

 Rambla

 v1.2.1

 [image: Logo]

 Table of contents

 	Rambla

 	Getting Started

 	Testing Rambla

 	

 	Modules

 	Rambla

 	Rambla.Handler

 	Rambla.Handlers.Clickhouse

 	Handlers

 	Rambla.Handlers.Amqp

 	Rambla.Handlers.Httpc

 	Rambla.Handlers.Redis

 	Rambla.Handlers.S3

 	Rambla.Handlers.Smtp

 	Test/Dev Handlers

 	Rambla.Handlers.Mock

 	Rambla.Handlers.Stub

 	Deprecated

 	Rambla.Connection

 	Rambla.Connection.Config

 	Deprecated Backends

 	Rambla.Amqp

 	Rambla.Http

 	Rambla.Process

 	Rambla.Redis

 	Rambla.Smtp

 	Expections

 	Rambla.Exception

 	Mix Tasks

 	mix rambla.rabbit.exchange

 	mix rambla.rabbit.queue

Rambla

Easy publishing to many different targets

 Installation

def deps do
 [
 {:rambla, "~> 0.4"}
]
end

 Supported backends

	Rabbit (through Amqp)
	Redis (through Redix)
	Http (through :httpc)
	Smtp (through :gen_smtp)
	S3 (through :ex_aws_s3)
	Slack (through Envío) [pending]

 Coming soon

	AWS

 Changelog

	1.2.1 Clickhouse backend
	1.2.0 allow on_success/1 and on_failure/1 callbacks to better control the execution
	1.1.5 preferred_format: :map | :binary | :none

	1.1.4 use Rambla.Handlers.Stub
	1.1.3 Rambla.Handlers.Stub
	1.1.1 Rambla.Handlers.Mock
	1.1.0 Complete rewrite, all the services are now controlled by Finitomata.Pool
	1.0.0 Modern era update
	0.16.3 Better error reporting, logging of insuccessfuly HTTP requests
	0.16.0 Several instances of service + Mocks
	0.15.0 Hashring for selecting channels in AMQP backend within a single connection
	0.14.4 Accept headers for :httpc as map/keyword of binaries, :gen_server_timeout for publish_synch/3
	0.14.0 Use Tarearbol.Pool to manage channels behind AMQP connections
	0.13.0 Filter out connection params from logs
	0.12.0 Rambla.publish_synch/3 to avoid pool while publishing
	0.11.1 Optional Boundary support for Telemetria
	0.11.0 Envío → Telemetria
	0.9.3 Envío broadcast to :rambla channel, with a type
	0.9.0 Divorce Rambla with AMQP and Envio
	0.8.0 Rambla.raw/2 returning a worker from pool
	0.6.5 RabbitMQ → bind, unbind
	0.6.3 Auto-reenable tasks
	0.6.2 code cleanup, DRY
	0.6.0 mix tasks to deal with RabbitMQ
	0.5.2 graceful timeout, fix for optional Envio does not included
	0.5.1 performance fixes, do not require queue in call to Rabbit publish/2, declare?: false to not declare exchange every time
	0.5.0 bulk publisher
	0.4.0 SMTP publisher
	0.3.0 HTTP publisher

 Documentation

	https://hexdocs.pm/rambla.

Getting Started

 Intro

Rambla provides the ability to publish messages to several different destinations. Destinations are supported via handlers. The respective handler must be explicitly included into the list of extra applications of target application.
For each of the configured destinations, the pool of workers based on Finitomata.Pool is maintained. Each destination should be configured separately; the preferred way would be to use config.exs because the handlers themselves are included in the release based on this config. Additional configuration might be passed to the Rambla.start_link/1 call.

 Configuration

The configuration is the keyword list with keys specifying handlers and their initialization properties. All the configs are based on the pattern provided by :amqp application.

 Starting Pools

Embed Rambla into your supervision tree. The configured handlers will be started supervised.

 Configuration Example

Rambla.Handlers.Amqp requires :amqp application to be configured and started, ditto for Rambla.Handlers.S3. Everything else is to be configured as shown below.
config :rambla,
 redis: [
 connections: [
 local_conn: [
 host: System.get_env("REDIS_HOST", "127.0.0.1"),
 port: String.to_integer(System.get_env("REDIS_PORT", "6379")),
 password: System.get_env("REDIS_PASSWORD", ""),
 database: 0
]
],
 channels: [chan_1: [connection: :local_conn]]
],
 httpc: [
 connections: [
 httpbin_success: [scheme: "https", host: "httpbin.org", path: "/post"],
 httpbin_error: [scheme: "https", host: "httpbin.org", path: "/status/500"]
],
 channels: [
 chan_1: [connection: :httpbin_success, options: [headers: [{"accept", "application/json"}]]],
 chan_2: [connection: :httpbin_error, options: [headers: [{"accept", "text/plain"}]]]
]
],

 Publishing

Publishing to the destination is as easy, as calling Rambla.html#publish/3 passing the destination channel, the message and optional configuration parameters. The message will be published to all the configured handlers for this channel.
The following would publish the message to previously configured :channel_1 channel.
Rambla.publish(:channel_1, %{message: %{foo: 42, bar: :baz}, exchange: "barfoo"})

 Testing

In :test environment, use Rambla.Handlers.Mock and Rambla.Handlers.Stub handlers to substitute actual destinations for the channels and additionally use Mox expectations with Mock handler to test the publishing.
config :rambla,
 mock: [
 connections: [mocked: :conn_mocked],
 channels: [chan_1: [connection: :mocked]]
],
 stub: [
 connections: [stubbed: :conn_stubbed],
 channels: [chan_2: [connection: :stubbed]]
]

