

 Quantum

 v3.5.3

 [image: Logo]

 Table of contents

 	Change Log

 	Quantum

 	Supervision Tree

 	Configuration

 	Runtime Configuration

 	Crontab format

 	Run Strategies

 	Modules

 	Quantum

 	Quantum.Job

 	Quantum.RunStrategy

 	Quantum.RunStrategy.All

 	Quantum.RunStrategy.Local

 	Quantum.RunStrategy.NodeList

 	Quantum.RunStrategy.Random

 	Quantum.Storage

 	Quantum.Storage.Noop

Change Log

All notable changes to this project will be documented in this file.
This project adheres to Semantic Versioning.

 Unreleased

Diff for unreleased

 3.4.0 - 2021-08-10

 Added

	telemetry v1.0.0 support (#483)
	Logger Metadata (#462 & #464)
	Support setting job state in config (#463)

 Fixed

	Invalid Timezone fix in ExecutionBroadcaster (#468)

Diff for 3.4.0

 3.3.0 - 2020-09-25

 Added

	Support manual job triggering (#459)

Diff for 3.3.0

 3.2.0 - 2020-09-14

 Added

	Telemetry Support (#415)

 Fixed

	Properly override jobs with duplicate name (#392)
	Simplify TaskRegistry and make tests deterministic

Diff for 3.2.0

 3.1.0 - 2020-08-18

 Added

	Additional Supervisor Configuration for Clustering (#450)

Diff for 3.1.0

 3.0.2 - 2020-08-18

 Fixed

	Fix Warnings with Clock Skew (#449)

Diff for 3.0.2

 3.0.1 - 2020-06-16

 Fixed

	ClockEvent order corrected

Diff for 3.0.1

 3.0.0 - 2020-06-11

 Fixed

	Fix @reboot Cron Expression (#437)

Diff for 3.0.0

 3.0.0-rc.3 - 2020-02-28

 Fixed

	Update Docs

Diff for 3.0.0-rc.3

 3.0.0-rc.2 - 2020-02-28

 Changed

	The Quantum.Storage behaviour contains a new mandatory child_spec/1 callback.

Diff for 3.0.0-rc.2

 3.0.0-rc.1 - 2020-02-26

 Changed

	A lot of function that were not for public use have been undocumented. Those are now considered internal and may break at any point in time.
	Quantum.Scheduler has been renamed to Quantum
	Quantum.Storage.Adapter has been renamed to Quantum.Storage
	The global mode has been removed. It will be reimplemented if a stable replacement is found.

Diff for 3.0.0-rc.1

 2.4.0 - 2020-02-25

 Added

	Native Date Library (via #405)
	Adding of inactive Jobs (via #409)

 Fixed

	GenStage 1.0 compatibility (via #424)
	Doc Fixes (#394, #396, #400, #401)

Diff for 2.4.0

 2.3.4 - 2019-01-06

 Fixed

	Faster Startup duration for non-global (Fixes #376)

Diff for 2.3.4

 2.3.3 - 2018-09-06

 Fixed

	Fix & Test Swarm Handoff & Conflict Resolution
	Fix Compilation Error
	Fix Executor Stat Options for GenStage ~> 0.12.0

Diff for 2.3.3

 2.3.2 - 2018-08-21

 Fixed

	Global Clustering Worker Start

Diff for 2.3.2

 2.3.1 - 2018-08-13

 Fixed

	Fixed Regression in Run Strategy Random

Diff for 2.3.1

 2.3.0 - 2018-08-10

 Added

	Experimental Storage API

 Fixed

	Use Swarm for clustering to prevent broken cluster state
	Better search for available nodes for run strategies

Diff for 2.3.0

 2.2.7 - 2018-03-22

 Changed

	Moved the Repository into Organization & Correct all the URL's

 Fixed

	Fixed Dialyzer Warnings

Diff for 2.2.7

 2.2.6 - 2018-03-21

 Fixed

	Fixed problem with Daylight Saving Time for jobs with timezone other than UTC.

Diff for 2.2.6

 2.2.5 - 2018-02-26

 Fixed

	Omit gen_stage warning on ~> 0.13

Diff for 2.2.5

 2.2.4 - 2018-02-23

 Fixed

	Relax timex dependency

Diff for 2.2.4

 2.2.3 - 2018-02-13

 Fixed

	Fixed compatibility with gen_stage ~> 0.12

Diff for 2.2.3

 2.2.2 - 2018-02-08

 Added

	Better Debugging Capabilities

 Fixed

	Relaxed version requirements for gen_stage

Diff for 2.2.2

 2.2.1 - 2018-01-03

 Fixed

	sometimes the task supervisor was not running in a cluster

Diff for 2.2.1

 2.2.0 - 2017-11-07

Diff for 2.2.0

 Added

	Local run strategy

 2.1.3 - 2017-11-07

Diff for 2.1.3

 Fixed

	Runtime Added Jobs are executed right away instead of waiting for the next job execution.
	Fix Typo in Doc

 2.1.2 - 2017-11-04

Diff for 2.1.2

 Added

	Distillery is not mentioned in list of package managers

 Changed

	Source is not formatted properly

 Fixed

	Removed unused Alias from Quantum.Job
	Hot upgrade is not possible due to missing supervisor

 2.1.1 - 2017-10-02

Diff for 2.1.1

 Fixed

	Resolved some Dialyzer Warnings

 2.1.0 - 2017-09-10

Diff for 2.1.0

 Fixed

	Resolved some Dialyzer Warnings

 2.1.0-beta.1 - 2017-08-20

Diff for 2.1.0-beta.1
The internal handling has been refactored onto gen_stage.
There were a few Breaking Changes which should not influence a user of the library.

 Changed

	Replaced call with cast	Scheduler.add_job
	Scheduler.deactivate_job
	Scheduler.activate_job
	Scheduler.delete_job
	Scheduler.delete_all_jobs

 Removed

	The overlap handling is removed from the Job struct.	removed Job.pids
	removed Job.executable?

