
{:signature, [{"name", :string}], {:map, [{"greeting", :string}]}}

iex> {:ok, sig} = Signature.parse("{count :int}")
iex> sig
{:signature, [], {:map, [{"count", :int}]}}

 Summary

 Types

 field()

 param()

 return_type()

 signature()

 type()

 validation_error()

 Functions

 parse(input)

 Parse a signature string into internal format.

 render(signature)

 Format a signature back to string representation.

 returns_list?(arg1)

 Check if signature returns a list type.

 to_json_schema(arg)

 Convert a signature to JSON Schema format.

 validate(signature, data)

 Validate data against a signature's return type.

 validate_input(signature, input)

 Validate input parameters against a signature.

 Types

 field()

 @type field() :: {String.t(), type()}

 param()

 @type param() :: {String.t(), type()}

 return_type()

 @type return_type() :: type()

 signature()

 @type signature() :: {:signature, [param()], return_type()}

 type()

 @type type() ::
 :string
 | :int
 | :float
 | :bool
 | :keyword
 | :any
 | :map
 | {:optional, type()}
 | {:list, type()}
 | {:map, [field()]}

 validation_error()

 @type validation_error() :: %{
 path: [String.t() | non_neg_integer()],
 message: String.t()
}

 Functions

 parse(input)

 @spec parse(String.t()) :: {:ok, signature()} | {:error, String.t()}

Parse a signature string into internal format.
Returns {:ok, signature()} or {:error, reason}.
Examples
iex> Signature.parse("(id :int) -> {name :string}")
{:ok, {:signature, [{"id", :int}], {:map, [{"name", :string}]}}}

iex> Signature.parse("() -> :string")
{:ok, {:signature, [], :string}}

iex> Signature.parse("{count :int}")
{:ok, {:signature, [], {:map, [{"count", :int}]}}}

iex> Signature.parse("invalid")
{:error, "..."}

 render(signature)

 @spec render(signature()) :: String.t()

Format a signature back to string representation.
Used for rendering in prompts or debugging.

 returns_list?(arg1)

 @spec returns_list?(signature()) :: boolean()

Check if signature returns a list type.
Used to determine if JSON mode response needs unwrapping.

 to_json_schema(arg)

 @spec to_json_schema(signature()) :: map()

Convert a signature to JSON Schema format.
Extracts the return type and converts it to a JSON Schema
that can be passed to LLM providers for structured output.
Note: Array return types are wrapped in an object with an "items" property
because most LLM providers require an object at the root level. Use
returns_list?/1 to check if unwrapping is needed.
Examples
iex> {:ok, sig} = PtcRunner.SubAgent.Signature.parse("() -> {sentiment :string, score :float}")
iex> PtcRunner.SubAgent.Signature.to_json_schema(sig)
%{
 "type" => "object",
 "properties" => %{
 "sentiment" => %{"type" => "string"},
 "score" => %{"type" => "number"}
 },
 "required" => ["sentiment", "score"],
 "additionalProperties" => false
}

iex> {:ok, sig} = PtcRunner.SubAgent.Signature.parse("() -> [:int]")
iex> PtcRunner.SubAgent.Signature.to_json_schema(sig)
%{
 "type" => "object",
 "properties" => %{
 "items" => %{"type" => "array", "items" => %{"type" => "integer"}}
 },
 "required" => ["items"],
 "additionalProperties" => false
}

 validate(signature, data)

 @spec validate(signature(), term()) :: :ok | {:error, [validation_error()]}

Validate data against a signature's return type.
Returns :ok or {:error, [validation_error()]}.
Examples
iex> {:ok, sig} = Signature.parse("() -> {count :int, items [:string]}")
iex> Signature.validate(sig, %{count: 5, items: ["a", "b"]})
:ok

iex> {:ok, sig} = Signature.parse("() -> :int")
iex> Signature.validate(sig, "not an int")
{:error, [%{path: [], message: "expected int, got string"}]}

 validate_input(signature, input)

 @spec validate_input(signature(), map()) :: :ok | {:error, [validation_error()]}

Validate input parameters against a signature.
Returns :ok or {:error, [validation_error()]}.

PtcRunner.SubAgent.Signature.Coercion

Coerce values to expected types with warning generation.
This module handles lenient input validation for LLMs, which sometimes
produce slightly malformed data (e.g., quoted numbers, missing types).
Elixir to Signature Type Mapping
Primitive Types
	Elixir Type	Signature Type	Notes
	String.t()	:string	UTF-8 strings
	binary()	:string	Same as String.t()
	integer()	:int	Whole numbers
	non_neg_integer()	:int	Validation can enforce >= 0
	pos_integer()	:int	Validation can enforce > 0
	float()	:float	Decimal numbers
	number()	:float	Accepts int or float
	boolean()	:bool	Boolean values
	atom()	:keyword	Atoms as keywords
	any()	:any	Matches everything

Collection Types
	Elixir Type	Signature Type	Notes
	list(t)	[:t]	Homogeneous lists
	map()	:map	Untyped dictionary
	%{key: type}	{:key :type}	Typed map

Special Types
	Elixir Type	Signature Type	Rationale
	DateTime.t()	:string	ISO 8601 format, LLM-friendly

| t | nil | :t? | Optional via ? suffix |
Coercion Rules
LLMs sometimes produce slightly malformed data. Input coercion handles common cases:
	From	To	Behavior	Warning
	"42"	:int	42	Yes
	"3.14"	:float	3.14	Yes
	"-5"	:int	-5	Yes
	"true"	:bool	true	Yes
	"false"	:bool	false	Yes
	42	:float	42.0	No (silent widening)
	42.0	:int	Error	-
	"hello"	:int	Error	-
	:atom	:string	"atom"	Yes
	"atom"	:keyword	:atom	Yes

Output validation is strict - no coercion applied.
Coercion Modes
	Mode	Input Coercion	Output Validation	Use Case
	:enabled (default)	Apply with warnings	Strict	Production
	:warn_only	Apply with warnings	Log warnings only	Development
	:strict	No coercion	Strict, reject extra fields	Testing
	:disabled	Skip	Skip	Debugging

Examples
iex> PtcRunner.SubAgent.Signature.Coercion.coerce("42", :int)
{:ok, 42, ["coerced string \"42\" to integer"]}

iex> PtcRunner.SubAgent.Signature.Coercion.coerce(42, :float)
{:ok, 42.0, []}

iex> PtcRunner.SubAgent.Signature.Coercion.coerce("hello", :int)
{:error, "cannot coerce string \"hello\" to integer"}

iex> PtcRunner.SubAgent.Signature.Coercion.coerce("hello", :keyword)
{:ok, :hello, ["coerced string \"hello\" to keyword"]}

 Summary

 Types

 coercion_result()

 Functions

 coerce(value, type)

 Coerce a value to the expected type.

 coerce(value, type, opts)

 Coerce a value to the expected type with options.