Testing Rambla

There are two ways to test Rambla in the wild. One might do a granular testing as shown
below with S3 mock example.
expect(Rambla.Mocks.ExAws, :request, fn operation, %{} = _params ->
 assert %ExAws.Operation.S3{} = operation
 assert operation.http_method == :put
 assert operation.bucket == "test-bucket"
 assert operation.path == "some/path"

 {:ok, %{body: "file contents"}}
end)

Rambla.Handlers.S3.publish(:chan_1, %{message: "file contents"}, self())
assert_receive {:transition, :success, _, _}, 1_000
Another options would be to use Rambla.Handlers.Mock with a custom mock.
expect(Rambla.Mocks.Generic, :on_publish, fn name, message, %{} = _opts ->
 assert name == :chan_0
 assert message == "file contents"

 {:ok, %{body: "file contents"}}
end)

Rambla.publish(:chan_0, %{message: "file contents"}, self())
assert_receive {:transition, :success, _, _}, 1_000

Rambla

Interface for the message publishing through Rambla.
Rambla maintains connection pools with Finitomata.Pool for each service.
The typical config for Rambla service follows the pattern introduced by
 AMQP library:
‹service›: [
 connections: [
 ‹connection_name›: [‹key_1›: ‹value_1›, …]
],
 channels: [
 ‹channel_name›: [
 connection: ‹connection_name›,
 options: [‹key_1›: ‹value_1›, …]
]
]
]
Additional option, one might pass to the channel config, would be explicit handlers
 for failures and success calls (by default the former prints the warning and retries
 until the maximum count of retries reached, and then calls on_fatal/2 callback,
 and the latter logs a debug message.)
 channels: [
 chan_1: [
 connection: :conn_1,
 options: [
 callbacks: [
 on_success: fn result -> IO.inspect(result, label: "on_success") && :ok end]
]]]]

To start pools, simply embed Rambla into the supervision tree, it’d
 start a supervisor with children for all the configured services.
The configuration of the service implies all the Rambla’s code for it will
 be compiled, but the dependency itself must be added to the deps section
 of the Mix.Project file.
The excerpt from the Rambla.MixProject itself follows
 # optional backends
 {:amqp, "~> 3.0", optional: true},
 {:redix, "~> 1.0", optional: true},
 {:pillar, "~> 0.39", optional: true},
 {:gen_smtp, "~> 0.4 or ~> 1.0", optional: true},
 {:telemetria, "~> 0.4 or ~> 1.0", optional: true},

 # s3
 {:ex_aws, "~> 2.1", optional: true},
 {:ex_aws_s3, "~> 2.0", optional: true},
 {:ex_aws_sts, "~> 2.0", optional: true},
 {:hackney, "~> 1.9", optional: true},
 {:sweet_xml, "~> 0.6", optional: true},
 {:configparser_ex, "~> 4.0", optional: true},

Channel names are used across connections to publish messages.
 Rambla.publish(:channel_1, message) would publish the message to all channels
 named channel_1.

 Summary

 Functions

 channels()

 Returns a map %{‹service› => [‹channels›]}

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 pools()

 deprecated

 Returns the currently active pools

 publish(target, message, pid \\ nil)

 Publishes the message to the target channels. The message structure depends on
the destination. For RabbitMQ is might be whatever, for Smtp it expects
to have to:, subject: and body: fields.

 publish_synch(target, message)

 deprecated

 Publishes the message to the destination synchronously, avoiding the pool.

 publish_synch(target, message, opts)

 deprecated

 Publishes the message to the destination synchronously, avoiding the pool.
Unlike publish_synch/2, allows to specify additional options per request.

 raw(target, f)

 deprecated

 Executes any arbitrary function in the context of one of workers in the
respective connection pool for the target.

 services()

 Returns a list of all the configured connections

 start_link(opts \\ [])

 Starts the supervisor with all the configured services

 start_pools()

 deprecated

 Starts the pools configured in the config.exs / releases.exs file.

 start_pools(opts)

 deprecated

 Starts the pools as specified by options (map() or keyword())

 Functions

 Link to this function

 channels()

 View Source

Returns a map %{‹service› => [‹channels›]}

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 pools()

 View Source

 This function is deprecated. Use configuration instead.

Returns the currently active pools

 Link to this function

 publish(target, message, pid \\ nil)

 View Source

Publishes the message to the target channels. The message structure depends on
the destination. For RabbitMQ is might be whatever, for Smtp it expects
to have to:, subject: and body: fields.

 Link to this function

 publish_synch(target, message)

 View Source

 This function is deprecated. Use configuration instead with `[count: 1]` option.

Publishes the message to the destination synchronously, avoiding the pool.

 Link to this function

 publish_synch(target, message, opts)

 View Source

 This function is deprecated. Use configuration instead with `[count: 1]` option.

Publishes the message to the destination synchronously, avoiding the pool.
Unlike publish_synch/2, allows to specify additional options per request.

 Link to this function

 raw(target, f)

 View Source

 This function is deprecated. Use `publish(channels, FUNCTION, pid)` instead.

Executes any arbitrary function in the context of one of workers in the
respective connection pool for the target.
The function would receive a pid of the connection process.

 Link to this function

 services()

 View Source

Returns a list of all the configured connections

 Link to this function

 start_link(opts \\ [])

 View Source

Starts the supervisor with all the configured services

 Link to this function

 start_pools()

 View Source

 This function is deprecated. Use configuration instead.

Starts the pools configured in the config.exs / releases.exs file.
This call is equivalent to start_pools(Application.get_env(:rambla, :pools)).

 Link to this function

 start_pools(opts)

 View Source

 This function is deprecated. Use configuration instead.

