

 Quokka

 v1.1.0

 [image: Logo]

 Table of contents

 	Changelog

 	Quokka

 	License

 	Rewrites

 	Comment Directives (quokka:sort, ...)

 	Control Flow Macros (if, case, ...)

 	Mix Configs (config/config.exs, ...)

 	Module Directives (use, alias, ...)

 	Pipe Chains

 	Basic Styles

 	

 	Modules

 	Quokka

 	Quokka.AliasEnv

 	Quokka.Style

 	Quokka.Style.Blocks

 	Quokka.Style.CommentDirectives

 	Quokka.Style.Configs

 	Quokka.Style.Defs

 	Quokka.Style.Deprecations

 	Quokka.Style.ModuleDirectives

 	Quokka.Style.Pipes

 	Quokka.Style.SingleNode

 	Quokka.Zipper

 	Exceptions

 	Quokka.StyleError

Changelog

Quokka follows Semantic Versioning and
Common Changelog: Guiding Principles

 [1.1.0] - 2025-02-14

 Improvements

Line length formatting only
In order to phase this into large codebases, Quokka now supports formatting only the line length, the idea being that it is easier to review a diff where one commit is just compressing vertical code and the following is the substantive rewrites -- aka the rewrites that change the AST. In order to use this feature, use newline_fixes_only: true | false in the config.
quokka:sort Quokka's first comment directive
Quokka will now keep a user-designated list or wordlist (~w sigil) sorted as part of formatting via the use of comments. Elements of the list are sorted by their string representation. It also works with maps, key-value pairs (sort by key), and defstruct, and even arbitrary ast nodes with a do end block.
The intention is to remove comments to humans, like # Please keep this list sorted!, in favor of comments to robots: # quokka:sort. Personally speaking, Quokka is much better at alphabetical-order than I ever will be.
To use the new directive, put it on the line before a list or wordlist.
This example:
quokka:sort
[:c, :a, :b]

quokka:sort
~w(a list of words)

quokka:sort
@country_codes ~w(
 en_US
 po_PO
 fr_CA
 ja_JP
)

quokka:sort
a_var =
 [
 Modules,
 In,
 A,
 List
]

 # quokka:sort
 my_macro "some arg" do
 another_macro :q
 another_macro :w
 another_macro :e
 another_macro :r
 another_macro :t
 another_macro :y
 end
Would yield:
quokka:sort
[:a, :b, :c]

quokka:sort
~w(a list of words)

quokka:sort
@country_codes ~w(
 en_US
 fr_CA
 ja_JP
 po_PO
)

quokka:sort
a_var =
 [
 A,
 In,
 List,
 Modules
]

quokka:sort
my_macro "some arg" do
 another_macro :e
 another_macro :q
 another_macro :r
 another_macro :t
 another_macro :w
 another_macro :y
end
Other improvements
	General improvements around conflict detection, lifting in more correct places and fewer incorrect places.

	Use knowledge of existing aliases to shorten invocations.
 example:
 alias A.B.C

 A.B.C.foo()
 A.B.C.bar()
 A.B.C.baz()
 becomes:
 alias A.B.C

 C.foo()
 C.bar()
 C.baz()

	Config Sorting: improve comment handling when only sorting a few nodes.

	Pipes: pipe-ifies when first arg to a function is a pipe. reach out if this happens in unstylish places in your code.

	Pipes: unpiping assignments will make the assignment one-line when possible

	Deprecations: 1.18 deprecations
	List.zip => Enum.zip
	first..last = range => first..last//_ = range

 Fixes

	Support the credo config of the format checks: %{enabled: [...], disabled: [...]}, whereas previously it expected checks: [...]}
	Pipes: optimizations are less likely to move comments
	Don't pipify when the call is itself in a pipe (aka don't touch a |> b(c |> d() |>e()) |> f())

 [1.0.0] - 2025-02-10

Quokka is inspired by the wonderful elixir-styler :heart:
It maintains the same directive that consistent coding standards can help teams
iterate quickly, but allows a few more affordances
via .credo.exs configuration.
This allows users with an already fine-tuned .credo.exs config to enjoy
the automatic rewrites and strong opinions of Quokka
More details about specific Credo rewrites and their configurability can be
found in Quokka: Credo inspired rewrites.
Adoption of opinionated code changes can be hard in larger code bases, so
Quokka allows a few configuration options in .formatter.exs to help
isolate big sets of potentially controversial or code breaking changes that
may need time for adoption. However, these may be removed in a future release.
See Quokka: Configuration
for more details.

Quokka

[image: Hex.pm]
[image: Hexdocs.pm]
[image: Github.com]
Quokka
[image: A happy quokka with style]Quokka is an Elixir formatter plugin that's combination of mix format and mix credo, except instead of telling you what's wrong, it just rewrites the code for you. Quokka is a fork of Styler that checks the Credo config to determine which rules to rewrite. Many common, non-controversial Credo style rules are rewritten automatically, while the controversial Credo style rules are rewritten based on your Credo configuration so you can customize your style.
WARNING
Quokka can change the behavior of your program!
In some cases, this can introduce bugs. It goes without saying, but look over your changes before committing to main :)
We recommend making changes in small chunks until all of the more dangerous
changes has been safely committed to the codebase

 Installation

Add :quokka as a dependency to your project's mix.exs:
def deps do
 [
 {:quokka, "~> 0.1", only: [:dev, :test], runtime: false},
]
end
Then add Quokka as a plugin to your .formatter.exs file
[
 plugins: [Quokka]
]
And that's it! Now when you run mix format you'll also get the benefits of Quokka's Stylish Stylings.