 2.0.4 - 2017-09-01

Diff for 2.0.4

 Fixed

	Fix Race Condition with reboot in Runner state

 2.0.3 - 2017-08-29

Diff for 2.0.3

 Fixed

	@reboot cron expressions

 2.0.2 - 2017-08-23

Diff for 2.0.2

 Fixed

	Updated Docs.

 2.0.1 - 2017-08-23

Diff for 2.0.1
	Timezone in job configuration is now normalized into a job.

 2.0.0 - 2017-07-20

Diff for 2.0.0
The whole library has been refactored. See the Migration Guide.

 2.0.0-beta.2 - 2017-07-13

Diff for 2.0.0-beta.2
The whole library has been refactored. See the Migration Guide.

 2.0.0-beta.1 - 2017-06-07

Diff for 2.0.0-beta.1
The whole library has been refactored. See the Migration Guide.

 1.9.2 - 2017-05-19

Diff for 1.9.2

 1.9.1 - 2017-03-17

Diff for 1.9.1

 1.9.0 - 2017-02-07

Diff for 1.9.0

 Removed

	Three modules were removed and replaced by crontab.	Quantum.Matcher
	Quantum.Parser
	Quantum.Translator

 Fixed

	The whole cron expression syntax is now supported.
	Crons can now be configured for Umbrella applications. See the README for the new syntax.

 Changed

	Cron Expressions can now be provided via the %Crontab.CronExpression{} struct or via the ~e[CRON EXPRESSION] sigil.
	Cron Expressions can now be extended. This way second granularity of the expressions can be provided.

 Deprecated

	The configuration property cron is deprecated. Use the app configuration instead.

 1.8.1 - 2016-11-20

Diff for 1.8.1

 Changed

	Clarity on the table to not use full name of day (Coburn Berry)
	Travis testing against erlang 19.1 and elixir 1.3.3 (Julius Beckmann)
	Don't allow "local" timezone. Replace Timex w. Calendar (Lau Taarnskov)

 Fixed

	Global cannot be used directly (Po Chen)
	Support for timezones other than utc or local not in readme (Coburn Berry)
	Timezone as string not working in config (Daniel Roux)

 Removed

	Timex references in readme (Coburn Berry)
	License badge in README

 1.8.0 - 2016-09-19

Diff for 1.8.0

 Changed

	Requires Elixir >= 1.3
	Updated C4 contribution process to RFC42
	Updated timex dependency to 3.0 (Svilen Gospodinov)

 Fixed

	Same task could be generated multiple times in a cluster (Po Chen)
	Elixir 1.3.0 introduced unsafe var warnings (Jamie J Quinn)
	Typo in README (Uģis Ozols)
	Code coverage below 100% (Lucas Charles)

 Removed

	Unused alias (Philip Giuliani)

 1.7.1 - 2016-03-24

Diff for 1.7.1

 Added

	Optional per-job timezone support

 Fixed

	Nodes defaulting in %Quantum.Job struct
	job.nodes defaulting in the normalizer
	Test suite after changing defaulting of nodes property for the %Quantum.Jobs{} struct

 1.7.0 - 2016-03-09

Diff for 1.7.0

 Added

	ToC to README
	Documentation for overlap option
	Elixir 1.2 to Travis-CI config
	Prevent duplicate job-names at runtime (Kai Faber)

 Changed

	ToC markdown
	Default values are now configurable
	Updated all dependencies
	Required Elixir version is now >= 1.2

 Fixed

	Overlap option was not set to jobs
	Incorrect example in README
	Timezone is not configurable at runtime
	Credo warnings
	GenServer restarts when one of the jobs crashes (#82)

 1.6.1 - 2015-12-09

Diff for 1.6.1

 Fixed

	@reboot entries are throwing errors
	Credo warnings and software design suggestions
	Elixir 1.2 warnings

 Changed

	Dependency 'credo' updated
	Refactored range variables
	.gitignore updated

 1.6.0 - 2015-11-25

Diff for 1.6.0

 Added

	PID of last executed task to job struct
	Credo code linter (only for dev and test)
	Total downloads badge to README
	Elixir 1.1.0 and Erlang 18.1 to Travis-CI config

 Fixed

	Max hour is 23, not 24
	Long-running jobs could overlap
	Typo in README (Lucas Charles)
	Incorrect function and response types in readme (Bart van Zon)
	Unnamed job tuples cannot take args (Lucas Charles)
	Job names can only be atoms and can't be GC (Luis Hurtado)

 1.5.0 - 2015-09-24

Diff for 1.5.0

 Added

	Ability to run jobs on exact node (Rodion Vshevtsov)
	Documentation of named jobs
	OTP 17.5 and 18.0 to Travis tests

 Changed

	ex_doc dependency version

 Fixed

	Typos in README

 1.4.0 - 2015-09-02

Diff for 1.4.0

 Added

	Named jobs and the ability to (de)activate them (Rodion Vshevtsov)
	Doc annotations for functions
	Inch-CI integration

 Changed

	Updated ex_doc dependency

 1.3.2 - 2015-08-22

Diff for 1.3.2

 Added

	Timezone option to README.

 Fixed

	Using @reboot lead to crash.

 1.3.1 - 2015-07-27

Diff for 1.3.1

 Added

	Added contributors to changelog and project description
	Option to use local timezone instead of UTC.

 Changed

	Tables in README use markdown format

 1.3.0 - 2015-07-15

Diff for 1.3.0

 Added

	Allow cron-like job formatting ("* * * * * MyApp.MyModule.my_method") (Rodion Vshevtsov)
	Allow defining functions as tuple ({"Module", :method}) in config (Rodion Vshevtsov)
	Note about UTC (Lenz Gschwendtner)

 1.2.4 - 2015-06-22

Diff for 1.2.4

 Changed

	Renamed parse/5 functions to do_parse/5 and made them private
	Always use {expression, fun} for jobs
	Moved duplicate code to new private function only_multiplier_of/2
	Moved code to normalize jobs to separate module
	Correctly use passed state in Quantum.init/1 function
	Moved reboot logic to executor.