Starts the pools as specified by options (map() or keyword())

Rambla.Handler behaviour

Default handler for AMQP connections.

 use Rambla.Handler

When you use Rambla.Handler, the Rambla.Handler module will
do the following things for your module:
	implement @behaviour Finitomata.Pool.Actor where actor/2 will
delegate to handle_publish/3 expected to be implemented by this module,
and overridable on_result/2 and on_error/2 will have a reasonable
default implementation (debug for the former and warn and retry for the latter)
	set @behaviour Rambla.Handler to invite you to implement real publishing
handler as handle_publish/3

 Example

defmodule Rambla.Handler.Some do
 use Rambla.Handler

 @impl Rambla.Handler
 def config do
 [
 connections: [
 local_conn: [url: "amqp://guest:guest@localhost:5672"],
],
 channels: [
 chan_1: [connection: :local_conn]
]
]
 end

 @impl Rambla.Handler
 def handle_publish(payload, options, %{connection: conn} = state) do
 SomeImpl.publish(conn, payload, options)
 end
end

 Summary

 Types

 callback()

 The callback function to be passed to Rambla.publish/3

 channel_name()

 The channel name

 connection_name()

 The connection name

 resolution()

 The allowed callback resolution

 Callbacks

 config()

 The callback to get to the configuration

 external_servers(id)

 If specified, these services will be started before pools under :rest_for_one

 handle_publish(payload, options, state)

 The callback to be implemented by the consumer of this code

 on_fatal(id, {})

 The callback to be called when retries exhausted

 Types

 Link to this type

 callback()

 View Source

 @type callback() ::
 ([source: module(), destination: term(), options: map()] -> resolution())

The callback function to be passed to Rambla.publish/3

 Link to this type

 channel_name()

 View Source

 @type channel_name() :: atom()

The channel name

 Link to this type

 connection_name()

 View Source

 @type connection_name() :: atom()

The connection name

 Link to this type

 resolution()

 View Source

 @type resolution() :: :ok | :error | {:ok, term()} | {:error, any()}

The allowed callback resolution

 Callbacks

 Link to this callback

 config()

 View Source

 @callback config() :: [
 connections: [{connection_name(), keyword() | binary()}],
 channels: [
 {channel_name(), connection: connection_name(), options: keyword()}
]
]

The callback to get to the configuration

 Link to this callback

 external_servers(id)

 View Source

 @callback external_servers(Finitomata.Pool.id()) :: [
 {module(), [any()]} | Supervisor.child_spec()
]

If specified, these services will be started before pools under :rest_for_one

 Link to this callback

 handle_publish(payload, options, state)

 View Source

 @callback handle_publish(
 payload :: callback() | %{message: term()} | term(),
 options :: map(),
 state :: Finitomata.State.payload()
) :: resolution()

The callback to be implemented by the consumer of this code

 Link to this callback

 on_fatal(id, {})

 View Source

 @callback on_fatal(
 Finitomata.id(),
 {nil
 | (any() ->
 :ok
 | :retry
 | {:retry,
 %{optional(:retries) => non_neg_integer(), optional(:pid) => pid()}}),
 %{payload: any(), message: String.t(), retries: non_neg_integer()}}
) :: :ok

The callback to be called when retries exhausted

Rambla.Handlers.Clickhouse

Default handler for Clickhouse connections. For this handler to work properly,
 one must configure it with
config :rambla, :clickhouse,
 connections: [
 conn_1: "http://default:password@host-master-1:8123/database"
],
 channels: [
 chan_1: [connection: :conn_1]
]

Then you can access the connection/channel via `Rambla.Handlers.Clickhouse` as

Rambla.Handlers.Clickhouse.publish(:chan_1, %{message: %{foo: 42}, table: :events, serializer: Jason})

To install Clickhouse, visit https://clickhouse.com/docs/en/getting-started
CREATE TABLE events
(
 source_id UInt32,
 timestamp DateTime,
 message String
)
ENGINE = MergeTree
PRIMARY KEY (source_id, timestamp)

 Summary

 Functions

 children_specs(options \\ [])

 The list of child_spec returned
 to be embedded into a supervision tree.

 extract_options(payload, map)

 publish(id, payload, pid \\ nil)

 An interface to publish messages using the FSM pool.

 start_link(options \\ [])

 The entry point: this would start a supervisor with all the pools and stuff

 Functions

 Link to this function

 children_specs(options \\ [])

 View Source

The list of child_spec returned
 to be embedded into a supervision tree.
Known options:
	connection_options — a keyword() or a function of arity one, which is to receive
channel names and return connection options as a list
	count — the number of workers in the pool
	child_opts — the options to be passed to the worker’s spec (you won’t need those)

 Example

Rambla.Handlers.Redis.children_specs(
 connection_options: [exchange: "amq.direct"], count: 3)

 Link to this function

 extract_options(payload, map)

 View Source

 Link to this function

 publish(id, payload, pid \\ nil)

 View Source

An interface to publish messages using the FSM pool.
The id is the specific to an implementation,
 for Amqp it’d be the channel name, for instance.
The second parameter would be a payload, or, if the backend supports it,
 the function of arity one, which would receive back the connection pid.

 Example

Rambla.Handlers.Amqp.publish :channel_name, %{foo: :bar}

 Link to this function

 start_link(options \\ [])

 View Source

 @spec start_link([
 Supervisor.option()
 | Supervisor.init_option()
 | {:connection_options, keyword() | (term() -> keyword())}
 | {:count, non_neg_integer()}
]) :: Supervisor.on_start()

The entry point: this would start a supervisor with all the pools and stuff

Rambla.Handlers.Amqp

Default handler for AMQP connections. For this handler to work properly,
 one must include and start :amqp application with the config like
config :amqp,
 connections: [
 local_conn: [url: "amqp://guest:guest@localhost:5672"],
],
 channels: [
 chan_1: [connection: :local_conn]
]

Then you can access the connection/channel via `Rambla.Handlers.Amqp` as

Rambla.Handlers.Amqp.publish(:chan_1, %{message: %{foo: 42}, exchange: "rambla"})

