

 reckon_db

 v1.1.0

 Table of contents

 	Readme

 	License

 	Changelog

 	Event Sourcing

 	CQRS

 	Subscriptions

 	Snapshots

 	Temporal Queries

 	Scavenging

 	Causation Tracking

 	Stream Links

 	Schema Evolution

 	Configuration

 	Memory Pressure

 	Storage Internals

 	Cluster Consistency

 	
 Modules

 	esdb_aggregate_nif

 	esdb_archive_nif

 	esdb_capability_verifier

 	esdb_crypto_nif

 	esdb_filter_nif

 	esdb_graph_nif

 	esdb_hash_nif

 	esdb_revocation

 	reckon_db_aggregator

 	reckon_db_app

 	reckon_db_archive_backend

 	reckon_db_archive_file

 	reckon_db_backpressure

 	reckon_db_causation

 	reckon_db_cluster_sup

 	reckon_db_config

 	reckon_db_consistency_checker

 	reckon_db_core_sup

 	reckon_db_discovery

 	reckon_db_emitter

 	reckon_db_emitter_group

 	reckon_db_emitter_pool

 	reckon_db_emitter_sup

 	reckon_db_filters

 	reckon_db_gateway_sup

 	reckon_db_gateway_worker

 	reckon_db_health_prober

 	reckon_db_leader

 	reckon_db_leader_sup

 	reckon_db_leader_tracker

 	reckon_db_links

 	reckon_db_memory

 	reckon_db_naming

 	reckon_db_node_monitor

 	reckon_db_notification_sup

 	reckon_db_persistence_sup

 	reckon_db_persistence_worker

 	reckon_db_scavenge

 	reckon_db_schema

 	reckon_db_snapshots

 	reckon_db_snapshots_store

 	reckon_db_store

 	reckon_db_store_coordinator

 	reckon_db_store_mgr

 	reckon_db_streams

 	reckon_db_streams_reader

 	reckon_db_streams_sup

 	reckon_db_streams_writer

 	reckon_db_subscriptions

 	reckon_db_subscriptions_store

 	reckon_db_sup

 	reckon_db_system_sup

 	reckon_db_telemetry

 	reckon_db_temporal

 	reckon_db_tracker_group

 reckon-db

[image: Buy Me A Coffee]
BEAM-native Event Store built on Khepri/Ra with Raft consensus.
[image: Architecture]
Overview
reckon-db is an Erlang implementation of a distributed event store designed for:
	Event Sourcing: Store and replay events with optimistic concurrency
	Clustering: Automatic node discovery and Raft-based replication
	High Throughput: Partitioned writers for concurrent stream writes
	Edge & Datacenter: Works on Nerves devices and Kubernetes clusters

Features
	Event stream operations (append, read, subscribe) with versioning and optimistic concurrency
	Persistent subscriptions (stream, event type, pattern, payload matching)
	Snapshot management for aggregate state
	Emitter pools for high-throughput event delivery
	UDP multicast and Kubernetes DNS discovery
	BEAM telemetry with optional OpenTelemetry exporters

Installation
Add to your rebar.config:
{deps, [
 {reckon_db, "1.0.0"}
]}.
Pure Erlang implementation - works everywhere, no native dependencies.
Quick Start
%% Start the application
application:ensure_all_started(reckon_db).

%% Append events to a stream
Events = [
 #{
 event_type => <<"user_created">>,
 data => #{name => <<"Alice">>, email => <<"alice@example.com">>},
 metadata => #{correlation_id => <<"req-123">>}
 }
],
{ok, Version} = reckon_db_streams:append(my_store, <<"user-123">>, -1, Events).

%% Read events from a stream
{ok, ReadEvents} = reckon_db_streams:read(my_store, <<"user-123">>, 0, 100, forward).

%% Subscribe to events
{ok, SubKey} = reckon_db_subscriptions:subscribe(
 my_store,
 stream, %% Type: stream | event_type | event_pattern | event_payload
 <<"user-123">>, %% Selector
 <<"user_projection">> %% Subscription name
).

%% Receive events
receive
 {event, Event} -> io:format("Received: ~p~n", [Event])
end.
API Reference
Streams
%% Append events (returns new version)
reckon_db_streams:append(StoreId, StreamId, ExpectedVersion, Events) ->
 {ok, NewVersion} | {error, version_mismatch | term()}.

%% Read events from a stream
reckon_db_streams:read(StoreId, StreamId, FromVersion, Count, Direction) ->
 {ok, [Event]} | {error, stream_not_found | term()}.

%% Read across all streams
reckon_db_streams:read_all(StoreId, FromVersion, Count, Direction) ->
 {ok, [Event]} | {error, term()}.

%% Read events by type
reckon_db_streams:read_by_event_types(StoreId, EventTypes, Opts) ->
 {ok, [Event]} | {error, term()}.

%% Get stream version
reckon_db_streams:get_version(StoreId, StreamId) -> {ok, Version} | {error, term()}.

%% Check if stream exists
reckon_db_streams:exists(StoreId, StreamId) -> boolean().

%% List all streams
reckon_db_streams:list_streams(StoreId) -> {ok, [StreamId]} | {error, term()}.

%% Delete stream (soft delete)
reckon_db_streams:delete(StoreId, StreamId) -> ok | {error, term()}.
Subscriptions
%% Create subscription
reckon_db_subscriptions:subscribe(StoreId, Type, Selector, Name) ->
 {ok, SubscriptionKey} | {error, term()}.
reckon_db_subscriptions:subscribe(StoreId, Type, Selector, Name, Opts) ->
 {ok, SubscriptionKey} | {error, term()}.

%% Remove subscription (by key or by type+name)
reckon_db_subscriptions:unsubscribe(StoreId, SubscriptionKey) -> ok | {error, term()}.
reckon_db_subscriptions:unsubscribe(StoreId, Type, SubscriptionName) -> ok | {error, term()}.

%% Get subscription by key
reckon_db_subscriptions:get(StoreId, SubscriptionKey) ->
 {ok, Subscription} | {error, not_found}.

%% Acknowledge event processing
reckon_db_subscriptions:ack(StoreId, StreamId, SubscriptionName, EventNumber) -> ok.

%% List subscriptions
reckon_db_subscriptions:list(StoreId) -> {ok, [Subscription]}.

%% Check if subscription exists
reckon_db_subscriptions:exists(StoreId, SubscriptionKey) -> boolean().

%% Subscription types:
%% stream - Events from a specific stream
%% event_type - Events matching event type
%% event_pattern - Events matching stream pattern (wildcards)
%% event_payload - Events matching payload criteria
Snapshots
%% Save snapshot
reckon_db_snapshots:save(StoreId, StreamId, Version, Data) -> ok.
reckon_db_snapshots:save(StoreId, StreamId, Version, Data, Metadata) -> ok.

%% Load latest snapshot
reckon_db_snapshots:load(StoreId, StreamId) -> {ok, Snapshot} | {error, not_found}.

%% Load snapshot at specific version
reckon_db_snapshots:load_at(StoreId, StreamId, Version) -> {ok, Snapshot} | {error, not_found}.

%% List all snapshots for stream
reckon_db_snapshots:list(StoreId, StreamId) -> {ok, [Snapshot]}.

%% Delete all snapshots for stream
reckon_db_snapshots:delete(StoreId, StreamId) -> ok.

%% Delete snapshot at specific version
reckon_db_snapshots:delete_at(StoreId, StreamId, Version) -> ok.

%% Check if snapshot exists
reckon_db_snapshots:exists(StoreId, StreamId) -> boolean().
reckon_db_snapshots:exists_at(StoreId, StreamId, Version) -> boolean().
Aggregation
%% Fold events left to right (chronological order)
%% Returns a tagged_map with {sum, N} and {overwrite, V} tags preserved
reckon_db_aggregator:foldl(Events) -> tagged_map().
reckon_db_aggregator:foldl(Events, InitialState) -> tagged_map().

%% Fold events right to left (reverse order)
reckon_db_aggregator:foldr(Events) -> tagged_map().
reckon_db_aggregator:foldr(Events, InitialState) -> tagged_map().

%% Finalize a tagged map (unwrap {sum, N} -> N, {overwrite, V} -> V)
reckon_db_aggregator:finalize(TaggedMap) -> map().

%% Aggregate events with optional snapshot (convenience function)
reckon_db_aggregator:aggregate(Events, Snapshot | undefined, Opts) -> map().
%% Opts: #{initial_state => map(), finalize => boolean()}
Example usage:
%% Load events and aggregate
{ok, Events} = reckon_db_streams:read(my_store, <<"account-123">>, 0, 10000, forward),
TaggedState = reckon_db_aggregator:foldl(Events, #{balance => {sum, 0}}),
FinalState = reckon_db_aggregator:finalize(TaggedState).

%% Or use aggregate/3 with snapshot support
{ok, Snapshot} = reckon_db_snapshots:load(my_store, <<"account-123">>),
{ok, NewEvents} = reckon_db_streams:read(my_store, <<"account-123">>, Snapshot#snapshot.version + 1, 10000, forward),
State = reckon_db_aggregator:aggregate(NewEvents, Snapshot, #{}).
Telemetry
%% Attach default logger handler
reckon_db_telemetry:attach_default_handler() -> ok.

%% Attach custom handler
reckon_db_telemetry:attach(HandlerId, HandlerFun, Config) -> ok.

%% Detach handler
reckon_db_telemetry:detach(HandlerId) -> ok.
Configuration
%% sys.config
[{reckon_db, [
 {stores, [
 {my_store, [
 {data_dir, "/var/lib/reckon_db/my_store"},
 {mode, cluster}, %% single | cluster
 {timeout, 5000}
]}
]},
 {telemetry_handlers, [logger]},
 {writer_pool_size, 10},
 {reader_pool_size, 10},

 %% Cluster discovery (cluster mode only)
 {discovery, [
 {method, multicast}, %% multicast | k8s_dns
 {port, 45892},
 {multicast_addr, {239, 255, 0, 1}},
 {secret, <<"cluster_secret">>}
]}
]}].
Architecture
Supervision Tree
[image: Supervision Tree]
Event Flow
[image: Event Flow]
Telemetry Events
	Event	Measurements	Metadata
	[reckon_db, stream, write, start]	system_time	store_id, stream_id, event_count
	[reckon_db, stream, write, stop]	duration, event_count	store_id, stream_id, new_version
	[reckon_db, stream, write, error]	duration	store_id, stream_id, reason
	[reckon_db, stream, read, start]	system_time	store_id, stream_id
	[reckon_db, stream, read, stop]	duration, event_count	store_id, stream_id
	[reckon_db, subscription, created]	system_time	store_id, subscription_id, type
	[reckon_db, subscription, deleted]	system_time	store_id, subscription_id
	[reckon_db, snapshot, created]	duration, size_bytes	store_id, stream_id, version
	[reckon_db, cluster, node, up]	system_time	store_id, node, member_count
	[reckon_db, cluster, node, down]	system_time	store_id, node, reason
	[reckon_db, cluster, leader, elected]	system_time	store_id, leader

Building
rebar3 compile # Compile
rebar3 eunit # Unit tests
rebar3 ct # Integration tests
rebar3 dialyzer # Type checking
rebar3 cover # Coverage report

Testing
Test counts:
	Unit tests: 446 tests (including NIF modules with enterprise/community equivalence tests)
	Integration tests: 53 tests (streams, subscriptions, snapshots, cluster)
	End-to-end tests: 24 tests (full gater integration)

rebar3 eunit --dir=test/unit # All unit tests
rebar3 ct --dir=test/integration # Integration tests
rebar3 ct --dir=test/e2e # E2E tests with gater
rebar3 ct --suite=reckon_db_streams_SUITE # Streams tests
rebar3 ct --suite=reckon_db_cluster_SUITE # Cluster tests

Gateway API
reckon-db is accessed through reckon-gater, which provides the unified API for load-balanced, distributed access to event stores.
How It Works
	reckon-db starts and creates a gateway worker for each store
	Gateway workers register with the reckon-gater pg-based registry
	Clients use the gater API for all event store operations
	The gater routes requests to registered workers using round-robin with failover

Architecture
[image: Gateway Architecture]
Using the Gateway API
All event store operations go through the gater API:
%% Stream operations
{ok, Version} = esdb_gater_api:append_events(my_store, StreamId, Events).
{ok, Events} = esdb_gater_api:stream_forward(my_store, StreamId, 0, 100).
{ok, Version} = esdb_gater_api:get_version(my_store, StreamId).

%% Subscription operations
ok = esdb_gater_api:save_subscription(my_store, stream, StreamId, Name, 0, self()).

%% Snapshot operations
ok = esdb_gater_api:record_snapshot(my_store, SourceUuid, StreamUuid, Version, Record).
{ok, Snap} = esdb_gater_api:read_snapshot(my_store, SourceUuid, StreamUuid, Version).
See reckon-gater for complete API documentation.
Related Projects
	reckon-gater - Gateway for distributed access
	ex-esdb - Original Elixir implementation

License
Apache-2.0

 License

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

 END OF TERMS AND CONDITIONS

 APPENDIX: How to apply the Apache License to your work.

 To apply the Apache License to your work, attach the following
 boilerplate notice, with the fields enclosed by brackets "[]"
 replaced with your own identifying information. (Don't include
 the brackets!) The text should be enclosed in the appropriate
 comment syntax for the file format. We also recommend that a
 file or class name and description of purpose be included on the
 same "printed page" as the copyright notice for easier
 identification within third-party archives.

 Copyright [yyyy] [name of copyright owner]

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

 Changelog

All notable changes to reckon-db will be documented in this file.
The format is based on Keep a Changelog,
and this project adheres to Semantic Versioning.
[Unreleased]
[1.1.0] - 2026-01-21
Added
	Tag-Based Querying: Cross-stream event queries using tags	read_by_tags/4 - Query events by tags across all streams
	Support for any (union) and all (intersection) matching modes
	Tags field added to event records and storage
	15 new unit tests for tag filtering
	Tags are for QUERY purposes only, NOT for concurrency control

Changed
	Dependencies: Updated reckon_gater from ~> 1.0.3 to ~> 1.1.0 for tags support

[1.0.3] - 2026-01-19
Changed
	Dependencies: Updated reckon_gater from exact 1.0.0 to ~> 1.0.3 to include
critical double-wrapping bugfix

[1.0.2] - 2026-01-09
Fixed
	Documentation: Minor documentation improvements

[1.0.0] - 2026-01-03
Changed
	Stable Release: First stable release of reckon-db under reckon-db-org
	All APIs considered stable and ready for production use
	Updated Dockerfile with correct package names (reckon_db)
	Fixed guide asset paths for hexdocs compatibility

[0.4.6] - 2025-12-26
Fixed
	Dependency conflict: Removed direct ra dependency (khepri provides it).
Updated to reckon_db_gater ~> 0.6.5 which removed stale ra from its lock file.

[0.4.5] - 2025-12-26
Fixed
	Dependency conflict: Updated ra dependency from exact 2.16.12 to ~> 2.17.1
to resolve conflict with reckon_db_gater ~> 0.6.4 which requires ra ~> 2.17.1

[0.4.4] - 2025-12-22
Added
	Configuration Guide: Comprehensive configuration documentation	Store configuration options (data_dir, mode, pool sizes)
	Health probing configuration
	Consistency checking and persistence intervals
	Erlang (sys.config) and Elixir (config.exs) examples
	Complete development/staging/production examples
	Performance tuning recommendations
	Telemetry events reference

[0.4.3] - 2025-12-22
Added
	Gateway Worker Handlers:	delete_stream - Delete streams via gateway
	read_by_event_types - Native Khepri type filtering via gateway
	get_subscription - Get subscription details including checkpoint

These handlers support the erl-evoq-esdb adapter improvements.
[0.4.2] - 2025-12-22
Added
	Cluster Consistency Checker (reckon_db_consistency_checker.erl):
	Split-brain detection via membership consensus verification
	Leader consensus verification across all cluster nodes
	Raft log consistency checks (term and commit index)
	Quorum status monitoring with margin calculation
	Four status levels: healthy, degraded, split_brain, no_quorum
	Configurable check intervals (default: 5000ms)
	Status change callbacks for alerting
	Telemetry events: [reckon_db, consistency, ...]

	Active Health Prober (reckon_db_health_prober.erl):
	Fast failure detection via active probing (default: 2000ms intervals)
	Three probe types: ping, rpc, khepri
	Configurable failure threshold (default: 3 consecutive failures)
	Node status tracking: healthy, suspect, failed, unknown
	Recovery detection with callbacks
	Telemetry events: [reckon_db, health, ...]

