

 Rclex

 v0.10.0

 Table of contents

 	README

 	README_ja

 	Use on Nerves

 	CHANGELOG

 	Modules

 	Rclex

 	Rclex.MsgFuncs

 	Rclex.QoS

 	Mix Tasks

 	mix rclex.gen.msgs

 	mix rclex.prep.ros2

README

[image: Hex version]
[image: API docs]
[image: License]
[image: ci-latest]
[image: ci-all_version]
日本語のREADME
Rclex
Rclex is a ROS 2 client library for the functional language Elixir.
This library lets you perform basic ROS 2 behaviors by calling out from Elixir code into the RCL (ROS Client Library) API, which
uses the ROS 2 common hierarchy.
Additionally, publisher-subscriber (PubSub) communication between nodes and associated callback functions are executed as Erlang lightweight processes.
This enables the creation of and communication between a large number of fault-tolerant
nodes while suppressing memory load.

 What is ROS 2

ROS 2 (Robot Operating System 2) is a state-of-the-art Robot development platform. In ROS 2, each functional
unit is exposed as a node, and by combining these nodes you can create different robot applications. Additionally,
communication between nodes uses a PubSub model where publishers and subscribers exchange information by specifying a
common topic name.
The main benefits of ROS 2 are that the DDS (Data Distribution Service) protocol was adopted for
communication, and the library was divided into a hierarchical structure.
This allows us to develop ROS 2 client libraries in various languages and, of course, to build robot applications in Elixir.
For details on ROS 2, see the official ROS 2 Documentation.

 Recommended environment

 Native environment

The basic and recommended environment is where the host (development) and the target (operation) are the same.
Currently, we use the following environment as the main development target:
	Ubuntu 22.04.3 LTS (Jammy Jellyfish)
	ROS 2 Humble Hawksbill
	Elixir 1.15.5-otp-26
	Erlang/OTP 26.0.2

We highly recommend using Humble for ROS 2 LTS distribution.
Iron, the STS distribution, is experimentally supported and confirmed for the proper operation only in the native environment. See detail and status on Issue#228.
Although we also use Foxy and Galactic as CI targets, they have already reached EOL.
For other environments used to check the operation of this library,
please refer to here.

 Docker environment

The pre-built Docker images are available at Docker Hub.
You can also try the power of Rclex with it easily. Please check "Docker Environment" section for details.

 Nerves device (target)

rclex can be operated onto Nerves. In this case, you do not need to prepare the ROS 2 environment on the host computer to build Nerves project (so awesome!).
Please refer to Use on Nerves section and b5g-ex/rclex_on_nerves example repository for more details!

 Features

Currently, the Rclex API allows for the following:
	The ability to create a large number of publishers sending to the same topic.
	The ability to create large numbers of each combination of publishers, topics, and subscribers.

You can find the API documentation at https://hexdocs.pm/rclex.
Please refer rclex/rclex_examples for the examples of usage along with the sample code.

 How to use

This section explains the quickstart for rclex in the native environment where ROS 2 and Elixir have been installed.

 Create the project

First of all, create the Mix project as a normal Elixir project.
mix new rclex_usage
cd rclex_usage

 Install rclex

rclex is available in Hex.
You can install this package into your project
by adding rclex to your list of dependencies in mix.exs:
 defp deps do
 [
 ...
 {:rclex, "~> 0.10.0"},
 ...
]
 end
After that, execute mix deps.get into the project repository.
mix deps.get

 Setup the ROS 2 environment

source /opt/ros/humble/setup.bash

 Configure ROS 2 message types you want to use

Rclex provides pub/sub-based topic communication using the message type defined in ROS 2. Please refer here for more details about message types in ROS 2.
The message types you want to use in your project can be specified in ros2_message_types in config/config.exs.
Multiple message types can be specified separated by comma ,.
The following config/config.exs example wants to use String type.
import Config

config :rclex, ros2_message_types: ["std_msgs/msg/String"]
Then, execute the following Mix task to generate required definitions and files for message types.
mix rclex.gen.msgs
When editing config/config.exs to change the message types, do mix rclex.gen.msgs again.

 Write Rclex code

Now, you can acquire the environment for Rclex API! Of course, you can execute APIs on IEx directly.
Here is the simplest implementation example lib/rclex_usage.ex that will publish the string to /chatter topic.
defmodule RclexUsage do
 alias Rclex.Pkgs.StdMsgs

 def publish_message do
 Rclex.start_node("talker")
 Rclex.start_publisher(StdMsgs.Msg.String, "/chatter", "talker")

 data = "Hello World from Rclex!"
 msg = struct(StdMsgs.Msg.String, %{data: data})

 IO.puts("Rclex: Publishing: #{data}")
 Rclex.publish(msg, "/chatter", "talker")
 end
end
Please also check the examples for Rclex.
	rclex/rclex_examples

 Build and Execute

Build your application as follows.
mix compile
iex -S mix
Operate the following command on IEx.
iex()> RclexUsage.publish_message
Rclex: Publishing: Hello World from Rclex!
:ok
You can confirm the above operation by subscribing with ros2 topic echo from the other terminal.
$ source /opt/ros/humble/setup.bash
$ ros2 topic echo /chatter std_msgs/msg/String
data: Hello World from Rclex!

 Enhance devepoment experience

This section describes the information mainly for developers.

 Docker environment

This repository provides a docker compose environment for library development with Docker.
As mentioned above, pre-built Docker images are available at Docker Hub, which can be used to easily try out Rclex.
You can set the environment variable $RCLEX_DOCKER_TAG to the version of the target environment. Please refer to here for the available environments.
optional: set to the target environment (default `latest`)
export RCLEX_DOCKER_TAG=latest
create and start the container
docker compose up -d
execute the container (with the workdir where this repository is mounted)
docker compose exec -w /root/rclex rclex_docker /bin/bash
stop the container
docker compose down

 Automatic execution of mix test, etc.

mix test.watch is introduced to automatically run unit test mix test and code formatting mix format every time the source code was edited.
$ mix test.watch
or, run on docker by following
$ docker compose run --rm -w /root/rclex rclex_docker mix test.watch

 Presentations

	Rclex on Nerves: a bare minimum runtime platform for ROS 2 nodes in Elixir	ROSCon 2023
	Video | SpeakerDeck

	On the way to achieve autonomous node communication in the Elixir ecosystem	Code BEAM America 2022 at 2022/11/03
	Video | SpeakerDeck

	Rclex: A Library for Robotics meet Elixir	Code BEAM America 2021 at 2021/11/05
	Video | SlideShare

 Maintainers and developers (including past)

	@takasehideki
	@s-hosoai
	@pojiro
	@HiroiImanishi
	@kebus426
	@shiroro466

README_ja

[image: Hex version]
[image: API docs]
[image: License]
[image: ci-latest]
[image: ci-all_version]
注：READMEは英語版が常に最新かつ確実です．
Rclex [Ja]
関数型言語ElixirによるROS 2クライアントライブラリです．
ROS 2共通階層であるRCL（ROS Client Library）APIをElixirコードから呼び出すことでROS 2の基本的な振る舞いを実現しています．
また，ノード間の出版購読通信およびそれに付随するコールバック関数をErlangの軽量プロセスに実行させるようにしています．
これにより，メモリへの負荷を抑えつつ，また耐障害性を高めてノードを大量に生成，通信させることが可能になっています．

