

 query_stats

 v0.1.1

 Table of contents

 	

 	Modules

 	QueryStats

 	QueryStats.Counter

 	QueryStats.Formatter

 	QueryStats.Handler

QueryStats

QueryStats is a library that provides a way to track the number of queries executed by Ecto
during test suite runs.
After a run, it will output the total number of queries and the number of queries per type.

 Installation

Add query_stats to your list of dependencies in mix.exs:
def deps do
 [
 {:query_stats, "~> 0.1", only: :test}
]
end
Then, in your test_helper.exs file, add the following line:
QueryStats.start(:my_app)
Replace :my_app with the name of your application.

 Output example

Total queries: 10
Query types:
 INSERT: 5
 SELECT: 5

 Summary

 Functions

 start(application)

 Starts the QueryStats library.

 Functions

 Link to this function

 start(application)

 View Source

 @spec start(atom()) :: :ok

Starts the QueryStats library.

 Examples

 iex> QueryStats.start(:my_app)
 :ok

QueryStats.Counter

This module is responsible for keeping track of query statistics.

 Summary

 Functions

 child_spec(arg)

 Returns a specification to start this module under a supervisor.

 get_total()

 Returns the total count of queries.

 get_types()

 Returns the count of each query type.

 increment_total()

 Increments the total count of queries.

 increment_type(type)

 Increments the count of a specific query type.

 reset()

 Resets the counter.

 start_link()

 Starts the counter agent.

 Functions

 Link to this function

 child_spec(arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 get_total()

 View Source

 @spec get_total() :: integer()

Returns the total count of queries.

 Link to this function

 get_types()

 View Source

 @spec get_types() :: map()

Returns the count of each query type.

 Link to this function

 increment_total()

 View Source

 @spec increment_total() :: :ok

Increments the total count of queries.

 Link to this function

 increment_type(type)

 View Source

 @spec increment_type(String.t()) :: :ok

Increments the count of a specific query type.

 Link to this function

 reset()

 View Source

 @spec reset() :: :ok

Resets the counter.

 Link to this function

 start_link()

 View Source

 @spec start_link() :: {:ok, pid()} | {:error, term()}

Starts the counter agent.

QueryStats.Formatter

This module is responsible for formatting the output of the query stats.

 Summary

 Functions

 format_output()

 Formats the output of the query stats.

 Functions

 Link to this function

 format_output()

 View Source

 @spec format_output() :: String.t()

Formats the output of the query stats.

QueryStats.Handler

This module is responsible for handling events and attaching to the application telemetry.

 Summary

 Functions

 attach(application)

 Attaches the handler to the application telemetry.

 handle_event(event, timings, query, _)

 Handles the query event by incrementing the query statistics.

 Functions

 Link to this function

 attach(application)

 View Source

 @spec attach(atom()) :: :ok

Attaches the handler to the application telemetry.

 Link to this function

 handle_event(event, timings, query, _)

 View Source

 @spec handle_event([atom()], map(), map(), any()) :: :ok

Handles the query event by incrementing the query statistics.

 OEBPS/dist/epub-N2MDDSYJ.js
(()=>{var g=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var l="ex_doc:settings",d={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=d,this._loadSettings()}get(){return this._settings}update(t){let e=this._settings;this._settings={...this._settings,...t},this._subscribers.forEach(n=>n(this._settings,e)),this._storeSettings()}getAndSubscribe(t){this._subscribers.push(t),t(this._settings)}_loadSettings(){try{let t=localStorage.getItem(l);if(t){let e=JSON.parse(t);this._settings={...this._settings,...e}}this._loadSettingsLegacy()}catch(t){console.error(`Failed to load settings: ${t}`)}}_storeSettings(){try{this._storeSettingsLegacy(),localStorage.setItem(l,JSON.stringify(this._settings))}catch(t){console.error(`Failed to persist settings: ${t}`)}}_loadSettingsLegacy(){localStorage.getItem("tooltipsDisabled")!==null&&(this._settings={...this._settings,tooltips:!1}),localStorage.getItem("night-mode")==="true"&&(this._settings={...this._settings,nightMode:!0}),this._settings.nightMode===!0&&(this._settings={...this._settings,theme:"dark"})}_storeSettingsLegacy(){this._settings.tooltips?localStorage.removeItem("tooltipsDisabled"):localStorage.setItem("tooltipsDisabled","true"),this._settings.nightMode!==null?localStorage.setItem("night-mode",this._settings.nightMode===!0?"true":"false"):localStorage.removeItem("night-mode"),this._settings.theme!==null?(localStorage.setItem("night-mode",this._settings.theme==="dark"?"true":"false"),this._settings.nightMode=this._settings.theme==="dark"):(delete this._settings.nightMode,localStorage.removeItem("night-mode"))}},h=new s;function a(){["warning","info","error","neutral","tip"].forEach(t=>{i(`blockquote h3.${t}, blockquote h4.${t}`).forEach(e=>{e.closest("blockquote").classList.add(t)})})}var m="hll";function u(){f()}function f(){i("[data-group-id]").forEach(t=>{let e=t.getAttribute("data-group-id");t.addEventListener("mouseenter",n=>{c(e,!0)}),t.addEventListener("mouseleave",n=>{c(e,!1)})})}function c(o,t){i(`[data-group-id="${o}"]`).forEach(n=>{n.classList.toggle(m,t)})}r(()=>{u(),a()});})();