	Cluster Consistency Guide (guides/cluster_consistency.md):
	Split-brain problem explanation and prevention strategies
	Consistency checker usage and configuration
	Health prober integration patterns
	Quorum management and recovery procedures
	Circuit breaker and load balancer integration examples

	Architecture Diagrams (SVG):
	assets/consistency_checker.svg - Consistency checker architecture
	assets/split_brain_detection.svg - Split-brain detection flow
	assets/health_probing.svg - Health probing timeline

Tests
	35 unit tests for consistency checker
	37 unit tests for health prober
	All 72 new tests passing

[0.4.1] - 2025-12-22
Added
	Server-Side Documentation Guides:
	guides/temporal_queries.md - Point-in-time queries, timestamp filtering, cluster behavior
	guides/scavenging.md - Event lifecycle, archival backends, safety guarantees
	guides/causation.md - Causation/correlation tracking, graph building, DOT export
	guides/stream_links.md - Derived streams, filter/transform patterns
	guides/schema_evolution.md - Schema registry, version-based upcasting, validation
	guides/memory_pressure.md - Pressure levels, callbacks, integration patterns
	guides/storage_internals.md - Khepri paths, version padding, cluster replication

	Architecture Diagrams (SVG):
	assets/temporal_query_flow.svg - Temporal query processing flow
	assets/scavenge_lifecycle.svg - Event lifecycle state machine
	assets/causation_graph.svg - Causation chain visualization
	assets/stream_links.svg - Stream linking architecture
	assets/schema_upcasting.svg - Schema version upcasting flow
	assets/memory_levels.svg - Memory pressure level thresholds
	assets/khepri_paths.svg - Khepri storage path structure

Changed
	Documentation Improvements:	Replaced ASCII diagrams with professional SVG graphics
	snapshot_recovery.svg - Performance comparison visualization
	event_fanout.svg - Multi-subscriber event delivery diagram
	Updated rebar.config ex_doc with new guides organized into Core Concepts, Advanced Features, and Operations sections

[0.4.0] - 2025-12-22
Added
	Enterprise Edition NIFs: High-performance Rust NIFs with pure Erlang fallbacks
	Community Edition (hex.pm) uses pure Erlang implementations
	Enterprise Edition (git + Rust) gets 5-100x speedups for specific operations
	Automatic fallback detection via persistent_term

	esdb_crypto_nif (Phase 1):
	nif_base58_encode/1 - Fast Base58 encoding for DIDs
	nif_base58_decode/1 - Fast Base58 decoding
	Uses Bitcoin alphabet, ~5x faster than pure Erlang

	esdb_archive_nif (Phase 2):
	nif_compress/1,2 - Zstd compression with configurable level
	nif_decompress/1 - Zstd decompression
	nif_compress_batch/1,2 - Batch compression for multiple items
	nif_decompress_batch/1 - Batch decompression
	~10x faster than zlib, better compression ratios

	esdb_hash_nif (Phase 3):
	nif_xxhash64/1,2 - 64-bit xxHash with optional seed
	nif_xxhash3/1 - Modern xxHash3 (SIMD optimized)
	nif_partition_hash/2 - Hash to partition number
	nif_stream_partition/3 - Combined store+stream routing
	nif_partition_hash_batch/2 - Batch hashing for bulk ops
	nif_fnv1a/1 - FNV-1a for small keys
	nif_fast_phash/2 - Drop-in phash2 replacement

	esdb_aggregate_nif (Phase 3):
	nif_aggregate_events/2 - Bulk fold with tagged value semantics
	nif_sum_field/2 - Vectorized sum accumulation for numeric fields
	nif_count_where/3 - Count events matching field condition
	nif_merge_tagged_batch/1 - Batch map merge with tagged values
	nif_finalize/1 - Unwrap tagged values ({sum, N}, {overwrite, V})
	nif_aggregation_stats/1 - Event statistics (counts, unique fields)

	esdb_filter_nif (Phase 3):
	nif_filter_events/2 - Filter events by compiled predicate
	nif_filter_count/2 - Count matching events without collecting
	nif_compile_predicate/1 - Pre-compile filter predicates
	nif_partition_events/2 - Partition events by predicate (matching/non-matching)
	nif_first_match/2 - Find first matching event
	nif_find_all/2 - Find all matching events with indexes
	nif_any_match/2, nif_all_match/2 - Boolean aggregate predicates

	esdb_graph_nif (Phase 4):
	nif_build_edges/1 - Build edge list from event causation relationships
	nif_find_roots/1, nif_find_leaves/1 - Find root/leaf nodes
	nif_topo_sort/1 - Topological sort (Kahn's algorithm via petgraph)
	nif_has_cycle/1 - Detect cycles in causation graph
	nif_graph_stats/1 - Calculate node/edge/depth statistics
	nif_to_dot/1,2 - Generate Graphviz DOT format
	nif_has_path/2 - Check if path exists between nodes
	nif_get_ancestors/2, nif_get_descendants/2 - BFS path finding

Changed
	Build profiles:	Added enterprise profile with Rust NIF compilation hooks
	Added enterprise_test profile for testing with NIFs
	Build with rebar3 as enterprise compile to enable NIFs

Documentation
	Updated README with Enterprise/Community edition information
	Added NIF function documentation with academic references

[0.3.1] - 2025-12-20
Changed
	Version padding: Increased from 6 to 12 characters (?VERSION_PADDING macro)	Previous: 999,999 events per stream max (~2.7 hours at 100 events/sec)
	Now: 999,999,999,999 events per stream max (~317 years at 100 events/sec)
	Supports long-running neuroevolution, IoT, and continuous event streams

Fixed
	EDoc errors: Removed backticks and markdown from EDoc comments (breaks hex.pm docs)

[0.3.0] - 2025-12-20
Added
	Capability-Based Security (esdb_capability_verifier.erl, esdb_revocation.erl):	Server-side verification of UCAN-inspired capability tokens
	Ed25519 signature verification using issuer's public key from DID
	Token expiration and not-before time validation
	Resource URI pattern matching (exact, wildcard suffix, prefix)
	Action permission checking with wildcard support
	Token revocation management (ETS-based, gossip integration planned)
	Issuer revocation for compromised identities
	Content-addressed token IDs (CIDs) for revocation tracking
	Comprehensive unit tests (13 verifier tests + 6 revocation tests)

This completes Phase 3 of the decentralized security implementation.
Client-side token creation is in reckon-gater, server-side verification is here.
Changed
	Documentation: Replaced ASCII diagrams with SVG in README and guides

Fixed
	README API documentation: Fixed incorrect function signatures	Subscriptions: Added missing unsubscribe/3, get/2 functions
	Snapshots: Fixed load/3 → load_at/3, delete/3 → delete_at/3, added exists/2, exists_at/3
	Aggregator: Completely rewrote section - was showing non-existent API (foldl/4, foldl_from_snapshot/4)

	guides/snapshots.md: Fixed load/3 → load_at/3, delete/3 → delete_at/3, rewrote aggregator example
	guides/cqrs.md: Fixed subscription key usage in emitter group join
	guides/subscriptions.md: Fixed invalid map access syntax
	guides/event_sourcing.md: Fixed aggregator foldl signature (takes events list, not store/stream)

[0.2.0] - 2024-12-19
Added
	End-to-end tests: 24 comprehensive e2e tests for gater integration:	Worker registration (4 tests)
	Stream operations via gater (9 tests)
	Subscription operations (4 tests)
	Snapshot operations (4 tests)
	Load balancing (3 tests)

	Subscriptions: Added ack/4 function for acknowledging event delivery

Fixed
	Gateway worker API compatibility:	get_version now handles integer return correctly
	Snapshot operations use correct function names (save, load_at, delete_at)
	Subscription unsubscribe uses correct 3-arg version

	Header conflicts: Added ifndef guards for DEFAULT_TIMEOUT macro

Changed
	reckon-gater integration: Updated to work with gater's pg-based registry (replacing Ra)
	Test counts: Now 72 unit + 53 integration + 24 e2e = 149 total tests

[0.1.0] - 2024-12-18
Added
	Initial release of reckon-db, a BEAM-native Event Store built on Khepri/Ra
	Event stream operations:	append/4,5 - Write events with optimistic concurrency control
	read/5 - Read events from streams (forward/backward)
	get_version/2 - Get current stream version
	exists/2 - Check if stream exists
	list_streams/1 - List all streams in store
	delete/2 - Soft delete streams

	Subscription system:	Stream subscriptions - events from specific streams
	Event type subscriptions - events by type across streams
	Pattern subscriptions - wildcard stream matching
	Payload subscriptions - content-based filtering

	Snapshot management:	save/5 - Save aggregate state snapshots
	load/2,3 - Load latest or specific version snapshots
	list/2 - List all snapshots for a stream
	delete/3 - Delete old snapshots

	Aggregation utilities:	foldl/4 - Fold over events with accumulator
	foldl_from_snapshot/4 - Fold starting from latest snapshot

	Cluster support:	UDP multicast discovery (LibCluster gossip compatible)
	Automatic Khepri/Ra cluster formation
	Node monitoring and failover
	Leader election and tracking

	Emitter pools for high-throughput event delivery
	Partitioned writers for concurrent stream writes
	BEAM telemetry integration with configurable handlers
	Comprehensive test suite (72 unit + 53 integration tests)
	Educational guides:	Event Sourcing fundamentals
	CQRS patterns
	Subscriptions usage
	Snapshots optimization

Dependencies
	Khepri 0.17.2 - Raft-based distributed storage
	Ra 2.16.12 - Raft consensus implementation
	Telemetry 1.3.0 - BEAM telemetry for observability

 Event Sourcing with reckon-db

Event Sourcing is an architectural pattern where the state of an application is determined by a sequence of events. Instead of storing just the current state, you store the complete history of state changes as immutable events.
[image: Event Sourcing vs CRUD]
What is Event Sourcing?
Traditional CRUD-based systems store only the current state:
User Record: {id: 123, name: "Alice", email: "alice@example.com", balance: 150}
Event-sourced systems store the history of changes:
Event 1: UserCreated {id: 123, name: "Alice", email: "alice@example.com"}
Event 2: BalanceDeposited {user_id: 123, amount: 200}
Event 3: BalanceWithdrawn {user_id: 123, amount: 50}
The current state is derived by replaying these events.
Benefits of Event Sourcing
Complete Audit Trail
Every change is recorded with a timestamp and metadata. This is invaluable for:
	Regulatory compliance (financial systems, healthcare)
	Debugging production issues
	Understanding user behavior

Temporal Queries
You can reconstruct the state at any point in time:
%% Get account balance as of last month
{ok, Events} = reckon_db_streams:read(my_store, <<"account-123">>, 0, 1000, forward),
PastEvents = [E || E <- Events, E#event.timestamp < LastMonthTimestamp],
Balance = lists:foldl(fun apply_event/2, 0, PastEvents).
Event Replay
Rebuild read models, fix bugs in projections, or create new views of historical data:
%% Rebuild a projection from scratch
{ok, Events} = reckon_db_streams:read(my_store, <<"orders-*">>, 0, infinity, forward),
lists:foreach(fun(E) -> update_projection(E) end, Events).
Decoupled Systems
Events can be consumed by multiple subscribers independently:
[image: Event Fan-Out]
Event Sourcing with reckon-db
Streams
A stream is an ordered sequence of events sharing a common identifier (the stream ID). Streams typically represent:
	An aggregate (e.g., order-123, user-456)
	A category (e.g., orders, users)
	A partition (e.g., orders-region-eu)

%% Append events to a stream
Events = [
 #{
 event_type => <<"OrderPlaced">>,
 data => #{order_id => <<"ord-123">>, items => [...], total => 9999},
 metadata => #{user_id => <<"user-456">>, correlation_id => <<"req-789">>}
 }
],
{ok, Version} = reckon_db_streams:append(my_store, <<"order-ord-123">>, -1, Events).
Events
Events are immutable facts that have happened. They should:
	Be named in past tense (e.g., OrderPlaced, not PlaceOrder)
	Contain all information needed to understand what happened
	Be business-meaningful (e.g., AccountOverdrawn, not BalanceUpdated)

%% Event structure
#{
 event_type => <<"OrderPlaced">>, %% What happened
 data => #{ %% The event payload
 order_id => <<"ord-123">>,
 customer_id => <<"cust-456">>,
 items => [
 #{product_id => <<"prod-1">>, quantity => 2, price => 1999}
],
 total => 3998
 },
 metadata => #{ %% Cross-cutting concerns
 correlation_id => <<"req-abc">>, %% Traces related operations
 causation_id => <<"evt-xyz">>, %% What caused this event
 user_id => <<"user-789">>, %% Who triggered it
 timestamp => 1703001234567 %% When it happened
 }
}
Optimistic Concurrency
reckon-db uses optimistic concurrency control to prevent conflicting writes:
%% Expected version semantics:
%% -1 (NO_STREAM): Stream must not exist (first write)
%% -2 (ANY_VERSION): No version check, always append
%% N >= 0: Stream version must equal N

%% First write to a new stream
{ok, 0} = reckon_db_streams:append(Store, <<"order-123">>, -1, [Event1]).

%% Subsequent writes must specify expected version
{ok, 1} = reckon_db_streams:append(Store, <<"order-123">>, 0, [Event2]).

%% Concurrent writes will fail with version mismatch
%% Process A reads version 1
%% Process B reads version 1
%% Process A writes with expected version 1 -> succeeds, version is now 2
%% Process B writes with expected version 1 -> fails! (wrong_expected_version)
Designing Events
Event Naming
Use past tense verbs that describe business facts:
	Good	Bad
	OrderPlaced	CreateOrder
	PaymentReceived	ProcessPayment
	ItemShipped	ShipItem
	AccountOverdrawn	UpdateBalance

Event Granularity
Events should be atomic business facts. Avoid:
	Generic events like EntityUpdated (not meaningful)
	Overly fine-grained events (one per field change)
	Composite events (multiple unrelated changes)

%% Good: Specific, meaningful events
#{event_type => <<"AddressChanged">>, data => #{
 old_address => OldAddr,
 new_address => NewAddr,
 reason => <<"customer_request">>
}}

%% Bad: Generic, meaningless event
#{event_type => <<"CustomerUpdated">>, data => #{
 field => <<"address">>,
 value => NewAddr
}}
Event Versioning
Events are immutable, but schemas evolve. Use explicit versions:
%% Version 1
#{event_type => <<"OrderPlaced.v1">>, data => #{
 order_id => ...,
 items => [...]
}}

%% Version 2 (added shipping_address)
#{event_type => <<"OrderPlaced.v2">>, data => #{
 order_id => ...,
 items => [...],
 shipping_address => #{}
}}
Handle schema evolution in your projections:
handle_event(#{event_type := <<"OrderPlaced.v1">>} = Event) ->
 %% Default shipping address for v1 events
 upgrade_to_v2(Event);
handle_event(#{event_type := <<"OrderPlaced.v2">>} = Event) ->
 process_order(Event).
Building Aggregates
An aggregate is a domain object that encapsulates state and enforces invariants. In event sourcing, aggregates:
	Load their state by replaying events
	Validate commands against current state
	Emit new events if the command succeeds

-module(order_aggregate).
-export([new/0, apply_event/2, place_order/2, add_item/3]).

-record(order, {
 id,
 status = pending,
 items = [],
 total = 0
}).

%% Create a new aggregate
new() -> #order{}.

%% Apply events to rebuild state
apply_event(#{event_type := <<"OrderPlaced">>} = E, _Order) ->
 Data = maps:get(data, E),
 #order{
 id = maps:get(order_id, Data),
 status = placed,
 items = maps:get(items, Data),
 total = maps:get(total, Data)
 };

apply_event(#{event_type := <<"ItemAdded">>} = E, Order) ->
 Data = maps:get(data, E),
 NewItem = #{
 product_id => maps:get(product_id, Data),
 quantity => maps:get(quantity, Data),
 price => maps:get(price, Data)
 },
 Order#order{
 items = [NewItem | Order#order.items],
 total = Order#order.total + (maps:get(quantity, Data) * maps:get(price, Data))
 };

apply_event(#{event_type := <<"OrderShipped">>}, Order) ->
 Order#order{status = shipped}.

%% Commands that produce events
place_order(OrderId, Items) ->
 Total = lists:sum([Q * P || #{quantity := Q, price := P} <- Items]),
 {ok, [#{
 event_type => <<"OrderPlaced">>,
 data => #{order_id => OrderId, items => Items, total => Total}
 }]}.

add_item(#order{status = placed} = _Order, ProductId, Quantity) ->
 Price = get_product_price(ProductId),
 {ok, [#{
 event_type => <<"ItemAdded">>,
 data => #{product_id => ProductId, quantity => Quantity, price => Price}
 }]};
add_item(#order{status = shipped}, _ProductId, _Quantity) ->
 {error, order_already_shipped}.
Loading Aggregate State
Use reckon_db_aggregator to rebuild aggregate state:
%% Load order aggregate from event stream
load_order(StoreId, OrderId) ->
 StreamId = <<"order-", OrderId/binary>>,

 %% Read events from stream
 {ok, Events} = reckon_db_streams:read(StoreId, StreamId, 0, 10000, forward),

 %% Apply events to initial state using custom apply function
 InitialState = order_aggregate:new(),
 FinalState = lists:foldl(
 fun(Event, Acc) -> order_aggregate:apply_event(Event, Acc) end,
 InitialState,
 Events
),
 FinalState.

%% Or use reckon_db_aggregator for tagged value aggregation
%% (useful when events have {sum, N} or {overwrite, V} tagged values)
load_order_with_aggregator(StoreId, OrderId) ->
 StreamId = <<"order-", OrderId/binary>>,
 {ok, Events} = reckon_db_streams:read(StoreId, StreamId, 0, 10000, forward),
 TaggedState = reckon_db_aggregator:foldl(Events),
 reckon_db_aggregator:finalize(TaggedState).
Further Reading
	CQRS Guide - Command Query Responsibility Segregation
	Subscriptions Guide - Real-time event notifications
	Snapshots Guide - Optimizing aggregate loading

References
	Martin Fowler: Event Sourcing
	Greg Young: CQRS and Event Sourcing
	Vaughn Vernon: "Implementing Domain-Driven Design" (Chapters 8-10)

 CQRS with reckon-db

Command Query Responsibility Segregation (CQRS) is an architectural pattern that separates read and write operations into distinct models. Combined with event sourcing, CQRS enables highly scalable and maintainable systems.
What is CQRS?
In traditional architectures, the same model handles both reads and writes:
[image: Traditional Single Model]
CQRS separates these concerns:
[image: CQRS Separated Architecture]
Why CQRS?
Different Optimization Strategies
Reads and writes have fundamentally different characteristics:
	Writes	Reads
	Validate business rules	No validation needed
	Must be consistent	Can be eventually consistent
	Lower volume	Higher volume (often 10-100x)
	Complex domain logic	Simple queries

With CQRS, you optimize each path independently:
	Write side: Focus on business logic, invariants, and consistency
	Read side: Focus on query performance, denormalization, and caching

Scalability
Read and write workloads can scale independently:
[image: CQRS Scaling]
Multiple Read Models
Different consumers can have different views of the same data:
%% Same events, different read models

%% Order Events Stream
[
 #{event_type => <<"OrderPlaced">>, data => #{...}},
 #{event_type => <<"PaymentReceived">>, data => #{...}},
 #{event_type => <<"OrderShipped">>, data => #{...}}
]

%% Read Model 1: Customer Dashboard (optimized for display)
#{
 order_id => <<"ord-123">>,
 status => <<"Shipped">>,
 status_history => [...],
 tracking_url => <<"https://...">>
}

%% Read Model 2: Warehouse System (optimized for picking)
#{
 order_id => <<"ord-123">>,
 items => [#{sku => ..., location => ..., quantity => ...}],
 priority => high,
 shipping_method => express
}

%% Read Model 3: Analytics (optimized for aggregation)
#{
 date => <<"2024-01-15">>,
 region => <<"EU">>,
 total_orders => 1547,
 total_revenue => 234567,
 avg_order_value => 151.63
}
CQRS with reckon-db
The Command Side
Commands represent intentions to change state. They are validated and may produce events:
-module(order_commands).
-export([handle/2]).

%% Handle PlaceOrder command
handle({place_order, OrderId, CustomerId, Items}, State) ->
 %% Validate business rules
 case validate_items(Items) of
 {error, Reason} ->
 {error, Reason};
 ok ->
 %% Check inventory
 case check_inventory(Items) of
 {error, out_of_stock} ->
 {error, items_out_of_stock};
 ok ->
 %% Generate events
 Total = calculate_total(Items),
 Event = #{
 event_type => <<"OrderPlaced">>,
 data => #{
 order_id => OrderId,
 customer_id => CustomerId,
 items => Items,
 total => Total
 },
 metadata => #{
 command => place_order,
 timestamp => erlang:system_time(millisecond)
 }
 },
 {ok, [Event]}
 end
 end;

%% Handle CancelOrder command
handle({cancel_order, OrderId, Reason}, State) ->
 %% Load current state
 Order = load_order(State, OrderId),
 case Order#order.status of
 shipped ->
 {error, cannot_cancel_shipped_order};
 cancelled ->
 {error, already_cancelled};
 _ ->
 Event = #{
 event_type => <<"OrderCancelled">>,
 data => #{order_id => OrderId, reason => Reason}
 },
 {ok, [Event]}
 end.
The Query Side: Projections
Projections transform events into read models. They run asynchronously and subscribe to event streams:
-module(order_dashboard_projection).
-behaviour(gen_server).

-export([start_link/1, get_order/1, list_customer_orders/1]).
-export([init/1, handle_info/2, handle_call/3]).