 Types

 coercion_result()

 @type coercion_result() :: {:ok, term(), [String.t()]} | {:error, String.t()}

 Functions

 coerce(value, type)

 @spec coerce(term(), atom() | tuple()) :: coercion_result()

Coerce a value to the expected type.
Returns {:ok, coerced_value, warnings} or {:error, reason}.
Examples
iex> PtcRunner.SubAgent.Signature.Coercion.coerce("42", :int)
{:ok, 42, ["coerced string \"42\" to integer"]}

iex> PtcRunner.SubAgent.Signature.Coercion.coerce(42, :float)
{:ok, 42.0, []}

iex> PtcRunner.SubAgent.Signature.Coercion.coerce("hello", :int)
{:error, "cannot coerce string \"hello\" to integer"}

iex> PtcRunner.SubAgent.Signature.Coercion.coerce(%{"id" => "42", "name" => "Alice"}, {:map, [{"id", :int}, {"name", :string}]})
{:ok, %{"id" => 42, "name" => "Alice"}, ["coerced string \"42\" to integer"]}

 coerce(value, type, opts)

 @spec coerce(term(), atom() | tuple(), keyword()) :: coercion_result()

Coerce a value to the expected type with options.
Options:
	:nested - whether this is a nested coercion (default: false)

Returns {:ok, coerced_value, warnings} or {:error, reason}.

PtcRunner.SubAgent.Signature.Parser

NimbleParsec-based parser for signature strings.
Transforms signature syntax into AST:
	Primitives: :string, :int, :float, :bool, :keyword, :any
	Collections: [:type], {field :type}, :map
	Optional fields: :type?
	Full format: (params) -> output or shorthand: output

 Summary

 Functions

 parse(input)

 Parse a signature string into AST.

 parse_impl(binary, opts \\ [])

 Parses the given binary as parse_impl.

 Functions

 parse(input)

 @spec parse(String.t()) :: {:ok, term()} | {:error, String.t()}

Parse a signature string into AST.
Returns {:ok, ast} or {:error, reason}

 parse_impl(binary, opts \\ [])

 @spec parse_impl(binary(), keyword()) ::
 {:ok, [term()], rest, context, line, byte_offset}
 | {:error, reason, rest, context, line, byte_offset}
when line: {pos_integer(), byte_offset},
 byte_offset: non_neg_integer(),
 rest: binary(),
 reason: String.t(),
 context: map()

Parses the given binary as parse_impl.
Returns {:ok, [token], rest, context, position, byte_offset} or
{:error, reason, rest, context, line, byte_offset} where position
describes the location of the parse_impl (start position) as {line, offset_to_start_of_line}.
To column where the error occurred can be inferred from byte_offset - offset_to_start_of_line.
Options
	:byte_offset - the byte offset for the whole binary, defaults to 0
	:line - the line and the byte offset into that line, defaults to {1, byte_offset}
	:context - the initial context value. It will be converted to a map

PtcRunner.SubAgent.Signature.ParserHelpers

Helper functions for signature parser AST building.

 Summary

 Functions

 build_full_signature(list)

 Build full signature from parameters and return type.

 build_map_field(list)

 Build a map field (key :type).

 build_map_type(list)

 Build a map type wrapper.

 build_parameter(list)

 Build a parameter (name :type).

 build_shorthand_signature(list)

 Build shorthand signature (no input, just output).

 build_type(list)

 Build a type from primitive type keyword and optional suffix.

 concat_identifier(list)

 Concatenate identifier parts (first char + optional rest).

 flatten_list(item)

 Flatten lists from repeat parsing.

 wrap_list(list)

 Build a list type wrapper.

 Functions

 build_full_signature(list)

Build full signature from parameters and return type.
When optional(parsec(:parameters_list)) doesn't match,
we get just [return_type]. When it does match, we get [params, return_type].

 build_map_field(list)

Build a map field (key :type).

 build_map_type(list)

Build a map type wrapper.

 build_parameter(list)

Build a parameter (name :type).

 build_shorthand_signature(list)

Build shorthand signature (no input, just output).

 build_type(list)

Build a type from primitive type keyword and optional suffix.

 concat_identifier(list)

Concatenate identifier parts (first char + optional rest).

 flatten_list(item)

Flatten lists from repeat parsing.
When parsing with repeat(), we get [first_result, [rest_result_1, rest_result_2, ...]]
This returns [first_result, rest_result_1, rest_result_2, ...]

 wrap_list(list)

Build a list type wrapper.

PtcRunner.SubAgent.Signature.Renderer

Renders signatures back to string representation.
Converts internal signature format to human-readable syntax for use in
prompts and debugging.

 Summary

 Functions

 render(arg)

 Render a signature to its string representation.

 render_type(arg1)

 Render a type spec to its string representation.

 Functions

 render(arg)

 @spec render({:signature, list(), term()}) :: String.t()

Render a signature to its string representation.
Examples
iex> sig = {:signature, [{"id", :int}], :string}
iex> PtcRunner.SubAgent.Signature.Renderer.render(sig)
"(id :int) -> :string"

iex> sig = {:signature, [], {:map, [{"count", :int}]}}
iex> PtcRunner.SubAgent.Signature.Renderer.render(sig)
"-> {count :int}"

 render_type(arg1)

 @spec render_type(term()) :: String.t()

Render a type spec to its string representation.
Converts type tuples and atoms to their PTC-Lisp syntax representation
(e.g., :string, [int], {key :string}).
Examples
iex> PtcRunner.SubAgent.Signature.Renderer.render_type(:string)
":string"

iex> PtcRunner.SubAgent.Signature.Renderer.render_type({:optional, :int})
":int?"

iex> PtcRunner.SubAgent.Signature.Renderer.render_type({:list, :string})
"[:string]"

PtcRunner.SubAgent.Signature.Validator

Validates data against signature type specifications.
Provides strict validation with path-based error reporting.

 Summary

 Types

 validation_error()

 Functions

 validate(data, signature)

 Validate data against a signature AST.

