

 qry

 v0.4.1

 Table of contents

 	Qry

 	Modules

 	Qry

 	Qry.Repo

Qry

Query your domain.
[
 project: [
 :name,
 author: [
 :first_name,
 :last_name,
 links: [:name, :url]
]
]
]
|> MyRepo.query()

{
 :ok,
 %{
 project: %{
 name: "Qry",
 author: %{
 first_name: "Austin",
 last_name: "Schneider",
 links: [
 %{name: "GitHub", url: "https://github.com/austinthecoder"},
 %{name: "X", url: "https://twitter.com/austinthecoder"}
]
 }
 }
 }
}

 Setup

defmodule MyRepo do
 use Qry.Repo

 @impl true
 def fetch(field, args, context) do
 ...
 end

 @impl true
 def fetch(parent, field, args, context) do
 ...
 end
end
The repo must define two callbacks: fetch/3 and fetch/4.
fetch/3 – Returns the field data.
fetch/4 – If the parent is a list, returns the a map of the field data keyed by each parent item. Otherwise returns the field data.

 Basic Example

defmodule Project do
 defstruct [:id, :name]
end

defmodule Repo do
 use Qry.Repo

 @project %Project{id: 1, name: "Qry"}

 @impl true
 def fetch(:project, _args, _context) do
 {:ok, @project}
 end
end

iex> MyRepo.query(project: [:name])
{:ok, %{project: %{name: "Qry"}}}
Let's add an :authors association to Project:
defmodule Person do
 defstruct [:id, :first_name, :last_name, :project_id]
end

defmodule Repo do
 ...
 @authors [
 %Person{id: 1, first_name: "Austin", last_name: "Schneider", project_id: 1},
 %Person{id: 2, first_name: "John", last_name: "Smith", project_id: 2},
 %Person{id: 3, first_name: "Sally", last_name: "Sue", project_id: 1}
]

 def fetch(%Project{} = project, :authors, _args, _context) do
 authors =
 @authors
 |> Enum.filter(fn author ->
 author.project_id == project.id
 end)

 {:ok, authors}
 end
end

iex> MyRepo.query(
 project: [
 :name,
 authors: [:first_name, :last_name]
]
)
{
 :ok,
 %{
 project: %{
 name: "Qry",
 authors: [
 %{first_name: "Austin", last_name: "Schneider"},
 %{first_name: "Sally", last_name: "Sue"}
]
 }
 }
}
Now let's add a :links association to Person:
defmodule Link do
 defstruct [:id, :name, :url, :person_id]
end

defmodule Repo do
 ...
 @links [
 %Link{
 id: 1,
 name: "GitHub",
 url: "https://github.com/austinthecoder",
 person_id: 1
 },
 %Link{
 id: 2,
 name: "X",
 url: "https://twitter.com/austinthecoder",
 person_id: 1
 },
 %Link{
 id: 3,
 name: "Example",
 url: "https://example.com/john",
 person_id: 2
 },
 %Link{
 id: 4,
 name: "Website",
 url: "https://example.com/sally",
 person_id: 3
 },
]

 def fetch([%Person{} | _] = people, :links, _args, _context) do
 links =
 people
 |> Enum.reduce(%{}, fn person, acc ->
 links = @links |> Enum.filter(fn link -> link.person_id == person.id end)
 Map.put(acc, person, links)
 end)

 {:ok, links}
 end
end

iex> MyRepo.query(
 project: [
 :name,
 authors: [
 :first_name,
 :last_name,
 links: [:name, :url]
]
]
)
{
 :ok,
 %{
 project: %{
 name: "Qry",
 authors: [
 %{
 first_name: "Austin",
 last_name: "Schneider",
 links: [
 %{name: "GitHub", url: "https://github.com/austinthecoder"},
 %{name: "X", url: "https://twitter.com/austinthecoder"}
]
 },
 %{
 first_name: "Sally",
 last_name: "Sue",
 links: [
 %{name: "Website", url: "https://example.com/sally"}
]
 }
]
 }
 }
}

 Documents

A doc consists of a field (atom), args (map), and subdocs (list). A doc can be expressed as an atom, a two-element tuple, or a three-element tuple.
A atom can be used for a field with no args or subdocs:
MyRepo.query(:project)
If there are args or subdocs, a two-element tuple is used:
args only
MyRepo.query({:project, %{id: "p1"}})

subdocs only
MyRepo.query({:project, [:name]})
If there are both args and subdocs, a three-element tuple is used:
MyRepo.query({:project, %{id: "p1"}, [:name]})
Use a list for multiple docs:
MyRepo.query([:project, {:users, [:name]}])
Note: For two-element tuples, Elixir affords us the keyword list syntax:
MyRepo.query(project: [name], users: [:name])