%% Read model stored in ETS for fast lookups
-define(TABLE, order_dashboard).

start_link(StoreId) ->
 gen_server:start_link({local, ?MODULE}, ?MODULE, StoreId, []).

init(StoreId) ->
 %% Create ETS table for read model
 ets:new(?TABLE, [named_table, public, {read_concurrency, true}]),

 %% Subscribe to order events
 {ok, SubKey} = reckon_db_subscriptions:subscribe(
 StoreId,
 event_pattern,
 <<"order-*">>,
 <<"order_dashboard_projection">>
),

 %% Join the emitter group to receive events
 reckon_db_emitter_group:join(StoreId, SubKey, self()),

 {ok, #{store_id => StoreId, sub_key => SubKey}}.

%% Handle events from subscription
handle_info({event, Event}, State) ->
 project_event(Event),
 {noreply, State}.

%% Query interface
get_order(OrderId) ->
 case ets:lookup(?TABLE, {order, OrderId}) of
 [{_, Order}] -> {ok, Order};
 [] -> {error, not_found}
 end.

list_customer_orders(CustomerId) ->
 Pattern = {{customer_order, CustomerId, '_'}, '_'},
 Orders = ets:match_object(?TABLE, Pattern),
 {ok, [Order || {_, Order} <- Orders]}.

%% Project events into read model
project_event(#{event_type := <<"OrderPlaced">>} = Event) ->
 Data = maps:get(data, Event),
 OrderId = maps:get(order_id, Data),
 CustomerId = maps:get(customer_id, Data),

 %% Denormalized read model optimized for display
 ReadModel = #{
 order_id => OrderId,
 customer_id => CustomerId,
 items => maps:get(items, Data),
 total => maps:get(total, Data),
 status => <<"Placed">>,
 status_history => [#{status => <<"Placed">>, at => Event#event.timestamp}],
 placed_at => Event#event.timestamp
 },

 %% Store by order ID
 ets:insert(?TABLE, {{order, OrderId}, ReadModel}),

 %% Index by customer for listing
 ets:insert(?TABLE, {{customer_order, CustomerId, OrderId}, ReadModel});

project_event(#{event_type := <<"OrderShipped">>} = Event) ->
 Data = maps:get(data, Event),
 OrderId = maps:get(order_id, Data),

 %% Update existing read model
 case ets:lookup(?TABLE, {order, OrderId}) of
 [{Key, Order}] ->
 Updated = Order#{
 status => <<"Shipped">>,
 status_history => [
 #{status => <<"Shipped">>, at => Event#event.timestamp}
 | maps:get(status_history, Order)
],
 tracking_number => maps:get(tracking_number, Data, undefined),
 shipped_at => Event#event.timestamp
 },
 ets:insert(?TABLE, {Key, Updated}),

 %% Update customer index too
 CustomerId = maps:get(customer_id, Order),
 ets:insert(?TABLE, {{customer_order, CustomerId, OrderId}, Updated});
 [] ->
 %% Event for unknown order - log warning
 logger:warning("OrderShipped for unknown order: ~p", [OrderId])
 end;

project_event(_Event) ->
 %% Ignore events we don't care about
 ok.
Multiple Projections
The same events can drive multiple specialized read models:
%% Analytics projection - aggregates for dashboards
-module(order_analytics_projection).

project_event(#{event_type := <<"OrderPlaced">>} = Event) ->
 Data = maps:get(data, Event),
 Date = date_from_timestamp(Event#event.timestamp),
 Total = maps:get(total, Data),
 Region = get_customer_region(maps:get(customer_id, Data)),

 %% Increment daily counters
 ets:update_counter(?ANALYTICS_TABLE, {daily_orders, Date, Region}, 1, {{daily_orders, Date, Region}, 0}),
 ets:update_counter(?ANALYTICS_TABLE, {daily_revenue, Date, Region}, Total, {{daily_revenue, Date, Region}, 0}).

%% Inventory projection - tracks stock levels
-module(inventory_projection).

project_event(#{event_type := <<"OrderPlaced">>} = Event) ->
 Items = maps:get(items, maps:get(data, Event)),
 lists:foreach(fun(#{product_id := ProductId, quantity := Qty}) ->
 %% Decrement reserved stock
 ets:update_counter(?INVENTORY_TABLE, {reserved, ProductId}, Qty, {{reserved, ProductId}, 0})
 end, Items);

project_event(#{event_type := <<"OrderShipped">>} = Event) ->
 Items = maps:get(items, maps:get(data, Event)),
 lists:foreach(fun(#{product_id := ProductId, quantity := Qty}) ->
 %% Move from reserved to shipped
 ets:update_counter(?INVENTORY_TABLE, {reserved, ProductId}, -Qty),
 ets:update_counter(?INVENTORY_TABLE, {shipped, ProductId}, Qty, {{shipped, ProductId}, 0})
 end, Items).
Eventual Consistency
With CQRS, read models are eventually consistent with the write model. This means:
	A command succeeds and events are written
	Projections receive events asynchronously
	Read models are updated
	Queries return the updated data

There's a delay between steps 1 and 4. This is usually milliseconds, but can be longer under load.
Handling Eventual Consistency
In the UI:
%% After successful command, show optimistic update
case order_commands:handle(PlaceOrderCmd, State) of
 {ok, Events} ->
 %% Write events
 {ok, Version} = reckon_db_streams:append(Store, StreamId, ExpectedVer, Events),

 %% Return success with the data the client needs
 %% Don't query the read model yet - it might not be updated
 {ok, #{
 order_id => OrderId,
 status => <<"Placed">>,
 message => <<"Order placed successfully">>
 }};
 {error, Reason} ->
 {error, Reason}
end.
For critical queries:
%% If consistency is critical, query the event store directly
get_order_status(StoreId, OrderId) ->
 StreamId = <<"order-", OrderId/binary>>,
 {ok, Events} = reckon_db_streams:read(StoreId, StreamId, 0, 1000, forward),

 %% Derive status from events
 Status = lists:foldl(fun
 (#{event_type := <<"OrderPlaced">>}, _) -> placed;
 (#{event_type := <<"OrderShipped">>}, _) -> shipped;
 (#{event_type := <<"OrderDelivered">>}, _) -> delivered;
 (#{event_type := <<"OrderCancelled">>}, _) -> cancelled;
 (_, Acc) -> Acc
 end, unknown, Events),

 {ok, Status}.
Best Practices
1. Keep Projections Idempotent
Projections may receive the same event multiple times (redelivery, replay). Make them idempotent:
%% Bad: Not idempotent
project_event(#{event_type := <<"ItemAdded">>} = E) ->
 OrderId = maps:get(order_id, maps:get(data, E)),
 ets:update_counter(?TABLE, {item_count, OrderId}, 1). %% Will double-count on replay

%% Good: Idempotent using event version
project_event(#{event_type := <<"ItemAdded">>} = E) ->
 OrderId = maps:get(order_id, maps:get(data, E)),
 EventVersion = E#event.version,

 case ets:lookup(?TABLE, {last_version, OrderId}) of
 [{_, LastVersion}] when EventVersion =< LastVersion ->
 %% Already processed this event
 ok;
 _ ->
 %% Process and update version
 ets:update_counter(?TABLE, {item_count, OrderId}, 1),
 ets:insert(?TABLE, {{last_version, OrderId}, EventVersion})
 end.
2. Design Read Models for Queries
Don't normalize read models. Denormalize for query performance:
%% Read model for "show customer's recent orders with item details"
%% Everything needed in one lookup
#{
 customer_id => <<"cust-123">>,
 recent_orders => [
 #{
 order_id => <<"ord-456">>,
 placed_at => 1703001234567,
 status => <<"Delivered">>,
 items => [
 #{name => <<"Widget">>, quantity => 2, price => 999}
],
 total => 1998
 }
]
}
3. Separate Projection Processes
Run projections in separate processes for isolation:
%% In your supervisor
{ok, _} = order_dashboard_projection:start_link(StoreId),
{ok, _} = order_analytics_projection:start_link(StoreId),
{ok, _} = inventory_projection:start_link(StoreId).
If one projection fails or falls behind, others continue working.
Further Reading
	Event Sourcing Guide - Foundation for CQRS
	Subscriptions Guide - Event delivery for projections
	Snapshots Guide - Optimizing projection rebuilds

References
	Martin Fowler: CQRS
	Greg Young: CQRS Documents
	Udi Dahan: Clarified CQRS

 Subscriptions in reckon-db

Subscriptions enable real-time event delivery to consumers. When events are written to streams, subscribers receive notifications automatically, enabling reactive architectures and event-driven systems.
[image: Subscription Types]
How Subscriptions Work
reckon-db uses Khepri triggers for guaranteed event delivery:
[image: Subscription Flow]
Key guarantee: Triggers only fire AFTER events are committed via Raft consensus. Subscribers never receive events that don't exist.
Subscription Types
reckon-db supports four subscription types for flexible event filtering:
1. Stream Subscription
Subscribe to all events in a specific stream:
%% Subscribe to a single order's events
{ok, SubKey} = reckon_db_subscriptions:subscribe(
 my_store,
 stream, %% subscription type
 <<"order-123">>, %% stream ID
 <<"order_123_handler">> %% subscription name
).
Use cases:
	Aggregate projections (one read model per aggregate)
	Saga/process managers following a specific entity
	Real-time UI updates for a specific resource

2. Event Type Subscription
Subscribe to events of a specific type across all streams:
%% Subscribe to all PaymentReceived events
{ok, SubKey} = reckon_db_subscriptions:subscribe(
 my_store,
 event_type,
 <<"PaymentReceived">>,
 <<"payment_processor">>
).
Use cases:
	Cross-cutting concerns (logging, auditing)
	Metrics collection
	Notification services

3. Event Pattern Subscription
Subscribe to events matching a stream ID pattern with wildcards:
%% Subscribe to all order streams
{ok, SubKey} = reckon_db_subscriptions:subscribe(
 my_store,
 event_pattern,
 <<"order-*">>, %% wildcard pattern
 <<"order_projection">>
).

%% Subscribe to all streams in a region
{ok, SubKey2} = reckon_db_subscriptions:subscribe(
 my_store,
 event_pattern,
 <<"*-region-eu">>,
 <<"eu_analytics">>
).
Use cases:
	Category projections (all orders, all users)
	Regional processing
	Multi-tenant partitioning

4. Payload Subscription
Subscribe to events matching specific payload criteria:
%% Subscribe to high-value orders
{ok, SubKey} = reckon_db_subscriptions:subscribe(
 my_store,
 event_payload,
 #{total => {gt, 10000}}, %% total > 10000
 <<"high_value_order_handler">>
).

%% Subscribe to orders from VIP customers
{ok, SubKey2} = reckon_db_subscriptions:subscribe(
 my_store,
 event_payload,
 #{customer_type => <<"VIP">>},
 <<"vip_handler">>
).
Use cases:
	Conditional processing
	Fraud detection (high amounts)
	Priority handling

Creating Subscriptions
Basic Subscription
%% Create a subscription
{ok, SubscriptionKey} = reckon_db_subscriptions:subscribe(
 StoreId,
 Type,
 Selector,
 SubscriptionName
).

%% The subscription key uniquely identifies this subscription
%% Use it for management operations
Subscription Options
%% Advanced options
{ok, SubKey} = reckon_db_subscriptions:subscribe(
 my_store,
 event_pattern,
 <<"order-*">>,
 <<"order_projection">>,
 #{
 pool_size => 4, %% Emitter pool size for parallelism
 start_from => 0, %% Start position (0 = beginning)
 subscriber => self() %% Direct subscriber PID
 }
).
Options:
	pool_size: Number of emitter workers for parallel delivery (default: 1)
	start_from: Starting event position for catch-up (default: 0)
	subscriber: PID to receive events directly

Receiving Events
Using Process Groups
The recommended approach is joining the emitter group:
-module(my_event_handler).
-behaviour(gen_server).

init(StoreId) ->
 %% Create subscription
 {ok, SubKey} = reckon_db_subscriptions:subscribe(
 StoreId,
 event_pattern,
 <<"order-*">>,
 <<"my_handler">>
),

 %% Join the emitter group to receive events
 reckon_db_emitter_group:join(StoreId, SubKey, self()),

 {ok, #{store_id => StoreId, sub_key => SubKey}}.

handle_info({event, Event}, State) ->
 %% Process the event
 handle_event(Event),
 {noreply, State}.

handle_event(#event{event_type = <<"OrderPlaced">>} = Event) ->
 logger:info("Order placed: ~p", [Event#event.data]),
 update_projection(Event);
handle_event(#event{event_type = <<"OrderShipped">>} = Event) ->
 logger:info("Order shipped: ~p", [Event#event.data]),
 update_projection(Event);
handle_event(_Event) ->
 %% Ignore other events
 ok.
Multiple Handlers
For high throughput, use multiple handler processes:
-module(order_handler_pool).

start_pool(StoreId, PoolSize) ->
 %% Create subscription with pool size
 {ok, SubKey} = reckon_db_subscriptions:subscribe(
 StoreId,
 event_pattern,
 <<"order-*">>,
 <<"order_handler_pool">>,
 #{pool_size => PoolSize}
),

 %% Start worker processes
 [begin
 {ok, Pid} = order_handler_worker:start_link(StoreId, SubKey, N),
 Pid
 end || N <- lists:seq(1, PoolSize)].

-module(order_handler_worker).

init({StoreId, SubKey, WorkerId}) ->
 %% Join the same emitter group
 %% Events are distributed round-robin among workers
 reckon_db_emitter_group:join(StoreId, SubKey, self()),
 {ok, #{worker_id => WorkerId}}.
Managing Subscriptions
List Subscriptions
%% List all subscriptions
{ok, Subscriptions} = reckon_db_subscriptions:list(my_store).

%% Each subscription record contains:
%% - type: stream | event_type | event_pattern | event_payload
%% - selector: The filter criteria
%% - subscription_name: Human-readable name
%% - created_at: Timestamp
%% - pool_size: Number of emitters
Check Subscription Exists
%% Check if subscription exists
case reckon_db_subscriptions:exists(my_store, SubscriptionKey) of
 true -> io:format("Subscription is active~n");
 false -> io:format("Subscription not found~n")
end.
Get Subscription Details
%% Get subscription by key
case reckon_db_subscriptions:get(my_store, SubscriptionKey) of
 {ok, Subscription} ->
 io:format("Type: ~p~n", [Subscription#subscription.type]),
 io:format("Selector: ~p~n", [Subscription#subscription.selector]);
 {error, not_found} ->
 io:format("Subscription not found~n")
end.
Unsubscribe
%% Unsubscribe by key
ok = reckon_db_subscriptions:unsubscribe(my_store, SubscriptionKey).

%% Unsubscribe by type and name
ok = reckon_db_subscriptions:unsubscribe(my_store, event_pattern, <<"order_projection">>).
Catch-Up Subscriptions
Catch-up subscriptions process historical events before receiving live events:
%% Start from the beginning (catch up on all history)
{ok, SubKey} = reckon_db_subscriptions:subscribe(
 my_store,
 event_pattern,
 <<"order-*">>,
 <<"new_projection">>,
 #{start_from => 0} %% Start from first event
).

%% Start from a specific position (e.g., after rebuilding)
{ok, SubKey2} = reckon_db_subscriptions:subscribe(
 my_store,
 event_pattern,
 <<"order-*">>,
 <<"resumed_projection">>,
 #{start_from => 12345} %% Resume from position 12345
).
Checkpointing
Track your position to resume after restarts:
-module(checkpointed_handler).

init(StoreId) ->
 %% Load last processed position
 LastPosition = load_checkpoint(StoreId),

 {ok, SubKey} = reckon_db_subscriptions:subscribe(
 StoreId,
 event_pattern,
 <<"order-*">>,
 <<"checkpointed_handler">>,
 #{start_from => LastPosition}
),

 reckon_db_emitter_group:join(StoreId, SubKey, self()),
 {ok, #{store_id => StoreId, sub_key => SubKey}}.

handle_info({event, Event}, #{store_id := StoreId} = State) ->
 %% Process the event
 handle_event(Event),

 %% Save checkpoint
 save_checkpoint(StoreId, Event#event.version),

 {noreply, State}.

%% Checkpoints can be stored in:
%% - The event store itself (as a special stream)
%% - ETS/DETS
%% - External database
Best Practices
1. Idempotent Event Handling
Events may be delivered more than once. Make handlers idempotent:
handle_event(Event) ->
 EventId = Event#event.event_id,

 %% Check if already processed
 case ets:lookup(processed_events, EventId) of
 [{EventId, _}] ->
 %% Already processed, skip
 ok;
 [] ->
 %% Process and mark as done
 do_process_event(Event),
 ets:insert(processed_events, {EventId, erlang:system_time()})
 end.
2. Handle Ordering Carefully
Within a single stream, events are ordered. Across streams, ordering is not guaranteed:
%% Events from stream "order-123" arrive in order:
%% OrderPlaced -> ItemAdded -> OrderShipped

%% But events from different streams may interleave:
%% order-123:OrderPlaced
%% order-456:OrderPlaced %% Different stream, no ordering guarantee
%% order-123:ItemAdded
%% order-456:PaymentReceived
3. Graceful Shutdown
Leave emitter groups on shutdown:
terminate(_Reason, #{store_id := StoreId, sub_key := SubKey}) ->
 %% Leave the emitter group
 reckon_db_emitter_group:leave(StoreId, SubKey, self()),
 ok.
4. Monitor Subscription Lag
Track how far behind your subscription is:
%% Check current stream version vs processed version
StreamVersion = reckon_db_streams:get_version(StoreId, StreamId),
ProcessedVersion = get_last_processed_version(),
Lag = StreamVersion - ProcessedVersion,

case Lag > 1000 of
 true ->
 logger:warning("Subscription lag is high: ~p events behind", [Lag]);
 false ->
 ok
end.
Further Reading
	Event Sourcing Guide - Foundation concepts
	CQRS Guide - Using subscriptions for projections
	Snapshots Guide - Optimizing catch-up subscriptions

References
	Event Store: Persistent Subscriptions
	Axon Framework: Event Processors

 Snapshots in reckon-db

Snapshots are periodic captures of aggregate state that optimize event replay performance. Instead of replaying thousands of events, you load the latest snapshot and replay only subsequent events.
Why Snapshots?
In event sourcing, current state is derived by replaying all events. Snapshots dramatically improve recovery performance:
[image: Snapshot Recovery Performance]
When to Use Snapshots
	Scenario	Use Snapshots?
	Aggregates with < 100 events	Probably not needed
	Aggregates with 100-1000 events	Consider it
	Aggregates with > 1000 events	Recommended
	Frequent aggregate loading	Recommended
	Long-lived aggregates	Recommended
	Read-heavy workloads	Recommended

When NOT to Use Snapshots
	Small aggregates (few events)
	Write-heavy, read-light workloads
	When event replay is fast enough
	Development/testing (adds complexity)

Snapshot API
Saving Snapshots
%% Save a snapshot of aggregate state
ok = reckon_db_snapshots:save(
 my_store, %% Store ID
 <<"account-123">>, %% Stream ID
 150, %% Version (event number this snapshot is at)
 AccountState, %% The state to snapshot (any term)
 #{ %% Metadata
 aggregate_type => account,
 created_by => self()
 }
).
The snapshot stores:
	Stream ID: Which stream this snapshot belongs to
	Version: The event version this snapshot represents
	Data: The serialized aggregate state
	Metadata: Additional information (optional)
	Timestamp: When the snapshot was created

Loading Snapshots
%% Load the latest snapshot
case reckon_db_snapshots:load(my_store, <<"account-123">>) of
 {ok, Snapshot} ->
 Version = Snapshot#snapshot.version,
 State = Snapshot#snapshot.data,
 %% Replay events after the snapshot
 replay_from(State, Version + 1);
 {error, not_found} ->
 %% No snapshot, replay from beginning
 replay_from(initial_state(), 0)
end.

