

 PushX

 v0.5.0

 Table of contents

 	PushX

 	Changelog

 	LICENSE

 	
 Modules

 	PushX

 	PushX.APNS

 	PushX.Config

 	PushX.FCM

 	PushX.Message

 	PushX.RateLimiter

 	PushX.Response

 	PushX.Retry

 	PushX.Telemetry

 	PushX.Token

PushX

Modern push notifications for Elixir.
PushX provides a simple, unified API for sending push notifications
to iOS (APNS) and Android (FCM) devices using HTTP/2 connections.
Features
	HTTP/2 connections via Finch (Mint-based)
	JWT authentication for APNS with automatic caching
	OAuth2 authentication for FCM via Goth
	Unified API with direct provider access
	Structured response handling
	Batch sending with configurable concurrency
	Token validation
	Client-side rate limiting

Quick Start
Send to iOS
PushX.push(:apns, device_token, "Hello World", topic: "com.example.app")

Send to Android
PushX.push(:fcm, device_token, "Hello World")

With title and body
PushX.push(:apns, token, %{title: "New Message", body: "You have a notification"}, topic: "...")

Batch send to multiple devices
results = PushX.push_batch(:fcm, tokens, "Hello Everyone!")
Configuration
config :pushx,
 # APNS (Apple)
 apns_key_id: "ABC123DEFG",
 apns_team_id: "TEAM123456",
 apns_private_key: {:file, "priv/keys/AuthKey.p8"},
 apns_mode: :prod,

 # FCM (Firebase)
 fcm_project_id: "my-project-id",
 fcm_credentials: {:file, "priv/keys/firebase.json"},

 # Batch sending
 batch_concurrency: 50,

 # Rate limiting (optional)
 rate_limit_enabled: false,
 rate_limit_apns: 5000,
 rate_limit_fcm: 5000
Direct Provider Access
For more control, use the provider modules directly:
APNS
PushX.APNS.send(token, payload, topic: "com.app.bundle", mode: :sandbox)

FCM
PushX.FCM.send(token, payload, data: %{"key" => "value"})

 Summary

 Types

 message()

 option()

 provider()

 token()

 Functions

 check_rate_limit(provider)

 Checks if a request can be made within rate limits.

 message()

 Creates a new message using the builder pattern.

 message(title, body)

 Creates a new message with title and body.

 push(provider, device_token, message, opts \\ [])

 Sends a push notification to a device.

 push!(provider, device_token, message, opts \\ [])

 Sends a push notification and returns only :ok or :error.

 push_batch(provider, device_tokens, message, opts \\ [])

 Sends a push notification to multiple devices concurrently.

 push_batch!(provider, device_tokens, message, opts \\ [])

 Sends a push notification to multiple devices and returns success count.

 valid_token?(provider, token)

 Returns true if the token format is valid.

 validate_token(provider, token)

 Validates a device token format.

 Types

 message()

 @type message() :: String.t() | map() | PushX.Message.t()

 option()

 @type option() :: PushX.APNS.option() | PushX.FCM.option()

 provider()

 @type provider() :: :apns | :fcm

 token()

 @type token() :: String.t()

 Functions

 check_rate_limit(provider)

 @spec check_rate_limit(provider()) :: :ok | {:error, :rate_limited}

Checks if a request can be made within rate limits.
Delegates to PushX.RateLimiter.check/1.
Only applies when rate limiting is enabled in config.

 message()

 @spec message() :: PushX.Message.t()

Creates a new message using the builder pattern.
Alias for PushX.Message.new/0.
Examples
message = PushX.message()
 |> PushX.Message.title("Hello")
 |> PushX.Message.body("World")

 message(title, body)

 @spec message(String.t(), String.t()) :: PushX.Message.t()

Creates a new message with title and body.
Alias for PushX.Message.new/2.
Examples
message = PushX.message("Hello", "World")

 push(provider, device_token, message, opts \\ [])

 @spec push(provider(), token(), message(), [option()]) ::
 {:ok, PushX.Response.t()} | {:error, PushX.Response.t()}

Sends a push notification to a device.
Arguments
	provider - :apns for iOS or :fcm for Android
	device_token - The device's push token
	message - A string, map, or PushX.Message struct
	opts - Provider-specific options

Options
APNS Options
	:topic - Bundle ID (required for APNS)
	:mode - :prod or :sandbox (default: from config)
	:push_type - "alert", "background", "voip" (default: "alert")
	:priority - 5 or 10 (default: 10)

FCM Options
	:project_id - Firebase project ID (default: from config)
	:data - Custom data payload map

Examples
Simple string message
PushX.push(:apns, token, "Hello!", topic: "com.example.app")

Map with title and body
PushX.push(:fcm, token, %{title: "Alert", body: "Something happened"})

Using Message struct
message = PushX.Message.new()
 |> PushX.Message.title("Order Update")
 |> PushX.Message.body("Your order has been shipped!")
 |> PushX.Message.badge(1)

PushX.push(:apns, token, message, topic: "com.example.app")
Returns
{:ok, %PushX.Response{provider: :apns, status: :sent, id: "..."}}
{:error, %PushX.Response{provider: :apns, status: :invalid_token, reason: "BadDeviceToken"}}

 push!(provider, device_token, message, opts \\ [])

 @spec push!(provider(), token(), message(), [option()]) :: :ok | :error

Sends a push notification and returns only :ok or :error.
Useful when you don't need the full response details.
Examples
case PushX.push!(:apns, token, "Hello", topic: "com.app") do
 :ok -> Logger.info("Sent!")
 :error -> Logger.warning("Failed")
end

 push_batch(provider, device_tokens, message, opts \\ [])