 Types

 validation_error()

 @type validation_error() :: %{
 path: [String.t() | non_neg_integer()],
 message: String.t()
}

 Functions

 validate(data, signature)

 @spec validate(term(), term()) :: :ok | {:error, [validation_error()]}

Validate data against a signature AST.
Returns :ok or {:error, [validation_error()]}

PtcRunner.SubAgent.SubAgentTool

Wraps a SubAgent as a callable tool for parent agents.
Created via SubAgent.as_tool/2, this struct allows agents to be
composed and nested. When a parent agent calls a SubAgentTool,
the wrapped agent executes with inherited LLM and registry.
LLM Resolution Order
When a SubAgentTool is called, the LLM is resolved in this priority order:
	agent.llm - Agent's own LLM override (highest priority)
	bound_llm - LLM bound at tool creation via as_tool/2
	Parent's llm - Inherited from the calling agent at call time (lowest priority)

This allows flexible composition where child agents can use their own LLM,
inherit from the parent, or use a specifically bound LLM.
Fields
	agent - The SubAgent.t() to wrap as a tool
	bound_llm - Optional LLM (atom or function) bound at tool creation
	signature - Type signature (copied from agent.signature)
	description - Optional description (defaults to agent's prompt)

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %PtcRunner.SubAgent.SubAgentTool{
 agent: PtcRunner.SubAgent.t(),
 bound_llm: atom() | (map() -> {:ok, String.t()} | {:error, term()}) | nil,
 description: String.t() | nil,
 signature: String.t() | nil
}

PtcRunner.SubAgent.SystemPrompt

System prompt generation for SubAgent LLM interactions.
Orchestrates prompt generation by combining sections from:
	Namespace modules - Compact Lisp-style format for tools and data
	SystemPrompt.Output - Expected return format from signature

Prompt Caching Architecture
To enable efficient prompt caching (e.g., Anthropic's cache_control), the prompt
is split into static and dynamic sections:
	Static (system prompt): generate_system/2 returns language reference and output
format - these rarely change and benefit from caching across different questions.
	Dynamic (user message): generate_context/2 returns data inventory, tool schemas,
and expected output - these vary per agent configuration but not per question.

The mission is placed only in the user message (not duplicated in system prompt).
Customization
The system_prompt field on SubAgent accepts:
	Map - :prefix, :suffix, :language_spec, :output_format
	Function - fn default_prompt -> modified_prompt end
	String - Complete override

Language Spec
The :language_spec option can be:
	Atom - Resolved via PtcRunner.Lisp.LanguageSpec.get!/1
	String - Used as-is
	Callback - fn ctx -> "prompt" end

Default: :single_shot for max_turns: 1, :multi_turn otherwise.
Examples
iex> agent = PtcRunner.SubAgent.new(prompt: "Add {{x}} and {{y}}")
iex> context = %{x: 5, y: 3}
iex> prompt = PtcRunner.SubAgent.SystemPrompt.generate(agent, context: context)
iex> prompt =~ "## Role"
true
iex> prompt =~ "data/x"
true

 Summary

 Functions

 apply_customization(base_prompt, override)

 Apply system prompt customization (string override, function, or map with prefix/suffix).

 generate(agent, opts \\ [])

 Generate a complete system prompt for a SubAgent.

 generate_context(agent, opts \\ [])

 Generate dynamic context sections (prepended to user message).

 generate_error_recovery_prompt(error_context)

 Generate error recovery prompt for parse failures.

 generate_static(agent, opts \\ [])

 Alias for generate_system/2 for semantic clarity.

 generate_system(agent, opts \\ [])

 Generate static system prompt sections (cacheable).

 resolve_language_spec(spec, context)

 Resolve a language_spec value to a string.

 truncate_if_needed(prompt, limit_config)

 Truncate prompt if it exceeds the configured character limit.

 Functions

 apply_customization(base_prompt, override)

 @spec apply_customization(String.t(), PtcRunner.SubAgent.system_prompt_opts() | nil) ::
 String.t()

Apply system prompt customization (string override, function, or map with prefix/suffix).
Examples
iex> PtcRunner.SubAgent.SystemPrompt.apply_customization("base", nil)
"base"

iex> PtcRunner.SubAgent.SystemPrompt.apply_customization("base", "override")
"override"

iex> PtcRunner.SubAgent.SystemPrompt.apply_customization("base", fn p -> "PREFIX\n" <> p end)
"PREFIX\nbase"

 generate(agent, opts \\ [])

 @spec generate(
 PtcRunner.SubAgent.t(),
 keyword()
) :: String.t()

Generate a complete system prompt for a SubAgent.
Options: context (map), error_context (map for recovery prompts).
Examples
iex> agent = PtcRunner.SubAgent.new(prompt: "Process data")
iex> prompt = PtcRunner.SubAgent.SystemPrompt.generate(agent, context: %{user: "Alice"})
iex> prompt =~ "## Role" and prompt =~ "thinking:"
true

 generate_context(agent, opts \\ [])

 @spec generate_context(
 PtcRunner.SubAgent.t(),
 keyword()
) :: String.t()

Generate dynamic context sections (prepended to user message).
Returns data inventory, tool schemas, and expected output - these sections vary
per agent configuration but not per individual question.
Note: The mission is NOT included here - it's already in the user message.
Options
	:context - Map of context variables for the data inventory
	:received_field_descriptions - Field descriptions from upstream agent

Examples
iex> agent = PtcRunner.SubAgent.new(prompt: "Test", tools: %{"search" => fn _ -> [] end})
iex> context_prompt = PtcRunner.SubAgent.SystemPrompt.generate_context(agent, context: %{x: 1})
iex> context_prompt =~ ";; === data/ ===" and context_prompt =~ ";; === tools ==="
true
iex> context_prompt =~ "# Mission"
false

 generate_error_recovery_prompt(error_context)

 @spec generate_error_recovery_prompt(map()) :: String.t()

Generate error recovery prompt for parse failures.
Examples
iex> error = %{type: :parse_error, message: "Unexpected token"}
iex> PtcRunner.SubAgent.SystemPrompt.generate_error_recovery_prompt(error) =~ "Previous Turn Error"
true

 generate_static(agent, opts \\ [])

 @spec generate_static(
 PtcRunner.SubAgent.t(),
 keyword()
) :: String.t()

Alias for generate_system/2 for semantic clarity.
See generate_system/2 for documentation.

 generate_system(agent, opts \\ [])

 @spec generate_system(
 PtcRunner.SubAgent.t(),
 keyword()
) :: String.t()

Generate static system prompt sections (cacheable).
Returns only the language reference and output format - these sections rarely
change across different questions and benefit from prompt caching.
This function has an alias generate_static/2 for semantic clarity.
Options
	:resolution_context - Map with turn/model/memory/messages for language_spec callbacks

Examples
iex> agent = PtcRunner.SubAgent.new(prompt: "Test")
iex> system = PtcRunner.SubAgent.SystemPrompt.generate_system(agent)
iex> system =~ "## Role" and system =~ "# Output Format"
true
iex> system =~ "# Data Inventory"
false

 resolve_language_spec(spec, context)

 @spec resolve_language_spec(String.t() | atom() | (map() -> String.t()), map()) ::
 String.t()