 First Run

You may want to initially run Quokka in "newline fixes only" mode. This will only fix spacing issues, making future PRs much smaller and easier to digest.
See the example in the configuration section if you wish to do this.
Speed: Expect the first run to take some time as Quokka rewrites violations of styles and bottlenecks on disk I/O. Subsequent formats will take noticeably less time.

 Configuration

Quokka primarily relies on the configurations of .formatter.exs and Credo (if available).
However, there are some Quokka specific options that can also be specified
in .formatter.exs to fine tune your setup:
[
 plugins: [Quokka],
 quokka: [
 inefficient_function_rewrites: true | false,
 reorder_configs: true | false,
 rewrite_deprecations: true | false,
 files: %{
 included: ["lib/", ...],
 excluded: ["lib/example.ex", ...]
 },
 newline_fixes_only: true | false
]
]
	Option	Description	Default
	:files	Quokka gets files from .formatter.exs[:inputs]. However, in some cases you may need to selectively exclude/include files you wish to still run in mix format, but have different behavior with Quokka.	%{included: [], excluded: []} (all files included, none excluded)
	:inefficient_function_rewrites	Rewrite inefficient functions to more efficient form	true
	:reorder_configs	Alphabetize config by key in config/*.exs files	true
	:rewrite_deprecations	Rewrite deprecated functions to their new form	true

 Credo inspired rewrites

The power of Quokka comes from utilizing the opinions you've already made with
Credo and going one step further to attempt rewriting them for you.
Below is a general overall of many Credo checks Quokka attempts to handle and
some additional useful details such as links to detailed documentation and if
the check can be configured further for fine tuning.
:controversial Credo checks
Quokka allows all :controversial Credo checks to be configurable. In many cases,
a Credo check can also be disabled to prevent rewriting.

 Credo.Check.Consistency

	Credo Check	Rewrite Description	Documentation	Configurable
	.MultiAliasImportRequireUse	Expands multi-alias/import statements	Directive Expansion	
	.ParameterPatternMatching	Enforces consistent parameter pattern matching	Parameter Pattern Matching	

 Credo.Check.Design

	Credo Check	Rewrite Description	Documentation	Configurable
	.AliasUsage	Extracts repeated aliases	Alias Lifting	✓

 Credo.Check.Readability

	Credo Check	Rewrite Description	Documentation	Configurable
	.AliasOrder	Alphabetizes module directives	Module Directives	✓
	.BlockPipe	(En|dis)ables piping into blocks	Pipe Chains	✓
	.LargeNumbers	Formats large numbers with underscores	Number Formatting	✓
	.MaxLineLength	Enforces maximum line length	Line Length	✓
	.MultiAlias	Expands multi-alias statements	Module Directives	✓
	.OneArityFunctionInPipe	Optimizes pipe chains with single arity functions	Pipe Chains	
	.ParenthesesOnZeroArityDefs	Enforces consistent function call parentheses	Function Calls	✓
	.PipeIntoAnonymousFunctions	Optimizes pipes with anonymous functions	Pipe Chains	
	.PreferImplicitTry	Simplifies try expressions	Control Flow Macros	
	.SinglePipe	Optimizes pipe chains	Pipe Chains	✓
	.StringSigils	Replaces strings with sigils	Strings to Sigils	
	.StrictModuleLayout	Enforces strict module layout	Module Directives	✓
	.UnnecessaryAliasExpansion	Removes unnecessary alias expansions	Module Directives	
	.WithSingleClause	Simplifies with statements	Control Flow Macros	

 Credo.Check.Refactor

	Credo Check	Rewrite Description	Documentation	Configurable
	.CondStatements	Simplifies boolean expressions	Control Flow Macros	
	.FilterCount	Optimizes filter + count operations	Styles	
	.MapInto	Optimizes map + into operations	Styles	
	.MapJoin	Optimizes map + join operations	Styles	
	.NegatedConditionsInUnless	Simplifies negated conditions in unless	Control Flow Macros	
	.NegatedConditionsWithElse	Simplifies negated conditions with else	Control Flow Macros	
	.PipeChainStart	Optimizes pipe chain start	Pipe Chains	
	.RedundantWithClauseResult	Removes redundant with clause results	Control Flow Macros	
	.UnlessWithElse	Simplifies unless with else	Control Flow Macros	
	.WithClauses	Optimizes with clauses	Control Flow Macros	

 License

Quokka is licensed under the Apache 2.0 license. See the LICENSE file for more details.