 @spec push_batch(provider(), [token()], message(), [option()]) :: [
 {token(), {:ok, PushX.Response.t()} | {:error, PushX.Response.t()}}
]

Sends a push notification to multiple devices concurrently.
Uses Task.async_stream for parallel sending with configurable concurrency.
Each result contains the token and the response.
Arguments
	provider - :apns for iOS or :fcm for Android
	device_tokens - List of device tokens
	message - A string, map, or PushX.Message struct
	opts - Provider-specific options plus:	:concurrency - Max concurrent requests (default: 50)
	:timeout - Timeout per request in ms (default: 30_000)
	:validate_tokens - Validate tokens before sending (default: false)

Examples
Send to multiple iOS devices
results = PushX.push_batch(:apns, tokens, "Hello!", topic: "com.example.app")

Process results
Enum.each(results, fn
 {token, {:ok, response}} ->
 Logger.info("Sent to #{token}: #{response.id}")

 {token, {:error, response}} ->
 if PushX.Response.should_remove_token?(response) do
 MyApp.Tokens.delete(token)
 end
end)

With higher concurrency
PushX.push_batch(:fcm, tokens, "Alert!", concurrency: 100)
Returns
A list of {token, result} tuples where result is {:ok, Response.t()} or {:error, Response.t()}.

 push_batch!(provider, device_tokens, message, opts \\ [])

 @spec push_batch!(provider(), [token()], message(), [option()]) :: %{
 success: non_neg_integer(),
 failure: non_neg_integer(),
 total: non_neg_integer()
}

Sends a push notification to multiple devices and returns success count.
Simplified version of push_batch/4 that returns aggregate results.
Returns
A map with :success, :failure, and :total counts.
Examples
%{success: 95, failure: 5, total: 100} =
 PushX.push_batch!(:fcm, tokens, "Hello!")

 valid_token?(provider, token)

 @spec valid_token?(provider(), token()) :: boolean()

Returns true if the token format is valid.
Delegates to PushX.Token.valid?/2.

 validate_token(provider, token)

 @spec validate_token(provider(), token()) ::
 :ok | {:error, PushX.Token.validation_error()}

Validates a device token format.
Delegates to PushX.Token.validate/2.
Examples
:ok = PushX.validate_token(:apns, valid_token)
{:error, :invalid_length} = PushX.validate_token(:apns, "too-short")

PushX.APNS

Apple Push Notification Service (APNS) client.
Sends push notifications to iOS, macOS, watchOS, tvOS devices, and Safari
using HTTP/2 and JWT-based authentication.
Configuration
Add to your config:
config :pushx,
 apns_key_id: "ABC123DEFG",
 apns_team_id: "TEAM123456",
 apns_private_key: {:file, "priv/keys/AuthKey.p8"},
 apns_mode: :prod # or :sandbox
Usage
Simple notification
PushX.APNS.send(device_token, %{
 "aps" => %{
 "alert" => %{"title" => "Hello", "body" => "World"},
 "sound" => "default"
 }
}, topic: "com.example.app")

Using Message struct
message = PushX.Message.new("Hello", "World")
PushX.APNS.send(device_token, message, topic: "com.example.app")
Safari Web Push
Safari uses APNS for web push notifications. The token format is the same
as iOS (64 hex characters), but the topic uses a web. prefix:
Safari web push
PushX.APNS.send(safari_token, payload, topic: "web.com.example.website")

Using web notification helper
payload = PushX.APNS.web_notification("Title", "Body", "https://example.com/page")
PushX.APNS.send(safari_token, payload, topic: "web.com.example.website")

 Summary

 Types

 option()

 payload()

 token()

 Functions

 notification(title, body, badge \\ nil)

 Creates a simple notification payload.

 notification_with_data(title, body, data, badge \\ nil)

 Creates a notification with custom data.

 send(device_token, payload, opts \\ [])

 Sends a push notification to an iOS device with automatic retry.

 send_batch(device_tokens, payload, opts \\ [])

 Sends notifications to multiple devices concurrently.

 send_once(device_token, payload, opts \\ [])

 Sends a push notification without retry.

 silent_notification(data \\ %{})

 Creates a silent/background notification.

 web_notification(title, body, url \\ nil, opts \\ [])

 Creates a Safari web push notification payload.

 web_notification_with_data(title, body, url, data, opts \\ [])

 Creates a Safari web push notification with custom data.

 Types

 option()

 @type option() ::
 {:topic, String.t()}
 | {:mode, :prod | :sandbox}
 | {:push_type, String.t()}
 | {:priority, 5 | 10}
 | {:expiration, non_neg_integer()}
 | {:collapse_id, String.t()}

 payload()

 @type payload() :: map() | PushX.Message.t()

 token()

 @type token() :: String.t()

 Functions

 notification(title, body, badge \\ nil)

 @spec notification(String.t(), String.t(), non_neg_integer() | nil) :: map()

Creates a simple notification payload.
Examples
iex> PushX.APNS.notification("Hello", "World")
%{"aps" => %{"alert" => %{"title" => "Hello", "body" => "World"}, "sound" => "default"}}

 notification_with_data(title, body, data, badge \\ nil)

 @spec notification_with_data(String.t(), String.t(), map(), non_neg_integer() | nil) ::
 map()

Creates a notification with custom data.

 send(device_token, payload, opts \\ [])