%% Load snapshot at a specific version
{ok, Snapshot} = reckon_db_snapshots:load_at(my_store, <<"account-123">>, 100).
Listing Snapshots
%% List all snapshots for a stream
{ok, Snapshots} = reckon_db_snapshots:list(my_store, <<"account-123">>).

%% Returns list of snapshots sorted by version (newest first)
[
 #snapshot{stream_id = <<"account-123">>, version = 150, ...},
 #snapshot{stream_id = <<"account-123">>, version = 100, ...},
 #snapshot{stream_id = <<"account-123">>, version = 50, ...}
]
Deleting Snapshots
%% Delete a specific snapshot
ok = reckon_db_snapshots:delete_at(my_store, <<"account-123">>, 50).

%% Delete old snapshots (keep only recent ones)
{ok, Snapshots} = reckon_db_snapshots:list(my_store, <<"account-123">>),
OldSnapshots = lists:nthtail(3, Snapshots), %% Keep 3 most recent
[reckon_db_snapshots:delete_at(my_store, S#snapshot.stream_id, S#snapshot.version)
 || S <- OldSnapshots].
Using Snapshots with Aggregates
Complete Aggregate Pattern
-module(account_aggregate).
-export([load/2, execute/3, save_snapshot_if_needed/3]).

-record(account, {
 id,
 balance = 0,
 status = active,
 events_since_snapshot = 0
}).

-define(SNAPSHOT_THRESHOLD, 100). %% Snapshot every 100 events

%% Load aggregate from store
load(StoreId, AccountId) ->
 StreamId = <<"account-", AccountId/binary>>,

 %% Try to load from snapshot first
 {InitialState, StartVersion} = case reckon_db_snapshots:load(StoreId, StreamId) of
 {ok, Snapshot} ->
 {Snapshot#snapshot.data, Snapshot#snapshot.version + 1};
 {error, not_found} ->
 {#account{id = AccountId}, 0}
 end,

 %% Replay events after snapshot
 case reckon_db_streams:read(StoreId, StreamId, StartVersion, 10000, forward) of
 {ok, Events} ->
 FinalState = lists:foldl(fun apply_event/2, InitialState, Events),
 EventCount = length(Events),
 {ok, FinalState#account{events_since_snapshot = EventCount}};
 {error, {stream_not_found, _}} when StartVersion =:= 0 ->
 %% New aggregate
 {ok, InitialState};
 {error, Reason} ->
 {error, Reason}
 end.

%% Execute command and persist events
execute(StoreId, AccountId, Command) ->
 StreamId = <<"account-", AccountId/binary>>,

 %% Load current state
 {ok, Account} = load(StoreId, AccountId),

 %% Execute command
 case handle_command(Command, Account) of
 {ok, Events} ->
 %% Get current version
 CurrentVersion = reckon_db_streams:get_version(StoreId, StreamId),

 %% Append events
 {ok, NewVersion} = reckon_db_streams:append(
 StoreId,
 StreamId,
 CurrentVersion,
 Events
),

 %% Apply events to get new state
 NewState = lists:foldl(fun apply_event/2, Account, Events),

 %% Maybe save snapshot
 EventsSinceSnapshot = Account#account.events_since_snapshot + length(Events),
 save_snapshot_if_needed(StoreId, StreamId, NewState, NewVersion, EventsSinceSnapshot),

 {ok, NewVersion, NewState};
 {error, Reason} ->
 {error, Reason}
 end.

%% Save snapshot if threshold reached
save_snapshot_if_needed(StoreId, StreamId, State, Version, EventsSinceSnapshot)
 when EventsSinceSnapshot >= ?SNAPSHOT_THRESHOLD ->
 %% Save snapshot
 ok = reckon_db_snapshots:save(StoreId, StreamId, Version, State, #{}),
 logger:info("Saved snapshot for ~s at version ~p", [StreamId, Version]);
save_snapshot_if_needed(_StoreId, _StreamId, _State, _Version, _EventsSinceSnapshot) ->
 %% Not enough events, skip snapshot
 ok.

%% Command handlers
handle_command({deposit, Amount}, #account{status = active} = Account) when Amount > 0 ->
 {ok, [#{
 event_type => <<"MoneyDeposited">>,
 data => #{amount => Amount, balance_after => Account#account.balance + Amount}
 }]};
handle_command({deposit, _Amount}, #account{status = frozen}) ->
 {error, account_frozen};

handle_command({withdraw, Amount}, #account{status = active, balance = Balance})
 when Amount > 0, Amount =< Balance ->
 {ok, [#{
 event_type => <<"MoneyWithdrawn">>,
 data => #{amount => Amount, balance_after => Balance - Amount}
 }]};
handle_command({withdraw, Amount}, #account{balance = Balance}) when Amount > Balance ->
 {error, insufficient_funds}.

%% Event application
apply_event(#{event_type := <<"MoneyDeposited">>} = Event, Account) ->
 Amount = maps:get(amount, maps:get(data, Event)),
 Account#account{balance = Account#account.balance + Amount};
apply_event(#{event_type := <<"MoneyWithdrawn">>} = Event, Account) ->
 Amount = maps:get(amount, maps:get(data, Event)),
 Account#account{balance = Account#account.balance - Amount};
apply_event(#{event_type := <<"AccountFrozen">>}, Account) ->
 Account#account{status = frozen}.
Using reckon_db_aggregator with Snapshots
The reckon_db_aggregator module provides the aggregate/3 function for snapshot-based aggregation:
%% Load snapshot and replay events manually
StreamId = <<"account-123">>,

%% Try to load snapshot
{Snapshot, StartVersion} = case reckon_db_snapshots:load(my_store, StreamId) of
 {ok, S} -> {S, S#snapshot.version + 1};
 {error, not_found} -> {undefined, 0}
end,

%% Read events after snapshot
{ok, Events} = reckon_db_streams:read(my_store, StreamId, StartVersion, 10000, forward),

%% Aggregate with snapshot support
FinalState = reckon_db_aggregator:aggregate(Events, Snapshot, #{
 initial_state => #account{id = <<"123">>}
}).
Snapshot Strategies
Time-Based Snapshotting
Save snapshots at regular time intervals:
-module(snapshot_scheduler).
-behaviour(gen_server).

-define(SNAPSHOT_INTERVAL_MS, 60000). %% Every minute

init(StoreId) ->
 timer:send_interval(?SNAPSHOT_INTERVAL_MS, snapshot_check),
 {ok, #{store_id => StoreId}}.

handle_info(snapshot_check, #{store_id := StoreId} = State) ->
 %% Get active aggregates that need snapshots
 ActiveAggregates = get_active_aggregates(),

 lists:foreach(fun({StreamId, CurrentState, Version}) ->
 %% Check if snapshot is stale
 case should_snapshot(StoreId, StreamId, Version) of
 true ->
 reckon_db_snapshots:save(StoreId, StreamId, Version, CurrentState, #{});
 false ->
 ok
 end
 end, ActiveAggregates),

 {noreply, State}.

should_snapshot(StoreId, StreamId, CurrentVersion) ->
 case reckon_db_snapshots:load(StoreId, StreamId) of
 {ok, Snapshot} ->
 %% Snapshot if > 100 events since last snapshot
 CurrentVersion - Snapshot#snapshot.version > 100;
 {error, not_found} ->
 %% No snapshot, create one if > 50 events
 CurrentVersion > 50
 end.
Event-Count-Based Snapshotting
Snapshot after N events (shown in aggregate example above):
-define(SNAPSHOT_EVERY_N_EVENTS, 100).

maybe_snapshot(StoreId, StreamId, State, Version, EventsSinceSnapshot) ->
 case EventsSinceSnapshot >= ?SNAPSHOT_EVERY_N_EVENTS of
 true ->
 reckon_db_snapshots:save(StoreId, StreamId, Version, State, #{}),
 0; %% Reset counter
 false ->
 EventsSinceSnapshot
 end.
On-Demand Snapshotting
Snapshot on specific conditions:
%% Snapshot after significant state changes
handle_event(#{event_type := <<"LargeTransactionProcessed">>} = Event, State) ->
 NewState = apply_event(Event, State),
 %% Force snapshot after large transactions
 reckon_db_snapshots:save(StoreId, StreamId, Version, NewState, #{
 reason => large_transaction,
 amount => maps:get(amount, maps:get(data, Event))
 }),
 NewState.
Snapshot Storage Considerations
What to Store
Store only the essential state:
%% Good: Minimal, reconstructable state
save_snapshot(State) ->
 #{
 balance => State#account.balance,
 status => State#account.status,
 last_transaction_id => State#account.last_transaction_id
 }.

%% Bad: Storing derived/cacheable data
save_snapshot(State) ->
 #{
 balance => State#account.balance,
 status => State#account.status,
 transaction_history => State#account.history, %% Can be replayed
 monthly_totals => State#account.monthly_totals %% Derived data
 }.
Snapshot Versioning
Handle schema changes in snapshots:
%% Version your snapshot schema
save_snapshot(State) ->
 #{
 schema_version => 2,
 data => #{
 balance => State#account.balance,
 status => State#account.status,
 currency => State#account.currency %% New in v2
 }
 }.

%% Handle old snapshot formats
load_snapshot(#{schema_version := 1, data := Data}) ->
 %% Migrate v1 to current format
 #account{
 balance = maps:get(balance, Data),
 status = maps:get(status, Data),
 currency = <<"USD">> %% Default for v1 snapshots
 };
load_snapshot(#{schema_version := 2, data := Data}) ->
 %% Current version
 #account{
 balance = maps:get(balance, Data),
 status = maps:get(status, Data),
 currency = maps:get(currency, Data)
 }.
Best Practices
1. Keep Snapshots Small
Snapshots should contain minimal state:
%% Calculate snapshot size
SnapshotData = State#account{
 %% Exclude non-essential fields
 audit_log => [], %% Clear logs
 cached_calculations => #{} %% Clear caches
},
Size = byte_size(term_to_binary(SnapshotData)),
case Size > 1000000 of %% > 1MB
 true -> logger:warning("Large snapshot: ~p bytes", [Size]);
 false -> ok
end.
2. Cleanup Old Snapshots
Don't keep unlimited snapshots:
%% Keep only the N most recent snapshots
cleanup_old_snapshots(StoreId, StreamId, KeepCount) ->
 {ok, Snapshots} = reckon_db_snapshots:list(StoreId, StreamId),
 ToDelete = lists:nthtail(KeepCount, Snapshots),
 [reckon_db_snapshots:delete(StoreId, S#snapshot.stream_id, S#snapshot.version)
 || S <- ToDelete].
3. Test Snapshot/Replay Consistency
Verify snapshots produce correct state:
%% Property test: snapshot + replay = full replay
prop_snapshot_consistency() ->
 ?FORALL(Events, non_empty(list(event())),
 begin
 StreamId = unique_stream_id(),

 %% Write events
 {ok, FinalVersion} = write_events(StoreId, StreamId, Events),

 %% Full replay
 {ok, AllEvents} = reckon_db_streams:read(StoreId, StreamId, 0, 10000, forward),
 FullReplayState = lists:foldl(fun apply_event/2, initial_state(), AllEvents),

 %% Save snapshot midway
 MidVersion = FinalVersion div 2,
 {ok, MidEvents} = reckon_db_streams:read(StoreId, StreamId, 0, MidVersion, forward),
 MidState = lists:foldl(fun apply_event/2, initial_state(), MidEvents),
 reckon_db_snapshots:save(StoreId, StreamId, MidVersion, MidState, #{}),

 %% Snapshot + replay
 {ok, Snapshot} = reckon_db_snapshots:load(StoreId, StreamId),
 {ok, RemainingEvents} = reckon_db_streams:read(StoreId, StreamId, MidVersion + 1, 10000, forward),
 SnapshotReplayState = lists:foldl(fun apply_event/2, Snapshot#snapshot.data, RemainingEvents),

 %% States must match
 FullReplayState =:= SnapshotReplayState
 end).
4. Monitor Snapshot Performance
Track snapshot metrics:
save_snapshot_with_metrics(StoreId, StreamId, Version, State) ->
 StartTime = erlang:monotonic_time(microsecond),

 ok = reckon_db_snapshots:save(StoreId, StreamId, Version, State, #{}),

 Duration = erlang:monotonic_time(microsecond) - StartTime,
 Size = byte_size(term_to_binary(State)),

 telemetry:execute(
 [reckon_db, snapshot, created],
 #{duration => Duration, size_bytes => Size},
 #{store_id => StoreId, stream_id => StreamId, version => Version}
).
Further Reading
	Event Sourcing Guide - Foundation concepts
	CQRS Guide - Read model projections
	Subscriptions Guide - Event delivery

References
	Vaughn Vernon: "Implementing Domain-Driven Design" (Chapter 10: Aggregates)
	Greg Young: Snapshot Strategies
	Event Store: Projections and Snapshots

 Temporal Queries

Temporal queries enable point-in-time reconstruction of aggregate state and time-range analytics. This guide covers the server-side implementation, storage mechanics, and cluster behavior.
Overview
The reckon_db_temporal module provides three core operations:
	Function	Purpose
	read_until/3,4	Read events up to a timestamp
	read_range/4,5	Read events within a time range
	version_at/3	Get stream version at a timestamp

Architecture
[image: Temporal Query Flow]
How Temporal Filtering Works
Timestamp Storage
Every event stored in reckon-db includes an epoch_us field - microseconds since Unix epoch:
#event{
 event_id = <<"evt-123">>,
 stream_id = <<"orders-456">>,
 version = 5,
 epoch_us = 1735689600000000, %% Jan 1, 2025 00:00:00 UTC
 event_type = <<"OrderPlaced">>,
 data = #{...},
 metadata = #{...}
}
This timestamp is set at append time using erlang:system_time(microsecond).
Query Execution
Temporal queries follow this execution path:
	Stream Existence Check: Verify stream exists in Khepri
	Event Retrieval: Read all events from the stream
	Timestamp Filtering: Filter events by epoch_us field
	Options Application: Apply direction and limit options

%% Internal filtering for read_until
filter_events_until(Events, Timestamp) ->
 [E || E <- Events, E#event.epoch_us =< Timestamp].

%% Internal filtering for read_range
filter_events_range(Events, FromTimestamp, ToTimestamp) ->
 [E || E <- Events,
 E#event.epoch_us >= FromTimestamp,
 E#event.epoch_us =< ToTimestamp].
Khepri Storage Path
Events are stored at:
[streams, StreamId, PaddedVersion] -> #event{}
The 12-character zero-padded version enables lexicographic ordering:
[streams, <<"orders-123">>, <<"000000000000">>] -> Event v0
[streams, <<"orders-123">>, <<"000000000001">>] -> Event v1
[streams, <<"orders-123">>, <<"000000000002">>] -> Event v2
Cluster Behavior
Consistency Guarantees
Temporal queries inherit Khepri/Ra's consistency model:
	Aspect	Behavior
	Read Consistency	Strongly consistent (reads go through Raft leader)
	Cross-Node	Same results on any cluster node
	Partition Tolerance	Queries fail if no quorum available

Leader Routing
All reads are routed to the Ra leader:
Client Request
 │
 ▼
┌─────────────┐
│ Any Node │
│ (Follower) │
└──────┬──────┘
 │ Forward to leader
 ▼
┌─────────────┐
│ Ra Leader │
│ (Reads) │
└──────┬──────┘
 │ Raft log consistency
 ▼
 Query Result
Performance Considerations
Current Implementation
The current implementation reads all events, then filters in memory:
read_all_events(StoreId, StreamId) ->
 Version = reckon_db_streams:get_version(StoreId, StreamId),
 case Version of
 ?NO_STREAM -> {ok, []};
 _ -> reckon_db_streams:read(StoreId, StreamId, 0, Version + 1, forward)
 end.
Implications:
	O(n) memory usage where n = total events in stream
	Suitable for streams with < 10,000 events
	For larger streams, consider snapshots + temporal queries

Optimization Opportunities
Future versions could add:
	Khepri Timestamp Index: Secondary index on epoch_us
	Binary Search: If events are sorted by timestamp (they are by version, usually correlated)
	Streaming API: Process events in batches to reduce memory

Use Cases
1. Point-in-Time State Reconstruction
%% Reconstruct order state as it was on Dec 31, 2024
Timestamp = 1735603200000000, %% Dec 31, 2024 00:00:00 UTC
{ok, Events} = reckon_db_temporal:read_until(my_store, <<"order-123">>, Timestamp),
State = lists:foldl(fun apply_event/2, initial_state(), Events).
2. Audit Queries
%% What was the account balance at end of fiscal year?
FiscalYearEnd = 1735689599999999, %% Dec 31, 2024 23:59:59.999999 UTC
{ok, Events} = reckon_db_temporal:read_until(my_store, <<"account-456">>, FiscalYearEnd),
Balance = calculate_balance(Events).
3. Time-Range Analytics
%% Analyze orders from Q4 2024
Q4Start = 1727740800000000, %% Oct 1, 2024
Q4End = 1735689599999999, %% Dec 31, 2024
{ok, Events} = reckon_db_temporal:read_range(my_store, <<"orders-*">>, Q4Start, Q4End),
analyze_quarterly_orders(Events).
4. Version Discovery
%% What version should I replay to for a snapshot at timestamp T?
{ok, Version} = reckon_db_temporal:version_at(my_store, <<"user-789">>, Timestamp),
%% Now load snapshot at Version, or replay events 0..Version
Options
Both read_until/4 and read_range/5 accept options:
-type opts() :: #{
 direction => forward | backward, %% Event order (default: forward)
 limit => pos_integer() %% Max events to return
}.
Direction: Controls the order of returned events
	forward: Oldest first (ascending by version)
	backward: Newest first (descending by version)

Limit: Truncates result after applying direction
Telemetry
Temporal queries emit telemetry events:
%% Event: [reckon_db, temporal, read_until]
%% Measurements: #{duration => integer(), event_count => integer()}
%% Metadata: #{store_id => atom(), stream_id => binary(), timestamp => integer()}

%% Event: [reckon_db, temporal, read_range]
%% Measurements: #{duration => integer(), event_count => integer()}
%% Metadata: #{store_id => atom(), stream_id => binary(), timestamp => {From, To}}
Error Handling
	Error	Cause	Resolution
	{error, {stream_not_found, StreamId}}	Stream does not exist	Verify stream ID
	{error, timeout}	Khepri/Ra timeout	Check cluster health
	{error, no_quorum}	Ra cluster partitioned	Wait for partition heal

Best Practices
	Use Snapshots: For frequently queried historical points, save snapshots
	Limit Result Size: Use the limit option for large time ranges
	Monitor Duration: Track telemetry for slow queries
	Consider Stream Size: Temporal queries load full streams; partition large streams

See Also
	Snapshots - State caching for performance
	Scavenging - Event lifecycle management
	Storage Internals - Khepri path structure

 Scavenging and Event Lifecycle

Scavenging is the process of removing old events from streams to reduce storage costs while maintaining stream integrity. This guide covers the server-side implementation, safety guarantees, and archival strategies.
Overview
The reckon_db_scavenge module provides:
	Function	Purpose
	scavenge/3	Remove old events from a single stream
	scavenge_matching/3	Scavenge streams matching a pattern
	archive_and_scavenge/4	Archive events before deletion
	dry_run/3	Preview what would be deleted

Architecture
[image: Scavenge Lifecycle]
Event Lifecycle
Events in reckon-db follow this lifecycle:
┌──────────┐ ┌──────────┐ ┌──────────┐ ┌──────────┐
│ Active │ ──▶ │ Archived │ ──▶ │ Scavenged│ ──▶ │ Deleted │
│ (Khepri) │ │ (Backend)│ │ (Marked) │ │ (Gone) │
└──────────┘ └──────────┘ └──────────┘ └──────────┘
 │ │ │ │
 │ Hot storage │ Cold storage │ Reference │ Permanent
 │ Fast reads │ Slow reads │ only │ removal
Safety Guarantees
Snapshot Requirement
By default, scavenging requires a snapshot to exist:
%% This will fail if no snapshot exists
{error, {no_snapshot, <<"orders-123">>}} =
 reckon_db_scavenge:scavenge(my_store, <<"orders-123">>, #{
 before_version => 100
 }).