License

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

Comment Directives

 Maintain static list order via # quokka:sort

Quokka can keep static values sorted for your team as part of its formatting pass. To instruct it to do so, replace any # Please keep this list sorted! notes you wrote to your teammates with # quokka:sort.
Examples
quokka:sort
[:c, :a, :b]

quokka:sort
~w(a list of words)

quokka:sort
@country_codes ~w(
 en_US
 po_PO
 fr_CA
 ja_JP
)

quokka:sort
a_var =
 [
 Modules,
 In,
 A,
 List
]
Would yield:
quokka:sort
[:a, :b, :c]

quokka:sort
~w(a list of words)

quokka:sort
@country_codes ~w(
 en_US
 fr_CA
 ja_JP
 po_PO
)

quokka:sort
a_var =
 [
 A,
 In,
 List,
 Modules
]

Control Flow Macros (<code class="inline">case</code>, <code class="inline">if</code>, <code class="inline">unless</code>, <code class="inline">cond</code>, <code class="inline">with</code>)

Elixir's Kernel documentation refers to these structures as "macros for control-flow".
We often refer to them as "blocks" in our changelog, which is a much worse name, to be sure.

 if and unless

Quokka removes else: nil clauses:
if a, do: b, else: nil
styled:
if a, do: b
Quokka removes unless since it is being deprecated in Elixir 1.18. This implicitly addresses Credo.Check.Refactor.NegatedConditionsInUnless and Credo.Check.Refactor.NegatedConditionsWithElse.
Given:
unless a, do: b
Styled:
if a, do: b

 Negation Inversion

This addresses Credo.Check.Refactor.NegatedConditionsWithElse. This is not configurable.
Quokka removes negators in the head of if statements by "inverting" the statement.
The following operators are considered "negators": !, not, !=, !==
Examples:

negated `if` statements with an `else` clause have their clauses inverted and negation removed
if !x, do: y, else: z
Styled:
if x, do: z, else: y

negated `unless` statements are rewritten to `if`
unless x != y, do: z
B styled:
if x == y, do: z

`unless` with `else` is verboten; these are always rewritten to `if` statements
unless x, do: y, else: z
styled:
if x, do: z, else: y
Because elixir relies on truthy/falsey values for its if statements, boolean casting is unnecessary and so double negation is simply removed.
if !!x, do: y
styled:
if x, do: y

 cond

This addresses Credo.Check.Refactor.CondStatements. This is not configurable.
Quokka has only one cond statement rewrite: replace 2-clause statements with if statements.
Given
cond do
 a -> b
 true -> c
end
Styled
if a do
 b
else
 c
end

 with

This addresses Credo.Check.Readability.WithSingleClause, Credo.Check.Refactor.RedundantWithClauseResult, and Credo.Check.Refactor.WithClauses. This is not configurable.

 Remove Identity Else Clause

Like if statements with nil as their else clause, the identity else clause is the default for with statements and so is removed.
Given
with :ok <- b(), :ok <- b() do
 foo()
else
 error -> error
end
Styled:
with :ok <- b(), :ok <- b() do
 foo()
end

 Remove The Statement Entirely

While you might think "surely this kind of code never appears in the wild", it absolutely does. Typically it's the result of someone refactoring a pattern away and not looking at the larger picture and realizing that the with statement now serves no purpose.
Maybe someday the compiler will warn about these use cases. Until then, Quokka to the rescue.
Given:
with a <- b(),
 c <- d(),
 e <- f(),
 do: g,
 else: (_ -> h)
Styled:
a = b()
c = d()
e = f()
g

Given
with value <- arg do
 value
end
Styled:
arg

 Replace _ <- rhs with rhs

This is another case of "less is more" for the reader.
Given
with :ok <- x,
 _ <- y(),
 {:ok, _} <- z do
 :ok
end
Styled:
with :ok <- x,
 y(),
 {:ok, _} <- z do
 :ok
end

 Replace non-branching bar <- with bar =

<- is for branching. If the lefthand side is the trivial match (a bare variable), Quokka rewrites it to use the = operator instead.
Given
with :ok <- foo(),
 bar <- baz(),
 :ok <- woo(),
 do: {:ok, bar}
Styled
 with :ok <- foo(),
 bar = baz(),
 :ok <- woo(),
 do: {:ok, bar}

 Move assignments from with statement head

Just because any program could be written entirely within the head of a with statement doesn't mean it should be!
Quokka moves assignments that aren't trapped between <- outside of the head. Combined with the non-pattern-matching replacement above, we get the following:
Given
with foo <- bar,
 x = y,
 :ok <- baz,
 bop <- boop,
 :ok <- blop,
 foo <- bar,
 :success = hope_this_works! do
 :ok
end
Styled:
foo = bar
x = y

with :ok <- baz,
 bop = boop,
 :ok <- blop do
 foo = bar
 :success = hope_this_works!
 :ok
end

 Remove redundant final clause

If the pattern of the final clause of the head is also the with statements do body, quokka nixes the final match and makes the right hand side of the clause into the do body.
Given
with {:ok, a} <- foo(),
 {:ok, b} <- bar(a) do
 {:ok, b}
end
Styled:
with {:ok, a} <- foo() do
 bar(a)
end

 Replace with case

A with statement with a single clause in the head and an else body is really just a case statement putting on airs.
Given:
with :ok <- foo do
 :success
else
 :fail -> :failure
 error -> error
end
Styled:
case foo do
 :ok -> :success
 :fail -> :failure
 error -> error
end

 Replace with if

Given Quokka rewrites trivial case to if, it shouldn't be a surprise that that same rule means that with can be rewritten to if in some cases.
Given:
with true <- foo(), bar <- baz() do
 {:ok, bar}
else
 _ -> :error
end
Styled:
if foo() do
 bar = baz()
 {:ok, bar}
else
 :error
end

Mix Configs

THIS CAN BREAK YOUR PROGRAM
It's important to double check your configuration after running Quokka on it for the first time.