Resolve a language_spec value to a string.
Examples
iex> PtcRunner.SubAgent.SystemPrompt.resolve_language_spec("custom prompt", %{})
"custom prompt"

iex> spec = PtcRunner.SubAgent.SystemPrompt.resolve_language_spec(:single_shot, %{})
iex> is_binary(spec) and String.contains?(spec, "PTC-Lisp")
true

iex> callback = fn ctx -> if ctx.turn > 1, do: "multi", else: "single" end
iex> PtcRunner.SubAgent.SystemPrompt.resolve_language_spec(callback, %{turn: 1})
"single"

 truncate_if_needed(prompt, limit_config)

 @spec truncate_if_needed(String.t(), map() | nil) :: String.t()

Truncate prompt if it exceeds the configured character limit.
Examples
iex> PtcRunner.SubAgent.SystemPrompt.truncate_if_needed("short", nil)
"short"

iex> result = PtcRunner.SubAgent.SystemPrompt.truncate_if_needed(String.duplicate("x", 1000), %{max_chars: 100})
iex> result =~ "truncated"
true

PtcRunner.SubAgent.SystemPrompt.Output

Expected output section generation for SubAgent prompts.
Generates the Expected Output section that shows the required return format
based on the agent's signature. Also handles field description rendering
for output fields.

 Summary

 Functions

 generate(arg1, field_descriptions)

 Generate the expected output section from signature.

 Functions

 generate(arg1, field_descriptions)

 @spec generate(PtcRunner.SubAgent.Signature.signature() | nil, map() | nil) ::
 String.t()

Generate the expected output section from signature.
Shows the required return format based on the agent's signature,
including field descriptions if available.
Parameters
	context_signature - Parsed signature for return type information
	field_descriptions - Optional map of field name atoms to description strings

Returns
A string containing the expected output section, or empty string if no signature.
Examples
iex> sig = {:signature, [{"x", :int}], :int}
iex> output = PtcRunner.SubAgent.SystemPrompt.Output.generate(sig, nil)
iex> output =~ "Expected Output"
true
iex> output =~ ":int"
true

PtcRunner.SubAgent.Telemetry

Telemetry event emission for SubAgent execution.
This module provides helpers for emitting telemetry events during SubAgent
execution, enabling integration with observability tools like Prometheus,
OpenTelemetry, and custom handlers.
Events
All events are prefixed with [:ptc_runner, :sub_agent].
	Event	Measurements	Metadata
	[:run, :start]	%{}	agent, context
	[:run, :stop]	%{duration: native_time}	agent, step, status
	[:run, :exception]	%{duration: native_time}	agent, kind, reason, stacktrace
	[:turn, :start]	%{}	agent, turn
	[:turn, :stop]	%{duration: native_time, tokens: n}	agent, turn, program
	[:llm, :start]	%{}	agent, turn, messages
	[:llm, :stop]	%{duration: native_time, tokens: n}	agent, turn, response
	[:tool, :start]	%{}	agent, tool_name, args
	[:tool, :stop]	%{duration: native_time}	agent, tool_name, result
	[:tool, :exception]	%{duration: native_time}	agent, tool_name, kind, reason, stacktrace

Usage
Attach handlers using :telemetry.attach_many/4:
:telemetry.attach_many(
 "my-handler",
 [
 [:ptc_runner, :sub_agent, :run, :stop],
 [:ptc_runner, :sub_agent, :tool, :stop]
],
 &MyApp.Telemetry.handle_event/4,
 nil
)
Duration
Duration measurements use native time units via System.monotonic_time/0.
Convert to milliseconds with System.convert_time_unit(duration, :native, :millisecond).

 Summary

 Functions

 emit(event_suffix, measurements \\ %{}, metadata)

 Emit a telemetry event.

 prefix()

 Returns the telemetry event prefix.

 span(event_suffix, start_meta, fun)

 Execute a function within a telemetry span.

 Functions

 emit(event_suffix, measurements \\ %{}, metadata)

 @spec emit([atom()], map(), map()) :: :ok

Emit a telemetry event.
Parameters
	event_suffix - List of atoms to append to the prefix
	measurements - Map of measurements (default: %{})
	metadata - Map of metadata

 prefix()

 @spec prefix() :: [atom()]

Returns the telemetry event prefix.
Examples
iex> PtcRunner.SubAgent.Telemetry.prefix()
[:ptc_runner, :sub_agent]

 span(event_suffix, start_meta, fun)

 @spec span([atom()], map(), (-> {any(), map()} | {any(), map(), map()})) :: any()

Execute a function within a telemetry span.
Emits :start, :stop, and :exception events automatically.
The start metadata is passed as-is. The stop metadata receives
any additional measurements or metadata returned from the function.
Parameters
	event_suffix - List of atoms to append to the prefix (e.g., [:run])
	start_meta - Metadata map for the start event
	fun - Zero-arity function to execute. Should return one of:	{result, stop_meta} - where stop_meta is merged into stop event metadata
	{result, extra_measurements, stop_meta} - where extra_measurements is merged
into stop measurements and stop_meta is merged into stop event metadata

PtcRunner.SubAgent.TypeExtractor

Extract signature and description from Elixir function @spec and @doc.
Converts Elixir type specifications to PTC signature format for automatic
tool definition. Extraction requires compiled documentation and only works
for named functions (not anonymous).
Limitations
	Requires docs to be compiled (not available in releases without --docs)
	Only works for named functions (not anonymous)
	@spec conversion is best-effort; explicit signatures are more precise
	Unsupported types fall back to :any with warning

Examples
Anonymous function - cannot extract
iex> PtcRunner.SubAgent.TypeExtractor.extract(fn x -> x end)
{:ok, {nil, nil}}

 Summary

 Functions

 extract(fun)

 Extract signature and description from a function reference.

 Functions

 extract(fun)

 @spec extract(function()) :: {:ok, {String.t() | nil, String.t() | nil}}

Extract signature and description from a function reference.
Returns {:ok, {signature, description}} where both may be nil if extraction
is not possible. Never returns an error - falls back to {nil, nil} when
extraction fails.
Examples
iex> {:ok, {signature, _description}} = PtcRunner.SubAgent.TypeExtractor.extract(&String.upcase/1)
iex> is_binary(signature) or is_nil(signature)
true

PtcRunner.SubAgent.Validator

Validates SubAgent options at construction time.
Ensures required fields are present and all optional fields have valid types.
Extracted from PtcRunner.SubAgent to keep that module under the 800-line threshold.

 Summary

 Functions

 validate!(opts)

 Validates all SubAgent options, raising on invalid input.