 Known Options

	:exchange (default: "")
	:declare? (default: false)
	:routing_key, (default: "")
	:channel_provider (default: AMQP.Application)
	:channel_publisher (default: AMQP.Basic)

 Summary

 Functions

 children_specs(options \\ [])

 The list of child_spec returned
 to be embedded into a supervision tree.

 extract_options(payload, map)

 publish(id, payload, pid \\ nil)

 An interface to publish messages using the FSM pool.

 start_link(options \\ [])

 The entry point: this would start a supervisor with all the pools and stuff

 Functions

 Link to this function

 children_specs(options \\ [])

 View Source

The list of child_spec returned
 to be embedded into a supervision tree.
Known options:
	connection_options — a keyword() or a function of arity one, which is to receive
channel names and return connection options as a list
	count — the number of workers in the pool
	child_opts — the options to be passed to the worker’s spec (you won’t need those)

 Example

Rambla.Handlers.Redis.children_specs(
 connection_options: [exchange: "amq.direct"], count: 3)

 Link to this function

 extract_options(payload, map)

 View Source

 Link to this function

 publish(id, payload, pid \\ nil)

 View Source

An interface to publish messages using the FSM pool.
The id is the specific to an implementation,
 for Amqp it’d be the channel name, for instance.
The second parameter would be a payload, or, if the backend supports it,
 the function of arity one, which would receive back the connection pid.

 Example

Rambla.Handlers.Amqp.publish :channel_name, %{foo: :bar}

 Link to this function

 start_link(options \\ [])

 View Source

 @spec start_link([
 Supervisor.option()
 | Supervisor.init_option()
 | {:connection_options, keyword() | (term() -> keyword())}
 | {:count, non_neg_integer()}
]) :: Supervisor.on_start()

The entry point: this would start a supervisor with all the pools and stuff

Rambla.Handlers.Httpc

Default handler for HTTP connections. For this handler to work properly,
 one must configure it with
config :rambla, :httpc,
 connections: [
 httpbin: "https://httpbin.org/post",
 remote_conn: [scheme: "https", host: "httpbin.org", query: "post"]
],
 channels: [
 chan_1: [connection: :httpbin, options: [headers: [{"accept", "application/json"}]]]
]

Then you can access the connection/channel via `Rambla.Handlers.Amqp` as

Rambla.Handlers.Httpc.publish(:chan_1, %{message: %{foo: 42}, serializer: Jason})

 Summary

 Functions

 children_specs(options \\ [])

 The list of child_spec returned
 to be embedded into a supervision tree.

 do_handle_publish(uri, body, opts)

 extract_options(payload, map)

 publish(id, payload, pid \\ nil)

 An interface to publish messages using the FSM pool.

 start_link(options \\ [])

 The entry point: this would start a supervisor with all the pools and stuff

 Functions

 Link to this function

 children_specs(options \\ [])

 View Source

The list of child_spec returned
 to be embedded into a supervision tree.
Known options:
	connection_options — a keyword() or a function of arity one, which is to receive
channel names and return connection options as a list
	count — the number of workers in the pool
	child_opts — the options to be passed to the worker’s spec (you won’t need those)

 Example

Rambla.Handlers.Redis.children_specs(
 connection_options: [exchange: "amq.direct"], count: 3)

 Link to this function

 do_handle_publish(uri, body, opts)

 View Source

 Link to this function

 extract_options(payload, map)

 View Source

 Link to this function

 publish(id, payload, pid \\ nil)

 View Source

An interface to publish messages using the FSM pool.
The id is the specific to an implementation,
 for Amqp it’d be the channel name, for instance.
The second parameter would be a payload, or, if the backend supports it,
 the function of arity one, which would receive back the connection pid.

 Example

Rambla.Handlers.Amqp.publish :channel_name, %{foo: :bar}

 Link to this function

 start_link(options \\ [])

 View Source

 @spec start_link([
 Supervisor.option()
 | Supervisor.init_option()
 | {:connection_options, keyword() | (term() -> keyword())}
 | {:count, non_neg_integer()}
]) :: Supervisor.on_start()

The entry point: this would start a supervisor with all the pools and stuff

Rambla.Handlers.Redis

Default handler for Redis connections. For this handler to work properly,
 one must configure it with
config :rambla, :redis,
 connections: [
 local_conn: "redis://localhost:6379/0",
 remote_conn: [host: "example.com", port: 6379, database: 0]
],
 channels: [
 chan_1: [connection: :local_conn]
]

Then you can access the connection/channel via `Rambla.Handlers.Amqp` as

Rambla.Handlers.Redis.publish(:chan_1, %{message: %{foo: 42}, serializer: Jason})

 Summary

 Functions

 children_specs(options \\ [])

 The list of child_spec returned
 to be embedded into a supervision tree.

 extract_options(payload, map)

 publish(id, payload, pid \\ nil)

 An interface to publish messages using the FSM pool.

 start_link(options \\ [])

 The entry point: this would start a supervisor with all the pools and stuff

 Functions

 Link to this function

 children_specs(options \\ [])

 View Source

The list of child_spec returned
 to be embedded into a supervision tree.
Known options:
	connection_options — a keyword() or a function of arity one, which is to receive
channel names and return connection options as a list
	count — the number of workers in the pool
	child_opts — the options to be passed to the worker’s spec (you won’t need those)

 Example

Rambla.Handlers.Redis.children_specs(
 connection_options: [exchange: "amq.direct"], count: 3)

 Link to this function

 extract_options(payload, map)

 View Source

 Link to this function

 publish(id, payload, pid \\ nil)

 View Source

An interface to publish messages using the FSM pool.
The id is the specific to an implementation,
 for Amqp it’d be the channel name, for instance.
The second parameter would be a payload, or, if the backend supports it,
 the function of arity one, which would receive back the connection pid.