This can be enabled or disabled by setting the :reorder_configs option in your .formatter.exs file. See the README for more information.
Mix Config files have their config stanzas sorted. Similar to the sorting of aliases, this delivers consistency to an otherwise arbitrary world, and can even help catch bugs like configuring the same key multiple times.
A file is considered a config file if
	its path matches ~r|config/.*\.exs| ~r|rel/overlays/.*\.exs|
	the file has import Config

Once a file is detected as a mix config, its config/2,3 stanzas are grouped and ordered like so:
	group config stanzas separated by assignments (x = y) together
	sort each group according to erlang term sorting
	move all existing assignments between the config stanzas to above the stanzas (without changing their ordering)

Imagine your application configures the same value twice, once with an invalid or application breaking value, and then again with a correct value, like so:
string = "i am a string"
atom = :i_am_an_atom

config :my_app, value_must_be_an_atom: string
...
...
config :my_app, value_must_be_an_atom: atom
When quokka sorts the configuration file, this dormant mistake can become a bug if the sorting changes the order such that the invalid value takes precedence (aka comes last)
string = "i am a string"
atom = :i_am_an_atom

The value that must be an atom is now a string!
config :my_app, value_must_be_an_atom: atom
config :my_app, value_must_be_an_atom: string

 Examples

Sorts configs by erlang term ordering:
Given
import Config

config :z, :x, :c
config :a, :b, :c
config :y, :x, :z
config :a, :c, :d

Styled:
import Config

config :a, :b, :c
config :a, :c, :d

config :y, :x, :z

config :z, :x, :c
Non-config statements break the file up into chunks, where each chunk is sorted separately relative to itself.
Given
import Config

config :z, :x, :c
config :a, :b, :c
var = "value"
config :y, :x, var
config :a, :c, var

Styled:
import Config

config :a, :b, :c
config :z, :x, :c

var = "value"

config :a, :c, var
config :y, :x, var

Module Directives (use, alias, ...)

 Skipping Module Reordering

If you want to skip module reordering, you can add the following comment to the top of the file:
quokka:skip-module-reordering
This will prevent Quokka from doing any of the below transformations.

 Directive Expansion

This addresses:
	Credo.Check.Consistency.MultiAliasImportRequireUse. Note that while Credo will pass as long as multi alias usage is consistent, Quokka will only expand multi-alias statements. It will not compress multiple aliases into a single statement.
	Credo.Check.Readability.MultiAlias. Note that this is configurable and Quokka will check the Credo config to determine if aliases should be expanded.
	Credo.Check.Readability.UnnecessaryAliasExpansion. This is not configurable.

Expands Module.{SubmoduleA, SubmoduleB} to their explicit forms for ease of searching.
Before
import Foo.{Bar, Baz, Bop}
alias Foo.{Bar, Baz.A, Bop}

After
import Foo.Bar
import Foo.Baz
import Foo.Bop

alias Foo.Bar
alias Foo.Baz.A
alias Foo.Bop

 Directive Organization

This addresses:
	Credo.Check.Readability.AliasOrder. While it is not possible to disable this rewrite, Quokka will respect the :sort_method Credo config.
	Credo.Check.Readability.StrictModuleLayout. While it is not possible to disable this rewrite, Quokka will respect the :order Credo config.

Modules directives are sorted into the following order by default:
	@shortdoc
	@moduledoc
	@behaviour
	use
	import (sorted alphabetically)
	alias (sorted alphabetically)
	require (sorted alphabetically)
	everything else (order unchanged)

 Before

defmodule Foo do
 @behaviour Lawful
 alias A.A
 require A

 use B

 def c(x), do: y

 import C
 @behaviour Chaotic
 @doc "d doc"
 def d do
 alias X.X
 alias H.H

 alias Z.Z
 import Ecto.Query
 X.foo()
 end
 @shortdoc "it's pretty short"
 import A
 alias C.C
 alias D.D

 require C
 require B

 use A

 alias C.C
 alias A.A

 @moduledoc "README.md"
 |> File.read!()
 |> String.split("<!-- MDOC !-->")
 |> Enum.fetch!(1)
end

 After

defmodule Foo do
 @shortdoc "it's pretty short"
 @moduledoc "README.md"
 |> File.read!()
 |> String.split("<!-- MDOC !-->")
 |> Enum.fetch!(1)
 @behaviour Chaotic
 @behaviour Lawful

 use B
 use A.A

 import A.A
 import C

 alias A.A
 alias C.C
 alias D.D

 require A
 require B
 require C

 def c(x), do: y

 @doc "d doc"
 def d do
 import Ecto.Query

 alias H.H
 alias X.X
 alias Z.Z

 X.foo()
 end
end
If any line previously relied on an alias, the alias is fully expanded when it is moved above the alias:
Given
alias Foo.Bar
import Bar
Styled
import Foo.Bar

alias Foo.Bar

 Alias Lifting

This addresses Credo.Check.Design.AliasUsage. The Credo configs supported by Quokka include:
	:lift_alias_excluded_namespaces
	:lift_alias_excluded_lastnames
	:if_nested_deeper_than
	:if_called_more_often_than

When a module with greater than :if_nested_deeper_than nested parts is referenced more than :if_called_more_often_than times, Quokka creates a new alias for that module and uses it.
Given
require A.B.C

A.B.C.foo()
A.B.C.bar()

Styled
alias A.B.C

require C

C.foo()
C.bar()

 Collisions

Quokka won't lift aliases that will collide with existing aliases, and likewise won't lift any module whose name would collide with a standard library name.