 ROS 2とは

ROS（Robot Operating System）というロボット開発を支援するプラットフォームの次世代版です．
ROS 2では，機能単位はノードとして表現され，ノードを複数組み合わせてさまざまな所望のロボットアプリケーションが作成できます．
またノード間通信には出版購読通信が主に用いられ，パブリッシャとサブスクライバがトピックという名前でデータを識別してやりとりしています．
ROS 2の主な貢献として，通信にDDS（Data Distribution Service）プロトコルが採用されたこと，そしてライブラリが階層構造に分けられたことです．
これによって，様々な言語でROS 2クライアントライブラリを開発できるようになり，もちろんElixirでもロボットアプリケーションを開発できるようになりました．
詳しくはROS 2の公式ドキュメントを参照ください．

 対象とする環境

 ネイティブ環境

基本的で推奨される環境は，ホスト（開発環境）とターゲット（実行環境）が同一のものです．
現在，下記の環境を主な対象として開発を進めています．
	Ubuntu 22.04.3 LTS (Jammy Jellyfish)
	ROS 2 Humble Hawksbill
	Elixir 1.15.5-otp-26
	Erlang/OTP 26.0.2

ROS 2には長期サポート版（LTS）であるHumbleの利用を強く推奨します．
短期サポート版（STS）のIronは，実験的なサポートでありネイティブ環境での基本的な動作のみを確認しています．対応状況の詳細はIssue#228を確認してください．
FoxyとGalacticもCI対象としていますが，これらはすでにEOLとなっています．
動作検証の対象としている環境はこちらを参照してください．

 Docker環境

Docker Hubにてビルド済みのDockerイメージを公開しており，これを用いてRclexを簡単に試行することもできます．
詳細は「Docker環境の利用」のセクションを参照してください．

 Nervesデバイス（ターゲット）

rclex はNerves上での実行も可能です．この場合，ホスト環境にはROS 2環境を導入する必要はありません．
詳細はUse on Nervesのセクションおよびb5g-ex/rclex_on_nervesのリポジトリによる例を参照してください．

 機能

現時点では以下のことができるようにRclex APIを提供しています．
	同一トピックに対して，複数のパブリッシャおよびサブスクライバを大量に作成できる．
	パブリッシャ，トピック，サブスクライバが1つずつのペアを大量に作成できる．

APIドキュメントはhttps://hexdocs.pm/rclexをご参照ください．
使用例はrclex/rclex_examplesを参照してください．サンプルコードとともに使い方を記しています．

 使用方法

ここでは，ROS 2およびElixirの動作環境がインストール済みであるネイティブ環境でのrclexの使用方法を示します．

 プロジェクトの作成

通常のElixirプロジェクトと同様に作成します．
mix new rclex_usage
cd rclex_usage

 rclexのインストール

rclex はHexパッケージとして公開しています．
mix.exs の依存関係に rclex を追加することで，ご自身のプロジェクトにて使用することができます．
 defp deps do
 [
 ...
 {:rclex, "~> 0.10.0"},
 ...
]
 end
上記を追加後，プロジェクトのディレクトリ内で mix deps.get を実行してください．
mix deps.get

 ROS 2の環境設定

source /opt/ros/humble/setup.bash

 メッセージの型の設定

Rclexでは，ROS 2において定義されるメッセージの型を利用して出版購読型のトピック通信を行うことができます．ROS 2におけるメッセージの型についてはこちらを参照してください．
プロジェクトで使用したいメッセージの型は，config/config.exs における ros2_message_types で指定します．コンマ区切り , で複数の型を指定することもできます．
ここでは String 型を使用したい config/config.exs の例を示します．
import Config

config :rclex, ros2_message_types: ["std_msgs/msg/String"]
その後，次のMixタスクを実行し，メッセージの型を使用するために必要な定義とファイル群を自動生成します．
mix rclex.gen.msgs
config/config.exsを編集してメッセージの型を変更したときは, mix rclex.gen.msgsを再度実行してください．

 コードの実装

これで Rclex を使用する準備が整いました！
もちろんIEx上でRclexのAPIを直接実行することもできます．
ここでは，最も単純なコードを対象として，プロジェクトの実装例を示します．
次のコード lib/rclex_usage.ex は，String型のトピック /chatter に対して文字列を出版する処理を示しています．
defmodule RclexUsage do
 alias Rclex.Pkgs.StdMsgs

 def publish_message do
 Rclex.start_node("talker")
 Rclex.start_publisher(StdMsgs.Msg.String, "/chatter", "talker")

 data = "Hello World from Rclex!"
 msg = struct(StdMsgs.Msg.String, %{data: data})

 IO.puts("Rclex: Publishing: #{data}")
 Rclex.publish(msg, "/chatter", "talker")
 end
end
この他の実装例は，下記も参照してください．
	rclex/rclex_examples

 ビルドと実行

次のようにアプリケーションをビルドしてください．
mix compile
iex -S mix
IEx上で次のように実行してください．
iex()> RclexUsage.publish_message
Rclex: Publishing: Hello World from Rclex!
:ok
このメッセージの出版結果は，ROS 2コマンドros2 topic echoによって購読して確認できます．
$ source /opt/ros/humble/setup.bash
$ ros2 topic echo /chatter std_msgs/msg/String
data: Hello World from Rclex!

 開発の円滑化

本セクションでは主に開発者向けの情報を示します．

 Docker環境の利用

本リポジトリでは，Dockerでライブラリ開発を進めるためのdocker composeによる環境を提供しています．
前述の通りDocker Hubにてビルド済みのDockerイメージを公開しており，これを用いることでRclexを簡単に試行できます．
環境変数 $RCLEX_DOCKER_TAG にて対象とする実行環境のバージョンを設定できます．設定可能な実行環境はこちらを参照してください．
optional: 実行環境の設定（デフォルトは`latest`）
export RCLEX_DOCKER_TAG=latest
コンテナを作成して起動
docker compose up -d
コンテナの実行（本リポジトリのマウントポイントを作業ディレクトリに）
docker compose exec -w /root/rclex rclex_docker /bin/bash
コンテナの終了
docker compose down

 mix test等の自動実行

mix test.watch を導入しており，ソースコードの編集時毎に，単体テスト mix test やコード整形 mix format を自動実行できます．
$ mix test.watch
または docker で動作させるには
$ docker compose run --rm -w /root/rclex rclex_docker mix test.watch

 主な管理者と開発者（過去分も含む）

	@takasehideki
	@s-hosoai
	@pojiro
	@HiroiImanishi
	@kebus426
	@shiroro466

Use on Nerves

rclex can be operated onto Nerves. In this case, you do not need to prepare the ROS 2 environment on the host computer to build Nerves project (so awesome!).
This doc shows the steps on how to use Rclex on Nerves from scratch.
We have also published the Nerves project that has been prepared and includes example code at b5g-ex/rclex_on_nerves. Please also refer to this repository.