 @spec send(token(), payload(), [option()]) ::
 {:ok, PushX.Response.t()} | {:error, PushX.Response.t()}

Sends a push notification to an iOS device with automatic retry.
Uses exponential backoff for transient failures following Apple's best practices.
Permanent failures (bad token, payload too large) are not retried.
Options
	:topic - Bundle ID (required)
	:mode - :prod or :sandbox (default: from config)
	:push_type - "alert", "background", "voip", etc. (default: "alert")
	:priority - 5 or 10 (default: 10)
	:expiration - Unix timestamp when notification expires
	:collapse_id - Group notifications with the same ID
	:retry - Enable/disable retry (default: true from config)

Returns
	{:ok, %PushX.Response{}} on success
	{:error, %PushX.Response{}} on failure

 send_batch(device_tokens, payload, opts \\ [])

 @spec send_batch([token()], payload(), [option()]) :: [
 {token(), {:ok, PushX.Response.t()} | {:error, PushX.Response.t()}}
]

Sends notifications to multiple devices concurrently.
Options
All standard options plus:
	:concurrency - Max concurrent requests (default: 50)
	:timeout - Timeout per request in ms (default: 30_000)

Returns
A list of {token, result} tuples.

 send_once(device_token, payload, opts \\ [])

 @spec send_once(token(), payload(), [option()]) ::
 {:ok, PushX.Response.t()} | {:error, PushX.Response.t()}

Sends a push notification without retry.
Use this when you want to handle retries yourself or for testing.

 silent_notification(data \\ %{})

 @spec silent_notification(map()) :: map()

Creates a silent/background notification.

 web_notification(title, body, url \\ nil, opts \\ [])

 @spec web_notification(String.t(), String.t(), String.t() | nil, keyword()) :: map()

Creates a Safari web push notification payload.
Safari web push uses APNS with a slightly different payload format.
The url-args field is used to pass URL arguments to the notification action.
Arguments
	title - Notification title
	body - Notification body
	url - URL to open when clicked (or URL arguments for Safari)
	opts - Optional keyword list:	:action - Action button label (default: "View")
	:url_args - List of URL arguments (overrides url parsing)

Examples
Simple web notification
PushX.APNS.web_notification("New Article", "Check out our latest post", "https://example.com/article/123")

With custom action
PushX.APNS.web_notification("Sale!", "50% off today", "https://shop.com", action: "Shop Now")

With explicit URL args
PushX.APNS.web_notification("Update", "New feature available", nil, url_args: ["features", "v2"])

 web_notification_with_data(title, body, url, data, opts \\ [])

 @spec web_notification_with_data(
 String.t(),
 String.t(),
 String.t() | nil,
 map(),
 keyword()
) :: map()

Creates a Safari web push notification with custom data.
Examples
PushX.APNS.web_notification_with_data(
 "Order Shipped",
 "Your order #123 is on its way",
 "https://example.com/orders/123",
 %{"order_id" => "123"}
)

PushX.Config

Configuration management for PushX.
Configuration Options
APNS (Apple Push Notification Service)
	:apns_key_id - The Key ID from Apple Developer Portal
	:apns_team_id - Your Apple Developer Team ID
	:apns_private_key - The private key, either:	A raw PEM string
	{:file, "/path/to/AuthKey.p8"}
	{:system, "ENV_VAR_NAME"}

	:apns_mode - :prod or :sandbox (default: :prod)

FCM (Firebase Cloud Messaging)
	:fcm_project_id - Your Firebase project ID
	:fcm_credentials - Service account credentials, either:	{:file, "/path/to/service-account.json"}
	{:json, "...json string..."}
	{:system, "ENV_VAR_NAME"} (expects JSON string)

Finch Pool
	:finch_name - Name of the Finch pool (default: PushX.Finch)
	:finch_pool_size - Pool size per connection (default: 10)
	:finch_pool_count - Number of pools (default: 1)

Retry Settings
	:retry_enabled - Enable automatic retry (default: true)
	:retry_max_attempts - Maximum retry attempts (default: 3)
	:retry_base_delay_ms - Base delay in milliseconds (default: 10_000)
	:retry_max_delay_ms - Maximum delay in milliseconds (default: 60_000)

Example Configuration
config :pushx,
 apns_key_id: "ABC123DEFG",
 apns_team_id: "TEAM123456",
 apns_private_key: {:file, "priv/keys/AuthKey.p8"},
 apns_mode: :prod,
 fcm_project_id: "my-project-id",
 fcm_credentials: {:file, "priv/keys/firebase.json"}

 Summary

 Functions

 apns_configured?()

 Checks if APNS is configured.

 apns_key_id()

 Gets the APNS Key ID.

 apns_mode()

 Gets the APNS mode (:prod or :sandbox).

 apns_private_key()

 Gets the APNS private key content.
Supports file paths, environment variables, and raw strings.

 apns_team_id()

 Gets the APNS Team ID.

 fcm_configured?()

 Checks if FCM is configured.

 fcm_credentials()

 Gets the FCM credentials for Goth.
Returns a map suitable for Goth configuration.

 fcm_project_id()

 Gets the FCM project ID.

 finch_name()

 Gets the Finch pool name.

 finch_pool_count()

 Gets the Finch pool count.

 finch_pool_size()

 Gets the Finch pool size.

 get(key, default \\ nil)

 Gets a configuration value.

 get!(key)

 Gets a required configuration value.
Raises if the value is not configured.

 retry_base_delay_ms()

 Gets the base delay for exponential backoff in milliseconds.
Default: 10 seconds (Google's recommended minimum).

 retry_enabled?()

 Checks if retry is enabled.

 retry_max_attempts()

 Gets the maximum number of retry attempts.

 retry_max_delay_ms()

 Gets the maximum delay for exponential backoff in milliseconds.
Default: 60 seconds.