Pipe Chains

 Pipe Start

	If Credo.Check.Readability.BlockPipe is enabled, Quokka will prevent using blocks with pipes. Quokka respects the :exclude Credo opt.
	If Credo.Check.Refactor.PipeChainStart is enabled, Quokka will rewrite the start of a pipechain to be a 0-arity function, a raw value, or a variable. Quokka respects the :excluded_functions and excluded_argument_types Credo opts.

Based on the Credo config, Quokka will rewrite the start of a pipechain to be a 0-arity function, a raw value, or a variable.
Enum.at(enum, 5)
|> IO.inspect()

Styled:
enum
|> Enum.at(5)
|> IO.inspect()
If the start of a pipe is a block expression, Quokka will create a new variable to store the result of that expression and make that variable the start of the pipe.
if a do
 b
else
 c
end
|> Enum.at(4)
|> IO.inspect()

Styled:
if_result =
 if a do
 b
 else
 c
 end

if_result
|> Enum.at(4)
|> IO.inspect()

 Add parenthesis to function calls in pipes

This addresses Credo.Check.Readability.OneArityFunctionInPipe. This is not configurable.
a |> b |> c |> d
Styled:
a |> b() |> c() |> d()

 Remove Unnecessary then/2

When the piped argument is being passed as the first argument to the inner function, there's no need for then/2.
a |> then(&f(&1, ...)) |> b()
Styled:
a |> f(...) |> b()
	add parens to function calls |> fun |> => |> fun() |>

 Add then/2 when defining and calling anonymous functions in pipes

	Addresses Credo.Check.Readability.PipeIntoAnonymousFunctions by rewriting anonymous function invocations to use then/2. This is not configurable.

a |> (fn x -> x end).() |> c()
Styled:
a |> then(fn x -> x end) |> c()

 Piped function optimizations

Two function calls into one! Fewer steps is always nice.
reverse |> concat => reverse/2
a |> Enum.reverse() |> Enum.concat(enum) |> ...
Styled:
a |> Enum.reverse(enum) |> ...

filter |> count => count(filter)
a |> Enum.filter(filterer) |> Enum.count() |> ...
Styled:
a |> Enum.count(filterer) |> ...

map |> join => map_join
a |> Enum.map(mapper) |> Enum.join(joiner) |> ...
Styled:
a |> Enum.map_join(joiner, mapper) |> ...

Enum.map |> X.new() => X.new(mapper)
where X is one of: Map, MapSet, Keyword
a |> Enum.map(mapper) |> Map.new() |> ...
Styled:
a |> Map.new(mapper) |> ...

Enum.map |> Enum.into(empty_collectable) => X.new(mapper)
Where empty_collectable is one of `%{}`, `Map.new()`, `Keyword.new()`, `MapSet.new()`
Given:
a |> Enum.map(mapper) |> Enum.into(%{}) |> ...
Styled:
a |> Map.new(mapper) |> ...

Given:
a |> b() |> Stream.each(fun) |> Stream.run()
a |> b() |> Stream.map(fun) |> Stream.run()
Styled:
a |> b() |> Enum.each(fun)
a |> b() |> Enum.each(fun)

 Unpiping Single Pipes

This addresses Credo.Check.Readability.SinglePipe. If the Credo check is enabled, Quokka will rewrite pipechains with a single pipe to be function calls. Notably, this rule combined with the optimizations rewrites above means some chains with more than one pipe will also become function calls.
foo = bar |> baz()
Styled:
foo = baz(bar)

map = a |> Enum.map(mapper) |> Map.new()
Styled:
map = Map.new(a, mapper)

Simple (Single Node) Styles

Function Performance & Readability Optimizations
Optimizing for either performance or readability, probably both!
These apply to the piped versions as well

 Strings to Sigils

This addresses Credo.Check.Readability.StringSigils. This is not configurable.
Rewrites strings with 4 or more escaped quotes to string sigils with an alternative delimiter.
The delimiter will be one of " ({ | [' < /, chosen by which would require the fewest escapes, and otherwise preferred in the order listed.
Before
"{\"errors\":[\"Not Authorized\"]}"
Styled
~s({"errors":["Not Authorized"]})

 Large Base 10 Numbers

This addresses Credo.Check.Readability.LargeNumbers. Quokka will respect the :only_greater_than Credo opt.
Style base 10 numbers with 5 or more digits to have a _ every three digits.
Formatter already does this except it doesn't rewrite "typos" like 100_000_0.
If you're concerned that this breaks your team's formatting for things like "cents" (like "$100" being written as 100_00),
consider using a library made for denoting currencies rather than raw elixir integers.
	Before	After
	10000	10_000
	1_0_0_0_0	10_000 (elixir's formatter leaves the former as-is)
	-543213	-543_213
	123456789	123_456_789
	55333.22	55_333.22
	-123456728.0001	-123_456_728.0001

 Efficient Function Rewrites

All these rewrites are configurable by setting the :inefficient_function_rewrites option in your .formatter.exs file. See the README for more information.