 Example

Rambla.Handlers.Amqp.publish :channel_name, %{foo: :bar}

 Link to this function

 start_link(options \\ [])

 View Source

 @spec start_link([
 Supervisor.option()
 | Supervisor.init_option()
 | {:connection_options, keyword() | (term() -> keyword())}
 | {:count, non_neg_integer()}
]) :: Supervisor.on_start()

The entry point: this would start a supervisor with all the pools and stuff

Rambla.Handlers.S3

Default handler for _S3 connections. For this handler to work properly,
 one must configure it with
config :ex_aws,
access_key_id: [{:system, "AWS_ACCESS_KEY_ID"}, {:awscli, "default", 30}, :instance_role],
secret_access_key: [{:system, "AWS_SECRET_ACCESS_KEY"}, {:awscli, "default", 30}, :instance_role]

config :ex_aws,
 access_key_id: [{:system, "AWS_ACCESS_KEY_ID"}, :instance_role],
 secret_access_key: [{:system, "AWS_SECRET_ACCESS_KEY"}, :instance_role],
 hackney_opts: [follow_redirect: true, recv_timeout: 30_000],
 region: {:system, "AWS_REGION"},
 json_codec: Jason,
 normalize_path: false,
 retries: [
 max_attempts: 1,
 base_backoff_in_ms: 10,
 max_backoff_in_ms: 10_000
]

config :rambla, :s3,
 connections: [
 bucket_1: [bucket: "test-bucket", path: ""]
],
 channels: [
 chan_1: [
 connection: :bucket_1,
 options: [connector: ExAws]
]
]

Then you can access the connection/channel via `Rambla.Handlers.S3` as

Rambla.Handlers.S3.publish(:chan_1, %{message: "Hi John!", connector: Rambla.Mocks.ExAws})

 Summary

 Functions

 children_specs(options \\ [])

 The list of child_spec returned
 to be embedded into a supervision tree.

 do_handle_publish(bool, connector, arg, contents, opts)

 extract_options(payload, map)

 publish(id, payload, pid \\ nil)

 An interface to publish messages using the FSM pool.

 start_link(options \\ [])

 The entry point: this would start a supervisor with all the pools and stuff

 Functions

 Link to this function

 children_specs(options \\ [])

 View Source

The list of child_spec returned
 to be embedded into a supervision tree.
Known options:
	connection_options — a keyword() or a function of arity one, which is to receive
channel names and return connection options as a list
	count — the number of workers in the pool
	child_opts — the options to be passed to the worker’s spec (you won’t need those)

 Example

Rambla.Handlers.Redis.children_specs(
 connection_options: [exchange: "amq.direct"], count: 3)

 Link to this function

 do_handle_publish(bool, connector, arg, contents, opts)

 View Source

 Link to this function

 extract_options(payload, map)

 View Source

 Link to this function

 publish(id, payload, pid \\ nil)

 View Source

An interface to publish messages using the FSM pool.
The id is the specific to an implementation,
 for Amqp it’d be the channel name, for instance.
The second parameter would be a payload, or, if the backend supports it,
 the function of arity one, which would receive back the connection pid.

 Example

Rambla.Handlers.Amqp.publish :channel_name, %{foo: :bar}

 Link to this function

 start_link(options \\ [])

 View Source

 @spec start_link([
 Supervisor.option()
 | Supervisor.init_option()
 | {:connection_options, keyword() | (term() -> keyword())}
 | {:count, non_neg_integer()}
]) :: Supervisor.on_start()

The entry point: this would start a supervisor with all the pools and stuff

Rambla.Handlers.Smtp

Default handler for SMTP connections. For this handler to work properly,
 one must configure it with
config :rambla, :smtp,
 connections: [
 gmail: [
 # the smtp relay, e.g. "smtp.gmail.com"
 relay: System.get_env("RAMBLA_SMTP_RELAY", "smtp.gmail.com"),
 # the username of the smtp relay e.g. "me@gmail.com"
 username: System.get_env("RAMBLA_SMTP_USERNAME"),
 # the password of the smtp relay e.g. "mypassword"
 password: System.get_env("RAMBLA_SMTP_PASSWORD"),
 # whether the smtp server needs authentication, valid values are if_available and always,
 # Defaults to if_available. If your smtp relay requires authentication set it to always
 auth: :always,
 # whether to connect on 465 in ssl mode, Defaults to false
 ssl: true,
 # valid values are always, never, if_available.
 # Most modern smtp relays use tls, so set this to always, Defaults to if_available
 # tls: :always,
 # used in ssl:connect, More info at http://erlang.org/doc/man/ssl.html ,
 # Defaults to [{versions , ['tlsv1', 'tlsv1.1', 'tlsv1.2']}],
 # This is merged with options listed at: https://github.com/gen-smtp/gen_smtp/blob/master/src/smtp_socket.erl#L46 .
 # Any options not present in this list will be ignored.
 # tls_options: [versions: [:tlsv1, :"tlsv1.1", :"tlsv1.2"]],
 # the hostname to be used by the smtp relay,
 # Defaults to: smtp_util:guess_FQDN().
 # The hostname on your computer might not be correct, so set this to a valid value.
 hostname: System.get_env("RAMBLA_SMTP_HOSTNAME", "gmail.com"),
 from: %{"Aleksei Matiushkin" => "matiouchkine@gmail.com"}
]
],
 channels: [
 chan_3: [connection: :gmail]
]

Then you can access the connection/channel via `Rambla.Handlers.Smtp` as

Rambla.Handlers.Smtp.publish(:chan_3, "Hi John!\nHow are you?")