%% Override the safety check (use with caution)
{ok, _} = reckon_db_scavenge:scavenge(my_store, <<"orders-123">>, #{
 before_version => 100,
 require_snapshot => false
}).
Why this matters: Without a snapshot, replaying to a historical state requires all events from version 0. Scavenging old events without a snapshot breaks replay capability.
Keep Versions
Always keep a minimum number of recent versions:
%% Keep at least the last 10 versions, regardless of timestamp
{ok, Result} = reckon_db_scavenge:scavenge(my_store, <<"orders-123">>, #{
 before => OneYearAgo,
 keep_versions => 10
}).
Dry Run
Preview what would be deleted before actually deleting:
{ok, Preview} = reckon_db_scavenge:dry_run(my_store, <<"orders-123">>, #{
 before => RetentionCutoff
}),
%% Preview contains:
%% #{
%% stream_id => <<"orders-123">>,
%% deleted_count => 500,
%% deleted_versions => {0, 499},
%% archived => false,
%% dry_run => true
%% }
Scavenge Options
-type scavenge_opts() :: #{
 before => integer(), %% Delete events before this timestamp (epoch_us)
 before_version => integer(), %% Delete events before this version
 keep_versions => pos_integer(),%% Keep at least N latest versions
 require_snapshot => boolean(), %% Require snapshot exists (default: true)
 dry_run => boolean() %% Preview only (default: false)
}.
Timestamp-Based Scavenging
%% Delete events older than 1 year
OneYearAgo = erlang:system_time(microsecond) - (365 * 24 * 60 * 60 * 1000000),
{ok, Result} = reckon_db_scavenge:scavenge(my_store, <<"orders-123">>, #{
 before => OneYearAgo
}).
Version-Based Scavenging
%% Delete events before version 1000
{ok, Result} = reckon_db_scavenge:scavenge(my_store, <<"orders-123">>, #{
 before_version => 1000
}).
Khepri Storage Operations
How Events Are Deleted
Events are deleted individually from Khepri:
delete_event_versions(StoreId, StreamId, FromVersion, ToVersion) ->
 lists:foreach(
 fun(Version) ->
 PaddedVersion = pad_version(Version, ?VERSION_PADDING),
 Path = ?STREAMS_PATH ++ [StreamId, PaddedVersion],
 khepri:delete(StoreId, Path)
 end,
 lists:seq(FromVersion, ToVersion)
).
Storage path structure:
[streams, <<"orders-123">>, <<"000000000000">>] -> Deleted
[streams, <<"orders-123">>, <<"000000000001">>] -> Deleted
...
[streams, <<"orders-123">>, <<"000000000499">>] -> Deleted
[streams, <<"orders-123">>, <<"000000000500">>] -> Kept (after cutoff)
Cluster Behavior
Deletions are replicated through Ra consensus:
	Delete request received on any node
	Request forwarded to Ra leader
	Leader appends delete to Raft log
	Followers replicate and apply
	Quorum achieved, deletion confirmed

Important: Deletions are permanent once committed to the Raft log.
Archival
Archive Before Delete
Use archive_and_scavenge/4 to preserve events before removal:
%% Initialize file backend
{ok, BackendState} = reckon_db_archive_file:init(#{
 base_path => "/bulk0/archives/reckon_db"
}),

%% Archive then scavenge
{ok, Result} = reckon_db_scavenge:archive_and_scavenge(
 my_store,
 <<"orders-123">>,
 {reckon_db_archive_file, BackendState},
 #{before => RetentionCutoff}
),

%% Result includes archive key
%% #{
%% stream_id => <<"orders-123">>,
%% deleted_count => 500,
%% deleted_versions => {0, 499},
%% archived => true,
%% archive_key => <<"my_store/orders-123/0-499.archive">>
%% }
Archive Key Format
Archive keys follow a standard format:
{StoreId}/{StreamId}/{FromVersion}-{ToVersion}.archive

Examples:
my_store/orders-123/0-999.archive
my_store/users-456/1000-1999.archive
Custom Archive Backends
Implement the reckon_db_archive_backend behaviour:
-callback init(Opts :: map()) ->
 {ok, State :: term()} | {error, Reason :: term()}.

-callback archive(State, ArchiveKey, Events) ->
 {ok, NewState} | {error, Reason}.

-callback read(State, ArchiveKey) ->
 {ok, Events, NewState} | {error, Reason}.

-callback list(State, StoreId, StreamId) ->
 {ok, [ArchiveKey], NewState} | {error, Reason}.

-callback delete(State, ArchiveKey) ->
 {ok, NewState} | {error, Reason}.

-callback exists(State, ArchiveKey) ->
 {boolean(), NewState}.
Built-in backends:
	reckon_db_archive_file - Local file system storage

Pattern Matching
Scavenge multiple streams at once:
%% Scavenge all order streams
{ok, Results} = reckon_db_scavenge:scavenge_matching(my_store, <<"orders-*">>, #{
 before => RetentionCutoff,
 keep_versions => 10
}).

%% Results is a list of scavenge_result() for each matching stream
Supported patterns:
	orders-* - Prefix match
	*-completed - Suffix match
	orders-*-v2 - Multiple wildcards

Telemetry
Scavenge operations emit telemetry:
%% Event: [reckon_db, scavenge, complete]
%% Measurements:
%% #{duration => integer(), deleted_count => integer()}
%% Metadata:
%% #{store_id => atom(), stream_id => binary(), archived => boolean()}
Best Practices
1. Always Preview First
%% Preview
{ok, Preview} = reckon_db_scavenge:dry_run(Store, Stream, Opts),
io:format("Would delete ~p events~n", [maps:get(deleted_count, Preview)]),

%% Then execute
{ok, Result} = reckon_db_scavenge:scavenge(Store, Stream, Opts).
2. Snapshot Before Scavenging
%% Save current state as snapshot
{ok, Events} = reckon_db_streams:read(Store, Stream, 0, Version, forward),
State = rebuild_state(Events),
ok = reckon_db_snapshots:save(Store, Stream, Version, State, #{}),

%% Now safe to scavenge
{ok, _} = reckon_db_scavenge:scavenge(Store, Stream, #{
 before_version => Version
}).
3. Archive for Compliance
For audit requirements, always archive before scavenging:
%% 7-year retention in cold storage
{ok, _} = reckon_db_scavenge:archive_and_scavenge(
 Store, Stream,
 {reckon_db_archive_s3, S3State}, %% Custom S3 backend
 #{before => SevenYearsAgo}
).
4. Schedule Off-Peak
Run scavenging during low-traffic periods:
%% Example: Run at 3 AM daily
schedule_scavenge() ->
 timer:apply_after(
 time_until_3am(),
 fun() ->
 scavenge_old_streams(),
 schedule_scavenge() %% Reschedule
 end
).
Error Handling
	Error	Cause	Resolution
	{error, {no_snapshot, StreamId}}	Snapshot required but missing	Save snapshot first
	{error, {stream_not_found, StreamId}}	Stream does not exist	Verify stream ID
	{error, archive_failed}	Archive backend error	Check backend logs

See Also
	Temporal Queries - Time-based event retrieval
	Snapshots - State caching
	Storage Internals - Khepri path structure

 Causation and Correlation Tracking

Causation tracking enables tracing event lineage through distributed systems. This guide covers how to track, query, and visualize event relationships.
Overview
The reckon_db_causation module provides:
	Function	Purpose
	get_effects/2	Find events caused by an event
	get_cause/2	Find the event that caused this one
	get_chain/2	Trace causation chain to root
	get_correlated/2	Find all events in a saga
	build_graph/2	Build visualization graph
	to_dot/1	Export as Graphviz DOT

Architecture
[image: Causation Graph]
Metadata Convention
Events track lineage through standard metadata fields:
#event{
 event_id = <<"evt-456">>,
 event_type = <<"OrderShipped">>,
 data = #{...},
 metadata = #{
 causation_id => <<"evt-123">>, %% Direct cause
 correlation_id => <<"saga-789">>, %% Business process
 actor_id => <<"user-001">> %% Who triggered this
 }
}
Field Definitions
	Field	Type	Purpose
	causation_id	binary	Event ID that directly caused this event
	correlation_id	binary	Groups events in a saga/process
	actor_id	binary	Identity that triggered the event

Causation Queries
Finding Effects
Get all events caused by a specific event:
{ok, Effects} = reckon_db_causation:get_effects(my_store, <<"evt-123">>),
%% Returns all events where metadata.causation_id = "evt-123"
Finding Cause
Get the event that caused this one:
{ok, CauseEvent} = reckon_db_causation:get_cause(my_store, <<"evt-456">>),
%% Looks up event with ID matching this event's causation_id
Tracing the Chain
Walk backward from an event to its root cause:
{ok, Chain} = reckon_db_causation:get_chain(my_store, <<"evt-789">>),
%% Returns [RootEvent, ..., IntermediateEvents, ..., TargetEvent]
%% Ordered from root to target
Finding Correlated Events
Get all events in a saga or business process:
{ok, SagaEvents} = reckon_db_causation:get_correlated(my_store, <<"saga-001">>),
%% Returns all events where metadata.correlation_id = "saga-001"
%% Sorted by epoch_us (temporal order)
Graph Building
Build Causation Graph
%% Build from a specific event
{ok, Graph} = reckon_db_causation:build_graph(my_store, <<"evt-123">>),

%% Or build from a correlation ID
{ok, Graph} = reckon_db_causation:build_graph(my_store, <<"saga-001">>),

%% Graph structure:
%% #{
%% nodes => [Event1, Event2, ...],
%% edges => [{CauseId, EffectId}, ...],
%% root => RootEventId | undefined
%% }
Export to Graphviz
Generate DOT format for visualization:
{ok, Graph} = reckon_db_causation:build_graph(my_store, <<"saga-001">>),
DotBinary = reckon_db_causation:to_dot(Graph),

%% Write to file
file:write_file("causation.dot", DotBinary),

%% Render with graphviz:
%% dot -Tpng -o causation.png causation.dot
%% dot -Tsvg -o causation.svg causation.dot
How It Works
Storage (No Index)
Currently, causation queries scan all streams:
scan_for_metadata(StoreId, Field, Value) ->
 {ok, StreamIds} = reckon_db_streams:list_streams(StoreId),
 Events = lists:foldl(
 fun(StreamId, Acc) ->
 MatchingEvents = scan_stream_for_metadata(StoreId, StreamId, Field, Value),
 Acc ++ MatchingEvents
 end,
 [],
 StreamIds
),
 {ok, lists:sort(fun(A, B) -> A#event.epoch_us =< B#event.epoch_us end, Events)}.
Performance Note: This is O(n) where n = total events across all streams. For production systems with many events, consider adding secondary indexes.
Chain Building
Chains are built by walking backward through causation links:
build_chain_backward(StoreId, Event, Acc) ->
 case maps:get(causation_id, Event#event.metadata, undefined) of
 undefined ->
 Acc; %% Reached root
 CausationId ->
 case find_event_by_id(StoreId, CausationId) of
 {ok, CauseEvent} ->
 build_chain_backward(StoreId, CauseEvent, [CauseEvent | Acc]);
 {error, _} ->
 Acc %% Chain broken (event deleted?)
 end
 end.
Use Cases
1. Debugging Distributed Flows
%% An order failed - trace back to root cause
{ok, Chain} = reckon_db_causation:get_chain(my_store, <<"order-failed-evt">>),
lists:foreach(
 fun(Event) ->
 io:format("~s: ~s (~s)~n", [
 Event#event.epoch_us,
 Event#event.event_type,
 Event#event.stream_id
])
 end,
 Chain
).
2. Saga Visualization
%% Visualize a checkout saga
{ok, Graph} = reckon_db_causation:build_graph(my_store, <<"checkout-saga-123">>),
Dot = reckon_db_causation:to_dot(Graph),
file:write_file("/tmp/checkout.dot", Dot),
os:cmd("dot -Tsvg -o /tmp/checkout.svg /tmp/checkout.dot").
3. Audit Trail
%% Who/what triggered this sensitive operation?
{ok, Event} = find_event(my_store, <<"sensitive-action-evt">>),
{ok, Chain} = reckon_db_causation:get_chain(my_store, Event#event.event_id),
RootEvent = hd(Chain),
ActorId = maps:get(actor_id, RootEvent#event.metadata, <<"unknown">>),
io:format("Sensitive action originated from actor: ~s~n", [ActorId]).
4. Impact Analysis
%% What happened because of this event?
{ok, Effects} = reckon_db_causation:get_effects(my_store, <<"payment-received-evt">>),
io:format("Payment triggered ~p downstream events~n", [length(Effects)]).
Setting Causation IDs
When appending events, include causation metadata:
%% In a command handler
handle_command(Command, State, CausationContext) ->
 Event = #{
 event_type => <<"OrderPlaced">>,
 data => #{order_id => Command#cmd.order_id, items => Command#cmd.items},
 metadata => #{
 causation_id => CausationContext#ctx.event_id,
 correlation_id => CausationContext#ctx.correlation_id,
 actor_id => CausationContext#ctx.user_id
 }
 },
 {ok, _} = reckon_db_streams:append(Store, Stream, ExpectedVersion, [Event]).
Telemetry
Causation queries emit telemetry:
%% Event: [reckon_db, causation, query]
%% Measurements:
%% #{duration => integer(), event_count => integer()}
%% Metadata:
%% #{store_id => atom(), id => binary(), query_type => atom()}

%% Query types: causation_effects, causation_cause, causation_chain, causation_correlated
DOT Format Example
Generated DOT output:
digraph causation {
 "evt-001" [label="evt-001\nCommandReceived"];
 "evt-002" [label="evt-002\nOrderCreated"];
 "evt-003" [label="evt-003\nPaymentRequested"];
 "evt-004" [label="evt-004\nPaymentReceived"];
 "evt-005" [label="evt-005\nOrderShipped"];
 "evt-001" -> "evt-002";
 "evt-002" -> "evt-003";
 "evt-003" -> "evt-004";
 "evt-004" -> "evt-005";
}
Rendered as:
CommandReceived → OrderCreated → PaymentRequested → PaymentReceived → OrderShipped
Error Handling
	Error	Cause	Resolution
	{error, not_found}	Event ID does not exist	Verify event ID
	{error, no_cause}	Event has no causation_id	This is a root event

Best Practices
1. Always Set Correlation ID
%% Generate at saga/process start, propagate through all events
CorrelationId = uuid:uuid_to_string(uuid:get_v4()),
%% Use this same ID for all events in the business process
2. Preserve Causation Context
%% When handling an event that triggers new events
handle_event(SourceEvent, State) ->
 NewEventMetadata = #{
 causation_id => SourceEvent#event.event_id,
 correlation_id => maps:get(correlation_id, SourceEvent#event.metadata)
 },
 ...
3. Include Actor ID at Entry Points
%% At API/command entry points
Metadata = #{
 correlation_id => new_correlation_id(),
 actor_id => RequestContext#ctx.authenticated_user
}.
Future Enhancements
Potential improvements for production scale:
	Secondary Index: Add Khepri index on causation_id and correlation_id
	Materialized Graph: Pre-compute causation graph per correlation
	Streaming Query: Process events in batches to reduce memory
	Time-Bounded Search: Limit search to recent time window

See Also
	Stream Links - Derived streams from causation patterns
	Temporal Queries - Time-based event retrieval
	Storage Internals - Khepri path structure

 Stream Links and Projections

Stream links enable derived streams from source streams through filtering and transformation. This guide covers the server-side implementation, lifecycle management, and use cases.
Overview
The reckon_db_links module provides:
	Function	Purpose
	create/2	Create a new link definition
	delete/2	Remove a link
	get/2	Get link configuration
	list/1	List all links
	start/2	Start link processing
	stop/2	Stop link processing
	info/2	Get detailed link statistics

Architecture
[image: Stream Links Architecture]
What is a Stream Link?
A stream link is a derived stream that:
	Subscribes to one or more source streams
	Filters events based on a predicate function
	Transforms events (optional) before writing
	Writes matching events to a link stream

Link streams are named with a $link: prefix and behave like regular streams.
Creating Links
Basic Link
ok = reckon_db_links:create(my_store, #{
 name => <<"high-value-orders">>,
 source => #{type => stream_pattern, pattern => <<"orders-*">>},
 filter => fun(E) -> maps:get(total, E#event.data, 0) > 1000 end
}).
Link with Transform
ok = reckon_db_links:create(my_store, #{
 name => <<"flagged-orders">>,
 source => #{type => stream_pattern, pattern => <<"orders-*">>},
 filter => fun(E) -> maps:get(total, E#event.data, 0) > 5000 end,
 transform => fun(E) ->
 NewData = maps:put(flagged, true, E#event.data),
 NewData2 = maps:put(flagged_at, erlang:system_time(millisecond), NewData),
 E#event{data = NewData2}
 end
}).
Link with Backfill
Process existing events when starting:
ok = reckon_db_links:create(my_store, #{
 name => <<"all-payments">>,
 source => #{type => stream_pattern, pattern => <<"payments-*">>},
 backfill => true %% Process existing events on start
}).
Source Specifications
Single Stream
source => #{type => stream, stream_id => <<"orders-123">>}
Stream Pattern (Wildcard)
source => #{type => stream_pattern, pattern => <<"orders-*">>}
source => #{type => stream_pattern, pattern => <<"*-completed">>}
All Streams
source => #{type => all}
%% Excludes $link: streams to prevent loops
Link Lifecycle
Starting a Link
ok = reckon_db_links:start(my_store, <<"high-value-orders">>).
This:
	Updates link status to running
	Performs backfill if backfill => true
	Subscribes to source stream(s) for new events

Stopping a Link
ok = reckon_db_links:stop(my_store, <<"high-value-orders">>).
This:
	Unsubscribes from source streams
	Updates link status to stopped

Checking Link Status
{ok, Info} = reckon_db_links:info(my_store, <<"high-value-orders">>),
%% #{
%% name => <<"high-value-orders">>,
%% source => #{type => stream_pattern, pattern => <<"orders-*">>},
%% status => running,
%% processed => 1523,
%% link_stream => <<"$link:high-value-orders">>,
%% link_stream_version => 156,
%% created_at => 1735689600000,
%% last_event => <<"evt-789">>
%% }
Khepri Storage
Link Definitions
Links are stored at:
[links, StoreId, LinkName] -> #link{} record
Link Streams
Link output is written to:
[streams, <<"$link:LinkName">>, PaddedVersion] -> #event{}
Link Record Structure
-record(link, {
 name :: binary(),
 source :: source_spec(),
 filter :: fun((event()) -> boolean()) | undefined,
 transform :: fun((event()) -> event()) | undefined,
 backfill :: boolean(),
 created_at :: integer(),
 status = stopped :: running | stopped | error,
 processed = 0 :: non_neg_integer(),
 last_event :: binary() | undefined
}).
Subscribing to Link Streams
Link streams are regular streams:
%% Subscribe to the link stream
reckon_db_subscriptions:subscribe(
 my_store,
 stream,
 <<"$link:high-value-orders">>,
 <<"my-subscription">>,
 #{handler => fun handle_high_value_order/1}
).