 Functions

 validate!(opts)

 @spec validate!(keyword()) :: :ok

Validates all SubAgent options, raising on invalid input.
Raises
	ArgumentError - if any validation fails

PtcRunner.Template

Represents a template with extracted placeholders.
A Template struct contains:
	template: The raw template string with {{placeholder}} syntax
	placeholders: List of extracted placeholders with their paths

Examples
iex> PtcRunner.Template.__struct__()
%PtcRunner.Template{template: nil, placeholders: nil}
Templates are typically created using the ~T sigil:
import PtcRunner.SubAgent.Sigils
~T"Hello {{name}}"
Note: The ~T sigil shadows Elixir's built-in Time sigil within modules
that import PtcRunner.SubAgent.Sigils. This is intentional and safe
because the two sigils are used in different contexts (template strings
vs time literals with square brackets like ~T[00:00:00]).
See PtcRunner.SubAgent.PromptExpander for template expansion functionality.

 Summary

 Types

 placeholder()

 t()

 Types

 placeholder()

 @type placeholder() :: %{path: [String.t()], type: :simple | :iteration}

 t()

 @type t() :: %PtcRunner.Template{placeholders: [placeholder()], template: String.t()}

PtcRunner.Tool

Normalized tool definition for PTC-Lisp and SubAgent.
Tools can be defined in multiple formats and are normalized to this struct.
Supports function references, explicit signatures, and introspection.
Tool Type
Tools can be one of three types:
	:native - Elixir function
	:llm - LLM-powered tool (SubAgent only)
	:subagent - SubAgent wrapped as tool (SubAgent only)

Tool Formats
All tool formats are accepted and normalized internally. Common patterns:
1. Function reference (extracts @spec and @doc)
"get_user" => &MyApp.get_user/1
2. Function with explicit signature
"search" => {&MyApp.search/2, "(query :string, limit :int) -> [{id :int}]"}
3. Function with signature and description
"analyze" => {&MyApp.analyze/1,
 signature: "(data :map) -> {score :float}",
 description: "Analyze data and return anomaly score"
}
4. Anonymous function
"get_time" => fn _args -> DateTime.utc_now() end
5. Skip validation explicitly
"dynamic" => {&MyApp.dynamic/1, :skip}
Type Definition
%PtcRunner.Tool{
 name: "get_user",
 function: &MyApp.get_user/1,
 signature: "(id :int) -> {id :int, name :string}",
 description: "Get user by ID",
 type: :native
}
Field Reference
	name - Tool name as string (required)
	function - Callable (required for native tools)
	signature - Optional signature for validation: "(inputs) -> outputs"
	description - Optional description for LLM visibility
	type - Tool type: :native, :llm, :subagent

 Summary

 Types

 t()

 tool_format()

 Functions

 new(name, format)

 Creates a normalized Tool struct from a name and format.

 Types

 t()

 @type t() :: %PtcRunner.Tool{
 description: String.t() | nil,
 function: (map() -> term()) | nil,
 name: String.t(),
 signature: String.t() | nil,
 type: :native | :llm | :subagent
}

 tool_format()

 @type tool_format() ::
 (map() -> term())
 | {(map() -> term()), String.t()}
 | {(map() -> term()), keyword()}
 | {(map() -> term()), :skip}

 Functions

 new(name, format)

 @spec new(String.t(), tool_format()) :: {:ok, t()} | {:error, term()}

Creates a normalized Tool struct from a name and format.
Handles multiple input formats and normalizes to a consistent structure.
Attempts to extract @spec and @doc from bare function references.
Parameters
	name - Tool name as string
	format - One of: function, {function, signature}, {function, options}, :skip

Returns
{:ok, tool} on success, {:error, reason} on failure.
Examples
Simple function reference (auto-extracts @doc and @spec if available):
iex> {:ok, tool} = PtcRunner.Tool.new("get_time", fn _args -> DateTime.utc_now() end)
iex> tool.name
"get_time"
iex> tool.type
:native
Function with explicit signature:
iex> {:ok, tool} = PtcRunner.Tool.new("search", {fn _args -> [] end, "(query :string, limit :int) -> [{id :int}]"})
iex> tool.signature
"(query :string, limit :int) -> [{id :int}]"
Function with signature and description:
iex> {:ok, tool} = PtcRunner.Tool.new("analyze", {fn _args -> %{} end,
...> signature: "(data :map) -> {score :float}",
...> description: "Analyze data and return anomaly score"
...> })
iex> tool.description
"Analyze data and return anomaly score"
Skip validation:
iex> {:ok, tool} = PtcRunner.Tool.new("dynamic", {fn _args -> nil end, :skip})
iex> tool.signature
nil

PtcRunner.Tracer

Immutable trace recorder for SubAgent execution.
Traces are built by prepending entries for efficiency, then reversed on finalize.
Each Tracer has a unique trace_id for correlation in parallel/nested execution.
Design Goals
	Immutable traces - No shared mutable state
	Correlation IDs - Link parent and child executions
	Timestamp ordering - Reconstruct parallel timelines
	Process isolation - Each SubAgent owns its trace
	Safe aggregation - Merge traces without race conditions

Usage
tracer = Tracer.new()
tracer = Tracer.add_entry(tracer, %{type: :llm_call, data: %{turn: 1}})
tracer = Tracer.add_entry(tracer, %{type: :llm_response, data: %{tokens: 100}})
result = Tracer.finalize(tracer)
Parallel Traces
When SubAgents run in parallel via Task.async_stream, their traces are
generated concurrently. Use merge_parallel/2 to combine child traces
into a unified timeline sorted by timestamp:
parent = Tracer.new()
children = [child1, child2, child3] # finalized tracers
merged = Tracer.merge_parallel(parent, children)
usage = Tracer.aggregate_usage(merged)
Note: Step.turns is always a list of Turn structs. The merged map
structure returned by merge_parallel/2 is a separate aggregation result,
not a replacement for Step.turns.

Nested Traces
For SubAgents calling other SubAgents via tools, use record_nested_call/3:
tracer = Tracer.record_nested_call(tracer, tool_call, child_step)
Trace ID Generation
Trace IDs are 32-character hex strings generated from cryptographically
secure random bytes. No external dependencies required.

 Summary

 Types

 entry()

 A single trace entry.

 entry_type()

 Valid trace entry types.

 merged_trace()

 Aggregated trace from parallel execution.

 t()

 Tracer struct for recording execution traces.

 usage_stats()

 Aggregated usage statistics.

 Functions

 add_entry(tracer, entry)

 Adds an entry to the tracer.

 aggregate_usage(tracer)

 Aggregate usage statistics from a tracer or merged trace.

 entries(tracer)

 Returns entries in chronological order.

 finalize(tracer)

 Finalizes the tracer, reversing entries to chronological order.

 find_by_type(tracer, type)

 Returns entries matching the given type.

 llm_calls(tracer)

 Returns all entries with type :llm_call.

 merge_parallel(parent, child_tracers)

 Merge multiple traces from parallel execution.

 new(opts \\ [])

 Creates a new tracer with a unique trace ID.

 record_nested_call(tracer, tool_call, child_step)

 Record a nested SubAgent execution within a tool call.

 slowest_entries(tracer, n)

 Returns entries with duration_ms in data, sorted by duration descending.

 tool_calls(tracer)

 Returns all entries with type :tool_call.

 total_duration(tracer)

 Total duration in milliseconds from started_at to finalized_at.

 usage_summary(tracer)

 Enhanced usage summary with duration breakdown.