 Removed

	Unnecessary guard clause
	Unused parse/3 functions
	Unused call to String.split on patterns starting with "*/"

 1.2.3 - 2015-06-15

Diff for 1.2.3

 Added

	Support for @reboot

 Fixed

	Does not convert jobs defined in config

 1.2.2 - 2015-06-15

Diff for 1.2.2

 Added

	Support for @annually and @midnight

 Changed

	Function order in Quantum.Matcher
	Renamed private translate function to do_translate
	Do not convert and translate cron expressions on every tick

 Fixed

	Adding a job using Quantum.add_job/2 does not convert to lowercase
	Adding a job using Quantum.add_job/2 does not translate day/month names

 1.2.1 - 2015-06-13

Diff for 1.2.1

 Added

	Test for handle_info(:tick_state)
	Dependencies to generate hexdocs
	Badge for hexdocs
	Link to docs in hex package info
	Type specs and doc annotations

 Changed

	Quantum.Application does not call Quantum.start_link/1 anymore
	Moved match logic to separate module Quantum.Matcher
	Moved parsing logic to separate module Quantum.Parser
	Moved execution logic to separate module Quantum.Executor
	Moved translation logic to separate module Quantum.Translator

 Fixed

	Typos in changelog

 Removed

	Quantum.start_link/1

 1.2.0 - 2015-06-11

Diff for 1.2.0

 Changed

	Date is updated in state only if it changed
	Wake up every minute instead of every second

 Fixed

	Intervals on ranges are not correctly parsed
	Hour constraints are not correct (Lenz Gschwendtner)
	There is no changelog
	Code coverage is low
	Explicit variables are not needed
	Pattern matching can be simplified

 1.1.0 - 2015-05-28

Diff for 1.1.0

 Added

	Add ability to schedule jobs at runtime and ability to view jobs (Dan Swain)

 Changed

	Relax Elixir version

 1.0.4 - 2015-05-26

Diff for 1.0.4

 Fixed

	Written month and weekday names are not parsed

 1.0.3 - 2015-05-01

Diff for 1.0.3

 Fixed

	Do not fire on first tick

 1.0.2 - 2015-04-29

Diff for 1.0.2

 Fixed

	Special expressions are not correctly in all cases

 Removed

	Functions to add and reset jobs

 1.0.1 - 2015-04-27

Diff for 1.0.1

 Added

	Configure cronjobs in config
	Add application

 Fixed

	Parsing of cron expression fails

 1.0.0 - 2015-04-27

Diff for 1.0.0

 Added

	Initial commit

Quantum

[image: .github/workflows/branch_main.yml]
[image: Coverage Status]
[image: Module Version]
[image: Hex Docs]
[image: Total Download]
[image: License]
[image: Last Updated]
This README follows main, which may not be the currently published version. Here are the
docs for the latest published version of Quantum.

Cron-like job scheduler for Elixir.

 Setup

To use Quantum in your project, edit the mix.exs file and add Quantum to
1. the list of dependencies:
defp deps do
 [
 {:quantum, "~> 3.0"}
]
end
2. and create a scheduler for your app:
defmodule Acme.Scheduler do
 use Quantum, otp_app: :your_app
end
3. and your application's supervision tree:
defmodule Acme.Application do
 use Application

 def start(_type, _args) do
 children = [
 # This is the new line
 Acme.Scheduler
]

 opts = [strategy: :one_for_one, name: Acme.Supervisor]
 Supervisor.start_link(children, opts)
 end
end

 Troubleshooting

To see more transparently what quantum is doing, configure the logger to display :debug messages.
config :logger, level: :debug
If you want do use the logger in debug-level without the messages from quantum:
config :acme, Acme.Scheduler,
 debug_logging: false
If you encounter any problems with quantum, please search if there is already an
 open issue addressing the problem.
Otherwise feel free to open an issue. Please include debug logs.

 Usage

Configure your cronjobs in your config/config.exs like this:
config :acme, Acme.Scheduler,
 jobs: [
 # Every minute
 {"* * * * *", {Heartbeat, :send, []}},
 # Every 15 minutes
 {"*/15 * * * *", fn -> System.cmd("rm", ["/tmp/tmp_"]) end},
 # Runs on 18, 20, 22, 0, 2, 4, 6:
 {"0 18-6/2 * * *", fn -> :mnesia.backup('/var/backup/mnesia') end},
 # Runs every midnight:
 {"@daily", {Backup, :backup, []}}
]
More details on the usage can be found in the Documentation

 Contribution

This project uses the Collective Code Construction Contract (C4) for all code changes.
"Everyone, without distinction or discrimination, SHALL have an equal right to become a Contributor under the terms of this contract."

 TL;DR

	Check for open issues or open a new issue to start a discussion around a problem.
	Issues SHALL be named as "Problem: description of the problem".
	Fork the quantum-elixir repository on GitHub to start making your changes
	If possible, write a test which shows that the problem was solved.
	Send a pull request.
	Pull requests SHALL be named as "Solution: description of your solution"
	Your pull request is merged and you are added to the list of contributors

 Copyright and License

Copyright (c) 2015 Constantin Rack
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Supervision Tree

	YourApp.Scheduler (Quantum) - Your primary Interface to interact with. (Like add_job/1 etc.)	YourApp.Scheduler.Supervisor (Quantum.Supervisor) - The Supervisor that coordinates configuration, the runner and task supervisor.	YourApp.Scheduler.TaskRegistry (Quantum.TaskRegistry) - The GenServer that keeps track of running tasks and prevents overlap.
	YourApp.Scheduler.JobBroadcaster (Quantum.JobBroadcaster) - The GenStage that keeps track of all jobs.
	YourApp.Scheduler.ExecutionBroadcaster (Quantum.ExecutionBroadcaster) - The GenStage that notifies execution of jobs.
	YourApp.Scheduler.ExecutorSupervisor (Quantum.ExecutorSupervisor) - The ConsumerSupervisor that spawns an Executor for every execution.	no_name (YourApp.Scheduler.Executor) - The Task that calls the YourApp.Scheduler.TaskSupervisor with the execution of the Cron (per Node).

	YourApp.Scheduler.TaskSupervisor (Task.Supervisor) - The Task.Supervisor where all Cron jobs run in.	Task - The place where the defined Cron job action gets called.