 Supported Targets

Currently, we have confirmed the following boards as the Nerves device that can operate Rclex (good luck to get one!).
	board	tag	arch	support for nerves_system
	Raspberry Pi 4	rpi4	arm64v8	Officially supported, recommended
	BeagleBone Green	bbb	arm32v7	Officially supported
	Kria KR260	kr260	arm64v8	Third-party supported
	ODYSSEY - STM32MP157C	stm32mp157c_odyssey	arm32v7	Third-party supported
	F3RP70 (e-RT3 Plus)	f3rp70	arm32v7	Third-party supported

The below is the supported ROS 2 distribution and architecture that can operate rclex_on_nerves.
The "support" colomn refers to its status of official support as the ROS 2 distribution.
	ROS_DISTRO	arm64v8	arm32v7	support
	humble	○	○	LTS until May 2027
	galactic	○	-	EOL at Dec 2022
	foxy	○	○	EOL at Jun 2023

 Preliminaries

During the procedure for Rclex on Nerves, the docker command is used to copy the necessary directory in mix rclex.prep.ros2.
Please install Docker Desktop or Docker Engine, and start it first.
And also, Rclex on Nerves will deploy an docker container for arm64 arch. If you want to operate this project by Docker Engine on other platforms (x86_64), you need to install qemu as the follows: sudo apt-get install qemu binfmt-support qemu-user-static
It should be noted that do not perform the following steps inside a docker container.
Once again, they can be operated even if ROS 2 is not installed on the host machine!

 Procedure

Target device
The following steps assume that rpi4 and arm64v8 will be used as the target Nerves device.
You may change the values of MIX_TARGET and --arch to match the "tag" and "arch" columns on the supported target list according to the board you want to use.

 Create Nerves Project

mix nerves.new rclex_usage_on_nerves --target rpi4
cd rclex_usage_on_nerves
export MIX_TARGET=rpi4
mix deps.get
Note
If mix deps.get failed, you may need to create SSH key and configure config/target.exs.

 Install rclex

rclex is available in Hex.
You can install this package into your project
by adding rclex to your list of dependencies in mix.exs:
 defp deps do
 [
 ...
 {:rclex, "~> 0.10.0"},
 ...
]
 end
After that, execute mix deps.get into the project repository.
mix deps.get

 Prepare ROS 2 resources

Note
In the following steps, Humble Hawksbill (humble) is assumed to be used as ROS_DISTRO (strongly recommend to use).
If you want to use foxy or galactic, you need to replace it appropriately in the subsequent steps. Note that these have already reached EOL.

The following command extracts the ROS 2 Docker image and copies resources required for Rclex to the Nerves file system.
You may change the value of --arch according to the architecture of your target board (see the "arch" column on the supported target list)
export ROS_DISTRO=humble
mix rclex.prep.ros2 --arch arm64v8
Note
The following warning messages will occur at several times when the host and target architectures are different. These can be ignored.
WARNING: The requested image's platform (linux/arm/v7) does not match the detected host platform (linux/amd64) and no specific platform was requested

 Configure ROS 2 message types you want to use

Rclex provides pub/sub based topic communication using the message type defined in ROS 2. Please refer here for more details about message types in ROS 2.
The message types you want to use in your project can be specified in ros2_message_types in config/config.exs.
Multiple message types can be specified separated by comma ,.
The following config/config.exs example wants to use String type.
config :rclex, ros2_message_types: ["std_msgs/msg/String"]
Then, execute the following Mix task to generate required definitions and files for message types.
mix rclex.gen.msgs
If you want to change the message types in config, do mix rclex.gen.msgs again.

 Copy erlinit.config to rootfs_overlay/etc and add LD_LIBRARY_PATH

Copy erlinit.config from nerves_system_***.
cp deps/nerves_system_rpi4/rootfs_overlay/etc/erlinit.config rootfs_overlay/etc
Add LD_LIBRARY_PATH line like following.
ROS_DISTRO should be written directly such as humble, as the below.
Enable UTF-8 filename handling in Erlang and custom inet configuration
-e LANG=en_US.UTF-8;LANGUAGE=en;ERL_INETRC=/etc/erl_inetrc

Enable crash dumps (set ERL_CRASH_DUMP_SECONDS=0 to disable)
-e ERL_CRASH_DUMP=/root/erl_crash.dump;ERL_CRASH_DUMP_SECONDS=5

add for ROS 2 (rclex_on_nerves)
-e LD_LIBRARY_PATH=/opt/ros/humble/lib
Why add LD_LIBRARY_PATH explicitly
ROS 2 needs the path. If you want to know the details, please read following
	https://github.com/ros-tooling/cross_compile/issues/363
	https://github.com/ros2/rcpputils/pull/122

Note
If you want to use galactic, adding line should be as the below.
only galactic needs /opt/ros/galactic/lib/aarch64-linux-gnu also, for libddsc
-e LD_LIBRARY_PATH=/opt/ros/galactic/lib/aarch64-linux-gnu:/opt/ros/galactic/lib

 Write Rclex code

Now, you can acquire the environment for Rclex API! Of course, you can execute APIs on IEx directly.
Here is the simplest implementation example lib/rclex_usage_on_nerves.ex that will publish the string to /chatter topic.
defmodule RclexUsageOnNerves do
 alias Rclex.Pkgs.StdMsgs

 def publish_message do
 Rclex.start_node("talker")
 Rclex.start_publisher(StdMsgs.Msg.String, "/chatter", "talker")

 data = "Hello World from Rclex!"
 msg = struct(StdMsgs.Msg.String, %{data: data})

 IO.puts("Rclex: Publishing: #{data}")
 Rclex.publish(msg, "/chatter", "talker")
 end
end
Please also check the examples for Rclex.
	rclex/rclex_examples
	b5g-ex/rclex_on_nerves

 Create fw, and burn (or, upload)

mix firmware
mix burn # or, mix upload

 Execute

Connect the Nerves device via ssh.
ssh nerves.local
Operate the following command on IEx.
iex()> RclexUsageOnNerves.publish_message
Rclex: Publishing: Hello World from Rclex!
:ok
You can confirm the above operation by subscribing with ros2 topic echo on the machine where ROS 2 env has been installed.
$ source /opt/ros/humble/setup.bash
$ ros2 topic echo /chatter std_msgs/msg/String
data: Hello World from Rclex!

CHANGELOG

 v0.10.0 on 19 Mar 2024

Full Changelog: https://github.com/rclex/rclex/compare/v0.9.3...v0.10.0
Almost Everything has been breaking changed!!
According to the knowledge acquired by our R&D experience to date, the internal structure and design of this library have been significantly revised.
The API specification has also been completely redesigned.
From these changes, it is appropriate to say that we have almost reimplemented this library scratch in https://github.com/rclex/rclex/pull/286, leading by the awesome alchemist @pojiro :D
It should be noted that the API in this release is not compatible with v0.9 or earlier, so please be careful when updating this library used in your applications.
We will investigate after this release whether existing Issues have been resolved by this historical improvement.

 v0.9.3 on 23 Feb 2024

Full Changelog: https://github.com/rclex/rclex/compare/v0.9.2...v0.9.3
	New features: none
	Code Improvements/Fixes:	add section of presentations (Code BEAM America 2021 and 2022) by @takasehideki in https://github.com/rclex/rclex/pull/262