 Summary

 Functions

 children_specs(options \\ [])

 The list of child_spec returned
 to be embedded into a supervision tree.

 do_handle_publish(params, body, opts)

 extract_options(payload, map)

 publish(id, payload, pid \\ nil)

 An interface to publish messages using the FSM pool.

 start_link(options \\ [])

 The entry point: this would start a supervisor with all the pools and stuff

 Functions

 Link to this function

 children_specs(options \\ [])

 View Source

The list of child_spec returned
 to be embedded into a supervision tree.
Known options:
	connection_options — a keyword() or a function of arity one, which is to receive
channel names and return connection options as a list
	count — the number of workers in the pool
	child_opts — the options to be passed to the worker’s spec (you won’t need those)

 Example

Rambla.Handlers.Redis.children_specs(
 connection_options: [exchange: "amq.direct"], count: 3)

 Link to this function

 do_handle_publish(params, body, opts)

 View Source

 Link to this function

 extract_options(payload, map)

 View Source

 Link to this function

 publish(id, payload, pid \\ nil)

 View Source

An interface to publish messages using the FSM pool.
The id is the specific to an implementation,
 for Amqp it’d be the channel name, for instance.
The second parameter would be a payload, or, if the backend supports it,
 the function of arity one, which would receive back the connection pid.

 Example

Rambla.Handlers.Amqp.publish :channel_name, %{foo: :bar}

 Link to this function

 start_link(options \\ [])

 View Source

 @spec start_link([
 Supervisor.option()
 | Supervisor.init_option()
 | {:connection_options, keyword() | (term() -> keyword())}
 | {:count, non_neg_integer()}
]) :: Supervisor.on_start()

The entry point: this would start a supervisor with all the pools and stuff

Rambla.Handlers.Mock behaviour

Default handler for Mock testing doubles.
Normally, the test.exs config would have included all the channels
 under config :rambla, mock: […] key. This would allow testing actual
 interactions using Mox library.
By default it’d be simply send the message back to the caller.
config :rambla, mock: [
 connections: [mocked: :conn],
 channels: [chan_0: [connection: :mocked]]
]

Then you can access the connection/channel explicitly via `Rambla.Handlers.Mock`
or implicitly via `Rambla` as

Rambla.publish(:chan_0, %{message: %{foo: 42}, serializer: Jason})
Rambla.Handlers.Mock.publish(:chan_0, %{message: %{foo: 42}, serializer: Jason})

 Summary

 Callbacks

 on_publish(name, message, options)

 Functions

 children_specs(options \\ [])

 The list of child_spec returned
 to be embedded into a supervision tree.

 do_handle_publish(mock, name, message, options)

 extract_options(payload, map)

 publish(id, payload, pid \\ nil)

 An interface to publish messages using the FSM pool.

 start_link(options \\ [])

 The entry point: this would start a supervisor with all the pools and stuff

 Callbacks

 Link to this callback

 on_publish(name, message, options)

 View Source

 @callback on_publish(name :: atom(), message :: any(), options :: map()) ::
 Rambla.Handler.resolution()

 Functions

 Link to this function

 children_specs(options \\ [])

 View Source

The list of child_spec returned
 to be embedded into a supervision tree.
Known options:
	connection_options — a keyword() or a function of arity one, which is to receive
channel names and return connection options as a list
	count — the number of workers in the pool
	child_opts — the options to be passed to the worker’s spec (you won’t need those)

 Example

Rambla.Handlers.Redis.children_specs(
 connection_options: [exchange: "amq.direct"], count: 3)

 Link to this function

 do_handle_publish(mock, name, message, options)

 View Source

 Link to this function

 extract_options(payload, map)

 View Source

 Link to this function

 publish(id, payload, pid \\ nil)

 View Source

An interface to publish messages using the FSM pool.
The id is the specific to an implementation,
 for Amqp it’d be the channel name, for instance.
The second parameter would be a payload, or, if the backend supports it,
 the function of arity one, which would receive back the connection pid.

 Example

Rambla.Handlers.Amqp.publish :channel_name, %{foo: :bar}

 Link to this function

 start_link(options \\ [])

 View Source

 @spec start_link([
 Supervisor.option()
 | Supervisor.init_option()
 | {:connection_options, keyword() | (term() -> keyword())}
 | {:count, non_neg_integer()}
]) :: Supervisor.on_start()

The entry point: this would start a supervisor with all the pools and stuff

Rambla.Handlers.Stub behaviour

Default handler for Stub testing doubles. Unlike Rambla.Handlers.Mock,
 this module might be used as a stub for remote service calls when
 no expectation is to be defined, or when there is no room to define
 such an expectation (e. g. while application start.)
By default it’d be simply return :ok.
config :rambla, stub: [
 connections: [stubbed: :conn],
 channels: [chan_0: [connection: :stubbed]]
]

Then you can access the connection/channel via `Rambla.Handlers.Stub` or
implicitly via `Rambla` as

Rambla.Handlers.Stub.publish(:chan_0, %{message: %{foo: 42}, serializer: Jason})
Rambla.publish(:chan_0, %{message: %{foo: 42}, serializer: Jason})

 Stub modules

To implement the custom Stub, returning any value, or like, use
defmodule ConnStub do
 use Rambla.Handlers.Stub, %{token: "FOOBAR"}

 @behaviour Rambla.Handlers.Stub
 def on_publish(_name, _message, _options) do
 {:ok, @stub_options}
 end
end

 Summary

 Callbacks

 on_publish(name, message, options)

 Functions

 children_specs(options \\ [])

 The list of child_spec returned
 to be embedded into a supervision tree.

 do_handle_publish(stub, name, message, options)

 extract_options(payload, map)

 publish(id, payload, pid \\ nil)

 An interface to publish messages using the FSM pool.

 start_link(options \\ [])

 The entry point: this would start a supervisor with all the pools and stuff

 Callbacks

 Link to this callback

 on_publish(name, message, options)

 View Source

 @callback on_publish(name :: atom(), message :: any(), options :: map()) ::
 Rambla.Handler.resolution()

 Functions

 Link to this function

 children_specs(options \\ [])

 View Source

The list of child_spec returned
 to be embedded into a supervision tree.
Known options:
	connection_options — a keyword() or a function of arity one, which is to receive
channel names and return connection options as a list
	count — the number of workers in the pool
	child_opts — the options to be passed to the worker’s spec (you won’t need those)

 Example

Rambla.Handlers.Redis.children_specs(
 connection_options: [exchange: "amq.direct"], count: 3)

 Link to this function

 do_handle_publish(stub, name, message, options)

 View Source

 Link to this function

 extract_options(payload, map)

 View Source

 Link to this function

 publish(id, payload, pid \\ nil)

 View Source

An interface to publish messages using the FSM pool.
The id is the specific to an implementation,
 for Amqp it’d be the channel name, for instance.
The second parameter would be a payload, or, if the backend supports it,
 the function of arity one, which would receive back the connection pid.