 Error Handling

The OTP Supervision Tree is initiated by the user of the library. Therefore the error handling can be implemented via normal OTP means. See Supervisor module for more information.

Configuration

Configure your cronjobs in your config/config.exs like this:
config :your_app, YourApp.Scheduler,
 jobs: [
 # Every minute
 {"* * * * *", {Heartbeat, :send, []}},
 {{:cron, "* * * * *"}, {Heartbeat, :send, []}},
 # Every second
 {{:extended, "* * * * *"}, {Heartbeat, :send, []}},
 # Every 15 minutes
 {"*/15 * * * *", fn -> System.cmd("rm", ["/tmp/tmp_"]) end},
 # Runs on 18, 20, 22, 0, 2, 4, 6:
 {"0 18-6/2 * * *", fn -> :mnesia.backup('/var/backup/mnesia') end},
 # Runs every midnight:
 {"@daily", {Backup, :backup, []}, state: :inactive}
]

 Persistent Storage

Persistent storage can be used to track jobs and last execution times over restarts.
Note: If a storage is present, the jobs from the configuration will not be loaded to prevent conflicts.
config :your_app, YourApp.Scheduler,
 storage: Quantum.Storage.Implementation

 Storage Adapters

Storage implementations must implement the Quantum.Storage behaviour.
The following adapters are supported:
	PersistentEts
	Mnesia

 Release managers

(
conform /
distillery /
exrm /
edeliver
)
Please note that the following config notation is not supported by release managers.
{"* * * * *", fn -> :anonymous_function end}

 Named Jobs

You can define named jobs in your config like this:
config :your_app, YourApp.Scheduler,
 jobs: [
 news_letter: [
 schedule: "@weekly",
 task: {Heartbeat, :send, [:arg1]},
]
]
Possible options:
	schedule cron schedule, ex: "@weekly" / "1 * * * *" / {:cron, "1 * * * *"} or {:extended, "1 * * * *"}
	task function to be performed, ex: {Heartbeat, :send, []} or fn -> :something end
	run_strategy strategy on how to run tasks inside of cluster, default: %Quantum.RunStrategy.Random{nodes: :cluster}
	overlap set to false to prevent next job from being executed if previous job is still running, default: true
	state set to :inactive to deactivate a job or :active to activate it

It is possible to control the behavior of jobs at runtime.

 Override default settings

The default job settings can be configured as shown in the example below.
So if you have a lot of jobs and do not want to override the
default setting in every job, you can set them globally.
config :your_app, YourApp.Scheduler,
 schedule: "* * * * *",
 overlap: false,
 timezone: :utc,
 jobs: [
 # Your cronjobs
]

 Jobs with Second granularity

It is possible to specify jobs with second granularity.
To do this the schedule parameter has to be provided with a {:extended, "1 * * * *"} expression.
config :your_app, YourApp.Scheduler,
 jobs: [
 news_letter: [
 schedule: {:extended, "*/2"}, # Runs every two seconds
 task: {Heartbeat, :send, [:arg1]}
]
]

 GenServer timeout

Sometimes, you may come across GenServer timeout errors esp. when you have
too many jobs or high load. The default GenServer.call timeout is 5000.
You can override this default by specifying timeout setting in configuration.
config :your_app, YourApp.Scheduler,
 timeout: 30_000
Or if you wish to wait indefinitely:
config :your_app, YourApp.Scheduler,
 timeout: :infinity

 Timezone Support

Please note that Quantum uses UTC timezone and not local timezone.
Before changing the timezone you need to install Tzdata and add the following line in your config file.
config :elixir, :time_zone_database, Tzdata.TimeZoneDatabase
Now you can specify another default timezone, add the following timezone option to your configuration:
config :your_app, YourApp.Scheduler,
 timezone: "America/Chicago",
 jobs: [
 # Your cronjobs
]
Valid options are :utc or a timezone name such as "America/Chicago". A full list of timezone names can be downloaded from https://www.iana.org/time-zones, or at https://en.wikipedia.org/wiki/List_of_tz_database_time_zones.
Timezones can also be configured on a per-job basis. This overrides the default Quantum timezone for a particular job. To set the timezone on a job, use the timezone key when creating the Quantum.Job structure.
%Quantum.Job{
 # ...
 timezone: "America/New_York"
}

Runtime Configuration

If you want to add jobs on runtime, this is possible too:
import Crontab.CronExpression

YourApp.Scheduler.add_job({~e[1 * * * *], fn -> :ok end})
Add a named job at runtime:
import Crontab.CronExpression

YourApp.Scheduler.new_job()
|> Quantum.Job.set_name(:ticker)
|> Quantum.Job.set_schedule(~e[1 * * * *])
|> Quantum.Job.set_task(fn -> :ok end)
|> YourApp.Scheduler.add_job()
Deactivate a job, i.e. it will not be performed until job is activated again:
YourApp.Scheduler.deactivate_job(:ticker)
Activate an inactive job:
YourApp.Scheduler.activate_job(:ticker)
Run a job once outside of normal schedule:
YourApp.Scheduler.run_job(:ticker)
Find a job:
YourApp.Scheduler.find_job(:ticker)
%Quantum.Job{...}
Delete a job:
YourApp.Scheduler.delete_job(:ticker)
%Quantum.Job{...}

 Jobs with Second granularity

It is possible to specify jobs with second granularity.
To do this the schedule parameter has to be provided with either a %Crontab.CronExpression{extended: true, ...} or
with a set e flag on the e sigil. (The sigil must be imported from Crontab.CronExpression)
The following example will put a tick into the stdout every first second of every minute.
import Crontab.CronExpression

YourApp.Scheduler.new_job()
|> Quantum.Job.set_name(:ticker)
|> Quantum.Job.set_schedule(~e[1 * * * *]e)
|> Quantum.Job.set_task(fn -> IO.puts "tick" end)
|> YourApp.Scheduler.add_job()

Crontab format

 Basics

	Field	Allowed values
	second	0-59
	minute	0-59
	hour	0-23
	day of month	1-31
	month	1-12 (or names)
	day of week	0-6 (0 is Sunday, or use abbreviated names)

The second field can only be used in extended Cron expressions.
Names can also be used for the month and day of week fields.
Use the first three letters of the particular day or month (case does not matter).