 Enum.into -> X.new

This rewrite is applied when the collectable is a new map, keyword list, or mapset via Enum.into/2,3.
This is an improvement for the reader, who gets a more natural language expression: "make a new map from enum" vs "enumerate enum and collect its elements into a new map"
Note that all of the examples below also apply to pipes (enum |> Enum.into(...))
	Before	After
	Enum.into(enum, %{})	Map.new(enum)
	Enum.into(enum, Map.new())	Map.new(enum)
	Enum.into(enum, Keyword.new())	Keyword.new(enum)
	Enum.into(enum, MapSet.new())	Keyword.new(enum)
	Enum.into(enum, %{}, fn x -> {x, x} end)	Map.new(enum, fn x -> {x, x} end)
	Enum.into(enum, [])	Enum.to_list(enum)
	Enum.into(enum, [], mapper)	Enum.map(enum, mapper)

 Map/Keyword.merge w/ single key literal -> X.put

Keyword.merge and Map.merge called with a literal map or keyword argument with a single key are rewritten to the equivalent put, a cognitively simpler function.
Before
Keyword.merge(kw, [key: :value])
Styled
Keyword.put(kw, :key, :value)

Before
Map.merge(map, %{key: :value})
Styled
Map.put(map, :key, :value)

Before
Map.merge(map, %{key => value})
Styled
Map.put(map, key, value)

Before
map |> Map.merge(%{key: value}) |> foo()
Styled
map |> Map.put(:key, value) |> foo()

 Map/Keyword.drop w/ single key -> X.delete

In the same vein as the merge style above, [Map|Keyword].drop/2 with a single key to drop are rewritten to use delete/2
Before
Map.drop(map, [key])
Styled
Map.delete(map, key)

Before
Keyword.drop(kw, [key])
Styled
Keyword.delete(kw, key)

 Enum.reverse/1 and concatenation -> Enum.reverse/2

Enum.reverse/2 optimizes a two-step reverse and concatenation into a single step.
Before
Enum.reverse(foo) ++ bar
Styled
Enum.reverse(foo, bar)

Before
baz |> Enum.reverse() |> Enum.concat(bop)
Styled
Enum.reverse(baz, bop)

 Timex.now/0 ->DateTime.utc_now/0

Timex certainly has its uses, but knowing what stdlib date/time struct is returned by now/0 is a bit difficult!
We prefer calling the actual function rather than its rename in Timex, helping the reader by being more explicit.
This also hews to our internal styleguide's "Don't make one-line helper functions" guidance.

 DateModule.compare/2 -> DateModule.[before?|after?]

Again, the goal is readability and maintainability. before?/2 and after?/2 were implemented long after compare/2,
so it's not unusual that a codebase needs a lot of refactoring to be brought up to date with these new functions.
That's where Quokka comes in!
The examples below use DateTime.compare/2, but the same is also done for NaiveDateTime|Time|Date.compare/2
Before
DateTime.compare(start, end_date) == :gt
Styled
DateTime.after?(start, end_date)

Before
DateTime.compare(start, end_date) == :lt
Styled
DateTime.before?(start, end_date)

 Filter count

This addresses Credo.Check.Refactor.FilterCount. This is not configurable.
[1, 2, 3, 4, 5]
|> Enum.filter(fn x -> rem(x, 3) == 0 end)
|> Enum.count()

Styled:
Enum.count([1, 2, 3, 4, 5], fn x -> rem(x, 3) == 0 end)

 Map into

This addresses Credo.Check.Refactor.MapInto. This is not configurable.
[:apple, :banana, :carrot]
|> Enum.map(&({&1, to_string(&1)}))
|> Enum.into(%{})

Styled:
Map.new([:apple, :banana, :carrot], &{&1, to_string(&1)})

 Map join

This addresses Credo.Check.Refactor.MapJoin. This is not configurable.
["a", "b", "c"]
|> Enum.map(&String.upcase/1)
|> Enum.join(", ")

Styled:
Enum.join(["a", "b", "c"], ", ", &String.upcase/1)

 Implicit Try

Quokka will rewrite functions whose entire body is a try/do to instead use the implicit try syntax. Addresses Credo.Check.Readability.PreferImplicitTry. This is not configurable.
The following example illustrates the most complex case, but Quokka happily handles just basic try do/rescue bodies just as easily.

 Before

def foo() do
 try do
 uh_oh()
 rescue
 exception -> {:error, exception}
 catch
 :a_throw -> {:error, :threw!}
 else
 try_has_an_else_clause? -> {:did_you_know, try_has_an_else_clause?}
 after
 :done
 end
end

 After

def foo() do
 uh_oh()
rescue
 exception -> {:error, exception}
catch
 :a_throw -> {:error, :threw!}
else
 try_has_an_else_clause? -> {:did_you_know, try_has_an_else_clause?}
after
 :done
end

 Add parenthesis to 0-arity functions and macro definitions

This addresses Credo.Check.Readability.ParenthesesOnZeroArityDefs. Quokka will add or remove parens from function calls in pipes when the function has no arguments based on the Credo config. If the Credo check is disabled, Quokka will not add or remove parens.
Behavior if .credo.exs has `Credo.Check.Readability.ParenthesesOnZeroArityDefs, parens: true`
Before
def foo
defp foo
defmacro foo
defmacrop foo