	Bumps:	Bump dialyxir from 1.4.1 to 1.4.3 by @dependabot in https://github.com/rclex/rclex/pull/279
	Bump ex_doc from 0.30.6 to 0.31.1 by @dependabot in https://github.com/rclex/rclex/pull/283
	Bump elixir_make from 0.7.7 to 0.7.8 by @dependabot in https://github.com/rclex/rclex/pull/287
	Bump credo from 1.7.1 to 1.7.3 by @dependabot in https://github.com/rclex/rclex/pull/282
	Bump mix_test_watch from 1.1.1 to 1.1.2 by @dependabot in https://github.com/rclex/rclex/pull/288
	Bump credo from 1.7.3 to 1.7.5 by @dependabot in https://github.com/rclex/rclex/pull/289

	Known issues to be addressed in the near future:	Lock git_hooks to 0.6.5 due to its issue in https://github.com/rclex/rclex/issues/138
	Release rcl nif resources when GerServer terminates in https://github.com/rclex/rclex/issues/160
	publish/2 sometimes failed just after create_publisher/3 in https://github.com/rclex/rclex/issues/212
	CI fails randomly at mix test in https://github.com/rclex/rclex/issues/246
	Bump to Iron Irwini, for Docker and Nerves environments in https://github.com/rclex/rclex/issues/228

	Note in this release:	This release is mainly as a record just prior to v0.10.0, which is scheduled to involve major changes
	We found there is a credo error in "code-analysis", but we decide to ignore it for now because we are soon going to v0.10.0! (if this is still an issue then, consider it at that time,,,

 v0.9.2 on 03 Oct 2023

Full Changelog: https://github.com/rclex/rclex/compare/v0.9.1...v0.9.2
	New features: none
	Code Improvements/Fixes:	add ROS_INCS path for using with Iron properly (fix #253) by @takasehideki in https://github.com/rclex/rclex/pull/256

	Bumps:	Bump credo from 1.7.0 to 1.7.1 by @dependabot in https://github.com/rclex/rclex/pull/254

	Known issues to be addressed in the near future:	Lock git_hooks to 0.6.5 due to its issue in https://github.com/rclex/rclex/issues/138
	Release rcl nif resources when GerServer terminates in https://github.com/rclex/rclex/issues/160
	publish/2 sometimes failed just after create_publisher/3 in https://github.com/rclex/rclex/issues/212
	CI fails randomly at mix test in https://github.com/rclex/rclex/issues/246
	Bump to Iron Irwini, for Docker and Nerves environments in https://github.com/rclex/rclex/issues/228

	Note in this release: none

 v0.9.1 on 12 Sep 2023

Full Changelog: https://github.com/rclex/rclex/compare/v0.9.0...v0.9.1
	New features:	Experimental support for Iron Irwini by @takasehideki in https://github.com/rclex/rclex/pull/251

	Code Improvements/Fixes: none
	Bumps: none
	Known issues to be addressed in the near future:	Lock git_hooks to 0.6.5 due to its issue in https://github.com/rclex/rclex/issues/138
	Release rcl nif resources when GerServer terminates in https://github.com/rclex/rclex/issues/160
	publish/2 sometimes failed just after create_publisher/3 in https://github.com/rclex/rclex/issues/212
	CI fails randomly at mix test in https://github.com/rclex/rclex/issues/246
	Bump to Iron Irwini, for Docker and Nerves environments in https://github.com/rclex/rclex/issues/228

	Note in this release:	Please welcome Iron Irwini as the experimental supported distribution for Rclex!! :tada:

 v0.9.0 on 11 Sep 2023

Full Changelog: https://github.com/rclex/rclex/compare/v0.8.5...v0.9.0
	New features:	Support Humble (and format with Elixir 1.15.5) by @pojiro in https://github.com/rclex/rclex/pull/241
	Support humble, galactic Nerves by @pojiro in https://github.com/rclex/rclex/pull/244
	change the recommended environment and versions by @takasehideki in https://github.com/rclex/rclex/pull/247
	Add humble support to arm32v7_ros_distros by @pojiro in https://github.com/rclex/rclex/pull/248

	Code Improvements/Fixes:	Fix bug of mix rclex.gen.msgs by @pojiro in https://github.com/rclex/rclex/pull/236
	fix docs about ROS_DISTRO from foxy to humble by @takasehideki in https://github.com/rclex/rclex/pull/249

	Bumps:	Bump ex_doc from 0.29.4 to 0.30.6 by @dependabot in https://github.com/rclex/rclex/pull/234 https://github.com/rclex/rclex/pull/237 https://github.com/rclex/rclex/pull/238
	Bump dialyxir from 1.3.0 to 1.4.1 by @dependabot in https://github.com/rclex/rclex/pull/240
	Bump mix_test_watch from 1.1.0 to 1.1.1 by @dependabot in https://github.com/rclex/rclex/pull/242

	Known issues to be addressed in the near future:	Lock git_hooks to 0.6.5 due to its issue in https://github.com/rclex/rclex/issues/138
	Release rcl nif resources when GerServer terminates in https://github.com/rclex/rclex/issues/160
	publish/2 sometimes failed just after create_publisher/3 in https://github.com/rclex/rclex/issues/212
	CI fails randomly at mix test in https://github.com/rclex/rclex/issues/246
	Bump to Iron Irwini in https://github.com/rclex/rclex/issues/228

	Note in this release:	Please welcome Humble Hawksbill (and Galactic Geochelone) as the new supported distribution for Rclex!! :tada:

 v0.8.5 on 05 Jun 2023

Full Changelog: https://github.com/rclex/rclex/compare/v0.8.4...v0.8.5
	New features:	Adding handling for nested Message types from different Packages by @steve-at in https://github.com/rclex/rclex/pull/230

	Code Improvements/Fixes: none
	Bumps:	Bump elixir_make from 0.7.6 to 0.7.7

	Known issues to be addressed in the near future:	publish/2 sometimes failed just after create_publisher/3 in https://github.com/rclex/rclex/issues/212
	Lock git_hooks to 0.6.5 due to its issue in https://github.com/rclex/rclex/issues/138
	Bump to Humble Hawksbill in https://github.com/rclex/rclex/issues/114
	Bump to Iron Irwini in https://github.com/rclex/rclex/issues/228
	Release rcl nif resources when GerServer terminates in https://github.com/rclex/rclex/issues/160

	Note in this release: none

 v0.8.4 on 11 Apr 2023

Full Changelog: https://github.com/rclex/rclex/compare/v0.8.3...v0.8.4
	New features: none
	Code Improvements/Fixes:	Fix typos by @kianmeng in https://github.com/rclex/rclex/pull/217

	Bumps:	Bump elixir_make from 0.7.1 to 0.7.6
	Bump ex_doc from 0.29.1 to 0.29.4
	Bump credo from 1.6.7 to 1.7.0
	Bump dialyxir from 1.2.0 to 1.3.0

	Known issues to be addressed in the near future:	publish/2 sometimes failed just after create_publisher/3 in https://github.com/rclex/rclex/issues/212
	Lock git_hooks to 0.6.5 due to its issue in https://github.com/rclex/rclex/issues/138
	Bump to Humble Hawksbill in https://github.com/rclex/rclex/issues/114
	Release rcl nif resources when GerServer terminates in https://github.com/rclex/rclex/issues/160

	Note in this release: none

 v0.8.3 on 12 Dec 2022

Full Changelog: https://github.com/rclex/rclex/compare/v0.8.2...v0.8.3
	New features:	Add arm32v7 support to mix rclex.prep.ros2 by @pojiro in https://github.com/rclex/rclex/pull/210