 Special expressions

Instead of the first five fields, one of these special strings may be used:
	String	Description
	@annually	Run once a year, same as ~e["0 0 1 1 *"] or @yearly
	@daily	Run once a day, same as ~e["0 0 * * *"] or @midnight
	@hourly	Run once an hour, same as ~e["0 * * * *"]
	@midnight	Run once a day, same as ~e["0 0 * * *"] or @daily
	@minutely	Run once a minute, same as ~e["* * * * *"]
	@monthly	Run once a month, same as ~e["0 0 1 * *"]
	@reboot	Run once, at startup
	@secondly	Run once a second, same as ~e["* * * * * *"]e
	@weekly	Run once a week, same as ~e["0 0 * * 0"]
	@yearly	Run once a year, same as ~e["0 0 1 1 *"] or @annually

 Supported Notations

	Oracle
	Cron Format
	Wikipedia

 Crontab Dependency

All Cron Expressions are parsed and evaluated by crontab.
Issues with parsing a Cron expression can be reported here:
crontab GitHub issues

Run Strategies

Tasks can be executed via different run strategies.

 Configuration

 Mix

config :my_app, MyApp.Scheduler,
 jobs: [
 [schedule: "* * * * *", run_strategy: {StrategyName, options}],
]
The run strategy can be configured by providing a tuple of the strategy module name and it's options. If you choose Local Node strategy, the config should be:
config :my_app, MyApp.Scheduler,
 jobs: [
 [schedule: "* * * * *", run_strategy: Quantum.RunStrategy.Local],
]

 Runtime

Provide a value that implements the Quantum.RunStrategy.NodeList protocol. The value will not be normalized.

 Provided Strategies

 All Nodes

Quantum.RunStrategy.All
If you want to run a task on all nodes of either a list or in the whole cluster, use this strategy.

 Random Node

Quantum.RunStrategy.Random
If you want to run a task on any node of either a list or in the whole cluster, use this strategy.

 Local Node

Quantum.RunStrategy.Local
If you want to run a task on local node, use this strategy.

 Custom Run Strategy

Custom run strategies, can be implemented by implementing the Quantum.RunStrategy behaviour and the Quantum.RunStrategy.NodeList protocol.

Quantum behaviour

Defines a quantum Scheduler.
When used, the quantum scheduler expects the :otp_app as option.
The :otp_app should point to an OTP application that has
the quantum runner configuration. For example, the quantum scheduler:
defmodule MyApp.Scheduler do
 use Quantum, otp_app: :my_app
end
Could be configured with:
config :my_app, MyApp.Scheduler,
 jobs: [
 {"@daily", {Backup, :backup, []}},
]

 Configuration:

	:clock_broadcaster_name - GenServer name of clock broadcaster
(unstable, may break without major release until declared stable)

	:execution_broadcaster_name - GenServer name of execution broadcaster
(unstable, may break without major release until declared stable)

	:executor_supervisor_name - GenServer name of execution supervisor
(unstable, may break without major release until declared stable)

	:debug_logging - Turn on debug logging

	:jobs - list of cron jobs to execute

	:job_broadcaster_name - GenServer name of job broadcaster
(unstable, may break without major release until declared stable)

	:name - GenServer name of scheduler
(unstable, may break without major release until declared stable)

	:node_selector_broadcaster_name - GenServer name of node selector broadcaster
(unstable, may break without major release until declared stable)

	:overlap - Default overlap of new Job

	:otp_app - Application where scheduler runs

	:run_strategy - Default Run Strategy of new Job

	:schedule - Default schedule of new Job

	:storage - Storage to use for persistence

	:storage_name - GenServer name of storage
(unstable, may break without major release until declared stable)

	:supervisor_module - Module to supervise scheduler
Can be overwritten to supervise processes differently (for example for clustering)
(unstable, may break without major release until declared stable)

	:task_registry_name - GenServer name of task registry
(unstable, may break without major release until declared stable)

	:task_supervisor_name - GenServer name of task supervisor
(unstable, may break without major release until declared stable)

	:timeout - Sometimes, you may come across GenServer timeout errors
esp. when you have too many jobs or high load. The default GenServer.call/3
timeout is 5_000.

	:timezone - Default timezone of new Job

 Telemetry

	[:quantum, :job, :add]
	Description: dispatched when a job is added
	Measurements: %{}
	Metadata: %{job: Quantum.Job.t(), scheduler: atom()}

	[:quantum, :job, :update]
	Description: dispatched when a job is updated
	Measurements: %{}
	Metadata: %{job: Quantum.Job.t(), scheduler: atom()}

	[:quantum, :job, :delete]
	Description: dispatched when a job is deleted
	Measurements: %{}
	Metadata: %{job: Quantum.Job.t(), scheduler: atom()}

	[:quantum, :job, :start]
	Description: dispatched on job execution start
	Measurements: %{system_time: integer()}
	Metadata: %{telemetry_span_context: term(), job: Quantum.Job.t(), node: Node.t(), scheduler: atom()}

	[:quantum, :job, :stop]
	Description: dispatched on job execution end
	Measurements: %{duration: integer()}
	Metadata: %{telemetry_span_context: term(), job: Quantum.Job.t(), node: Node.t(), scheduler: atom(), result: term()}

	[:quantum, :job, :exception]
	Description: dispatched on job execution fail
	Measurements: %{duration: integer()}
	Metadata: %{telemetry_span_context: term(), job: Quantum.Job.t(), node: Node.t(), scheduler: atom(), kind: :throw | :error | :exit, reason: term(), stacktrace: list()}