Styled
def foo()
defp foo()
defmacro foo()
defmacrop foo()
Behavior if .credo.exs has `Credo.Check.Readability.ParenthesesOnZeroArityDefs, parens: false`
Before
def foo()
defp foo()
defmacro foo()
defmacrop foo()

Styled
def foo
defp foo
defmacro foo
defmacrop foo

 Elixir Deprecation Rewrites

 1.15+

	Before	After
	Logger.warn	Logger.warning
	Path.safe_relative_to/2	Path.safe_relative/2
	~R/my_regex/	~r/my_regex/
	Enum/String.slice/2 with decreasing ranges	add explicit steps to the range *
	Date.range/2 with decreasing range	Date.range/3 *
	IO.read/bin_read with :all option	replace :all with :eof

* For both of the "decreasing range" changes, the rewrite can only be applied if the range is being passed as an argument to the function.

 1.16+

File.stream! :line and :bytes deprecation
Before
File.stream!(path, [encoding: :utf8, trim_bom: true], :line)
Styled
File.stream!(path, :line, encoding: :utf8, trim_bom: true)

 Putting variable matching on the right

Before
case foo do
 bar = %{baz: baz? = true} -> :baz?
 opts = [[a = %{}] | _] -> a
end
Styled:
case foo do
 %{baz: true = baz?} = bar -> :baz?
 [[%{} = a] | _] = opts -> a
end

Before
with {:ok, result = %{}} <- foo, do: result
Styled
with {:ok, %{} = result} <- foo, do: result

Before
def foo(bar = %{baz: baz? = true}, opts = [[a = %{}] | _]), do: :ok
Styled
def foo(%{baz: true = baz?} = bar, [[%{} = a] | _] = opts), do: :ok

 Drops superfluous = _ in pattern matching

Before
def foo(_ = bar), do: bar
Styled
def foo(bar), do: bar

Before
case foo do
 _ = bar -> :ok
end
Styled
case foo do
 bar -> :ok
end

 Use Implicit Try

before
def foo d
 try do
 throw_ball()
 catch
 :ball -> :caught
 end
end

Styled:
def foo d
 throw_ball()
catch
 :ball -> :caught
end

 Shrink Function Definitions to One Line When Possible

Before

def save(
 # Socket comment
 %Socket{assigns: %{user: user, live_action: :new}} = initial_socket,
 # Params comment
 params
),
 do: :ok

Styled

Socket comment
Params comment
def save(%Socket{assigns: %{user: user, live_action: :new}} = initial_socket, params), do: :ok

 Parameter Pattern Matching Consistency

This addresses Credo.Check.Consistency.ParameterPatternMatching. Note that while this is configurable in credo, Quokka will rewrite all matches to be on the right hand side of the = sign.
Before
def process(user = %User{age: age}) when age >= 18 do
 # ...
end

Styled
def process(%User{age: age} = user) when age >= 18 do
 # ...
end

Before - match on left
def process(opts = [foo: foo]) do
 # ...
end

Styled - match on right
def process([foo: foo] = opts) do
 # ...
end

 Line Length

This addresses Credo.Check.Readability.MaxLineLength. Quokka will respect the :line_length configuration (from .credo.exs) when determining whether to split lines. When possible, will compress code onto a single line if it fits within the configured length.
Before - Multiple lines when it could fit on one
def process_user(
 name,
 email
) do
 UserProcessor.handle(name, email)
end

Styled - Compressed to one line since it fits
def process_user(name, email) do
 UserProcessor.handle(name, email)
end

Before - Long line exceeding configured length
def process_user_data(user_name, email, age, occupation, address, phone_number, preferences), do: UserProcessor.handle_data(user_name, email, age, occupation, address, phone_number, preferences)

Styled - Split across multiple lines to respect length limit
def process_user_data(
 user_name,
 email,
 age,
 occupation,
 address,
 phone_number,
 preferences
), do: UserProcessor.handle_data(
 user_name,
 email,
 age,
 occupation,
 address,
 phone_number,
 preferences
)

Quokka

Quokka is a formatter plugin with stronger opinions on code organization, multi-line defs and other code-style matters.

 Summary

 Functions

 Quokka.AliasEnv - Quokka v1.1.0

Quokka.AliasEnv

A datastructure for maintaining something like compiler alias state when traversing AST.
Not anywhere as correct as what the compiler gives us, but close enough for open source work.
A alias env is a map from an alias's as to its resolution in a context.
Given the ast for
alias Foo.Bar
we'd create the env:
%{:Bar => [:Foo, :Bar]}

 Summary

 Functions

 Quokka.Style - Quokka v1.1.0

Quokka.Style behaviour

A Style takes AST and returns a transformed version of that AST.
Because these transformations involve traversing trees (the "T" in "AST"), we wrap the AST in a structure
called a Zipper to facilitate walking the trees.