 Example

Rambla.Handlers.Amqp.publish :channel_name, %{foo: :bar}

 Link to this function

 start_link(options \\ [])

 View Source

 @spec start_link([
 Supervisor.option()
 | Supervisor.init_option()
 | {:connection_options, keyword() | (term() -> keyword())}
 | {:count, non_neg_integer()}
]) :: Supervisor.on_start()

The entry point: this would start a supervisor with all the pools and stuff

Rambla.Connection behaviour

The default behaviour for publishers. The common use case would be the module
implementing this behaviour opens a connection (and keep it opened,) and
publishes messages as needed.

Rambla.Connection supports options: config that will be passed directly to
:poolboy as Options.

 Example

config :rambla,
 amqp: […]
 pools: [amqp: [options: [size: 2, max_overflow: 1], …]]

 Summary

 Types

 message()

 The accepted type of the message to be published

 messages()

 outcome()

 The response type for the single request.
Contains a status and a response from remote service

 outcomes()

 The response type for the bulk request.
Contains a status and a response from remote service

 t()

 The connection information

 Callbacks

 connect(params)

 Connects to the remote service and returns a connection object back

 publish(conn, message)

 Publishes the message to the remote service using connection provided

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 start_link(opts)

 Accepts options for the underlying connection (those will be passed to connect/1.)

 Types

 Link to this type

 message()

 View Source

 @type message() :: binary() | Enum.t()

The accepted type of the message to be published

 Link to this type

 messages()

 View Source

 @type messages() :: [message()]

 Link to this type

 outcome()

 View Source

 @type outcome() :: {:ok | :error, Rambla.Exception.t() | any()}

The response type for the single request.
Contains a status and a response from remote service

 Link to this type

 outcomes()

 View Source

 @type outcomes() :: %{oks: [any()], errors: [Rambla.Exception.t()]}

The response type for the bulk request.
Contains a status and a response from remote service

 Link to this type

 t()

 View Source

 @type t() :: %Rambla.Connection{
 conn: Rambla.Connection.Config.t(),
 conn_params: keyword(),
 conn_type: atom(),
 conn_pid: pid(),
 opts: map(),
 errors: [Rambla.Exception.t()]
}

The connection information

 Callbacks

 Link to this callback

 connect(params)

 View Source

 @callback connect(params :: keyword()) :: t()

Connects to the remote service and returns a connection object back

 Link to this callback

 publish(conn, message)

 View Source

 @callback publish(conn :: any(), message :: message()) :: outcome()

Publishes the message to the remote service using connection provided

 Functions

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 start_link(opts)

 View Source

Accepts options for the underlying connection (those will be passed to connect/1.)

Rambla.Connection.Config

The connection settings as requested by connection provider

 Summary

 Types

 t()

 The configuration of the real connection behind a pool

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Rambla.Connection.Config{
 conn: any(),
 chan: any(),
 opts: map(),
 defaults: map(),
 full_result: boolean()
}

The configuration of the real connection behind a pool

Rambla.Amqp

Default connection implementation for 🐰 Rabbit.
publish/2 accepts the following options:
	exchange [binary(), mandatory] the exchange to publish to
	queue [binary(), optional] if passed, the queue will be created
and bound to the exchange; it’s slowing down publishing, but safer
for the cold RebbatMQ installation
	declare?[boolean(), optional, default: true] if false
is passed, the exchange would not be declared; use it if the exchange
already surely exists to speed up the publishing
	routing_key [binary(), optional, default: ""] if passed,
used as a routing key
	options [keyword(), optional, default: []] the options
to be passed as is to call to AMQP.Basic.publish/5

Since v0.6.0 provides two mix tasks:
	mix rambla.rabbit.exchange Operations with exchanges in RabbitMQ
	mix rambla.rabbit.queue Operations with queues in RabbitMQ

Tasks support arguments to be passed to RabbitMQ instance. Usage example:
mix rambla.rabbit.queue declare foo -o durable:true

Rambla.Http

Default connection implementation for 🕸️ HTTP.
It expects a message to be a map, containing the following fields:
:method, :path, :query, :body and the optional :type
that otherwise would be inferred from the body type.
For instance, this call would send a POST request with a JSON specified as body.
Rambla.publish(
 Rambla.Http,
 %{method: :post, body: %{message: "I ❤ HTTP"}}
}
If the second argument message is binary() it’s treated as an URL and
:get is implied.

List of all possible options might be found in
:httpc.request/4, names are preserved.

Rambla.Process

Default connection implementation for 🕸️ Process message callback.
For instance, this call would send a message back to the calling process.
Rambla.publish(
 Rambla.Process,
 %{method: :post, body: %{message: "I ❤ HTTP"}}
}

Rambla.Redis

Default connection implementation for 🔴 Redis.