 Examples

iex(1)> :telemetry_registry.discover_all(:quantum)
:ok
iex(2)> :telemetry_registry.spannable_events()
[{[:quantum, :job], [:start, :stop, :exception]}]
iex(3)> :telemetry_registry.list_events
[
 {[:quantum, :job, :add], Quantum,
 %{
 description: "dispatched when a job is added",
 measurements: "%{}",
 metadata: "%{job: Quantum.Job.t(), scheduler: atom()}"
 }},
 {[:quantum, :job, :delete], Quantum,
 %{
 description: "dispatched when a job is deleted",
 measurements: "%{}",
 metadata: "%{job: Quantum.Job.t(), scheduler: atom()}"
 }},
 {[:quantum, :job, :exception], Quantum,
 %{
 description: "dispatched on job execution fail",
 measurements: "%{duration: integer()}",
 metadata: "%{telemetry_span_context: term(), job: Quantum.Job.t(), node: Node.t(), scheduler: atom(), kind: :throw | :error | :exit, reason: term(), stacktrace: list()}"
 }},
 {[:quantum, :job, :start], Quantum,
 %{
 description: "dispatched on job execution start",
 measurements: "%{system_time: integer()}",
 metadata: "%{telemetry_span_context: term(), job: Quantum.Job.t(), node: Node.t(), scheduler: atom()}"
 }},
 {[:quantum, :job, :stop], Quantum,
 %{
 description: "dispatched on job execution end",
 measurements: "%{duration: integer()}",
 metadata: "%{telemetry_span_context: term(), job: Quantum.Job.t(), node: Node.t(), scheduler: atom(), result: term()}"
 }},
 {[:quantum, :job, :update], Quantum,
 %{
 description: "dispatched when a job is updated",
 measurements: "%{}",
 metadata: "%{job: Quantum.Job.t(), scheduler: atom()}"
 }}
]

 Summary

 Types

 t()

 Quantum Scheduler Implementation

 Callbacks

 activate_job(stage, atom)

 Activates a job by name

 add_job(stage, arg2)

 Adds a new job

 config(t)

 deactivate_job(stage, atom)

 Deactivates a job by name

 delete_all_jobs(stage)

 Deletes all jobs

 delete_job(stage, atom)

 Deletes a job by name

 find_job(stage, atom)

 Resolves a job by name

 init(config)

 A callback executed when the quantum starts.

 jobs(stage)

 Returns the list of currently defined jobs

 new_job(opts)

 Creates a new Job. The job can be added by calling add_job/1.

 run_job(stage, atom)

 Runs a job by name once

 start_link(opts)

 Starts supervision and return {:ok, pid}
or just :ok if nothing needs to be done.

 stop(server, timeout)

 Shuts down the quantum represented by the given pid.

 Types

 Link to this type

 t()

 View Source

 @type t() :: module()

Quantum Scheduler Implementation

 Callbacks

 Link to this callback

 activate_job(stage, atom)

 View Source

 @callback activate_job(GenStage.stage(), atom()) :: :ok

Activates a job by name

 Link to this callback

 add_job(stage, arg2)

 View Source

 @callback add_job(
 GenStage.stage(),
 Quantum.Job.t() | {Crontab.CronExpression.t(), Quantum.Job.task()}
) ::
 :ok

Adds a new job

 Link to this callback

 config(t)

 View Source

 @callback config(Keyword.t()) :: Keyword.t()

 Link to this callback

 deactivate_job(stage, atom)

 View Source

 @callback deactivate_job(GenStage.stage(), atom()) :: :ok

Deactivates a job by name

 Link to this callback

 delete_all_jobs(stage)

 View Source

 @callback delete_all_jobs(GenStage.stage()) :: :ok

Deletes all jobs

 Link to this callback

 delete_job(stage, atom)

 View Source

 @callback delete_job(GenStage.stage(), atom()) :: :ok

Deletes a job by name

 Link to this callback

 find_job(stage, atom)

 View Source

 @callback find_job(GenStage.stage(), atom()) :: Quantum.Job.t() | nil

Resolves a job by name

 Link to this callback

 init(config)

 View Source

 @callback init(config :: Keyword.t()) :: Keyword.t()

A callback executed when the quantum starts.
It takes the quantum configuration that is stored in the application
environment, and may change it to suit the application business.
It must return the updated list of configuration

 Link to this callback

 jobs(stage)

 View Source

 @callback jobs(GenStage.stage()) :: [Quantum.Job.t()]

Returns the list of currently defined jobs

 Link to this callback

 new_job(opts)

 View Source

 @callback new_job(opts :: Keyword.t()) :: Quantum.Job.t()

Creates a new Job. The job can be added by calling add_job/1.

 Supported options

	name - see Quantum.Job.set_name/2
	overlap - see Quantum.Job.set_overlap/2
	run_strategy - see Quantum.Job.set_run_strategy/2
	schedule - see Quantum.Job.set_schedule/2
	state - see Quantum.Job.set_state/2
	task - see Quantum.Job.set_task/2
	timezone - see Quantum.Job.set_timezone/2

 Link to this callback

 run_job(stage, atom)

 View Source

 @callback run_job(GenStage.stage(), atom()) :: :ok

Runs a job by name once

 Link to this callback

 start_link(opts)

 View Source

 @callback start_link(opts :: Keyword.t()) ::
 {:ok, pid()} | {:error, {:already_started, pid()}} | {:error, term()}

Starts supervision and return {:ok, pid}
or just :ok if nothing needs to be done.
Returns {:error, {:already_started, pid}} if the scheduler is already
started or {:error, term} in case anything else goes wrong.

 Options

See the configuration in the moduledoc for options.

 Link to this callback

 stop(server, timeout)

 View Source

 @callback stop(server :: GenServer.server(), timeout()) :: :ok

Shuts down the quantum represented by the given pid.

Quantum.Job

This Struct defines a Job.

 Usage

The struct should never be defined by hand. Use Quantum.new_job/1 to create a new job and use the setters mentioned
below to mutate the job.
This is to ensure type safety.

 Summary

 Types

 name()

 schedule()

 state()

 t()

 task()

 timezone()

 Functions

 set_name(job, name)

 Sets a job's name.

 set_overlap(job, overlap?)

 Sets a job's overlap.

 set_run_strategy(job, run_strategy)

 Sets a job's run strategy.

 set_schedule(job, schedule)

 Sets a job's schedule.

 set_state(job, atom)

 Sets a job's state.

 set_task(job, task)

 Sets a job's task.

 set_timezone(job, timezone)

 Sets a job's timezone.