	Code Improvements/Fixes:	improve doc about docker env by @takasehideki in https://github.com/rclex/rclex/pull/208
	Remove useless gitignore line by @pojiro in https://github.com/rclex/rclex/pull/211
	insert sleep before publishing on example code (see #212) by @takasehideki in https://github.com/rclex/rclex/pull/213

	Bumps:	Bump elixir_make from 0.7.0 to 0.7.1 by @dependabot in https://github.com/rclex/rclex/pull/209

	Known issues to be addressed in the near future:	publish/2 sometimes failed just after create_publisher/3 in https://github.com/rclex/rclex/issues/212
	Lock git_hooks to 0.6.5 due to its issue in https://github.com/rclex/rclex/issues/138
	Bump to Humble Hawksbill in https://github.com/rclex/rclex/issues/114
	Release rcl nif resources when GerServer terminates in https://github.com/rclex/rclex/issues/160

	Note in this release: none

 v0.8.2 on 03 Dec 2022

Full Changelog: https://github.com/rclex/rclex/compare/v0.8.1...v0.8.2
	New features: none
	Code Improvements/Fixes:	fix to check ROS_DIR by @takasehideki in https://github.com/rclex/rclex/pull/206

	Bumps: none
	Known issues to be addressed in the near future:	Lock git_hooks to 0.6.5 due to its issue in https://github.com/rclex/rclex/issues/138
	Bump to Humble Hawksbill in https://github.com/rclex/rclex/issues/114
	Release rcl nif resources when GerServer terminates in https://github.com/rclex/rclex/issues/160

	Note in this release:	This release only fixes a critical issue that existed in the previous release,,,

 v0.8.1 on 03 Dec 2022

Full Changelog: https://github.com/rclex/rclex/compare/v0.8.0...v0.8.1
	New features:	Create docs for Use on Nerves and improve related mix tasks by @pojiro in https://github.com/rclex/rclex/pull/198

	Code Improvements/Fixes:	Change raise to Mix.raise to proper mix task error handling by @pojiro in https://github.com/rclex/rclex/pull/194
	Change Makefile's if statement to confirm ROS_DIR exists by @pojiro in https://github.com/rclex/rclex/pull/195
	Improve mix tasks usability by @pojiro in https://github.com/rclex/rclex/pull/196

	Bumps:	Bump ex_doc from 0.29.0 to 0.29.1 by @dependabot in https://github.com/rclex/rclex/pull/199
	Bump elixir_make from 0.6.3 to 0.7.0 by @dependabot in https://github.com/rclex/rclex/pull/200

	Known issues to be addressed in the near future:	Lock git_hooks to 0.6.5 due to its issue in https://github.com/rclex/rclex/issues/138
	Bump to Humble Hawksbill in https://github.com/rclex/rclex/issues/114
	Release rcl nif resources when GerServer terminates in https://github.com/rclex/rclex/issues/160

	Note in this release: none

 v0.8.0 on 01 Nov 2022

Full Changelog: https://github.com/rclex/rclex/compare/v0.7.2...v0.8.0
Holy Shit! Rclex now works on Nerves as well!! :tada:
	New features:	Refactor generate messages codes pojiro by @pojiro in https://github.com/rclex/rclex/pull/185
	refactor Makefile and msgs.ex by @pojiro in https://github.com/rclex/rclex/pull/192
	Feature add tasks to prepare ros2 resources by @pojiro in https://github.com/rclex/rclex/pull/190

	Code Improvements/Fixes:	Add docker command to mix test.watch section on README.md by @pojiro in https://github.com/rclex/rclex/pull/177
	Fix mix deps.get error on GitHub Actions by @s-hosoai in https://github.com/rclex/rclex/pull/178
	Fix multiple definition by @pojiro in https://github.com/rclex/rclex/pull/182
	Remove DASHING support from c source by @pojiro in https://github.com/rclex/rclex/pull/189
	Remove unused rclex_gen_msgs from mix.lock by @pojiro in https://github.com/rclex/rclex/pull/191

	Bumps:	 ex_doc from 0.28.6 to 0.29.0 by @dependabot in https://github.com/rclex/rclex/pull/184

	Known issues to be addressed in the near future:	Lock git_hooks to 0.6.5 due to its issue in https://github.com/rclex/rclex/issues/138
	Bump to Humble Hawksbill in https://github.com/rclex/rclex/issues/114
	Release rcl nif resources when GerServer terminates in https://github.com/rclex/rclex/issues/160

	Note in this release:	set supported/tested elixir version to above 1.12 by @takasehideki in https://github.com/rclex/rclex/pull/186

 v0.7.2 on 22 Sep 2022

Full Changelog: https://github.com/rclex/rclex/compare/v0.7.1...v0.7.2
	New features: none
	Code Improvements/Fixes:	change the recommended env and target versions for GitHub Actions CI by @takasehideki in https://github.com/rclex/rclex/pull/173
	Enable Dialyzer on GitHub Actions (remove uncheck and ignore exit options) by @s-hosoai in https://github.com/rclex/rclex/pull/165
	elinimate errors in mix dialyzer on GHA (fix #174) by @takasehideki in https://github.com/rclex/rclex/pull/175

	Bumps:	dialyxir from 1.1.0 to 1.2.0 in https://github.com/rclex/rclex/pull/166
	 ex_doc from 0.28.4 to 0.28.5 in https://github.com/rclex/rclex/pull/168
	credo from 1.6.5 to 1.6.7 by https://github.com/rclex/rclex/pull/169

	Known issues to be addressed in the near future:	Lock git_hooks to 0.6.5 due to its issue in https://github.com/rclex/rclex/issues/138
	Bump to Humble Hawksbill in https://github.com/rclex/rclex/issues/114
	Release rcl nif resources when GerServer terminates in https://github.com/rclex/rclex/issues/160

	Note in this release:	The recommended environment is changed to the following versions	Ubuntu 20.04.2 LTS (Focal Fossa)
	ROS 2 Foxy Fitzroy
	Elixir 1.13.4-otp-25
	Erlang/OTP 25.0.3

 v0.7.1 on 21 Sep 2022

Full Changelog: https://github.com/rclex/rclex/compare/v0.7.0...v0.7.1
	New Contributors: @pojiro :tada:
	New features:	Improve unit test environment on local dev machine by @pojiro in https://github.com/rclex/rclex/pull/131

	Code Improvements/Fixes:	Enrich doc and specs with the awesome contributions by @pojiro (e.g., in https://github.com/rclex/rclex/pull/121)
	Enrich unit tests with the awesome contributions by @pojiro (e.g., in https://github.com/rclex/rclex/pull/136)
	Improve credo config, .credo.exs by @pojiro in https://github.com/rclex/rclex/pull/120
	exclude auto-generated files format by @pojiro in https://github.com/rclex/rclex/pull/135
	refactor Rclex.ResourceServer.call_nifs_rcl_node_init/5 by @pojiro in https://github.com/rclex/rclex/pull/147
	fix node name bug, when it attributes a namespace (and also fix #142) by @pojiro in https://github.com/rclex/rclex/pull/149
	Remove KeepSub module which is unused (also fix dialyzer error) by @s-hosoai in https://github.com/rclex/rclex/pull/164
	Improve README by @takasehideki in https://github.com/rclex/rclex/pull/171