 Summary

 Types

 Quokka.Style.Blocks - Quokka v1.1.0

Quokka.Style.Blocks

Simple 1-1 rewrites all crammed into one module to make for more efficient traversals
Credo Rules addressed:
	Credo.Check.Readability.LargeNumbers
	Credo.Check.Readability.ParenthesesOnZeroArityDefs
	Credo.Check.Readability.WithSingleClause
	Credo.Check.Refactor.CondStatements
	Credo.Check.Refactor.RedundantWithClauseResult
	Credo.Check.Refactor.WithClauses

 Summary

 Functions

 Quokka.Style.CommentDirectives - Quokka v1.1.0

Quokka.Style.CommentDirectives

Leave a comment for Quokka asking it to maintain code in a certain way.
quokka:sort maintains sorting of wordlists (by string comparison) and lists (string comparison of code representation)

 Summary

 Functions

 Quokka.Style.Configs - Quokka v1.1.0

Quokka.Style.Configs

Orders Config.config/2,3 stanzas in configuration files.
	ordering is done only within immediate-sibling config statements
	assignments are moved above the configuration blocks
	any non config/2,3 or assignment (=/2) calls mark the end of a sorting block.
this is support having conditional blocks (if/case/cond) and import_config stanzas between blocks

 Breakages

If you configure the same values multiple times, Quokka may swap their orders
Before
 line 04: config :foo, bar: :zab
 line 40: config :foo, bar: :baz
 # Application.fetch_env!(:foo)[:bar] => :baz
After
 line 04: config :foo, bar: :baz
 line 05: config :foo, bar: :zab
 # Application.fetch_env!(:foo)[:bar] => :zab
Fix
The reason Quokka sorts configuration is to help you noticed these duplicated configuration stanzas.
Delete the duplicative/erroneous stanza and life will be good.

 Summary

 Functions

 Quokka.Style.Defs - Quokka v1.1.0

Quokka.Style.Defs

Styles function heads so that they're as small as possible.
The goal is that a function head fits on a single line.
This isn't a Credo issue, and the formatter is fine with either approach. But Quokka has opinions!
Ex:
This long declaration
def foo(%{
 bar: baz
}) do
 ...
end
Becomes
def foo(%{bar: baz}) do
 ...
end

 Summary

 Functions

 Quokka.Style.Deprecations - Quokka v1.1.0

Quokka.Style.Deprecations

Transformations to soft or hard deprecations introduced on newer Elixir releases

 Summary

 Functions

 Quokka.Style.ModuleDirectives - Quokka v1.1.0

Quokka.Style.ModuleDirectives

Styles up module directives!
This Style will expand multi-aliases/requires/imports/use and sort the directive within its groups (except uses, which cannot be sorted)
It also adds a blank line after each directive group.

 Credo rules

Rewrites for the following Credo rules:
	Credo.Check.Consistency.MultiAliasImportRequireUse (force expansion)
	Credo.Check.Readability.AliasOrder (we sort __MODULE__, which credo doesn't)
	Credo.Check.Readability.MultiAlias
	Credo.Check.Readability.StrictModuleLayout (see section below for details)
	Credo.Check.Readability.UnnecessaryAliasExpansion
	Credo.Check.Design.AliasUsage

 Strict Layout

Modules directives are sorted into the following order:
	@shortdoc
	@moduledoc
	@behaviour
	use
	import
	alias
	require
	everything else (unchanged)

 Summary

 Functions

 Quokka.Style.Pipes - Quokka v1.1.0

Quokka.Style.Pipes

Styles pipes! In particular, don't make pipe chains of only one pipe, and some persnickety pipe chain start stuff.
Rewrites for the following Credo rules:
	Credo.Check.Readability.BlockPipe
	Credo.Check.Readability.OneArityFunctionInPipe
	Credo.Check.Readability.PipeIntoAnonymousFunctions
	Credo.Check.Readability.SinglePipe
	Credo.Check.Refactor.FilterCount
	Credo.Check.Refactor.MapInto
	Credo.Check.Refactor.MapJoin
	Credo.Check.Refactor.PipeChainStart, excluded_functions: ["from"]

 Summary

 Functions

 Quokka.Style.SingleNode - Quokka v1.1.0

Quokka.Style.SingleNode

Simple 1-1 rewrites all crammed into one module to make for more efficient traversals
Credo Rules addressed:
	Credo.Check.Consistency.ParameterPatternMatching
	Credo.Check.Readability.LargeNumbers
	Credo.Check.Readability.ParenthesesOnZeroArityDefs
	Credo.Check.Readability.PreferImplicitTry
	Credo.Check.Readability.StringSigils
	Credo.Check.Readability.WithSingleClause
	Credo.Check.Refactor.CondStatements
	Credo.Check.Refactor.RedundantWithClauseResult
	Credo.Check.Refactor.WithClauses

 Summary

 Functions

 Quokka.Zipper - Quokka v1.1.0

Quokka.Zipper

Implements a Zipper for the Elixir AST based on Gérard Huet Functional pearl: the
zipper paper and
Clojure's clojure.zip API.
A zipper is a data structure that represents a location in a tree from the
perspective of the current node, also called focus. It is represented by a
2-tuple where the first element is the focus and the second element is the
metadata/context. The metadata is nil when the focus is the topmost node

 Summary

 Types

 Quokka.StyleError - Quokka v1.1.0

Quokka.StyleError exception

Wraps errors raised by Styles during tree traversal.

 Summary

 Functions

 OEBPS/dist/epub-CB7BJMUW.js