 Types

 entry()

 @type entry() :: %{type: entry_type(), timestamp: DateTime.t(), data: map()}

A single trace entry.
Fields:
	type: The type of event being traced
	timestamp: When the entry was recorded
	data: Additional data for this entry

 entry_type()

 @type entry_type() ::
 :llm_call
 | :llm_response
 | :tool_call
 | :tool_result
 | :program_start
 | :program_end
 | :return
 | :fail
 | :nested_call

Valid trace entry types.

 merged_trace()

 @type merged_trace() :: %{
 root_trace_id: String.t(),
 entries: [entry()],
 metadata: %{
 agent_count: non_neg_integer(),
 parallel: boolean(),
 wall_time_ms: non_neg_integer(),
 total_turns: non_neg_integer()
 }
}

Aggregated trace from parallel execution.
Returned by merge_parallel/2 - separate from Tracer.t().

 t()

 @type t() :: %PtcRunner.Tracer{
 entries: [entry()],
 finalized_at: DateTime.t() | nil,
 parent_id: String.t() | nil,
 started_at: DateTime.t(),
 trace_id: String.t()
}

Tracer struct for recording execution traces.
Fields:
	trace_id: Unique 32-character hex ID for this execution
	parent_id: Parent trace ID for nested agent calls (nil for root)
	started_at: When the tracer was created
	entries: List of trace entries (prepended for efficiency, reversed on finalize)
	finalized_at: When finalize/1 was called (nil until finalized)

 usage_stats()

 @type usage_stats() :: %{
 total_duration_ms: non_neg_integer(),
 llm_calls: non_neg_integer(),
 tool_calls: non_neg_integer(),
 total_turns: non_neg_integer(),
 agent_count: non_neg_integer()
}

Aggregated usage statistics.
Returned by aggregate_usage/1.

 Functions

 add_entry(tracer, entry)

 @spec add_entry(t(), map()) :: t()

Adds an entry to the tracer.
Entries are prepended for efficiency and reversed on finalize/1.
A timestamp is added automatically if not provided.
Raises FunctionClauseError if called on a finalized tracer.
Examples
iex> tracer = PtcRunner.Tracer.new()
iex> tracer = PtcRunner.Tracer.add_entry(tracer, %{type: :llm_call, data: %{turn: 1}})
iex> length(tracer.entries)
1
iex> hd(tracer.entries).type
:llm_call

 aggregate_usage(tracer)

 @spec aggregate_usage(t() | merged_trace()) :: usage_stats()

Aggregate usage statistics from a tracer or merged trace.
Works on both Tracer.t() and merged_trace() maps.
Examples
iex> tracer = PtcRunner.Tracer.new()
iex> tracer = PtcRunner.Tracer.add_entry(tracer, %{type: :llm_call, data: %{}})
iex> tracer = PtcRunner.Tracer.add_entry(tracer, %{type: :tool_call, data: %{}})
iex> tracer = PtcRunner.Tracer.finalize(tracer)
iex> usage = PtcRunner.Tracer.aggregate_usage(tracer)
iex> usage.llm_calls
1
iex> usage.tool_calls
1

 entries(tracer)

 @spec entries(t()) :: [entry()]

Returns entries in chronological order.
If the tracer is not finalized, entries are reversed to chronological order.
If already finalized, entries are already in chronological order.
Examples
iex> tracer = PtcRunner.Tracer.new()
iex> tracer = PtcRunner.Tracer.add_entry(tracer, %{type: :llm_call, data: %{}})
iex> tracer = PtcRunner.Tracer.add_entry(tracer, %{type: :llm_response, data: %{}})
iex> entries = PtcRunner.Tracer.entries(tracer)
iex> hd(entries).type
:llm_call

 finalize(tracer)

 @spec finalize(t()) :: t()

Finalizes the tracer, reversing entries to chronological order.
Sets the finalized_at timestamp. After finalization, add_entry/2 will
raise a FunctionClauseError.
Raises FunctionClauseError if called on an already finalized tracer.
Examples
iex> tracer = PtcRunner.Tracer.new()
iex> tracer = PtcRunner.Tracer.add_entry(tracer, %{type: :llm_call, data: %{}})
iex> tracer = PtcRunner.Tracer.add_entry(tracer, %{type: :llm_response, data: %{}})
iex> result = PtcRunner.Tracer.finalize(tracer)
iex> hd(result.entries).type
:llm_call
iex> is_struct(result.finalized_at, DateTime)
true

 find_by_type(tracer, type)

 @spec find_by_type(t(), entry_type()) :: [entry()]

Returns entries matching the given type.
Examples
iex> tracer = PtcRunner.Tracer.new()
iex> tracer = PtcRunner.Tracer.add_entry(tracer, %{type: :llm_call, data: %{turn: 1}})
iex> tracer = PtcRunner.Tracer.add_entry(tracer, %{type: :tool_call, data: %{name: "search"}})
iex> tracer = PtcRunner.Tracer.add_entry(tracer, %{type: :llm_call, data: %{turn: 2}})
iex> entries = PtcRunner.Tracer.find_by_type(tracer, :llm_call)
iex> length(entries)
2
iex> Enum.all?(entries, & &1.type == :llm_call)
true

 llm_calls(tracer)

 @spec llm_calls(t()) :: [entry()]

Returns all entries with type :llm_call.
Examples
iex> tracer = PtcRunner.Tracer.new()
iex> tracer = PtcRunner.Tracer.add_entry(tracer, %{type: :llm_call, data: %{turn: 1}})
iex> tracer = PtcRunner.Tracer.add_entry(tracer, %{type: :tool_call, data: %{name: "search"}})
iex> PtcRunner.Tracer.llm_calls(tracer) |> length()
1

 merge_parallel(parent, child_tracers)

 @spec merge_parallel(t(), [t()]) :: merged_trace()

Merge multiple traces from parallel execution.
Returns a merged trace map (not a Tracer.t()) with all entries sorted by timestamp.
The parent tracer provides the root trace ID, while child tracers provide the entries.
Examples
iex> parent = PtcRunner.Tracer.new()
iex> child1 = PtcRunner.Tracer.new(parent_id: parent.trace_id)
iex> child1 = PtcRunner.Tracer.add_entry(child1, %{type: :llm_call, data: %{turn: 1}})
iex> child1 = PtcRunner.Tracer.finalize(child1)
iex> merged = PtcRunner.Tracer.merge_parallel(parent, [child1])
iex> merged.root_trace_id == parent.trace_id
true
iex> merged.metadata.agent_count
1
iex> merged.metadata.parallel
true

 new(opts \\ [])