%% Read from the link stream
{ok, Events} = reckon_db_streams:read(
 my_store,
 <<"$link:high-value-orders">>,
 0, 100, forward
).
Event Transformation
Preserved Metadata
When events are written to link streams, source information is preserved:
event_to_map(Event) ->
 #{
 event_id => Event#event.event_id,
 event_type => Event#event.event_type,
 data => Event#event.data,
 metadata => maps:merge(Event#event.metadata, #{
 source_stream => Event#event.stream_id,
 source_version => Event#event.version
 })
 }.
Custom Transforms
Transform functions receive the full event record:
transform => fun(Event) ->
 %% Add computed field
 Data = Event#event.data,
 Total = maps:get(quantity, Data, 0) * maps:get(price, Data, 0),
 NewData = maps:put(computed_total, Total, Data),

 %% Return modified event
 Event#event{data = NewData}
end
Pattern Matching
Wildcard patterns are converted to regex:
wildcard_to_regex(Pattern) ->
 Escaped = re:replace(Pattern, <<"[.^$+?{}\\[\\]\\\\|()]">>,
 <<"\\\\&">>, [global, {return, binary}]),
 Converted = binary:replace(Escaped, <<"*">>, <<".*">>, [global]),
 <<"^", Converted/binary, "$">>.
Examples:
	orders-* matches orders-123, orders-456
	*-completed matches order-completed, payment-completed
	user-*-events matches user-123-events

Use Cases
1. Event Type Aggregation
Collect all payment events across customer streams:
ok = reckon_db_links:create(my_store, #{
 name => <<"all-payments">>,
 source => #{type => all},
 filter => fun(E) ->
 EventType = E#event.event_type,
 EventType =:= <<"PaymentReceived">> orelse
 EventType =:= <<"PaymentFailed">> orelse
 EventType =:= <<"RefundIssued">>
 end,
 backfill => true
}).
2. High-Value Transaction Monitoring
ok = reckon_db_links:create(my_store, #{
 name => <<"high-value-txns">>,
 source => #{type => stream_pattern, pattern => <<"account-*">>},
 filter => fun(E) ->
 Amount = abs(maps:get(amount, E#event.data, 0)),
 Amount > 10000
 end,
 transform => fun(E) ->
 E#event{metadata = maps:put(flagged_reason, <<"high_value">>,
 E#event.metadata)}
 end
}).
3. Audit Trail
ok = reckon_db_links:create(my_store, #{
 name => <<"security-audit">>,
 source => #{type => all},
 filter => fun(E) ->
 EventType = E#event.event_type,
 lists:member(EventType, [
 <<"UserLoggedIn">>,
 <<"PasswordChanged">>,
 <<"PermissionGranted">>,
 <<"DataExported">>
])
 end
}).
4. Real-Time Analytics Feed
ok = reckon_db_links:create(my_store, #{
 name => <<"analytics-feed">>,
 source => #{type => all},
 filter => fun(_) -> true end, %% All events
 transform => fun(E) ->
 %% Strip PII, keep only analytics-relevant fields
 SafeData = maps:with([event_type, timestamp, stream_id], #{
 event_type => E#event.event_type,
 timestamp => E#event.epoch_us,
 stream_id => E#event.stream_id
 }),
 E#event{data = SafeData}
 end
}).
Telemetry
Link operations emit telemetry:
%% Event: [reckon_db, link, created | started | stopped | deleted]
%% Measurements: #{system_time => integer()}
%% Metadata: #{store_id => atom(), link_name => binary()}
Error Handling
	Error	Cause	Resolution
	{error, not_found}	Link does not exist	Verify link name
	{error, already_exists}	Link name in use	Choose different name
	Filter crash	Filter function threw exception	Returns false (event skipped)
	Transform crash	Transform function threw exception	Returns original event

Best Practices
1. Use Defensive Filters
filter => fun(E) ->
 try
 maps:get(amount, E#event.data, 0) > 1000
 catch
 : -> false
 end
end
2. Avoid Expensive Transforms
Transforms run for every matching event. Keep them lightweight.
3. Consider Backfill Costs
For large streams, backfill can be expensive. Consider:
	Creating link without backfill first
	Manually backfilling in batches during off-peak

4. Monitor Processed Counts
%% Check link is keeping up
{ok, Info} = reckon_db_links:info(my_store, <<"my-link">>),
Processed = maps:get(processed, Info),
%% Alert if falling behind
See Also
	Subscriptions - Event subscription patterns
	Causation - Event lineage tracking
	Storage Internals - Khepri path structure

 Schema Evolution and Upcasting

Schema evolution enables changing event structures over time without breaking existing consumers. This guide covers schema registration, version management, and automatic upcasting.
Overview
The reckon_db_schema module provides:
	Function	Purpose
	register/3	Register a schema for an event type
	unregister/2	Remove a schema
	get/2	Get schema for an event type
	list/1	List all registered schemas
	get_version/2	Get current schema version
	upcast/2	Upcast a list of events
	upcast_event/2	Upcast a single event
	validate/2	Validate event against schema

Architecture
[image: Schema Upcasting Flow]
Schema Registration
Basic Registration
ok = reckon_db_schema:register(my_store, <<"OrderPlaced">>, #{
 version => 1,
 description => <<"Initial order event schema">>
}).
Registration with Upcasting
ok = reckon_db_schema:register(my_store, <<"OrderPlaced">>, #{
 version => 3,
 upcast_from => #{
 1 => fun(Data) ->
 %% V1 -> V2: Add shipping_address field
 maps:put(shipping_address, maps:get(address, Data, #{}), Data)
 end,
 2 => fun(Data) ->
 %% V2 -> V3: Rename customer_id to buyer_id
 BuyerId = maps:get(customer_id, Data),
 maps:remove(customer_id, maps:put(buyer_id, BuyerId, Data))
 end
 }
}).
Registration with Validation
ok = reckon_db_schema:register(my_store, <<"PaymentReceived">>, #{
 version => 1,
 validator => fun(Data) ->
 case maps:is_key(amount, Data) andalso maps:is_key(currency, Data) of
 true -> ok;
 false -> {error, missing_required_fields}
 end
 end
}).
Schema Storage
Schemas are stored in Khepri at:
[schemas, StoreId, EventType] -> schema_map()
Schema Structure
-type schema() :: #{
 event_type := binary(), %% Event type name
 version := pos_integer(), %% Current version (1, 2, 3, ...)
 upcast_from => #{ %% Version -> Transform function
 pos_integer() => fun((map()) -> map())
 },
 validator => fun((map()) -> ok | {error, term()}),
 description => binary(),
 registered_at := integer() %% Timestamp
}.
Upcasting
How Upcasting Works
When reading events, upcasting transforms old versions to the current schema:
%% Read events (may contain multiple versions)
{ok, Events} = reckon_db_streams:read(my_store, <<"orders-123">>, 0, 100, forward),

%% Upcast all events to current schema versions
UpcastedEvents = reckon_db_schema:upcast(my_store, Events).
Upcasting Flow
Event (v1) ──▶ upcast_from[1] ──▶ Event (v2) ──▶ upcast_from[2] ──▶ Event (v3)
Events are upcasted through each version step sequentially.
Version Detection
Event versions are stored in metadata:
#event{
 metadata = #{
 schema_version => 2 %% Default: 1 if not present
 }
}
After upcasting, the schema_version is updated:
%% Before: schema_version => 1
%% After upcast to v3: schema_version => 3
Cluster Behavior
Consistency
Schema registration is replicated through Khepri/Ra:
	Schema registered on any node
	Replicated through Raft consensus
	Available on all cluster nodes

Version Conflicts
If different nodes have different schema versions:
	Upcasting uses the local node's schema
	Ensure schema updates are coordinated
	Use rolling updates for schema changes

Evolution Strategies
1. Additive Changes (Safe)
Add new optional fields:
%% V1 -> V2: Add optional field with default
1 => fun(Data) ->
 maps:put(priority, <<"normal">>, Data)
end
2. Renaming Fields
Rename while preserving data:
%% V1 -> V2: Rename customerId to customer_id
1 => fun(Data) ->
 CustomerId = maps:get(customerId, Data),
 maps:remove(customerId, maps:put(customer_id, CustomerId, Data))
end
3. Splitting Fields
Split one field into multiple:
%% V1 -> V2: Split name into first_name and last_name
1 => fun(Data) ->
 Name = maps:get(name, Data, <<"">>),
 [First | Rest] = binary:split(Name, <<" ">>),
 Last = iolist_to_binary(lists:join(<<" ">>, Rest)),
 Data2 = maps:remove(name, Data),
 maps:merge(Data2, #{first_name => First, last_name => Last})
end
4. Merging Fields
Combine multiple fields:
%% V1 -> V2: Merge address fields into address map
1 => fun(Data) ->
 Address = #{
 street => maps:get(street, Data, <<"">>),
 city => maps:get(city, Data, <<"">>),
 zip => maps:get(zip, Data, <<"">>)
 },
 Data2 = maps:without([street, city, zip], Data),
 maps:put(address, Address, Data2)
end
5. Type Changes
Convert field types:
%% V1 -> V2: Convert amount from cents (integer) to dollars (float)
1 => fun(Data) ->
 Cents = maps:get(amount, Data, 0),
 Dollars = Cents / 100.0,
 maps:put(amount, Dollars, Data)
end
Validation
On Write
Validate events before appending:
Event = #event{event_type = <<"OrderPlaced">>, data = #{...}},
case reckon_db_schema:validate(my_store, Event) of
 ok ->
 reckon_db_streams:append(my_store, StreamId, ExpectedVersion, [Event]);
 {error, Reason} ->
 {error, {validation_failed, Reason}}
end
Custom Validators
validator => fun(Data) ->
 Amount = maps:get(amount, Data, 0),
 Currency = maps:get(currency, Data, undefined),

 case {Amount > 0, Currency =/= undefined} of
 {true, true} -> ok;
 {false, _} -> {error, {invalid_amount, Amount}};
 {_, false} -> {error, missing_currency}
 end
end
Querying Schemas
List All Schemas
{ok, Schemas} = reckon_db_schema:list(my_store),
%% [#{event_type => <<"OrderPlaced">>, version => 3, registered_at => ...}, ...]
Get Specific Schema
{ok, Schema} = reckon_db_schema:get(my_store, <<"OrderPlaced">>),
%% #{event_type => <<"OrderPlaced">>, version => 3, upcast_from => #{...}, ...}
Get Current Version
{ok, Version} = reckon_db_schema:get_version(my_store, <<"OrderPlaced">>),
%% 3
Telemetry
Schema operations emit telemetry:
%% Registration/unregistration
%% Event: [reckon_db, schema, registered | unregistered]
%% Measurements: #{version => integer()}
%% Metadata: #{store_id => atom(), event_type => binary()}

%% Upcasting
%% Event: [reckon_db, schema, upcasted]
%% Measurements: #{duration => integer()}
%% Metadata: #{store_id => atom(), event_type => binary(),
%% from_version => integer(), to_version => integer()}
Best Practices
1. Never Remove Required Fields
%% BAD: Field removed without migration
%% V1: #{order_id, customer_id, items}
%% V2: #{order_id, items} -- customer_id removed!

%% GOOD: Deprecate, then remove in later version
%% V1 -> V2: Mark deprecated
%% V2 -> V3: Actually remove (after all consumers updated)
2. Make New Fields Optional
%% GOOD: New field has default value
1 => fun(Data) ->
 maps:put_new(priority, <<"normal">>, Data)
end
3. Test Upcasting Thoroughly
%% Test each version transition
test_v1_to_v2() ->
 V1Data = #{order_id => <<"123">>, customerId => <<"cust-1">>},
 V2Data = upcast_v1_to_v2(V1Data),
 ?assertEqual(<<"cust-1">>, maps:get(customer_id, V2Data)),
 ?assertNot(maps:is_key(customerId, V2Data)).
4. Version Incrementally
%% GOOD: One version per change
%% V1 -> V2: Add field
%% V2 -> V3: Rename field
%% V3 -> V4: Change type

%% BAD: Multiple changes per version
%% V1 -> V2: Add field AND rename field AND change type
5. Document Schema Changes
ok = reckon_db_schema:register(my_store, <<"OrderPlaced">>, #{
 version => 3,
 description => <<"V3: Renamed customer_id to buyer_id for consistency">>,
 upcast_from => #{...}
}).
Error Handling
	Error	Cause	Resolution
	{error, {invalid_version, V}}	Version not positive integer	Use version >= 1
	{error, not_found}	Schema not registered	Register schema first
	Upcast crash	Upcast function threw	Event returned unchanged, logged

See Also
	Event Sourcing - Event design principles
	Subscriptions - Event consumption
	Storage Internals - Khepri path structure

 Configuration Guide

This guide covers all configuration options for reckon-db, with examples for both Erlang (sys.config) and Elixir (config.exs).
Quick Start
Erlang (sys.config)
[
 {reckon_db, [
 {stores, [
 {my_store, [
 {data_dir, "/var/lib/reckon_db/my_store"},
 {mode, single},
 {timeout, 5000},
 {writer_pool_size, 10},
 {reader_pool_size, 10}
]}
]},
 {telemetry_handlers, [logger]}
]}
].
Elixir (config.exs)
config :reckon_db,
 stores: [
 my_store: [
 data_dir: "/var/lib/reckon_db/my_store",
 mode: :single,
 timeout: 5_000,
 writer_pool_size: 10,
 reader_pool_size: 10
]
],
 telemetry_handlers: [:logger]
Configuration Reference
Store Configuration
Stores are the primary configuration. Each store is an independent event store instance backed by Khepri/Ra.
	Option	Type	Default	Description
	stores	proplist	[]	List of store configurations

Each store in the list has:
	Option	Type	Default	Description
	data_dir	string	/var/lib/reckon_db/{store_id}	Data directory for Khepri/Ra
	mode	atom	single	Operation mode: single or cluster
	timeout	integer	5000	Default timeout in milliseconds
	writer_pool_size	integer	10	Number of writer workers
	reader_pool_size	integer	10	Number of reader workers
	gateway_pool_size	integer	1	Number of gateway workers

Erlang Example
{stores, [
 {orders_store, [
 {data_dir, "/bulk0/reckon_db/orders"},
 {mode, cluster},
 {timeout, 10000},
 {writer_pool_size, 20},
 {reader_pool_size, 50}
]},
 {users_store, [
 {data_dir, "/bulk0/reckon_db/users"},
 {mode, single},
 {writer_pool_size, 5},
 {reader_pool_size, 10}
]}
]}
Elixir Example
config :reckon_db,
 stores: [
 orders_store: [
 data_dir: "/bulk0/reckon_db/orders",
 mode: :cluster,
 timeout: 10_000,
 writer_pool_size: 20,
 reader_pool_size: 50
],
 users_store: [
 data_dir: "/bulk0/reckon_db/users",
 mode: :single,
 writer_pool_size: 5,
 reader_pool_size: 10
]
]
Pool Sizes (Global Defaults)
These set defaults for all stores that don't specify their own values.
	Option	Type	Default	Description
	writer_pool_size	integer	10	Default writer pool size
	reader_pool_size	integer	10	Default reader pool size
	gateway_pool_size	integer	1	Default gateway pool size

Erlang Example
{writer_pool_size, 20},
{reader_pool_size, 50},
{gateway_pool_size, 2}
Elixir Example
config :reckon_db,
 writer_pool_size: 20,
 reader_pool_size: 50,
 gateway_pool_size: 2
Worker Timeouts
Idle timeout for reader and writer workers.
	Option	Type	Default	Description
	reader_idle_timeout_ms	integer	60000	Reader idle timeout (ms)
	writer_idle_timeout_ms	integer	60000	Writer idle timeout (ms)

Erlang Example
{reader_idle_timeout_ms, 120000}, %% 2 minutes
{writer_idle_timeout_ms, 120000}
Elixir Example
config :reckon_db,
 reader_idle_timeout_ms: 120_000,
 writer_idle_timeout_ms: 120_000
Health Probing
Health probing monitors store nodes and triggers failover in cluster mode.
	Option	Type	Default	Description
	health_probe_interval	integer	5000	Probe interval in milliseconds
	health_probe_timeout	integer	2000	Probe timeout in milliseconds
	health_failure_threshold	integer	3	Failures before marking unhealthy
	health_probe_type	atom	ping	Probe type: ping or deep

Probe Types:
	ping - Simple node reachability check (fast, low overhead)
	deep - Checks Khepri/Ra cluster health (thorough, higher overhead)

Erlang Example
{health_probe_interval, 10000},
{health_probe_timeout, 5000},
{health_failure_threshold, 5},
{health_probe_type, deep}
Elixir Example
config :reckon_db,
 health_probe_interval: 10_000,
 health_probe_timeout: 5_000,
 health_failure_threshold: 5,
 health_probe_type: :deep
Consistency Checking
Periodic consistency verification for cluster mode.
	Option	Type	Default	Description
	consistency_check_interval	integer	60000	Check interval in milliseconds

Erlang Example
{consistency_check_interval, 30000} %% 30 seconds
Elixir Example
config :reckon_db,
 consistency_check_interval: 30_000
Persistence
Controls periodic snapshot persistence to disk.
	Option	Type	Default	Description
	persistence_interval	integer	60000	Persistence interval in milliseconds

Erlang Example
{persistence_interval, 30000} %% 30 seconds
Elixir Example
config :reckon_db,
 persistence_interval: 30_000
Telemetry
Configure telemetry handlers for metrics and logging.
	Option	Type	Default	Description
	telemetry_handlers	list	[logger]	List of telemetry handlers