 Arguments

A doc can contain args (see above). They are given to fetch/3 as the second argument:
MyRepo.query(project: %{foo: "bar"})

def fetch(:project, args, _context) do
 # args are `%{foo: "bar"}`
 ...
end
And are given to fetch/4 as the third argument:
MyRepo.query(project: [authors: %{foo: "bar"}])

def fetch(%Project{}, :authors, args, _context) do
 # args are `%{foo: "bar"}`
 ...
end

 Context

You can provide a context (map) as the second argument to MyRepo.query/2. It defaults to an empty map. It is given to fetch/3 and fetch/4 as the last argument.
MyRepo.query(:project, %{user_id: 123})
MyRepo.query(project: [:authors], %{user_id: 123})

def fetch(:project, _args, context) do
 # context is `%{user_id: 123}`
 ...
end

def fetch(%Project{}, :authors, _args, context) do
 # context is `%{user_id: 123}`
 ...
end

Qry

Qry.Repo behaviour

Defines a repository.

 Summary

 Types

 args()

 context()

 fetch_result()

 field()

 parent()

 Callbacks

 fetch(field, args, context)

 fetch(parent, field, args, context)

 Types

 Link to this type

 args()

 View Source

 @type args() :: any()

 Link to this type

 context()

 View Source

 @type context() :: any()

 Link to this type

 fetch_result()

 View Source

 @type fetch_result() :: {:ok, any()} | {:error, any()}

 Link to this type

 field()

 View Source

 @type field() :: atom()

 Link to this type

 parent()

 View Source

 @type parent() :: any()

 Callbacks

 Link to this callback

 fetch(field, args, context)

 View Source

 @callback fetch(field(), args(), context()) :: fetch_result()

 Link to this callback

 fetch(parent, field, args, context)

 View Source

 @callback fetch(parent(), field(), args(), context()) :: fetch_result()

 OEBPS/dist/epub-TCI3LGHF.js
(()=>{var d=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var c="ex_doc:settings",h={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=h,this._loadSettings()}get(){return this._settings}update(t){let e=this._settings;this._settings={...this._settings,...t},this._subscribers.forEach(n=>n(this._settings,e)),this._storeSettings()}getAndSubscribe(t){this._subscribers.push(t),t(this._settings)}_loadSettings(){try{let t=localStorage.getItem(c);if(t){let e=JSON.parse(t);this._settings={...this._settings,...e}}this._loadSettingsLegacy()}catch(t){console.error(`Failed to load settings: ${t}`)}}_storeSettings(){try{this._storeSettingsLegacy(),localStorage.setItem(c,JSON.stringify(this._settings))}catch(t){console.error(`Failed to persist settings: ${t}`)}}_loadSettingsLegacy(){localStorage.getItem("tooltipsDisabled")!==null&&(this._settings={...this._settings,tooltips:!1}),localStorage.getItem("night-mode")==="true"&&(this._settings={...this._settings,nightMode:!0}),this._settings.nightMode===!0&&(this._settings={...this._settings,theme:"dark"})}_storeSettingsLegacy(){this._settings.tooltips?localStorage.removeItem("tooltipsDisabled"):localStorage.setItem("tooltipsDisabled","true"),this._settings.nightMode!==null?localStorage.setItem("night-mode",this._settings.nightMode===!0?"true":"false"):localStorage.removeItem("night-mode"),this._settings.theme!==null?(localStorage.setItem("night-mode",this._settings.theme==="dark"?"true":"false"),this._settings.nightMode=this._settings.theme==="dark"):(delete this._settings.nightMode,localStorage.removeItem("night-mode"))}},f=new s;function l(){["warning","info","error","neutral","tip"].forEach(t=>{i(`blockquote h3.${t}, blockquote h4.${t}`).forEach(e=>{e.closest("blockquote").classList.add(t)})})}document.addEventListener("click",function(o){if(window.innerWidth<=768){let t=o.target.closest('a[href^="#"]');if(t){o.preventDefault();let e=t.getAttribute("href").substring(1),n=document.getElementById(e);if(n){let u=n.getBoundingClientRect().top+window.scrollY-45;window.scrollTo({top:u,behavior:"smooth"})}}}});var m="hll";function g(){p()}function p(){i("[data-group-id]").forEach(t=>{let e=t.getAttribute("data-group-id");t.addEventListener("mouseenter",n=>{a(e,!0)}),t.addEventListener("mouseleave",n=>{a(e,!1)})})}function a(o,t){i(`[data-group-id="${o}"]`).forEach(n=>{n.classList.toggle(m,t)})}r(()=>{g(),l()});})();