 Types

 Link to this type

 name()

 View Source

 @type name() :: atom() | reference()

 Link to this type

 schedule()

 View Source

 @type schedule() :: Crontab.CronExpression.t()

 Link to this type

 state()

 View Source

 @type state() :: :active | :inactive

 Link to this type

 t()

 View Source

 @type t() :: %Quantum.Job{
 name: name(),
 overlap: boolean(),
 run_strategy: Quantum.RunStrategy.NodeList,
 schedule: schedule() | nil,
 state: state(),
 task: task() | nil,
 timezone: timezone()
}

 Link to this type

 task()

 View Source

 @type task() :: {atom(), atom(), [any()]} | (-> any())

 Link to this type

 timezone()

 View Source

 @type timezone() :: :utc | String.t()

 Functions

 Link to this function

 set_name(job, name)

 View Source

 @spec set_name(t(), atom()) :: t()

Sets a job's name.

 Parameters

	job - The job struct to modify
	name - The name to set

 Examples

iex> Acme.Scheduler.new_job()
...> |> Quantum.Job.set_name(:name)
...> |> Map.get(:name)
:name

 Link to this function

 set_overlap(job, overlap?)

 View Source

 @spec set_overlap(t(), boolean()) :: t()

Sets a job's overlap.

 Parameters

	job - The job struct to modify
	overlap - Enable / Disable Overlap

 Examples

iex> Acme.Scheduler.new_job()
...> |> Quantum.Job.set_overlap(false)
...> |> Map.get(:overlap)
false

 Link to this function

 set_run_strategy(job, run_strategy)

 View Source

 @spec set_run_strategy(t(), Quantum.RunStrategy.NodeList) :: t()

Sets a job's run strategy.

 Parameters

	job - The job struct to modify
	run_strategy - The run strategy to set

 Examples

iex> Acme.Scheduler.new_job()
...> |> Quantum.Job.run_strategy(%Quantum.RunStrategy.All{nodes: [:one, :two]})
...> |> Map.get(:run_strategy)
[:one, :two]

 Link to this function

 set_schedule(job, schedule)

 View Source

 @spec set_schedule(t(), Crontab.CronExpression.t()) :: t()

Sets a job's schedule.

 Parameters

	job - The job struct to modify
	schedule - The schedule to set. May only be of type %Crontab.CronExpression{}

 Examples

iex> Acme.Scheduler.new_job()
...> |> Quantum.Job.set_schedule(Crontab.CronExpression.Parser.parse!("*/7"))
...> |> Map.get(:schedule)
Crontab.CronExpression.Parser.parse!("*/7")

 Link to this function

 set_state(job, atom)

 View Source

 @spec set_state(t(), state()) :: t()

Sets a job's state.

 Parameters

	job - The job struct to modify
	state - The state to set

 Examples

iex> Acme.Scheduler.new_job()
...> |> Quantum.Job.set_state(:active)
...> |> Map.get(:state)
:active

 Link to this function

 set_task(job, task)

 View Source

 @spec set_task(t(), task()) :: t()

Sets a job's task.

 Parameters

	job - The job struct to modify
	task - The function to be performed, ex: {Heartbeat, :send, []} or fn -> :something end

 Examples

iex> Acme.Scheduler.new_job()
...> |> Quantum.Job.set_task({Backup, :backup, []})
...> |> Map.get(:task)
{Backup, :backup, []}

 Link to this function

 set_timezone(job, timezone)

 View Source

 @spec set_timezone(t(), String.t() | :utc) :: t()

Sets a job's timezone.

 Parameters

	job - The job struct to modify
	timezone - The timezone to set.

 Examples

iex> Acme.Scheduler.new_job()
...> |> Quantum.Job.set_timezone("Europe/Zurich")
...> |> Map.get(:timezone)
"Europe/Zurich"

Quantum.RunStrategy behaviour

Config Normalizer of a Quantum.RunStrategy.NodeList.

 Summary

 Callbacks

 normalize_config!(any)

 Normalize given config to a value that has Quantum.RunStrategy.NodeList implemented.

 Callbacks

 Link to this callback

 normalize_config!(any)

 View Source

 @callback normalize_config!(any()) :: any()

Normalize given config to a value that has Quantum.RunStrategy.NodeList implemented.
Raise / Do not Match on invalid config.

Quantum.RunStrategy.All

Run job on all node of the node list.
If the node list is :cluster, all nodes of the cluster will be used.

 Mix Configuration

config :my_app, MyApp.Scheduler,
 jobs: [
 # Run on all nodes in cluster
 [schedule: "* * * * *", run_strategy: {Quantum.RunStrategy.All, :cluster}],
 # Run on all nodes of given list
 [schedule: "* * * * *", run_strategy: {Quantum.RunStrategy.All, [:"node@host1", :"node@host2"]}],
]

Quantum.RunStrategy.Local

Run job on local node

 Mix Configuration

config :my_app, MyApp.Scheduler,
 jobs: [
 # Run on local node
 [schedule: "* * * * *", run_strategy: Quantum.RunStrategy.Local]
]

Quantum.RunStrategy.NodeList protocol

Strategy to run Jobs over nodes

 Summary

 Types

 t()

 All the types that implement this protocol.

 Functions

 nodes(strategy, job)

 Get nodes to run on

 Types

 Link to this type

 t()

 View Source

 @type t() :: term()

All the types that implement this protocol.

 Functions

 Link to this function

 nodes(strategy, job)

 View Source

 @spec nodes(any(), Quantum.Job.t()) :: [Node.t()]

Get nodes to run on

Quantum.RunStrategy.Random

Run job on one node of the list randomly.
If the node list is :cluster, one node of the cluster will be used.
This run strategy also makes sure, that the node doesn't run in two places at the same time
if job.overlap is falsy.

 Mix Configuration

config :my_app, MyApp.Scheduler,
 jobs: [
 # Run on any node in cluster
 [schedule: "* * * * *", run_strategy: {Quantum.RunStrategy.Random, :cluster}],
 # Run on any node of given list
 [schedule: "* * * * *", run_strategy: {Quantum.RunStrategy.Random, [:"node@host1", :"node@host2"]}],
]

Quantum.Storage behaviour

Behaviour to be implemented by all Storage Adapters.
The calls to the storage are blocking, make sure they're fast to not block the job execution.