Available Handlers:
	logger - Logs events via OTP logger

Erlang Example
{telemetry_handlers, [logger]}
Elixir Example
config :reckon_db,
 telemetry_handlers: [:logger]
Complete Configuration Examples
Single Node Development
%% Erlang sys.config
[
 {reckon_db, [
 {stores, [
 {dev_store, [
 {data_dir, "/tmp/reckon_db/dev"},
 {mode, single}
]}
]},
 %% Small pools for development
 {writer_pool_size, 2},
 {reader_pool_size, 5},
 %% Fast feedback on issues
 {health_probe_interval, 2000},
 {health_failure_threshold, 1},
 %% Frequent persistence for testing
 {persistence_interval, 5000}
]}
].
Elixir config/dev.exs
config :reckon_db,
 stores: [
 dev_store: [
 data_dir: "/tmp/reckon_db/dev",
 mode: :single
]
],
 writer_pool_size: 2,
 reader_pool_size: 5,
 health_probe_interval: 2_000,
 health_failure_threshold: 1,
 persistence_interval: 5_000
Production Cluster
%% Erlang sys.config
[
 {reckon_db, [
 {stores, [
 {main_store, [
 {data_dir, "/bulk0/reckon_db/main"},
 {mode, cluster},
 {timeout, 10000},
 {writer_pool_size, 50},
 {reader_pool_size, 100},
 {gateway_pool_size, 5}
]}
]},
 %% Production health monitoring
 {health_probe_interval, 5000},
 {health_probe_timeout, 3000},
 {health_failure_threshold, 3},
 {health_probe_type, deep},
 %% Consistency and persistence
 {consistency_check_interval, 60000},
 {persistence_interval, 30000},
 %% Longer idle timeouts
 {reader_idle_timeout_ms, 300000},
 {writer_idle_timeout_ms, 300000}
]}
].
Elixir config/runtime.exs
config :reckon_db,
 stores: [
 main_store: [
 data_dir: "/bulk0/reckon_db/main",
 mode: :cluster,
 timeout: 10_000,
 writer_pool_size: 50,
 reader_pool_size: 100,
 gateway_pool_size: 5
]
],
 # Production health monitoring
 health_probe_interval: 5_000,
 health_probe_timeout: 3_000,
 health_failure_threshold: 3,
 health_probe_type: :deep,
 # Consistency and persistence
 consistency_check_interval: 60_000,
 persistence_interval: 30_000,
 # Longer idle timeouts
 reader_idle_timeout_ms: 300_000,
 writer_idle_timeout_ms: 300_000
Multi-Store Setup
Elixir config.exs - Multiple stores for different domains
config :reckon_db,
 stores: [
 # High-write orders store
 orders_store: [
 data_dir: "/bulk0/reckon_db/orders",
 mode: :cluster,
 writer_pool_size: 100,
 reader_pool_size: 50
],
 # Read-heavy analytics store
 analytics_store: [
 data_dir: "/bulk1/reckon_db/analytics",
 mode: :single,
 writer_pool_size: 5,
 reader_pool_size: 200
],
 # Low-volume user store
 users_store: [
 data_dir: "/bulk0/reckon_db/users",
 mode: :single,
 writer_pool_size: 10,
 reader_pool_size: 20
]
]
Cluster Mode Configuration
When running in cluster mode, additional Erlang VM configuration is needed.
vm.args
Node name (required for clustering)
-name store1@192.168.1.10

Cookie for cluster authentication
-setcookie my_cluster_cookie

Enable distribution
-proto_dist inet_tcp

Increase distribution buffer
+zdbbl 32768
Connecting Nodes
Cluster formation happens via Khepri/Ra. Use the API to join nodes:
%% On the joining node
reckon_db:join_cluster(my_store, 'store1@192.168.1.10').
Elixir
:reckon_db.join_cluster(:my_store, :"store1@192.168.1.10")
Data Directory Guidelines
Linux/Production
Store data on separate disk partitions for performance:
{data_dir, "/bulk0/reckon_db/my_store"}
Development
Use temp directory for ephemeral data:
{data_dir, "/tmp/reckon_db/dev_store"}
Docker/Container
Mount a volume for persistence:
volumes:
 - esdb_data:/var/lib/reckon_db
{data_dir, "/var/lib/reckon_db/my_store"}
Performance Tuning
High-Write Workloads
config :reckon_db,
 stores: [
 high_write: [
 writer_pool_size: 100, # Many concurrent writers
 reader_pool_size: 20, # Fewer readers needed
 mode: :cluster # Distribute writes
]
],
 persistence_interval: 60_000 # Less frequent persistence
High-Read Workloads
config :reckon_db,
 stores: [
 high_read: [
 writer_pool_size: 10, # Fewer writers needed
 reader_pool_size: 200, # Many concurrent readers
 mode: :cluster # Read from any replica
]
],
 reader_idle_timeout_ms: 600_000 # Keep readers alive longer
Low-Latency Requirements
config :reckon_db,
 stores: [
 low_latency: [
 timeout: 2_000, # Fast timeouts
 gateway_pool_size: 10 # More gateway workers
]
],
 health_probe_interval: 1_000, # Fast failure detection
 health_failure_threshold: 1 # Immediate failover
Telemetry Events
reckon-db emits telemetry events for monitoring:
	Event	Measurements	Metadata
	[reckon_db, append, start]	-	store_id, stream
	[reckon_db, append, stop]	duration	store_id, stream, count
	[reckon_db, append, exception]	duration	store_id, stream, reason
	[reckon_db, read, start]	-	store_id, stream
	[reckon_db, read, stop]	duration	store_id, stream, count
	[reckon_db, read, exception]	duration	store_id, stream, reason
	[reckon_db, health, probe]	latency	store_id, node, status
	[reckon_db, health, change]	-	store_id, node, old, new

Attaching Handlers
Elixir
:telemetry.attach_many(
 "reckon-db-metrics",
 [
 [:reckon_db, :append, :stop],
 [:reckon_db, :read, :stop],
 [:reckon_db, :health, :change]
],
 &MyApp.Metrics.handle_event/4,
 nil
)
%% Erlang
telemetry:attach_many(
 <<"reckon-db-metrics">>,
 [
 [reckon_db, append, stop],
 [reckon_db, read, stop],
 [reckon_db, health, change]
],
 fun my_metrics:handle_event/4,
 undefined
).
See Also
	Storage Internals - How data is stored
	Cluster Consistency - Consistency guarantees
	Memory Pressure - Memory management
	Snapshots - Snapshot configuration

 Memory Pressure Monitoring

Memory pressure monitoring enables adaptive behavior when system memory becomes constrained. This guide covers the monitoring architecture, pressure levels, and integration patterns.
Overview
The reckon_db_memory module provides:
	Function	Purpose
	start_link/0,1	Start the memory monitor
	level/0	Get current pressure level
	configure/1	Update thresholds
	on_pressure_change/1	Register callback
	remove_callback/1	Remove callback
	get_stats/0	Get memory statistics
	check_now/0	Force immediate check

Architecture
[image: Memory Pressure Levels]
Pressure Levels
	Level	Default Threshold	Description
	normal	< 70%	Full caching, all features enabled
	elevated	70-85%	Reduce cache sizes, flush more often
	critical	> 85%	Pause non-essential operations, aggressive cleanup

Starting the Monitor
Default Configuration
{ok, _Pid} = reckon_db_memory:start_link().
Custom Configuration
{ok, _Pid} = reckon_db_memory:start_link(#{
 elevated_threshold => 0.60, %% Trigger elevated at 60%
 critical_threshold => 0.80, %% Trigger critical at 80%
 check_interval => 5000 %% Check every 5 seconds
}).
Checking Pressure Level
Current Level
Level = reckon_db_memory:level(),
%% normal | elevated | critical
With Statistics
Stats = reckon_db_memory:get_stats(),
%% #{
%% level => normal,
%% memory_used => 2147483648, %% bytes
%% memory_total => 4294967296, %% bytes
%% last_check => 1735689600000, %% timestamp
%% callback_count => 3
%% }
Registering Callbacks
On Pressure Change
CallbackRef = reckon_db_memory:on_pressure_change(fun(Level) ->
 case Level of
 normal ->
 logger:info("Memory pressure normalized"),
 restore_full_functionality();
 elevated ->
 logger:warning("Memory pressure elevated"),
 reduce_cache_sizes();
 critical ->
 logger:error("Memory pressure critical!"),
 pause_non_essential_operations()
 end
end).
Removing Callback
ok = reckon_db_memory:remove_callback(CallbackRef).
Memory Detection
How Memory is Measured
The monitor uses memsup (SASL memory supervisor):
get_memory_info() ->
 MemData = memsup:get_system_memory_data(),
 case MemData of
 [] ->
 %% Fallback to erlang:memory()
 ErlangMem = erlang:memory(),
 Used = proplists:get_value(total, ErlangMem, 0),
 {Used, Used * 2};
 _ ->
 Total = proplists:get_value(total_memory, MemData, 0),
 Free = proplists:get_value(free_memory, MemData, 0),
 Cached = proplists:get_value(cached_memory, MemData, 0),
 Buffered = proplists:get_value(buffered_memory, MemData, 0),
 Available = Free + Cached + Buffered,
 Used = Total - Available,
 {Used, Total}
 end.
Available Memory Calculation
Available memory includes:
	Free memory
	Cached memory (can be reclaimed)
	Buffered memory (can be reclaimed)

This provides a more accurate picture than just free memory.
Integration Patterns
1. Subscription Backpressure
%% In reckon_db_emitter or subscription handler
init(State) ->
 CallbackRef = reckon_db_memory:on_pressure_change(fun(Level) ->
 gen_server:cast(self(), {memory_pressure, Level})
 end),
 {ok, State#{memory_callback => CallbackRef}}.

handle_cast({memory_pressure, critical}, State) ->
 %% Pause subscription delivery
 {noreply, State#{paused => true}};
handle_cast({memory_pressure, _}, State) ->
 %% Resume
 {noreply, State#{paused => false}}.
2. Cache Management
handle_info(check_cache, State) ->
 case reckon_db_memory:level() of
 critical ->
 ets:delete_all_objects(my_cache),
 logger:warning("Cache cleared due to memory pressure");
 elevated ->
 evict_oldest_entries(my_cache, 0.5); %% Evict 50%
 normal ->
 ok
 end,
 {noreply, State}.
3. Write Throttling
append_with_throttle(Store, Stream, Version, Events) ->
 case reckon_db_memory:level() of
 critical ->
 timer:sleep(100), %% Slow down writes
 append_with_throttle(Store, Stream, Version, Events);
 elevated ->
 timer:sleep(10), %% Minor throttle
 reckon_db_streams:append(Store, Stream, Version, Events);
 normal ->
 reckon_db_streams:append(Store, Stream, Version, Events)
 end.
Configuration
Dynamic Reconfiguration
ok = reckon_db_memory:configure(#{
 elevated_threshold => 0.75,
 critical_threshold => 0.90,
 check_interval => 15000
}).
Getting Current Config
Config = reckon_db_memory:get_config(),
%% #{
%% elevated_threshold => 0.70,
%% critical_threshold => 0.85,
%% check_interval => 10000
%% }
Forcing Checks
%% Force immediate memory check
CurrentLevel = reckon_db_memory:check_now().
Useful for:
	Testing pressure response
	After known memory-heavy operations
	Before starting large batch jobs

Telemetry
Pressure changes emit telemetry:
%% Event: [reckon_db, memory, pressure_changed]
%% Measurements:
%% #{usage_ratio => float()} %% 0.0 - 1.0
%% Metadata:
%% #{old_level => atom(), new_level => atom()}
Example Handler
telemetry:attach(
 <<"memory-pressure-handler">>,
 [reckon_db, memory, pressure_changed],
 fun(_Event, #{usage_ratio := Ratio}, #{old_level := Old, new_level := New}, _Config) ->
 logger:notice("Memory pressure: ~p -> ~p (~.1f%)",
 [Old, New, Ratio * 100])
 end,
 #{}
).
Cluster Considerations
Local Monitoring
Memory pressure is monitored locally on each node:
┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐
│ Node 1 │ │ Node 2 │ │ Node 3 │
│ ┌─────────────┐ │ │ ┌─────────────┐ │ │ ┌─────────────┐ │
│ │ Memory │ │ │ │ Memory │ │ │ │ Memory │ │
│ │ Monitor │ │ │ │ Monitor │ │ │ │ Monitor │ │
│ │ (normal) │ │ │ │ (elevated) │ │ │ │ (normal) │ │
│ └─────────────┘ │ │ └─────────────┘ │ │ └─────────────┘ │
└─────────────────┘ └─────────────────┘ └─────────────────┘
Each node manages its own memory pressure independently.
Cross-Node Awareness
For cluster-wide memory awareness, consider:
%% Broadcast pressure to other nodes
on_pressure_change(fun(Level) ->
 rpc:multicall(nodes(), my_module, handle_remote_pressure, [node(), Level])
end).
Best Practices
1. Register Early
%% In application start
start(_Type, _Args) ->
 {ok, _} = reckon_db_memory:start_link(),
 register_pressure_handlers(),
 ...
2. Graceful Degradation
%% Implement graceful degradation, not hard failures
handle_pressure(critical) ->
 %% Don't crash, just slow down
 reduce_batch_sizes(),
 increase_flush_intervals(),
 pause_optional_projections();
handle_pressure(elevated) ->
 %% Warning mode
 reduce_cache_ttls();
handle_pressure(normal) ->
 restore_defaults().
3. Monitor Recovery
%% Track recovery from pressure
handle_pressure_change(OldLevel, NewLevel) ->
 case {OldLevel, NewLevel} of
 {critical, elevated} ->
 logger:info("Memory recovering - still elevated");
 {critical, normal} ->
 logger:info("Memory fully recovered");
 {elevated, critical} ->
 logger:error("Memory degrading to critical");
 _ ->
 ok
 end.
4. Test Under Pressure
%% In tests, simulate pressure
test_critical_behavior() ->
 %% Force critical level
 meck:new(reckon_db_memory, [passthrough]),
 meck:expect(reckon_db_memory, level, fun() -> critical end),

 %% Test behavior
 ?assertEqual(expected_behavior, my_module:do_something()),

 meck:unload(reckon_db_memory).
SASL Configuration
For memsup to work, configure SASL:
%% In sys.config
{sasl, [
 {sasl_error_logger, {file, "log/sasl.log"}},
 {errlog_type, error}
]},
{os_mon, [
 {start_memsup, true},
 {memsup_system_only, false},
 {memory_check_interval, 60} %% OS check interval (seconds)
]}
See Also
	Subscriptions - Event subscription with backpressure
	Storage Internals - Khepri memory usage
	Scavenging - Free memory by removing old events

 Storage Internals

This guide covers the internal storage architecture of reckon-db, including Khepri path structures, data organization, and cluster replication behavior.
Overview
reckon-db uses Khepri as its storage layer. Khepri is a tree-like key-value store built on Ra (Raft consensus), providing:
	Strong consistency across cluster nodes
	Automatic replication
	Tree-structured data organization
	Efficient prefix queries

Architecture
[image: Khepri Storage Paths]
Khepri Path Structure
All data is organized under hierarchical paths:
[root]
├── [streams]
│ └── [StreamId]
│ └── [PaddedVersion] -> #event{}
├── [snapshots]
│ └── [StreamId]
│ └── [PaddedVersion] -> #snapshot{}
├── [subscriptions]
│ └── [SubscriptionName] -> #subscription{}
├── [schemas]
│ └── [StoreId]
│ └── [EventType] -> schema_map()
├── [links]
│ └── [StoreId]
│ └── [LinkName] -> #link{}
└── [metadata]
 └── [Key] -> Value
Streams Storage
Path Format
?STREAMS_PATH ++ [StreamId, PaddedVersion]
%% Example: [streams, <<"orders-123">>, <<"000000000042">>]
Version Padding
Versions are zero-padded to 12 characters for lexicographic ordering:
-define(VERSION_PADDING, 12).

pad_version(Version, Length) ->
 VersionStr = integer_to_list(Version),
 Padding = Length - length(VersionStr),
 PaddedStr = lists:duplicate(Padding, $0) ++ VersionStr,
 list_to_binary(PaddedStr).

%% Examples:
%% 0 -> <<"000000000000">>
%% 42 -> <<"000000000042">>
%% 999999999999 -> <<"999999999999">>
This supports up to 999,999,999,999 events per stream (~317 years at 100 events/sec).
Event Record
-record(event, {
 event_id :: binary(), %% UUID
 stream_id :: binary(), %% Stream identifier
 version :: non_neg_integer(), %% 0-indexed position
 event_type :: binary(), %% Event type name
 data :: map(), %% Event payload
 metadata :: map(), %% Event metadata
 epoch_us :: integer() %% Timestamp (microseconds since epoch)
}).
Reading Events
Events are read using Khepri path queries:
%% Read specific version
khepri:get(StoreId, [streams, StreamId, PaddedVersion]).

%% Read range of versions
Pattern = [streams, StreamId, ?KHEPRI_WILDCARD_STAR],
khepri:get_many(StoreId, Pattern).
Snapshots Storage
Path Format
?SNAPSHOTS_PATH ++ [StreamId, PaddedVersion]
%% Example: [snapshots, <<"orders-123">>, <<"000000000100">>]
Snapshot Record
-record(snapshot, {
 stream_id :: binary(),
 version :: non_neg_integer(), %% Event version this snapshot represents
 state :: term(), %% Serialized aggregate state
 metadata :: map(),
 created_at :: integer() %% Timestamp
}).
Latest Snapshot Query
%% Get all snapshots for a stream, sorted by version descending
Pattern = [snapshots, StreamId, ?KHEPRI_WILDCARD_STAR],
{ok, Snapshots} = khepri:get_many(StoreId, Pattern),
%% Sort by version descending to get latest first
Subscriptions Storage
Path Format
?SUBSCRIPTIONS_PATH ++ [SubscriptionName]
%% Example: [subscriptions, <<"my-projection">>]
Subscription Record
-record(subscription, {
 name :: binary(),
 type :: stream | event_type | event_pattern | event_payload,
 selector :: binary() | map(),
 handler :: pid() | function(),
 options :: map(),
 created_at :: integer()
}).
Schema Registry Storage
Path Format
?SCHEMAS_PATH ++ [StoreId, EventType]
%% Example: [schemas, my_store, <<"OrderPlaced">>]
Schema Structure
#{
 event_type => <<"OrderPlaced">>,
 version => 3,
 upcast_from => #{
 1 => fun(Data) -> ... end,
 2 => fun(Data) -> ... end
 },
 validator => fun(Data) -> ok | {error, Reason} end,
 description => <<"Current order event schema">>,
 registered_at => 1735689600000
}
Links Storage
Path Format
?LINKS_PATH ++ [StoreId, LinkName]
%% Example: [links, my_store, <<"high-value-orders">>]
Link Record
-record(link, {
 name :: binary(),
 source :: source_spec(),
 filter :: fun((event()) -> boolean()) | undefined,
 transform :: fun((event()) -> event()) | undefined,
 backfill :: boolean(),
 created_at :: integer(),
 status :: running | stopped | error,
 processed :: non_neg_integer(),
 last_event :: binary() | undefined
}).
Cluster Replication
Ra Consensus
All writes go through Raft consensus:
 Write Request
 │
 ▼
 ┌─────────┐
 │ Leader │ ◄─── All writes go here
 └────┬────┘
 │
 ┌────┴────┬────────┐
 │ │ │
 ▼ ▼ ▼
┌──────┐ ┌──────┐ ┌──────┐
│Follow│ │Follow│ │Follow│
│ 1 │ │ 2 │ │ 3 │
└──────┘ └──────┘ └──────┘
Consistency Guarantees
	Operation	Guarantee
	Write (append)	Strongly consistent (quorum)
	Read	Strongly consistent (from leader)
	Cross-stream	No transaction (best effort)

Failover Behavior
	Leader fails
	Ra elects new leader (typically < 1 second)
	Writes resume on new leader
	In-flight writes may need retry

Storage Operations
Writing Events
%% Append event
PaddedVersion = pad_version(Version, ?VERSION_PADDING),
Path = [streams, StreamId, PaddedVersion],
khepri:put(StoreId, Path, Event).
Reading Events
%% Read specific version
{ok, Event} = khepri:get(StoreId, [streams, StreamId, PaddedVersion]).

