

 ramoops_logger

 v0.3.1

 Table of contents

 	RamoopsLogger

 	Changelog

 	Modules

 	RamoopsLogger

RamoopsLogger

[image: CircleCI]
[image: Hex version]
This is an Elixir Logger backend for forwarding log messages to the ramoops
logger on Linux
and Nerves systems. Messages sent to this log are written to a special area of
DRAM that can be recovered after reboots or very short power outages.
Here's a demo video:
[image: RamoopsLogger Demo]
Configuration
RamoopsLogger uses the Linux pstore device driver, so it only works on
Linux-based platforms. Most official Nerves Projects systems start the pstore
driver automatically and you can skip the Linux configuration.
Linux configuration
The most important part of using the RamoopsLogger is ensuring that the pstore
device driver is enabled and configured in your Linux kernel. The device driver
writes logs to a fixed location in DRAM that is platform-specific. If you are
lucky, someone will have determined a good place to store the logs. The official
Nerves Project systems all have a small amount of memory allocated for use by
the pstore driver. If you are not using Nerves, it's possible that one of the
device tree files (for ARM platforms) may be helpful.
If you're not using an official Nerves system, here's an example device tree
fragment that would need to be updated for your device, but may be helpful as a
start.
reserved-memory {
 #address-cells = <1>;
 #size-cells = <1>;
 ranges;

 ramoops@88d00000{
 compatible = "ramoops";
 reg = <0x88d00000 0x100000>;
 ecc-size = <16>;
 record-size = <0x00020000>;
 console-size = <0x00020000>;
 ftrace-size = <0>;
 pmsg-size = <0x00020000>;
 };
};
One way of testing whether the pstore driver is available is to check whether
the /dev/pmsg0 file exists.
Update your Elixir project
Once you're satisfied with the Linux, add ramoops_logger to your project's
mix.exs dependencies list.
def deps do
 [
 {:ramoops_logger, "~> 0.3.0"}
]
end
Next, update your config.exs to tell the Elixir Logger to send log messages to
the RamoopsLogger:
use Mix.Config

Add the RamoopsLogger backend. If you already have a logger configuration, to add
RamoopsLogger the only change needed is to add RamoopsLogger to the :backends list.
config :logger, backends: [RamoopsLogger, :console]
IEx Session Usage
To read the last ramoops log to the console run:
iex> RamoopsLogger.dump()
To read the last ramoops log and it to a variable run:
iex> {:ok, contents} = RamoopsLogger.read()
Nerves Automatic Log Check
If you want to have your system check if there is an oops log available, and you
are using Nerves, you can add this to your rootfs_overlay/etc/iex.exs file in
your firmware project:
if RamoopsLogger.available_log?() do
 IO.puts("Oops! There's something in the oops log. Check with RamoopsLogger.dump()")
end
License
Copyright (C) 2020-21 SmartRent
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Changelog

v0.3.1
	Changes	Add missing :gen_event behaviour callbacks to ignore a handle_info/2
call from the logger.

v0.3.0
Renamed OopsLogger to RamoopsLogger
	Enhancements	Docs, types, and test clean up
	Support recovered log path configuration
	Support for configured pmsg path

v0.2.0
	Enhancements	Added OopsLogger.available_log?/0 function to check if there is a ramoops log

v0.1.0
Initial Release

RamoopsLogger

This is an in-memory backend for the Elixir Logger that can survive reboots.
Install it by adding it to your config.exs:
use Mix.Config

config :logger, backends: [:console, RamoopsLogger]

The defaults
config :logger, RamoopsLogger,
 pmsg_path: "/dev/pmsg1",
 recovered_log_path: "/sys/fs/pstore/pmsg-ramoops-1"
Or add manually:
iex> Logger.add_backend(RamoopsLogger)
:ok
Configure only if the defaults don't work on your system
iex> Logger.configure(RamoopsLogger, pmsg_path: "/dev/pmsg1")
After a reboot, you can check if a log exists by calling available_log?/0.

 Anchor for this section

 Summary

 Types

 backend_option()

 Options for configuring the backend

 Functions

 available_log?()

 Check to see if there a log

 dump()

 Dump the contents of the ramoops pstore file to the console

 read()

 Read the file contents from the ramoops pstore file. This is useful if you
want to pragmatically do something with the file contents, like post to an
external server.

 recovered_log_path()

 Return the path to the recovered log

 Anchor for this section

Types

 Link to this type

 backend_option()

 View Source

 @type backend_option() :: {:pmsg_path, Path.t()} | {:recovered_log_path, Path.t()}

Options for configuring the backend:
	:pmsg_path - Path to pmsg device (default is /dev/pmsg0)
	:recovered_log_path - Path to recovered log files from previous boots
 (default is /sys/fs/pstore/pmsg-ramoops-0)

These are either specified in the Application config (e.g., config.exs) like
this:
config :logger, RamoopsLogger,
 pmsg_path: "/dev/pmsg1",
 recovered_log_path: "/sys/fs/pstore/pmsg-ramoops-1"
Or configured at runtime like:
iex> Logger.configure(RamoopsLogger, pmsg_path: "/dev/pmsg1")

 Anchor for this section

Functions

 Link to this function

 available_log?()

 View Source

 @spec available_log?() :: boolean()

Check to see if there a log

 Link to this function

 dump()

 View Source

 @spec dump() :: :ok | {:error, File.posix()}

Dump the contents of the ramoops pstore file to the console

 Link to this function

 read()

 View Source

 @spec read() :: {:ok, binary()} | {:error, File.posix()}

Read the file contents from the ramoops pstore file. This is useful if you
want to pragmatically do something with the file contents, like post to an
external server.

 Link to this function

 recovered_log_path()

 View Source

 @spec recovered_log_path() :: Path.t()

Return the path to the recovered log
The path won't exist if there was nothing to recover on boot.

 OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