 @spec new(keyword()) :: t()

Creates a new tracer with a unique trace ID.
Options
	:parent_id - Parent trace ID for nested agent calls

Examples
iex> tracer = PtcRunner.Tracer.new()
iex> String.length(tracer.trace_id)
32
iex> tracer.parent_id
nil
iex> tracer.entries
[]
iex> tracer.finalized_at
nil

iex> tracer = PtcRunner.Tracer.new(parent_id: "abc123")
iex> tracer.parent_id
"abc123"

 record_nested_call(tracer, tool_call, child_step)

 @spec record_nested_call(t(), map(), map()) :: t()

Record a nested SubAgent execution within a tool call.
Adds a :nested_call entry with the tool call and child step's return value and turns.
Examples
iex> tracer = PtcRunner.Tracer.new()
iex> tool_call = %{name: "sub_agent", args: %{mission: "test"}}
iex> child_step = %{return: "result", turns: [%{turn: 1}]}
iex> tracer = PtcRunner.Tracer.record_nested_call(tracer, tool_call, child_step)
iex> [entry] = PtcRunner.Tracer.entries(tracer)
iex> entry.type
:nested_call
iex> entry.data.result.return
"result"

 slowest_entries(tracer, n)

 @spec slowest_entries(t(), non_neg_integer()) :: [entry()]

Returns entries with duration_ms in data, sorted by duration descending.
Only includes entries that have a :duration_ms key in their data map.
Examples
iex> tracer = PtcRunner.Tracer.new()
iex> tracer = PtcRunner.Tracer.add_entry(tracer, %{type: :llm_call, data: %{duration_ms: 100}})
iex> tracer = PtcRunner.Tracer.add_entry(tracer, %{type: :tool_call, data: %{duration_ms: 50}})
iex> tracer = PtcRunner.Tracer.add_entry(tracer, %{type: :llm_call, data: %{duration_ms: 200}})
iex> [slowest | _] = PtcRunner.Tracer.slowest_entries(tracer, 1)
iex> slowest.data.duration_ms
200

 tool_calls(tracer)

 @spec tool_calls(t()) :: [entry()]

Returns all entries with type :tool_call.
Examples
iex> tracer = PtcRunner.Tracer.new()
iex> tracer = PtcRunner.Tracer.add_entry(tracer, %{type: :llm_call, data: %{turn: 1}})
iex> tracer = PtcRunner.Tracer.add_entry(tracer, %{type: :tool_call, data: %{name: "search"}})
iex> PtcRunner.Tracer.tool_calls(tracer) |> length()
1

 total_duration(tracer)

 @spec total_duration(t()) :: non_neg_integer()

Total duration in milliseconds from started_at to finalized_at.
Returns 0 if the tracer is not finalized or timestamps are nil.
Examples
iex> tracer = %PtcRunner.Tracer{
...> trace_id: "test",
...> parent_id: nil,
...> started_at: ~U[2024-01-15 10:00:00Z],
...> entries: [],
...> finalized_at: ~U[2024-01-15 10:00:02Z]
...> }
iex> PtcRunner.Tracer.total_duration(tracer)
2000

iex> tracer = PtcRunner.Tracer.new()
iex> PtcRunner.Tracer.total_duration(tracer)
0

 usage_summary(tracer)

 @spec usage_summary(t()) :: map()

Enhanced usage summary with duration breakdown.
Includes total duration, LLM and tool call durations (summed from entries with
duration_ms in their data), and counts.
Examples
iex> tracer = PtcRunner.Tracer.new()
iex> tracer = PtcRunner.Tracer.add_entry(tracer, %{type: :llm_call, data: %{duration_ms: 100}})
iex> tracer = PtcRunner.Tracer.add_entry(tracer, %{type: :tool_call, data: %{duration_ms: 50}})
iex> tracer = PtcRunner.Tracer.finalize(tracer)
iex> summary = PtcRunner.Tracer.usage_summary(tracer)
iex> summary.llm_duration_ms
100
iex> summary.tool_duration_ms
50
iex> summary.llm_call_count
1
iex> summary.tool_call_count
1

PtcRunner.Tracer.Timeline

Text-based timeline visualization for execution traces.
Renders traces as ASCII timelines showing relative timing of events.
Each entry is displayed as a bar proportional to its duration within
the total execution time.
Example
iex> tracer = PtcRunner.Tracer.new()
iex> tracer = PtcRunner.Tracer.add_entry(tracer, %{type: :llm_call, data: %{duration_ms: 150}})
iex> tracer = PtcRunner.Tracer.add_entry(tracer, %{type: :tool_call, data: %{duration_ms: 30}})
iex> tracer = PtcRunner.Tracer.finalize(tracer)
iex> output = PtcRunner.Tracer.Timeline.render(tracer)
iex> output =~ "Timeline:"
true
Note: Entries should have duration_ms in their data map for accurate
bar rendering. Entries without duration default to 1ms for display.

 Summary

 Functions

 render(tracer)

 Render a timeline visualization as a string.

 Functions

 render(tracer)

 @spec render(PtcRunner.Tracer.t()) :: String.t()

Render a timeline visualization as a string.
Examples
iex> tracer = PtcRunner.Tracer.new() |> PtcRunner.Tracer.finalize()
iex> output = PtcRunner.Tracer.Timeline.render(tracer)
iex> output =~ "no entries"
true

PtcRunner.Turn

Captures a single LLM interaction cycle in a SubAgent execution.
Each turn represents one complete cycle: LLM generates program → program executes → results captured.
Turns are immutable snapshots; once created, they are never modified.
Fields
	number - Turn sequence number (1-indexed)
	raw_response - Full LLM output including reasoning (always captured per ARC-010)
	program - Parsed PTC-Lisp program, or nil if parsing failed
	result - Execution result value
	prints - Captured println output
	tool_calls - Tool invocations made during this turn
	memory - Accumulated definitions after this turn
	success? - Whether the turn succeeded
	messages - Messages sent to the LLM for this turn (for debugging/verification)

Constructors
Use success/7 or failure/7 to create turns - don't construct the struct directly.
The constructors ensure success? is set correctly.

 Summary

 Types

 message()

 A message sent to the LLM.

 t()

 Turn struct capturing one LLM interaction cycle.

 tool_call()

 A single tool invocation during a turn.

 Functions

 failure(number, raw_response, program, error, prints, tool_calls, memory, messages \\ nil)

 Creates a failed turn.

 success(number, raw_response, program, result, prints, tool_calls, memory, messages \\ nil)

 Creates a successful turn.