	Bumps:	credo from 1.6.4 to 1.6.5 in https://github.com/rclex/rclex/pull/162

	Known issues to be addressed in the near future:	Lock git_hooks to 0.6.5 due to its issue in https://github.com/rclex/rclex/issues/138
	Bump to Humble Hawksbill in https://github.com/rclex/rclex/issues/114
	Release rcl nif resources when GerServer terminates in https://github.com/rclex/rclex/issues/160

	Note in this release:	After long consideration, we have decided to end the support for Dashing as the target environment 6ae367d

 v0.7.0 on 27 May 2022

	New features: none
	Code Improvements/Fixes:	Refactoring to simplify implementation by @s-hosoai in https://github.com/rclex/rclex/pull/118	rename and simplify functions
	delete comment out functions
	change NIF exception handling
	add @spac and @impl
	refine tests

	Bumps: none
	Known issues:	rclex_connection_tests becomes failed on Dashing from v0.6.0_rc #89
	Rclex.initialize_msg/0 is undefined or private in KeepSub.sub_task_start/2 #104

	Full Changelog: https://github.com/rclex/rclex/compare/v0.6.2...v0.7.0

 v0.6.2 on 25 May 2022

	Please welcome @s-hosoai as a new maintainer!
	New features: none
	Code Improvements/Fixes:	Add simple pub sub test by @s-hosoai in https://github.com/rclex/rclex/pull/113
	fix job_queue length condition (fix #112) by @s-hosoai in https://github.com/rclex/rclex/pull/115
	remove Dashing from CI targets by @takasehideki in https://github.com/rclex/rclex/pull/116

	Bumps:	ex_doc to 0.28.4 #110

	Known issues:	rclex_connection_tests becomes failed on Dashing from v0.6.0_rc #89
	Rclex.initialize_msg/0 is undefined or private in KeepSub.sub_task_start/2 #104

	Full Changelog: https://github.com/rclex/rclex/compare/v0.6.1...v0.6.2

 v0.6.1 on 22 Mar 2022

	New features: none
	Code Improvements/Fixes:	include packages.txt and template file to hex package #107

	Bumps: none
	Known issues:	rclex_connection_tests becomes failed on Dashing from v0.6.0_rc #89
	Rclex.initialize_msg/0 is undefined or private in KeepSub.sub_task_start/2 #104

	Full Changelog: https://github.com/rclex/rclex/compare/v0.6.0...v0.6.1

 v0.6.0 on 17 Mar 2022

	New features:	support custom msgtype!! #87 #98

	Code Improvements/Fixes:	Enhance README #102

	Bumps:	ex_doc to 0.28.2 #99
	credo to 1.6.4 #100

	Known issues:	rclex_connection_tests becomes failed on Dashing from v0.6.0_rc #89
	Rclex.initialize_msg/0 is undefined or private in KeepSub.sub_task_start/2 #104

	Full Changelog: https://github.com/rclex/rclex/compare/v0.5.3...v0.6.0

 v0.5.3 on 22 Feb 2022

	New features:	Add following APIs #92 	create_singlenode_with_executor_setting/3	can specify executor_setting in addition to args in create_singlenode/3
	{queue_length} means the maximum length of job_queue under the created nodes
	change_order (in {queue_length, change_order}) means a function that adjusts the execution order of job_exe

	create_nodes_with_executor_setting/4, create_timer_with_executor_setting/5 and create_timer_with_executor_setting/6: same with the above

	Code Improvements/Fixes: none
	Bumps:	ex_doc to 0.28.1 #96
	credo to 1.6.3 #91

	Known issues:	mix test sometimes fails, but we don't think it will affect the behavior #68

	Full Changelog: https://github.com/rclex/rclex/compare/v0.5.2...v0.5.3

 v0.5.2 on 21 Jan 2022

	New features:	Add timer name in args of create_timer/4 and create_timer/5 to treat timer ID ddf99cf
	Implement ResourceServer module #83	JobExecutor and JobQueue will be created for each node and timer
	Executor has been obsoleted and changed to the above feature

	Code Improvements/Fixes:	change wait time 50 to 5 milliseconds #76
	change docker tags for CI test #78

	Bumps:	ex_doc to 0.27.3 #80
	credo to 1.6.2 #82

	Known issues:	mix test sometimes fails, but we don't think it will affect the behavior #68

	Full Changelog: https://github.com/rclex/rclex/compare/v0.5.1...v0.5.2

 v0.5.1 on 30 Nov 2021

	New features:	Implement Timer.terminate/2 2915de5

	Code Improvements/Fixes:	Change filename to snake_case according to follow ElixirStyleGuide #72
	Some minor refactoring to remove boring warning in mix compile #73

	Bumps:	ex_doc to 0.26.0 #71
	credo to 1.6.1 #70

	Known issues:	mix test sometimes fails, but we don't think it will affect the behavior #68

	Full Changelog: https://github.com/rclex/rclex/compare/v0.5.0...v0.5.1

 v0.5.0 on 01 Nov 2021

	New features:	Implement Executor module by using GenServer #61 #67

	Code Improvements/Fixes:	Hide NIF functions from users #54 #55

	Bumps:	ex_doc to 0.25.5 #63
	elixir_make to 0.6.3 #62

	Known issues:	mix test sometimes fails, but we don't think it will affect the behavior #68

	Full Changelog: https://github.com/rclex/rclex/compare/v0.4.1...v0.5.0

 v0.4.1 on 24 Jul 2021

	New features:	Implement rcl_node_get_name/1 and rcl_get_topic_names_and_types/3 #42

	Code Improvements/Fixes:	Improve code according to the advice from Credo #41
	Use DEBUG_PRINTF and Logger to control print message in library #46 #23 #24
	Change the method to obtain ROS_DIR with which ros2 #38
	Add and apply Artistic Style for C source (mix format) #45

	Enhancements:	Introduce mix credo on GHA #48
	Create GHA to publish to Hex when tags released #40
	Separate ci.yml #49
	Improve timing of connection tests rclex/rclex_connection_tests#12

	Bumps:	ex_doc from 0.24.2 to 0.25.0 #47

	Full Changelog: https://github.com/rclex/rclex/compare/v0.4.0...v0.4.1

 v0.4.0 on 8 Jun 2021

	Please welcome @kebus426 as a new maintainer!
	Support for ROS 2 Foxy Fitzroy!! #32 :tada:
	Recommended environment is now Ubuntu 20.04.2 LTS / ROS 2 Foxy / Elixir 1.11.2-otp-23 / Erlang/OTP 23.3.1	also work well on Ubuntu 18.04.5 LTS and Dashing Diademata

	Introduce automatic test a.k.a CI works on GitHub Actions #13 #25 #31 	Please also check rclex_connection_tests and rclex_docker on Docker Hub for more details
	Note that CI sometimes fails due to the performance of GHA runner #28

	Implement subsucribe_stop/2 #30
	Fix bug on timer_loop/4 #29 #21
	Create rclex Organization and change source URL #18
	Full Changelog: https://github.com/rclex/rclex/compare/v0.3.1...v0.4.0

 v0.3.1 on 4 Jul 2020

	Translate README from Japanese to English #11

 v0.3.0 on 26 Jun 2020

	Change module name to Rclex #8

 v0.2.0 on 24 Feb 2020

	Publish this package on hex.pm	You can now use this repository as the Hex package

	Refactor source tree	Adjust elixir_make to generate rclex.so to priv/
	Eliminate Timex

	Apply mix format
	Write README doc, only by Japanese (sorry,,,)

 v0.1.0 on 24 Feb 2020

First publication

Rclex

User API for Elixir.Rclex.