 Summary

 Types

 storage_pid()

 The location of the server.

 Callbacks

 add_job(storage_pid, job)

 Save new job in storage.

 child_spec(init_arg)

 Storage child spec

 delete_job(storage_pid, job)

 Delete new job in storage.

 jobs(storage_pid)

 Load saved jobs from storage.

 last_execution_date(storage_pid)

 Load last execution time from storage.

 purge(storage_pid)

 Purge all date from storage and go back to initial state.

 update_job(storage_pid, job)

 Updates existing job in storage.

 update_job_state(storage_pid, job, state)

 Change Job State from given job.

 update_last_execution_date(storage_pid, last_execution_date)

 Update last execution time to given date.

 Types

 Link to this type

 storage_pid()

 View Source

 @type storage_pid() :: nil | GenServer.server()

The location of the server.

 Values

	nil if the storage was not started
	server() if the storage was started

 Callbacks

 Link to this callback

 add_job(storage_pid, job)

 View Source

 @callback add_job(storage_pid :: storage_pid(), job :: Quantum.Job.t()) :: :ok

Save new job in storage.

 Link to this callback

 child_spec(init_arg)

 View Source

 @callback child_spec(init_arg :: Keyword.t()) :: Supervisor.child_spec()

Storage child spec
If the storage does not need a process, specify a function that returns :ignore.

 Values

	:scheduler - The Scheduler

 Link to this callback

 delete_job(storage_pid, job)

 View Source

 @callback delete_job(storage_pid :: storage_pid(), job :: Quantum.Job.name()) :: :ok

Delete new job in storage.

 Link to this callback

 jobs(storage_pid)

 View Source

 @callback jobs(storage_pid :: storage_pid()) :: :not_applicable | [Quantum.Job.t()]

Load saved jobs from storage.
Returns :not_applicable if the storage has never received an add_job call or after it has been purged.
In this case the jobs from the configuration will be loaded.

 Link to this callback

 last_execution_date(storage_pid)

 View Source

 @callback last_execution_date(storage_pid :: storage_pid()) ::
 :unknown | NaiveDateTime.t()

Load last execution time from storage.
Returns :unknown if the storage does not know the last execution time.
In this case all jobs will be run at the next applicable date.

 Link to this callback

 purge(storage_pid)

 View Source

 @callback purge(storage_pid :: storage_pid()) :: :ok

Purge all date from storage and go back to initial state.

 Link to this callback

 update_job(storage_pid, job)

 View Source

 (optional)

 @callback update_job(storage_pid :: storage_pid(), job :: Quantum.Job.t()) :: :ok

Updates existing job in storage.
This callback is optional. If not implemented then the delete_job/2
and then the add_job/2 callbacks will be called instead.

 Link to this callback

 update_job_state(storage_pid, job, state)

 View Source

 @callback update_job_state(
 storage_pid :: storage_pid(),
 job :: Quantum.Job.name(),
 state :: Quantum.Job.state()
) :: :ok

Change Job State from given job.

 Link to this callback

 update_last_execution_date(storage_pid, last_execution_date)

 View Source

 @callback update_last_execution_date(
 storage_pid :: storage_pid(),
 last_execution_date :: NaiveDateTime.t()
) :: :ok

Update last execution time to given date.

Quantum.Storage.Noop

Empty implementation of a Quantum.Storage.

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 Functions

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 OEBPS/dist/epub-TCI3LGHF.js
(()=>{var d=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var c="ex_doc:settings",h={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=h,this._loadSettings()}get(){return this._settings}update(t){let e=this._settings;this._settings={...this._settings,...t},this._subscribers.forEach(n=>n(this._settings,e)),this._storeSettings()}getAndSubscribe(t){this._subscribers.push(t),t(this._settings)}_loadSettings(){try{let t=localStorage.getItem(c);if(t){let e=JSON.parse(t);this._settings={...this._settings,...e}}this._loadSettingsLegacy()}catch(t){console.error(`Failed to load settings: ${t}`)}}_storeSettings(){try{this._storeSettingsLegacy(),localStorage.setItem(c,JSON.stringify(this._settings))}catch(t){console.error(`Failed to persist settings: ${t}`)}}_loadSettingsLegacy(){localStorage.getItem("tooltipsDisabled")!==null&&(this._settings={...this._settings,tooltips:!1}),localStorage.getItem("night-mode")==="true"&&(this._settings={...this._settings,nightMode:!0}),this._settings.nightMode===!0&&(this._settings={...this._settings,theme:"dark"})}_storeSettingsLegacy(){this._settings.tooltips?localStorage.removeItem("tooltipsDisabled"):localStorage.setItem("tooltipsDisabled","true"),this._settings.nightMode!==null?localStorage.setItem("night-mode",this._settings.nightMode===!0?"true":"false"):localStorage.removeItem("night-mode"),this._settings.theme!==null?(localStorage.setItem("night-mode",this._settings.theme==="dark"?"true":"false"),this._settings.nightMode=this._settings.theme==="dark"):(delete this._settings.nightMode,localStorage.removeItem("night-mode"))}},f=new s;function l(){["warning","info","error","neutral","tip"].forEach(t=>{i(`blockquote h3.${t}, blockquote h4.${t}`).forEach(e=>{e.closest("blockquote").classList.add(t)})})}document.addEventListener("click",function(o){if(window.innerWidth<=768){let t=o.target.closest('a[href^="#"]');if(t){o.preventDefault();let e=t.getAttribute("href").substring(1),n=document.getElementById(e);if(n){let u=n.getBoundingClientRect().top+window.scrollY-45;window.scrollTo({top:u,behavior:"smooth"})}}}});var m="hll";function g(){p()}function p(){i("[data-group-id]").forEach(t=>{let e=t.getAttribute("data-group-id");t.addEventListener("mouseenter",n=>{a(e,!0)}),t.addEventListener("mouseleave",n=>{a(e,!1)})})}function a(o,t){i(`[data-group-id="${o}"]`).forEach(n=>{n.classList.toggle(m,t)})}r(()=>{g(),l()});})();