 Types

 message()

 @type message() :: %{role: :system | :user | :assistant, content: String.t()}

A message sent to the LLM.
Fields:
	role: Message role (:system, :user, or :assistant)
	content: Message content

 t()

 @type t() :: %PtcRunner.Turn{
 memory: map(),
 messages: [message()] | nil,
 number: pos_integer(),
 prints: [String.t()],
 program: String.t() | nil,
 raw_response: String.t(),
 result: term(),
 success?: boolean(),
 tool_calls: [tool_call()]
}

Turn struct capturing one LLM interaction cycle.
One of success? will be true or false:
	Success: Turn executed without errors
	Failure: Turn encountered an error (result contains error info)

 tool_call()

 @type tool_call() :: %{name: String.t(), args: map(), result: term()}

A single tool invocation during a turn.
Fields:
	name: Tool name that was called
	args: Arguments passed to the tool
	result: Value returned by the tool

 Functions

 failure(number, raw_response, program, error, prints, tool_calls, memory, messages \\ nil)

 @spec failure(
 pos_integer(),
 String.t(),
 String.t() | nil,
 term(),
 [String.t()],
 [tool_call()],
 map(),
 [message()] | nil
) :: t()

Creates a failed turn.
The error parameter contains error information (typically a map with :reason and :message).
Examples
iex> turn = PtcRunner.Turn.failure(2, "```ptc-lisp\n(/ 1 0)\n```", "(/ 1 0)", %{reason: :eval_error, message: "division by zero"}, [], [], %{x: 10})
iex> turn.success?
false
iex> turn.result
%{reason: :eval_error, message: "division by zero"}
iex> turn.memory
%{x: 10}

 success(number, raw_response, program, result, prints, tool_calls, memory, messages \\ nil)

 @spec success(
 pos_integer(),
 String.t(),
 String.t() | nil,
 term(),
 [String.t()],
 [tool_call()],
 map(),
 [message()] | nil
) :: t()

Creates a successful turn.
Examples
iex> turn = PtcRunner.Turn.success(1, "```ptc-lisp\n(+ 1 2)\n```", "(+ 1 2)", 3, [], [], %{})
iex> turn.success?
true
iex> turn.number
1
iex> turn.result
3

PtcRunner.Lisp.ExecutionError exception

Exception used to signal execution errors during Lisp evaluation.
This exception is used internally by the tool_executor and ToolNormalizer
to propagate structured errors (like unknown tools or tool failures)
out of the evaluation loop and into the Step failure result.

PtcRunner.SubAgentError exception

Exception raised by SubAgent.run!/2 and SubAgent.then!/2 when execution fails.
Contains the failed Step for inspection and debugging.
Fields
	message: Human-readable error description
	step: The Step struct containing failure details

Example
try do
 SubAgent.run!(agent, llm: llm)
rescue
 e in SubAgentError ->
 IO.inspect(e.step.fail.reason)
 IO.inspect(e.step.fail.message)
end

PtcRunner.ToolExecutionError exception

Exception raised when a tool execution fails.
Carries the eval context so that tool calls can be properly recorded in traces
even when the tool fails.
Fields
	message: Error message from the tool
	eval_ctx: The evaluation context at time of failure (contains recorded tool_calls)
	tool_name: Name of the tool that failed

mix ptc.install_babashka

Installs Babashka for Clojure validation.
Downloads the appropriate binary for your OS/architecture
and places it in _build/tools/bb.
Usage
mix ptc.install_babashka
mix ptc.install_babashka --force # Reinstall even if present
mix ptc.install_babashka --version 1.4.192 # Specific version
Supported Platforms
	macOS (Apple Silicon and Intel)
	Linux (x86_64)

What This Does
	Detects your OS and architecture
	Downloads the appropriate Babashka binary from GitHub releases
	Extracts and places it at _build/tools/bb
	Makes the binary executable
	Verifies the installation

mix ptc.repl

Starts an interactive REPL for testing PTC-Lisp expressions.
Usage
mix ptc.repl # Interactive REPL (default)
mix ptc.repl -l prelude.clj # Load file, then interactive
mix ptc.repl -e "(+ 1 2)" # Eval and print result
mix ptc.repl -e "(def x 1)" -e "(* x 2)" # Chain evals (memory persists)
mix ptc.repl script.clj # Run script file
mix ptc.repl - # Run from stdin
Options
	-e, --eval - Evaluate expression and print result (can be repeated)
	-l, --load - Load file before entering interactive mode
	-h, --help - Print this help

Features
	Evaluate PTC-Lisp expressions interactively
	Multi-line input: continues prompting until parens are balanced
	Turn history: *1, *2, *3 reference last 3 results
	Memory persists between evaluations
	Exit with Ctrl+D

Example Session
ptc> (+ 1 2)
3
ptc> (* *1 10)
30
ptc> {:sum *1, :product *2}
%{sum: 30, product: 30}

mix ptc.smoke

Runs .clj files through both PTC-Lisp and Babashka/Clojure, comparing results.
Usage
mix ptc.smoke # Run all smoke tests (using Babashka)
mix ptc.smoke --clj # Use Clojure CLI instead of Babashka
mix ptc.smoke --verbose # Show detailed output
Test Files
Place .clj files in test/smoke/. Each file should be valid in both
PTC-Lisp and Clojure/Babashka (avoid PTC-specific features like memory/,
tool/, data/, call).
Output Normalization
Results are normalized before comparison to handle expected differences:
	Map key ordering (PTC-Lisp sorts alphabetically)
	Vectors vs lists (both treated as sequences)
	Boolean map keys (:true/:false vs true/false)

Exit Codes
	0: All tests passed
	1: Some tests failed
	2: Setup error (Babashka/Clojure not found, etc.)

mix ptc.update_spec_checksums

Regenerates the spec checksums file for drift detection.
Reads the current PTC-Lisp specification and generates hashes for each section,
storing them in test/spec_cases/checksums.exs.
Usage
mix ptc.update_spec_checksums
Output
Updates test/spec_cases/checksums.exs with current section hashes.

mix ptc.validate_spec

Validates PTC-Lisp specification against implementation.
Extracts examples from the specification and runs them through the PTC-Lisp
interpreter to detect drift between specification and implementation.
Usage
mix ptc.validate_spec
mix ptc.validate_spec --clojure
Options
	--clojure - Compare results with Babashka/Clojure (requires Babashka installed)

Output
Displays:
	Examples grouped by specification section
	Validation results (passed/failed)
	Warnings for section hash mismatches
	Optional Clojure comparison results

Exit Codes
	0: All examples passed
	1: Some examples failed
	2: Could not load or validate specification

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