 Summary

 Types

 topic_name()

 topic_name must lead with "/".

 Functions

 publish(message, topic_name, node_name, opts \\ [])

 Publish message.

 start_node(name, opts \\ [])

 Start node.

 start_publisher(message_type, topic_name, node_name, opts \\ [])

 Start publisher.

 start_subscription(callback, message_type, topic_name, node_name, opts \\ [])

 Start subscription.

 start_timer(period_ms, callback, timer_name, node_name, opts \\ [])

 Start timer.

 stop_node(name, opts \\ [])

 Stop node. And also stop the entities on the node, publisher, subscription and timer.

 stop_publisher(message_type, topic_name, name, opts \\ [])

 Stop publisher.

 stop_subscription(message_type, topic_name, node_name, opts \\ [])

 Stop subscription.

 stop_timer(timer_name, node_name, opts \\ [])

 Stop timer.

 Types

 Link to this type

 topic_name()

 View Source

 @type topic_name() :: String.t()

topic_name must lead with "/".

 Functions

 Link to this function

 publish(message, topic_name, node_name, opts \\ [])

 View Source

 @spec publish(
 message :: struct(),
 topic_name :: topic_name(),
 node_name :: String.t(),
 opts :: [{:namespace, String.t()}]
) :: :ok | {:error, :not_found}

Publish message.
	topic_name must lead with "/"

 opts

	:namespace must lead with "/". if not specified, the default is "/"

 Examples

iex> alias Rclex.Pkgs.StdMsgs
iex> Rclex.publish(struct(StdMsgs.Msg.String, %{data: "hello"}), "/chatter", "node", namespace: "/example")
:ok
iex> Rclex.publish(struct(StdMsgs.Msg.String, %{data: "hello"}), "/chatter", "node")
{:error, :not_found}

 Link to this function

 start_node(name, opts \\ [])

 View Source

 @spec start_node(name :: String.t(), opts :: [{:namespace, String.t()}]) ::
 :ok | {:error, :already_started} | {:error, term()}

Start node.

 opts

	:namespace must lead with "/". if not specified, the default is "/"

 Examples

iex> Rclex.start_node("node", namespace: "/example")
:ok
iex> Rclex.start_node("node", namespace: "/example")
{:error, :already_started}

 Link to this function

 start_publisher(message_type, topic_name, node_name, opts \\ [])

 View Source

 @spec start_publisher(
 message_type :: module(),
 topic_name :: topic_name(),
 node_name :: String.t(),
 opts :: [namespace: String.t(), qos: Rclex.QoS.t()]
) :: :ok | {:error, :already_started} | {:error, term()}

Start publisher.
	topic_name must lead with "/"

 Examples

iex> alias Rclex.Pkgs.StdMsgs
iex> Rclex.start_publisher(StdMsgs.Msg.String, "/chatter", "node", namespace: "/example")
:ok
iex> Rclex.start_publisher(StdMsgs.Msg.String, "/chatter", "node", namespace: "/example")
{:error, :already_started}

 Link to this function

 start_subscription(callback, message_type, topic_name, node_name, opts \\ [])

 View Source

 @spec start_subscription(
 callback :: function(),
 message_type :: module(),
 topic_name :: topic_name(),
 node_name :: String.t(),
 opts :: [namespace: String.t(), qos: Rclex.QoS.t()]
) :: :ok | {:error, :already_started} | {:error, term()}

Start subscription.
	topic_name must lead with "/"

 opts

	:namespace must lead with "/". if not specified, the default is "/"
	:qos if not specified, applied the default which equals return of Rclex.QoS.profile_default/0

 Examples

iex> alias Rclex.Pkgs.StdMsgs
iex> Rclex.start_subscription(&IO.inspect/1, StdMsgs.Msg.String, "/chatter", "node", namespace: "/example")
:ok
iex> Rclex.start_subscription(&IO.inspect/1, StdMsgs.Msg.String, "/chatter", "node", namespace: "/example")
{:error, :already_started}

 Link to this function

 start_timer(period_ms, callback, timer_name, node_name, opts \\ [])

 View Source

 @spec start_timer(
 period_ms :: non_neg_integer(),
 callback :: function(),
 timer_name :: String.t(),
 node_name :: String.t(),
 opts :: [{:namespace, String.t()}]
) :: :ok | {:error, :already_started} | {:error, term()}

Start timer.

 opts

	:namespace must lead with "/". if not specified, the default is "/"

 Examples

iex> Rclex.start_timer(1000, fn -> IO.inspect("tick") end, "tick", "node", namespace: "/example")
:ok
iex> Rclex.start_timer(1000, fn -> IO.inspect("tick") end, "tick", "node", namespace: "/example")
{:error, :already_started}

 Link to this function

 stop_node(name, opts \\ [])

 View Source

 @spec stop_node(name :: String.t(), opts :: [{:namespace, String.t()}]) ::
 :ok | {:error, :not_found}

Stop node. And also stop the entities on the node, publisher, subscription and timer.

 opts

	:namespace must lead with "/". if not specified, the default is "/"

 Examples

iex> Rclex.stop_node("node", namespace: "/example")
:ok
iex> Rclex.stop_node("node", namespace: "/example")
{:error, :not_found}

 Link to this function

 stop_publisher(message_type, topic_name, name, opts \\ [])

 View Source

 @spec stop_publisher(
 message_type :: module(),
 topic_name :: topic_name(),
 node_name :: String.t(),
 opts :: [{:namespace, String.t()}]
) :: :ok | {:error, :not_found}

Stop publisher.
	topic_name must lead with "/"

 opts

	:namespace must lead with "/". if not specified, the default is "/"

 Examples

iex> alias Rclex.Pkgs.StdMsgs
iex> Rclex.stop_publisher(StdMsgs.Msg.String, "/chatter", "node", namespace: "/example")
:ok
iex> Rclex.stop_publisher(StdMsgs.Msg.String, "/chatter", "node", namespace: "/example")
{:error, :not_found}

 Link to this function

 stop_subscription(message_type, topic_name, node_name, opts \\ [])

 View Source

 @spec stop_subscription(
 message_type :: module(),
 topic_name :: topic_name(),
 node_name :: String.t(),
 opts :: [{:namespace, String.t()}]
) :: :ok | {:error, :not_found}

Stop subscription.
	topic_name must lead with "/"

 opts

	:namespace must lead with "/". if not specified, the default is "/"

 Examples

iex> alias Rclex.Pkgs.StdMsgs
iex> Rclex.stop_subscription(StdMsgs.Msg.String, "/chatter", "node", namespace: "/example")
:ok
iex> Rclex.stop_subscription(StdMsgs.Msg.String, "/chatter", "node", namespace: "/example")
{:error, :not_found}

 Link to this function

 stop_timer(timer_name, node_name, opts \\ [])

 View Source

 @spec stop_timer(
 timer_name :: String.t(),
 node_name :: String.t(),
 opts :: [{:namespace, String.t()}]
) :: :ok | {:error, :not_found}

Stop timer.

 opts

	:namespace must lead with "/". if not specified, the default is "/"

 Examples

iex> Rclex.stop_timer("tick", "node", namespace: "/example")
:ok
iex> Rclex.stop_timer("tick", "node", namespace: "/example")
{:error, :not_found}

Rclex.MsgFuncs

Rclex.QoS

Documentation for Elixir.Rclex.QoS.
See also Quality of Service settings on ROS 2 Documentation.