 Functions

 apns_configured?()

 @spec apns_configured?() :: boolean()

Checks if APNS is configured.

 apns_key_id()

 @spec apns_key_id() :: String.t()

Gets the APNS Key ID.

 apns_mode()

 @spec apns_mode() :: :prod | :sandbox

Gets the APNS mode (:prod or :sandbox).

 apns_private_key()

 @spec apns_private_key() :: String.t()

Gets the APNS private key content.
Supports file paths, environment variables, and raw strings.

 apns_team_id()

 @spec apns_team_id() :: String.t()

Gets the APNS Team ID.

 fcm_configured?()

 @spec fcm_configured?() :: boolean()

Checks if FCM is configured.

 fcm_credentials()

 @spec fcm_credentials() :: map() | {:file, String.t()}

Gets the FCM credentials for Goth.
Returns a map suitable for Goth configuration.

 fcm_project_id()

 @spec fcm_project_id() :: String.t()

Gets the FCM project ID.

 finch_name()

 @spec finch_name() :: atom()

Gets the Finch pool name.

 finch_pool_count()

 @spec finch_pool_count() :: pos_integer()

Gets the Finch pool count.

 finch_pool_size()

 @spec finch_pool_size() :: pos_integer()

Gets the Finch pool size.

 get(key, default \\ nil)

 @spec get(atom(), any()) :: any()

Gets a configuration value.

 get!(key)

 @spec get!(atom()) :: any()

Gets a required configuration value.
Raises if the value is not configured.

 retry_base_delay_ms()

 @spec retry_base_delay_ms() :: pos_integer()

Gets the base delay for exponential backoff in milliseconds.
Default: 10 seconds (Google's recommended minimum).

 retry_enabled?()

 @spec retry_enabled?() :: boolean()

Checks if retry is enabled.

 retry_max_attempts()

 @spec retry_max_attempts() :: pos_integer()

Gets the maximum number of retry attempts.

 retry_max_delay_ms()

 @spec retry_max_delay_ms() :: pos_integer()

Gets the maximum delay for exponential backoff in milliseconds.
Default: 60 seconds.

PushX.FCM

Firebase Cloud Messaging (FCM) client.
Sends push notifications to Android devices and web browsers using the FCM v1 API
with OAuth2 authentication via Goth.
Configuration
Add to your config:
config :pushx,
 fcm_project_id: "my-project-id",
 fcm_credentials: {:file, "priv/keys/firebase-service-account.json"}
Usage
Simple notification
PushX.FCM.send(device_token, %{
 "notification" => %{
 "title" => "Hello",
 "body" => "World"
 }
})

Using Message struct
message = PushX.Message.new("Hello", "World")
PushX.FCM.send(device_token, message)

With custom data
PushX.FCM.send(device_token, notification, data: %{"key" => "value"})
Web Push (Chrome, Firefox, Edge)
FCM supports web push using the same API. Web tokens come from the browser's
Firebase Messaging SDK (firebase.messaging().getToken()).
Web push with click action
PushX.FCM.send(web_token, payload,
 webpush: %{
 "fcm_options" => %{"link" => "https://example.com/page"}
 }
)

Using web notification helper
payload = PushX.FCM.web_notification("Title", "Body", "https://example.com")
PushX.FCM.send(web_token, payload)

 Summary

 Types

 option()

 payload()

 token()

 Functions

 notification(title, body, opts \\ [])

 Creates a simple notification payload.

 send(device_token, payload, opts \\ [])

 Sends a push notification to an Android device with automatic retry.

 send_batch(device_tokens, payload, opts \\ [])

 Sends notifications to multiple devices concurrently.

 send_data(device_token, data, opts \\ [])

 Sends a data-only message (no visible notification) with automatic retry.

 send_data_once(device_token, data, opts \\ [])

 Sends a data-only message without retry.

 send_once(device_token, payload, opts \\ [])

 Sends a push notification without retry.

 send_web(device_token, title, body, link, opts \\ [])

 Sends a web push notification with automatic retry.

 web_notification(title, body, link, opts \\ [])

 Creates a web push notification payload with click action.

 Types

 option()

 @type option() ::
 {:project_id, String.t()}
 | {:data, map()}
 | {:android, map()}
 | {:apns, map()}
 | {:webpush, map()}

 payload()

 @type payload() :: map() | PushX.Message.t()

 token()

 @type token() :: String.t()

 Functions

 notification(title, body, opts \\ [])

 @spec notification(String.t(), String.t(), keyword()) :: map()

Creates a simple notification payload.
Examples
iex> PushX.FCM.notification("Hello", "World")
%{"title" => "Hello", "body" => "World"}

 send(device_token, payload, opts \\ [])

 @spec send(token(), payload(), [option()]) ::
 {:ok, PushX.Response.t()} | {:error, PushX.Response.t()}

Sends a push notification to an Android device with automatic retry.
Uses exponential backoff for transient failures following Google's best practices.
Permanent failures (bad token, invalid argument) are not retried.
Options
	:project_id - Firebase project ID (default: from config)
	:data - Custom data payload map
	:android - Android-specific configuration
	:apns - APNS configuration (for iOS via FCM)
	:webpush - Web push configuration