Rambla.Smtp

Default connection implementation for 📧 SMTP.
It expects a message to be a map containing the following fields:
:to, :subject, :body and the optional :from that otherwise would be
taken from the global settings (releases.mix) from []:rambla, :pools, Rambla.Smtp].
For instance, this call would send an email to email:am@example.com with the
respective subject and body.
Rambla.publish(
 Rambla.Smtp,
 %{to: "am@example.com", subject: "Hi there", body: "I ❤ SMTP"}
}

Rambla.Exception

Base type for all the Rambla exceptions.

 Summary

 Types

 t()

 Rambla exception contains

 Types

 Link to this type

 t()

 View Source

 @type t() :: %{reason: any(), source: atom(), cause: t() | nil}

Rambla exception contains:
	reason the string describing the error in human-readable form
	source usually the type/action this error is originated from
	info free-style map containig additional information (not displayed by default)

mix rambla.rabbit.exchange

Mix task to deal with exchanges in the target RabbitMQ.
This is helpful to orchestrate target RabbitMQ when deploying
to docker. Allows to create and delete the exchange.
Loads the setting from config :rambla, :amqp if no connection
is provided in parameters.

 Command line options

	-c - the connection string
	-o - the list of options without spaces, separated by comma

 Options

 Options for create

	type - One of four possible values below. Defaults to :direct.	direct
	fanout
	topic
	headers

	durable - If set, keeps the Exchange between restarts of the broker;
	auto_delete - If set, deletes the Exchange once all queues
unbind from it;
	passive - If set, returns an error if the Exchange does not
already exist;
	internal - If set, the exchange may not be used directly by
publishers, but only when bound to other exchanges. Internal exchanges are used to construct wiring that is not visible to applications.
	no_wait - If set, the declare operation is asynchronous.
Defaults to false.
	arguments - A list of arguments to pass when declaring
(of type AMQP.arguments/0). See the README for more information. Defaults to [].

 Options for delete

	if_unused - If set, the server will only delete the exchange
if it has no queue bindings.
	no_wait - If set, the delete operation is asynchronous.

 Summary

 Types

 command()

 Types

 Link to this type

 command()

 View Source

 (since 0.6.0)

 @type command() :: :declare | :create | :delete

mix rambla.rabbit.queue

Mix task to deal with queues in the target RabbitMQ.
This is helpful to orchestrate target RabbitMQ when deploying
to docker. Allows to create, delete, purge and query status of
the queue. Also, bind and unbind commands are supported,
both require exchange:... option to be passed.
Loads the setting from config :rambla, :amqp if no connection
is provided in parameters.

 Command line options

	-c - the connection string
	-o - the list of options without spaces, separated by comma

 Options

 Options for create

	durable - If set, keeps the Queue between restarts
of the broker. Defaults to false.
	auto_delete - If set, deletes the Queue once all
subscribers disconnect. Defaults to false.
	exclusive - If set, only one subscriber can consume
from the Queue. Defaults to false.
	passive - If set, raises an error unless the queue
already exists. Defaults to false.
	no_wait - If set, the declare operation is asynchronous.
Defaults to false.
	arguments - A list of arguments to pass when declaring
(of type AMQP.arguments/0). See the README for more information. Defaults to [].

 Options for delete

	if_unused - If set, the server will only delete the queue
if it has no consumers. If the queue has consumers, it’s
not deleted and an error is returned.
	if_empty - If set, the server will only delete the queue
if it has no messages.
	no_wait - If set, the delete operation is asynchronous.

 Summary

 Types

 command()

 Types

 Link to this type

 command()

 View Source

 (since 0.6.0)

 @type command() :: :declare | :create | :delete | :purge | :bind | :unbind | :status

 OEBPS/assets/logo.png

OEBPS/dist/epub-RKEUJJI5.js
(()=>{var u=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var c="ex_doc:settings",d={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=d,this._loadSettings()}get(){return this._settings}update(t){let e=this._settings;this._settings={...this._settings,...t},this._subscribers.forEach(n=>n(this._settings,e)),this._storeSettings()}getAndSubscribe(t){this._subscribers.push(t),t(this._settings)}_loadSettings(){try{let t=localStorage.getItem(c);if(t){let e=JSON.parse(t);this._settings={...this._settings,...e}}this._loadSettingsLegacy()}catch(t){console.error(`Failed to load settings: ${t}`)}}_storeSettings(){try{this._storeSettingsLegacy(),localStorage.setItem(c,JSON.stringify(this._settings))}catch(t){console.error(`Failed to persist settings: ${t}`)}}_loadSettingsLegacy(){localStorage.getItem("tooltipsDisabled")!==null&&(this._settings={...this._settings,tooltips:!1}),localStorage.getItem("night-mode")==="true"&&(this._settings={...this._settings,nightMode:!0}),this._settings.nightMode===!0&&(this._settings={...this._settings,theme:"dark"})}_storeSettingsLegacy(){this._settings.tooltips?localStorage.removeItem("tooltipsDisabled"):localStorage.setItem("tooltipsDisabled","true"),this._settings.nightMode!==null?localStorage.setItem("night-mode",this._settings.nightMode===!0?"true":"false"):localStorage.removeItem("night-mode"),this._settings.theme!==null?(localStorage.setItem("night-mode",this._settings.theme==="dark"?"true":"false"),this._settings.nightMode=this._settings.theme==="dark"):(delete this._settings.nightMode,localStorage.removeItem("night-mode"))}},h=new s;function a(){["warning","info","error","neutral","tip"].forEach(t=>{i(`blockquote h3.${t}, blockquote h4.${t}`).forEach(e=>{e.closest("blockquote").classList.add(t)})})}var m="hll";function g(){p()}function p(){i("[data-group-id]").forEach(t=>{let e=t.getAttribute("data-group-id");t.addEventListener("mouseenter",n=>{l(e,!0)}),t.addEventListener("mouseleave",n=>{l(e,!1)})})}function l(o,t){i(`[data-group-id="${o}"]`).forEach(n=>{n.classList.toggle(m,t)})}r(()=>{g(),a()});})();