 Summary

 Types

 t()

 	deadline, lifespan, liveliness_lease_duration should be specified by float seconds.

 Functions

 profile_default()

 Default QoS settings for publishers and subscriptions

 profile_parameters()

 Parameters in ROS 2 are based on services, and as such have a similar profile. The difference is that parameters use a much larger queue depth so that requests do not get lost when, for example, the parameter client is unable to reach the parameter service server

 profile_sensor_data()

 For sensor data, in most cases it’s more important to receive readings in a timely fashion, rather than ensuring that all of them arrive. That is, developers want the latest samples as soon as they are captured, at the expense of maybe losing some. For that reason the sensor data profile uses best effort reliability and a smaller queue size.

 profile_services_default()

 In the same vein as publishers and subscriptions, services are reliable. It is especially important for services to use volatile durability, as otherwise service servers that re-start may receive outdated requests. While the client is protected from receiving multiple responses, the server is not protected from side-effects of receiving the outdated requests.

 profile_system_default()

 This uses the RMW implementation’s default values for all of the policies. Different RMW implementations may have different defaults.

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Rclex.QoS{
 avoid_ros_namespace_conventions: boolean(),
 deadline: float(),
 depth: non_neg_integer(),
 durability: :system_default | :transient_local | :volatile,
 history: :system_default | :keep_last | :keep_all,
 lifespan: float(),
 liveliness: :system_default | :automatic | :manual_by_topic,
 liveliness_lease_duration: float(),
 reliability: :system_default | :reliable | :best_effort
}

	deadline, lifespan, liveliness_lease_duration should be specified by float seconds.

 Functions

 Link to this function

 profile_default()

 View Source

 @spec profile_default() :: t()

Default QoS settings for publishers and subscriptions

 Link to this function

 profile_parameters()

 View Source

 @spec profile_parameters() :: t()

Parameters in ROS 2 are based on services, and as such have a similar profile. The difference is that parameters use a much larger queue depth so that requests do not get lost when, for example, the parameter client is unable to reach the parameter service server

 Link to this function

 profile_sensor_data()

 View Source

 @spec profile_sensor_data() :: t()

For sensor data, in most cases it’s more important to receive readings in a timely fashion, rather than ensuring that all of them arrive. That is, developers want the latest samples as soon as they are captured, at the expense of maybe losing some. For that reason the sensor data profile uses best effort reliability and a smaller queue size.

 Link to this function

 profile_services_default()

 View Source

 @spec profile_services_default() :: t()

In the same vein as publishers and subscriptions, services are reliable. It is especially important for services to use volatile durability, as otherwise service servers that re-start may receive outdated requests. While the client is protected from receiving multiple responses, the server is not protected from side-effects of receiving the outdated requests.

 Link to this function

 profile_system_default()

 View Source

 @spec profile_system_default() :: t()

This uses the RMW implementation’s default values for all of the policies. Different RMW implementations may have different defaults.

mix rclex.gen.msgs

Generate codes of ROS 2 msg type
Before generating, specify msg types in config.exs is needed.
config :rclex, ros2_message_types: ["std_msgs/msg/String"]
Info
Be careful, ros2 msg type is case sensitive.

 How to generate

mix rclex.gen.msgs
This task assumes that the environment variable ROS_DISTRO is set
and refers to the msg types from /opt/ros/[ROS_DISTRO]/share.
We can also specify explicitly as follows
mix rclex.gen.msgs --from /opt/ros/foxy/share

 How to clean

mix rclex.gen.msgs --clean

mix rclex.prep.ros2

Prepare ROS 2 resources under .ros2 directory.
mix rclex.prep.ros2 --arch ARCH
ROS 2 resources will be prepared under .ros2.
An --arch option should be specified, option value is arm64v8, currently only supported.

 Examples

specify arch explicitly with --arch option
mix rclex.prep.ros2 --arch arm64v8
For Nerves, export MIX_TARGET=[TARGET] is invoked properly, --arch option is not needed.
mix rclex.prep.ros2

 OEBPS/dist/epub-TCI3LGHF.js
(()=>{var d=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var c="ex_doc:settings",h={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=h,this._loadSettings()}get(){return this._settings}update(t){let e=this._settings;this._settings={...this._settings,...t},this._subscribers.forEach(n=>n(this._settings,e)),this._storeSettings()}getAndSubscribe(t){this._subscribers.push(t),t(this._settings)}_loadSettings(){try{let t=localStorage.getItem(c);if(t){let e=JSON.parse(t);this._settings={...this._settings,...e}}this._loadSettingsLegacy()}catch(t){console.error(`Failed to load settings: ${t}`)}}_storeSettings(){try{this._storeSettingsLegacy(),localStorage.setItem(c,JSON.stringify(this._settings))}catch(t){console.error(`Failed to persist settings: ${t}`)}}_loadSettingsLegacy(){localStorage.getItem("tooltipsDisabled")!==null&&(this._settings={...this._settings,tooltips:!1}),localStorage.getItem("night-mode")==="true"&&(this._settings={...this._settings,nightMode:!0}),this._settings.nightMode===!0&&(this._settings={...this._settings,theme:"dark"})}_storeSettingsLegacy(){this._settings.tooltips?localStorage.removeItem("tooltipsDisabled"):localStorage.setItem("tooltipsDisabled","true"),this._settings.nightMode!==null?localStorage.setItem("night-mode",this._settings.nightMode===!0?"true":"false"):localStorage.removeItem("night-mode"),this._settings.theme!==null?(localStorage.setItem("night-mode",this._settings.theme==="dark"?"true":"false"),this._settings.nightMode=this._settings.theme==="dark"):(delete this._settings.nightMode,localStorage.removeItem("night-mode"))}},f=new s;function l(){["warning","info","error","neutral","tip"].forEach(t=>{i(`blockquote h3.${t}, blockquote h4.${t}`).forEach(e=>{e.closest("blockquote").classList.add(t)})})}document.addEventListener("click",function(o){if(window.innerWidth<=768){let t=o.target.closest('a[href^="#"]');if(t){o.preventDefault();let e=t.getAttribute("href").substring(1),n=document.getElementById(e);if(n){let u=n.getBoundingClientRect().top+window.scrollY-45;window.scrollTo({top:u,behavior:"smooth"})}}}});var m="hll";function g(){p()}function p(){i("[data-group-id]").forEach(t=>{let e=t.getAttribute("data-group-id");t.addEventListener("mouseenter",n=>{a(e,!0)}),t.addEventListener("mouseleave",n=>{a(e,!1)})})}function a(o,t){i(`[data-group-id="${o}"]`).forEach(n=>{n.classList.toggle(m,t)})}r(()=>{g(),l()});})();