Returns
	{:ok, %PushX.Response{}} on success
	{:error, %PushX.Response{}} on failure

 send_batch(device_tokens, payload, opts \\ [])

 @spec send_batch([token()], payload(), [option()]) :: [
 {token(), {:ok, PushX.Response.t()} | {:error, PushX.Response.t()}}
]

Sends notifications to multiple devices concurrently.
Options
All standard options plus:
	:concurrency - Max concurrent requests (default: 50)
	:timeout - Timeout per request in ms (default: 30_000)

Returns
A list of {token, result} tuples.

 send_data(device_token, data, opts \\ [])

 @spec send_data(token(), map(), [option()]) ::
 {:ok, PushX.Response.t()} | {:error, PushX.Response.t()}

Sends a data-only message (no visible notification) with automatic retry.

 send_data_once(device_token, data, opts \\ [])

 @spec send_data_once(token(), map(), [option()]) ::
 {:ok, PushX.Response.t()} | {:error, PushX.Response.t()}

Sends a data-only message without retry.

 send_once(device_token, payload, opts \\ [])

 @spec send_once(token(), payload(), [option()]) ::
 {:ok, PushX.Response.t()} | {:error, PushX.Response.t()}

Sends a push notification without retry.
Use this when you want to handle retries yourself or for testing.

 send_web(device_token, title, body, link, opts \\ [])

 @spec send_web(token(), String.t(), String.t(), String.t(), keyword()) ::
 {:ok, PushX.Response.t()} | {:error, PushX.Response.t()}

Sends a web push notification with automatic retry.
Convenience function that combines web_notification/4 with send/3.
Examples
PushX.FCM.send_web(web_token, "Hello", "World", "https://example.com")

With options
PushX.FCM.send_web(web_token, "Alert", "Check this out",
 "https://example.com/page",
 icon: "https://example.com/icon.png"
)

 web_notification(title, body, link, opts \\ [])

 @spec web_notification(String.t(), String.t(), String.t(), keyword()) :: map()

Creates a web push notification payload with click action.
This helper creates a notification optimized for web browsers (Chrome, Firefox, Edge).
The link option specifies the URL to open when the notification is clicked.
Arguments
	title - Notification title
	body - Notification body
	link - URL to open when clicked
	opts - Optional keyword list:	:icon - Icon URL for the notification
	:image - Large image URL
	:badge - Badge icon URL (small monochrome icon)
	:tag - Tag for notification grouping
	:renotify - Whether to alert again for same tag (default: false)
	:require_interaction - Keep notification until user interacts (default: false)

Examples
Simple web notification
PushX.FCM.web_notification("New Message", "You have a new message", "https://example.com/messages")

With icon and badge
PushX.FCM.web_notification("Sale!", "50% off today",
 "https://shop.com",
 icon: "https://shop.com/icon.png",
 badge: "https://shop.com/badge.png"
)

PushX.Message

A struct representing a push notification message.
Provides a builder API for constructing notifications with title, body,
badge, sound, and custom data.
Examples
Simple message
message = PushX.Message.new("Hello", "World")

Builder pattern
message = PushX.Message.new()
 |> PushX.Message.title("Order Update")
 |> PushX.Message.body("Your order has been shipped!")
 |> PushX.Message.badge(1)
 |> PushX.Message.sound("default")
 |> PushX.Message.data(%{order_id: "12345"})

 Summary

 Types

 t()

 Functions

 badge(message, badge)

 Sets the badge count (iOS).

 body(message, body)

 Sets the body of the message.

 category(message, category)

 Sets the notification category (iOS).

 collapse_key(message, key)

 Sets the collapse key for message deduplication.

 data(message, data)

 Sets custom data payload.

 image(message, image_url)

 Sets the image URL for rich notifications.

 new()

 Creates a new empty message.

 new(title, body)

 Creates a new message with title and body.

 priority(message, priority)

 Sets the priority (:high or :normal).

 put_data(message, key, value)

 Adds a key-value pair to the data payload.

 sound(message, sound)

 Sets the notification sound.

 thread_id(message, thread_id)

 Sets the thread ID for notification grouping (iOS).

 title(message, title)

 Sets the title of the message.

 to_apns_payload(message)

 Converts the message to an APNS payload map.

 to_fcm_payload(message)

 Converts the message to an FCM payload map.

 ttl(message, ttl)

 Sets the TTL (time to live) in seconds.

 Types

 t()

 @type t() :: %PushX.Message{
 badge: non_neg_integer() | nil,
 body: String.t() | nil,
 category: String.t() | nil,
 collapse_key: String.t() | nil,
 data: map(),
 image: String.t() | nil,
 priority: :high | :normal,
 sound: String.t() | nil,
 thread_id: String.t() | nil,
 title: String.t() | nil,
 ttl: non_neg_integer() | nil
}

 Functions

 badge(message, badge)

 @spec badge(t(), non_neg_integer()) :: t()

Sets the badge count (iOS).

 body(message, body)

 @spec body(t(), String.t()) :: t()

Sets the body of the message.

 category(message, category)

 @spec category(t(), String.t()) :: t()

Sets the notification category (iOS).

 collapse_key(message, key)

 @spec collapse_key(t(), String.t()) :: t()

Sets the collapse key for message deduplication.

 data(message, data)

 @spec data(t(), map()) :: t()

Sets custom data payload.

 image(message, image_url)

 @spec image(t(), String.t()) :: t()

Sets the image URL for rich notifications.

 new()

 @spec new() :: t()

Creates a new empty message.
Examples
iex> PushX.Message.new()
%PushX.Message{title: nil, body: nil, data: %{}, priority: :high}

 new(title, body)

 @spec new(String.t(), String.t()) :: t()

Creates a new message with title and body.
Examples
iex> PushX.Message.new("Hello", "World")
%PushX.Message{title: "Hello", body: "World", data: %{}, priority: :high}

 priority(message, priority)

 @spec priority(t(), :high | :normal) :: t()

Sets the priority (:high or :normal).

 put_data(message, key, value)

 @spec put_data(t(), atom() | String.t(), any()) :: t()

Adds a key-value pair to the data payload.

 sound(message, sound)

 @spec sound(t(), String.t()) :: t()

Sets the notification sound.

 thread_id(message, thread_id)

 @spec thread_id(t(), String.t()) :: t()

Sets the thread ID for notification grouping (iOS).

 title(message, title)

 @spec title(t(), String.t()) :: t()

Sets the title of the message.

 to_apns_payload(message)

 @spec to_apns_payload(t()) :: map()

Converts the message to an APNS payload map.

 to_fcm_payload(message)

 @spec to_fcm_payload(t()) :: map()

Converts the message to an FCM payload map.

 ttl(message, ttl)

 @spec ttl(t(), non_neg_integer()) :: t()

Sets the TTL (time to live) in seconds.

PushX.RateLimiter

Client-side rate limiting for push notifications.
Prevents exceeding provider rate limits by tracking requests locally.
Uses a sliding window algorithm with ETS for fast, concurrent access.
Configuration
config :pushx,
 rate_limit_enabled: true,
 rate_limit_apns: 5000, # requests per window
 rate_limit_fcm: 5000, # requests per window
 rate_limit_window_ms: 1000 # 1 second window
Usage
Rate limiting is automatically applied when enabled. You can also
check manually:
case PushX.RateLimiter.check(:apns) do
 :ok -> # Proceed with sending
 {:error, :rate_limited} -> # Back off
end
How It Works
	Each provider has a separate counter
	Requests are counted within a sliding time window
	When the limit is reached, new requests are rejected
	The window slides forward, allowing new requests

 Summary

 Types

 provider()

 Functions

 check(provider)

 Checks if a request would be allowed without incrementing.

 check_and_increment(provider)

 Checks if a request can be made and increments the counter.

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 current_count(provider)

 Returns the current request count for a provider.

 limit(atom)

 Returns the configured limit for a provider.

 remaining(provider)

 Returns remaining requests before rate limit is hit.

 reset(provider)

 Resets the rate limiter for a provider. Useful for testing.

 reset_all()

 Resets all rate limiters.

 start_link(opts \\ [])

 Starts the rate limiter process.

 Types

 provider()

 @type provider() :: :apns | :fcm

 Functions

 check(provider)

 @spec check(provider()) :: :ok | {:error, :rate_limited}

Checks if a request would be allowed without incrementing.

 check_and_increment(provider)

 @spec check_and_increment(provider()) :: :ok | {:error, :rate_limited}

Checks if a request can be made and increments the counter.
Returns :ok if under the limit, {:error, :rate_limited} if over.

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 current_count(provider)

 @spec current_count(provider()) :: non_neg_integer()

Returns the current request count for a provider.

 limit(atom)

 @spec limit(provider()) :: pos_integer()

Returns the configured limit for a provider.

 remaining(provider)

 @spec remaining(provider()) :: non_neg_integer()

Returns remaining requests before rate limit is hit.

 reset(provider)

 @spec reset(provider()) :: :ok

Resets the rate limiter for a provider. Useful for testing.

 reset_all()

 @spec reset_all() :: :ok

Resets all rate limiters.

 start_link(opts \\ [])

Starts the rate limiter process.

PushX.Response

A struct representing the response from a push notification request.
Fields
	:provider - The provider used (:apns or :fcm)
	:status - The result status (see below)
	:id - Provider-specific message ID (if available)
	:reason - Error reason string (if failed)
	:raw - Raw response body (for debugging)

Status Values
	:sent - Message was successfully sent
	:invalid_token - Device token is invalid or expired
	:expired_token - Device token has expired
	:unregistered - Device is no longer registered
	:payload_too_large - Payload exceeds size limit
	:rate_limited - Too many requests, try again later
	:server_error - Provider server error
	:connection_error - Network/connection failure
	:unknown_error - Unrecognized error

 Summary

 Types

 status()

 t()

 Functions

 apns_reason_to_status(reason)

 Maps an APNS error reason to a status atom.

 error(provider, status, reason \\ nil)

 Creates an error response.

 error(provider, status, reason, raw)

 Creates an error response with raw data.

 error(provider, status, reason, raw, retry_after)

 Creates an error response with raw data and retry_after value.

 fcm_error_to_status(error_code)

 Maps an FCM error code to a status atom.

 retryable?(response)

 Returns true if the error is retryable.

 should_remove_token?(response)

 Returns true if the token should be removed from the database.

 success(provider, id \\ nil)

 Creates a successful response.

 success?(response)

 Returns true if the response indicates success.

 Types

 status()

 @type status() ::
 :sent
 | :invalid_token
 | :expired_token
 | :unregistered
 | :payload_too_large
 | :rate_limited
 | :server_error
 | :connection_error
 | :unknown_error

 t()

 @type t() :: %PushX.Response{
 id: String.t() | nil,
 provider: :apns | :fcm,
 raw: any(),
 reason: String.t() | nil,
 retry_after: non_neg_integer() | nil,
 status: status()
}

 Functions

 apns_reason_to_status(reason)

 @spec apns_reason_to_status(String.t()) :: status()

Maps an APNS error reason to a status atom.
See: https://developer.apple.com/documentation/usernotifications/setting_up_a_remote_notification_server/handling_notification_responses_from_apns

 error(provider, status, reason \\ nil)

 @spec error(provider :: :apns | :fcm, status :: status(), reason :: String.t() | nil) ::
 t()

Creates an error response.

 error(provider, status, reason, raw)

 @spec error(
 provider :: :apns | :fcm,
 status :: status(),
 reason :: String.t() | nil,
 raw :: any()
) :: t()

Creates an error response with raw data.

 error(provider, status, reason, raw, retry_after)

 @spec error(
 provider :: :apns | :fcm,
 status :: status(),
 reason :: String.t() | nil,
 raw :: any(),
 retry_after :: non_neg_integer() | nil
) :: t()

Creates an error response with raw data and retry_after value.

 fcm_error_to_status(error_code)

 @spec fcm_error_to_status(String.t()) :: status()

Maps an FCM error code to a status atom.
See: https://firebase.google.com/docs/reference/fcm/rest/v1/ErrorCode

 retryable?(response)

 @spec retryable?(t()) :: boolean()

Returns true if the error is retryable.
Retryable errors:
	:connection_error - Network/connection failure
	:rate_limited - Too many requests (with backoff)
	:server_error - Provider server error (5xx)

 should_remove_token?(response)

 @spec should_remove_token?(t()) :: boolean()

Returns true if the token should be removed from the database.

 success(provider, id \\ nil)

 @spec success(provider :: :apns | :fcm, id :: String.t() | nil) :: t()

Creates a successful response.

 success?(response)

 @spec success?(t()) :: boolean()

Returns true if the response indicates success.

PushX.Retry

Retry logic for push notification delivery following Apple and Google best practices.
Retry Strategy
Based on official Apple APNS and Google FCM documentation:
	Connection errors: Retry with exponential backoff (10s, 20s, 40s)
	Server errors (5xx): Retry with exponential backoff
	Rate limited (429): Respect retry-after header, or default to 60 seconds
	Permanent failures: Do not retry (bad token, payload too large, etc.)

Configuration
config :pushx,
 retry_enabled: true,
 retry_max_attempts: 3,
 retry_base_delay_ms: 10_000, # 10 seconds (Google recommends minimum 10s)
 retry_max_delay_ms: 60_000 # 60 seconds max
References
	Apple: https://developer.apple.com/documentation/usernotifications/setting_up_a_remote_notification_server
	Google: https://firebase.google.com/docs/cloud-messaging/scale-fcm

 Summary

 Functions

 calculate_delay(response, attempt, base_delay, max_delay)

 Calculates the delay before the next retry attempt.

 retryable?(response)

 Returns true if the error is retryable.

 with_retry(fun, opts \\ [])

 Executes a function with retry logic.

 Functions

 calculate_delay(response, attempt, base_delay, max_delay)

 @spec calculate_delay(PushX.Response.t(), pos_integer(), pos_integer(), pos_integer()) ::
 pos_integer()

Calculates the delay before the next retry attempt.
	For rate limiting: Uses retry_after value or 60 seconds default
	For other errors: Exponential backoff with jitter

Exponential Backoff Formula
delay = min(base_delay * 2^(attempt-1) + jitter, max_delay)

 retryable?(response)

 @spec retryable?(PushX.Response.t()) :: boolean()

Returns true if the error is retryable.
Retryable errors:
	:connection_error - Network/connection failure
	:rate_limited - Too many requests (with backoff)
	:server_error - Provider server error (5xx)

Non-retryable (permanent) errors:
	:invalid_token - Device token is invalid
	:expired_token - Device token has expired
	:unregistered - Device is no longer registered
	:payload_too_large - Payload exceeds size limit
	:unknown_error - Unrecognized error (could be client-side issue)

 with_retry(fun, opts \\ [])

 @spec with_retry(
 (-> {:ok, PushX.Response.t()} | {:error, PushX.Response.t()}),
 keyword()
) :: {:ok, PushX.Response.t()} | {:error, PushX.Response.t()}

Executes a function with retry logic.
The function should return {:ok, response} or {:error, response}.
Retries are only attempted for retryable errors.
Options
	:max_attempts - Maximum number of attempts (default: 3)
	:base_delay_ms - Base delay in milliseconds (default: 10_000)
	:max_delay_ms - Maximum delay in milliseconds (default: 60_000)

Examples
PushX.Retry.with_retry(fn -> PushX.APNS.send_once(token, payload, opts) end)

PushX.Telemetry

Telemetry integration for PushX.
PushX emits the following telemetry events:
Events
[:pushx, :push, :start]
Emitted when a push notification request starts.
Measurements: %{system_time: integer}
Metadata:
	:provider - :apns or :fcm
	:token - Device token (truncated for privacy)

[:pushx, :push, :stop]
Emitted when a push notification request completes successfully.
Measurements: %{duration: integer} (in native time units)
Metadata:
	:provider - :apns or :fcm
	:token - Device token (truncated)
	:status - :sent
	:id - Provider message ID (if available)

[:pushx, :push, :exception]
Emitted when a push notification request raises an exception.
Measurements: %{duration: integer}
Metadata:
	:provider - :apns or :fcm
	:token - Device token (truncated)
	:kind - Exception kind (:error, :exit, :throw)
	:reason - Exception reason
	:stacktrace - Exception stacktrace

[:pushx, :push, :error]
Emitted when a push notification request returns an error response.
Measurements: %{duration: integer}
Metadata:
	:provider - :apns or :fcm
	:token - Device token (truncated)
	:status - Error status (e.g., :invalid_token, :rate_limited)
	:reason - Error reason string

[:pushx, :retry, :attempt]
Emitted when a retry attempt is made.
Measurements: %{delay_ms: integer, attempt: integer}
Metadata:
	:provider - :apns or :fcm
	:status - The error status that triggered the retry

Example Usage
Attach a handler in your application startup:
:telemetry.attach_many(
 "pushx-logger",
 [
 [:pushx, :push, :start],
 [:pushx, :push, :stop],
 [:pushx, :push, :error],
 [:pushx, :push, :exception]
],
 &MyApp.PushXTelemetry.handle_event/4,
 nil
)
Example handler:
defmodule MyApp.PushXTelemetry do
 require Logger

 def handle_event([:pushx, :push, :stop], %{duration: duration}, metadata, _config) do
 duration_ms = System.convert_time_unit(duration, :native, :millisecond)
 Logger.info("Push sent to #{metadata.provider} in #{duration_ms}ms")
 end

 def handle_event([:pushx, :push, :error], _measurements, metadata, _config) do
 Logger.warning("Push failed: #{metadata.status} - #{metadata.reason}")
 end

 def handle_event(_event, _measurements, _metadata, _config), do: :ok
end
Metrics with Telemetry.Metrics
defmodule MyApp.Telemetry do
 import Telemetry.Metrics

 def metrics do
 [
 counter("pushx.push.stop.count", tags: [:provider]),
 counter("pushx.push.error.count", tags: [:provider, :status]),
 distribution("pushx.push.stop.duration",
 unit: {:native, :millisecond},
 tags: [:provider]
)
]
 end
end

PushX.Token

Token validation for push notification device tokens.
Validates token format before sending to avoid unnecessary API calls.
Validation is fast (microseconds) and catches obvious errors early.
APNS Tokens (iOS/macOS/Safari)
APNS device tokens are 64 hexadecimal characters (32 bytes).
Safari web push tokens use the same format.
Example: "a1b2c3d4e5f6...64 hex chars total"
FCM Tokens (Android/Web)
FCM registration tokens are variable length:
	Mobile tokens: typically 140-250 characters
	Web tokens: typically 50-200 characters
They contain alphanumeric characters, hyphens, underscores, and colons.
Example: "dGVzdC10b2tlbi1mb3ItZmNt..."

Usage
iex> PushX.Token.valid?(:apns, "a1b2c3d4" <> String.duplicate("0", 56))
true

iex> PushX.Token.valid?(:apns, "too-short")
false

iex> PushX.Token.validate(:apns, "invalid")
{:error, :invalid_format}

 Summary

 Types

 provider()

 token()

 validation_error()

 Functions

 error_message(atom1, atom2)

 Returns a human-readable error message for validation errors.

 valid?(provider, token)

 Returns true if the token is valid for the given provider.

 validate(arg1, token)

 Validates a device token and returns :ok or {:error, reason}.

 validate!(provider, token)

 Validates a token and raises ArgumentError if invalid.

 Types

 provider()

 @type provider() :: :apns | :fcm

 token()

 @type token() :: String.t()

 validation_error()

 @type validation_error() :: :empty | :invalid_format | :invalid_length

 Functions

 error_message(atom1, atom2)

 @spec error_message(provider(), validation_error()) :: String.t()

Returns a human-readable error message for validation errors.

 valid?(provider, token)

 @spec valid?(provider(), token()) :: boolean()

Returns true if the token is valid for the given provider.
Examples
iex> PushX.Token.valid?(:apns, String.duplicate("a", 64))
true

iex> PushX.Token.valid?(:apns, "invalid")
false

 validate(arg1, token)

 @spec validate(provider(), token()) :: :ok | {:error, validation_error()}

Validates a device token and returns :ok or {:error, reason}.
Examples
iex> PushX.Token.validate(:apns, String.duplicate("a", 64))
:ok

iex> PushX.Token.validate(:apns, "")
{:error, :empty}

iex> PushX.Token.validate(:apns, "too-short")
{:error, :invalid_length}

iex> PushX.Token.validate(:apns, String.duplicate("g", 64))
{:error, :invalid_format}

 validate!(provider, token)

 @spec validate!(provider(), token()) :: :ok

Validates a token and raises ArgumentError if invalid.
Examples
iex> PushX.Token.validate!(:apns, String.duplicate("a", 64))
:ok

iex> PushX.Token.validate!(:apns, "invalid")
** (ArgumentError) Invalid APNS token: invalid_length

 OEBPS/dist/epub-7LKEGYS5.js
(() => {
 // js/helpers.js
 var s = document.querySelector.bind(document), o = document.querySelectorAll.bind(document);
 function r(e) {
 document.readyState !== "loading" ? e() : document.addEventListener("DOMContentLoaded", e);
 }

 // js/makeup.js
 var l = "hll";
 window.addEventListener("exdoc:loaded", t);
 function t() {
 o("[data-group-id]").forEach((e) => {
 e.addEventListener("mouseenter", i), e.addEventListener("mouseleave", i);
 });
 }
 function i(e) {
 let n = e.currentTarget, a = e.type === "mouseenter", c = n.getAttribute("data-group-id");
 n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach((u) => {
 u.classList.toggle(l, a);
 });
 }

 // js/entry/epub.js
 r(() => {
 t();
 });
})();