%% Read all events in stream
Pattern = [streams, StreamId, ?KHEPRI_WILDCARD_STAR],
{ok, EventsMap} = khepri:get_many(StoreId, Pattern).
Deleting Events (Scavenging)
%% Delete individual event
khepri:delete(StoreId, [streams, StreamId, PaddedVersion]).
Listing Streams
%% Get all stream IDs
Pattern = [streams, ?KHEPRI_WILDCARD_STAR],
{ok, StreamNodes} = khepri:get_many(StoreId, Pattern),
StreamIds = maps:keys(StreamNodes).
Memory Considerations
Khepri In-Memory
Khepri keeps data in memory for fast access:
	All paths and values are in memory
	Raft log is also in memory (up to snapshot interval)
	Consider total event size when planning capacity

Memory Estimation
%% Rough estimate per event
EventMemory = byte_size(term_to_binary(Event)),
TotalEvents = 1000000,
ApproxMemory = EventMemory * TotalEvents * 1.5, %% 1.5x for overhead
Reducing Memory
	Scavenging: Remove old events
	Snapshots: Enable state recovery without all events
	Archival: Move to cold storage before scavenging

Disk Persistence
Ra Snapshots
Ra periodically snapshots the Raft log to disk:
%% Default location
DataDir = application:get_env(ra, data_dir, "ra_data"),
%% Store-specific subdirectory
StoreDir = filename:join(DataDir, atom_to_list(StoreId)).
Snapshot Interval
Configure via Ra settings:
%% In sys.config
{ra, [
 {segment_max_entries, 65536}, %% Entries per segment
 {wal_max_size_bytes, 134217728} %% 128MB WAL size
]}
Querying Patterns
Prefix Queries
%% All events for a stream
[streams, <<"orders-123">>, ?KHEPRI_WILDCARD_STAR]

%% All snapshots for a stream
[snapshots, <<"orders-123">>, ?KHEPRI_WILDCARD_STAR]
Existence Checks
%% Check if stream exists
case khepri:exists(StoreId, [streams, StreamId]) of
 true -> stream_exists;
 false -> no_stream
end.
Conditional Updates
%% Optimistic concurrency via expected version
case khepri:get(StoreId, [streams, StreamId, PaddedExpectedVersion]) of
 {ok, _} ->
 %% Version exists, write next
 khepri:put(StoreId, [streams, StreamId, PaddedNextVersion], NewEvent);
 {error, {khepri, node_not_found, _}} ->
 {error, wrong_expected_version}
end.
Performance Tips
1. Batch Writes
%% Write multiple events in single Ra command
Events = [Event1, Event2, Event3],
khepri:transaction(StoreId, fun() ->
 lists:foreach(fun(E) ->
 khepri:put([streams, StreamId, pad_version(E#event.version)], E)
 end, Events)
end).
2. Use Snapshots
%% Avoid replaying thousands of events
{ok, Snapshot} = load_latest_snapshot(StoreId, StreamId),
{ok, NewEvents} = read_events_since(StoreId, StreamId, Snapshot#snapshot.version),
State = apply_events(Snapshot#snapshot.state, NewEvents).
3. Monitor Memory
%% Check Khepri memory usage
KhepriInfo = khepri:info(StoreId),
MemoryUsed = proplists:get_value(memory, KhepriInfo).
Troubleshooting
Common Issues
	Issue	Cause	Resolution
	Slow writes	No quorum	Check cluster health
	High memory	Too many events	Enable scavenging
	Stale reads	Reading during partition	Wait for partition heal

Diagnostic Commands
%% Cluster status
ra:members(StoreId).

%% Leader info
khepri:get_leader(StoreId).

%% Store statistics
khepri:info(StoreId).
See Also
	Temporal Queries - Time-based event retrieval
	Scavenging - Event lifecycle management
	Memory Pressure - Memory monitoring

 Cluster Consistency & Split-Brain Prevention

This guide covers reckon-db's cluster consistency mechanisms, split-brain detection, active health probing, and quorum management. These systems work together to ensure data integrity in distributed deployments.
Overview
Distributed event stores face fundamental challenges from the CAP theorem. reckon-db prioritizes Consistency and Partition tolerance, using Raft consensus via Khepri/Ra. However, network partitions can still cause split-brain scenarios that require detection and mitigation.
Architecture
[image: Consistency Checker Architecture]
The Split-Brain Problem
What is Split-Brain?
Split-brain occurs when network partitions cause nodes to form independent clusters, each believing it is the authoritative source. This can lead to:
	Divergent event streams - Different events written to the same stream on different partitions
	Lost events - Events written to minority partition may be discarded on merge
	Inconsistent state - Projections built from divergent streams

[image: Split-Brain Detection]
How reckon-db Prevents Split-Brain
	Raft Consensus - Khepri/Ra requires quorum for writes
	Deterministic Coordinator - Lowest node name becomes cluster coordinator
	Active Detection - Consistency checker identifies partition scenarios
	Health Probing - Fast detection of node failures

Consistency Checker
The reckon_db_consistency_checker module provides continuous cluster health verification.
Starting the Checker
%% Started automatically with store in cluster mode
%% Or manually configure check interval (default: 5000ms)
application:set_env(reckon_db, consistency_check_interval, 3000).
Consistency Status Levels
	Status	Description	Action Required
	healthy	All checks passing, full consensus	None
	degraded	Warnings present, but operational	Investigate
	split_brain	Nodes disagree on membership/leader	Critical - resolve partition
	no_quorum	Insufficient nodes for operations	Critical - restore nodes

Forcing Immediate Check
%% Force check and get result
Result = reckon_db_consistency_checker:check_now(my_store),
%% #{status => healthy,
%% checks => #{membership => ..., leader => ..., raft => ..., quorum => ...},
%% timestamp => 1703000000000,
%% duration_us => 1234}
Registering Status Callbacks
%% Get notified when status changes
CallbackRef = reckon_db_consistency_checker:on_status_change(my_store, fun(Status) ->
 case Status of
 healthy ->
 logger:info("Cluster health restored");
 degraded ->
 logger:warning("Cluster degraded - investigate"),
 alert_ops_team(degraded);
 split_brain ->
 logger:error("SPLIT-BRAIN DETECTED!"),
 emergency_alert(split_brain),
 pause_writes();
 no_quorum ->
 logger:error("Quorum lost - operations unavailable"),
 emergency_alert(no_quorum)
 end
end).

%% Remove callback when done
reckon_db_consistency_checker:remove_callback(my_store, CallbackRef).
Verification Checks
1. Membership Consensus
Verifies all nodes agree on cluster membership.
{ok, Result} = reckon_db_consistency_checker:verify_membership_consensus(my_store).
%% #{status => consensus,
%% nodes_checked => 3,
%% nodes_responded => 3,
%% failed_nodes => [],
%% consistent_view => [{my_store, 'node1@host'}, ...]}

%% Or if split-brain detected:
%% #{status => split_brain,
%% conflicting_views => 2,
%% views => #{'node1@host' => [...], 'node2@host' => [...]}}
2. Leader Consensus
Verifies all nodes agree on the current Raft leader.
{ok, Result} = reckon_db_consistency_checker:verify_leader_consensus(my_store).
%% #{status => consensus,
%% leader => 'node1@host',
%% nodes_checked => 3,
%% nodes_responded => 3}

%% Or if disagreement:
%% #{status => no_consensus,
%% leaders_reported => ['node1@host', 'node2@host']}
3. Raft Log Consistency
Verifies follower nodes have consistent Raft log state.
{ok, Result} = reckon_db_consistency_checker:verify_raft_consistency(my_store).
%% #{status => consensus,
%% leader => 'node1@host',
%% terms => [5],
%% terms_consistent => true,
%% commit_index_range => {100, 102},
%% max_commit_lag => 2}
4. Quorum Status
Checks if sufficient nodes are available for operations.
{ok, Result} = reckon_db_consistency_checker:get_quorum_status(my_store).
%% #{has_quorum => true,
%% total_nodes => 3,
%% available_nodes => 3,
%% required_quorum => 2,
%% quorum_margin => 1,
%% can_lose => 1}
Health Probing
The reckon_db_health_prober module implements active health checks for faster failure detection.
[image: Health Probing Flow]
Why Active Probing?
Passive monitoring via net_kernel:monitor_nodes/1 can take 60+ seconds to detect failures (depending on net_ticktime). Active probing provides:
	Faster detection - Configurable intervals (default: 2 seconds)
	Failure threshold - Avoid false positives from transient issues
	Recovery detection - Know when failed nodes come back

Probe Types
	Type	Speed	Depth	Use Case
	ping	Fastest	Shallow	Network connectivity only
	rpc	Medium	Medium	Process responsiveness
	khepri	Slowest	Deepest	Store health verification

Configuring the Prober
%% In sys.config
{reckon_db, [
 {health_probe_interval, 2000}, %% 2 seconds between probes
 {health_probe_timeout, 1000}, %% 1 second timeout per probe
 {health_failure_threshold, 3}, %% 3 failures before declaring failed
 {health_probe_type, rpc} %% rpc probe type
]}

%% Or dynamically
reckon_db_health_prober:configure(my_store, #{
 probe_interval => 1000,
 failure_threshold => 2
}).
Node Status
%% Check specific node
{ok, Status} = reckon_db_health_prober:get_node_status(my_store, 'node2@host').
%% healthy | suspect | failed | unknown

%% Check all nodes
AllStatus = reckon_db_health_prober:get_all_status(my_store).
%% #{'node2@host' => healthy, 'node3@host' => suspect}
Failure and Recovery Callbacks
%% Get notified when nodes fail
FailedRef = reckon_db_health_prober:on_node_failed(my_store, fun(Node) ->
 logger:error("Node ~p failed health checks", [Node]),
 remove_from_load_balancer(Node)
end).

%% Get notified when nodes recover
RecoveredRef = reckon_db_health_prober:on_node_recovered(my_store, fun(Node) ->
 logger:info("Node ~p recovered", [Node]),
 add_to_load_balancer(Node)
end).
Quorum Management
Understanding Quorum
Raft consensus requires a majority (quorum) of nodes to agree on operations:
	Cluster Size	Quorum Required	Nodes Can Fail
	1	1	0
	2	2	0
	3	2	1
	4	3	1
	5	3	2
	7	4	3

Recommendation: Use odd-numbered clusters (3, 5, 7) for optimal fault tolerance.
Quorum Loss Behavior
When quorum is lost:
	Writes blocked - Cannot append events
	Reads may work - If local data available (stale)
	Subscriptions pause - No new events delivered

%% Check before critical operations
case reckon_db_consistency_checker:get_quorum_status(my_store) of
 {ok, #{has_quorum := true, can_lose := N}} ->
 logger:info("Quorum healthy, can lose ~p more nodes", [N]),
 proceed_with_operation();
 {ok, #{has_quorum := false}} ->
 logger:error("No quorum - operation blocked"),
 {error, no_quorum}
end.
Integration Patterns
1. Startup Verification
%% In application startup
start_link() ->
 {ok, Pid} = reckon_db:start_store(my_store, #{mode => cluster}),

 %% Wait for cluster health before accepting traffic
 case wait_for_healthy(my_store, 30000) of
 ok ->
 logger:info("Store healthy, accepting traffic"),
 {ok, Pid};
 {error, Reason} ->
 logger:error("Store unhealthy: ~p", [Reason]),
 {error, cluster_unhealthy}
 end.

wait_for_healthy(StoreId, Timeout) ->
 Deadline = erlang:monotonic_time(millisecond) + Timeout,
 wait_for_healthy_loop(StoreId, Deadline).

wait_for_healthy_loop(StoreId, Deadline) ->
 case reckon_db_consistency_checker:get_status(StoreId) of
 {ok, healthy} ->
 ok;
 {ok, Status} ->
 Now = erlang:monotonic_time(millisecond),
 case Now < Deadline of
 true ->
 timer:sleep(1000),
 wait_for_healthy_loop(StoreId, Deadline);
 false ->
 {error, {timeout, Status}}
 end;
 {error, not_running} ->
 timer:sleep(500),
 wait_for_healthy_loop(StoreId, Deadline)
 end.
2. Load Balancer Integration
%% Remove unhealthy nodes from load balancer
init([]) ->
 reckon_db_health_prober:on_node_failed(my_store, fun(Node) ->
 haproxy_api:disable_server(Node)
 end),
 reckon_db_health_prober:on_node_recovered(my_store, fun(Node) ->
 haproxy_api:enable_server(Node)
 end),
 {ok, #state{}}.
3. Circuit Breaker Pattern
-record(state, {
 circuit :: closed | open | half_open,
 failures :: non_neg_integer(),
 last_attempt :: integer()
}).

handle_call({append, Stream, Events}, From, #state{circuit = open} = State) ->
 %% Check if should try again
 case should_retry(State) of
 true ->
 try_append(Stream, Events, From, State#state{circuit = half_open});
 false ->
 {reply, {error, circuit_open}, State}
 end;

handle_call({append, Stream, Events}, From, State) ->
 try_append(Stream, Events, From, State).

try_append(Stream, Events, _From, State) ->
 case reckon_db_consistency_checker:get_status(my_store) of
 {ok, healthy} ->
 Result = reckon_db_streams:append(my_store, Stream, any, Events),
 {reply, Result, State#state{circuit = closed, failures = 0}};
 {ok, Status} when Status =:= split_brain; Status =:= no_quorum ->
 NewState = State#state{
 circuit = open,
 failures = State#state.failures + 1,
 last_attempt = erlang:monotonic_time(millisecond)
 },
 {reply, {error, {cluster_unhealthy, Status}}, NewState};
 _ ->
 {reply, {error, status_unknown}, State}
 end.
Telemetry Events
Consistency Checker Events
%% Check completed
[reckon_db, consistency, check, complete]
%% Measurements: #{duration_us => integer()}
%% Metadata: #{store_id => atom(), status => atom(), checks => map()}

%% Status changed
[reckon_db, consistency, status, changed]
%% Measurements: #{system_time => integer()}
%% Metadata: #{store_id => atom(), old_status => atom(), new_status => atom()}

%% Split-brain detected
[reckon_db, consistency, split_brain, detected]
%% Measurements: #{system_time => integer()}
%% Metadata: #{store_id => atom(), result => map()}
Health Prober Events
%% Probe cycle completed
[reckon_db, health, probe, complete]
%% Measurements: #{duration_us => integer(), success_count => integer(), failure_count => integer()}
%% Metadata: #{store_id => atom()}

%% Node declared failed
[reckon_db, health, node, failed]
%% Measurements: #{system_time => integer(), consecutive_failures => integer()}
%% Metadata: #{store_id => atom(), node => node()}

%% Node recovered
[reckon_db, health, node, recovered]
%% Measurements: #{system_time => integer()}
%% Metadata: #{store_id => atom(), node => node()}
Example Telemetry Handler
setup_telemetry() ->
 telemetry:attach_many(
 <<"cluster-health-handler">>,
 [
 [reckon_db, consistency, split_brain, detected],
 [reckon_db, health, node, failed]
],
 fun handle_cluster_event/4,
 #{}
).

handle_cluster_event([reckon_db, consistency, split_brain, detected],
 _Measurements, #{store_id := StoreId}, _Config) ->
 pagerduty:trigger(#{
 severity => critical,
 summary => io_lib:format("Split-brain detected in ~p", [StoreId])
 });

handle_cluster_event([reckon_db, health, node, failed],
 #{consecutive_failures := Failures},
 #{store_id := StoreId, node := Node}, _Config) ->
 prometheus_counter:inc(node_failures_total, [StoreId, Node]),
 slack:post(ops_channel,
 io_lib:format("Node ~p failed after ~p probes", [Node, Failures])).
Troubleshooting
Common Issues
	Symptom	Likely Cause	Resolution
	Frequent degraded status	Network latency	Increase probe timeout
	no_quorum after restart	Nodes not discovered	Check UDP multicast
	split_brain detected	Network partition	Identify partition, restore connectivity
	Slow recovery detection	High failure threshold	Reduce threshold (with caution)

Diagnostic Commands
%% Full cluster status
{ok, Result} = reckon_db_consistency_checker:check_now(my_store).
io:format("Status: ~p~n", [maps:get(status, Result)]).
io:format("Checks: ~p~n", [maps:get(checks, Result)]).

%% Node health details
AllStatus = reckon_db_health_prober:get_all_status(my_store).
maps:foreach(fun(Node, Status) ->
 io:format(" ~p: ~p~n", [Node, Status])
end, AllStatus).

%% Quorum margin
{ok, Quorum} = reckon_db_consistency_checker:get_quorum_status(my_store).
io:format("Can lose ~p more nodes~n", [maps:get(can_lose, Quorum)]).
Recovery Procedures
Split-Brain Recovery
	Identify partitioned nodes - Check which nodes are in each partition
	Stop minority partition - Gracefully stop nodes in smaller partition
	Restore connectivity - Fix network issues
	Restart stopped nodes - They will rejoin and sync from majority
	Verify consistency - Check events weren't lost

%% After recovery, force verification
Result = reckon_db_consistency_checker:check_now(my_store),
case maps:get(status, Result) of
 healthy -> logger:info("Recovery successful");
 Other -> logger:error("Still unhealthy: ~p", [Other])
end.
Configuration Reference
Consistency Checker
	Setting	Default	Description
	consistency_check_interval	5000	Milliseconds between checks
	(minimum enforced)	1000	Minimum allowed interval

Health Prober
	Setting	Default	Description
	health_probe_interval	2000	Milliseconds between probe cycles
	health_probe_timeout	1000	Timeout for each probe (ms)
	health_failure_threshold	3	Consecutive failures before failed
	health_probe_type	rpc	Probe type: ping, rpc, or khepri

Academic References
	Ongaro, D. and Ousterhout, J. (2014). In Search of an Understandable Consensus Algorithm (Raft). USENIX ATC 2014.
	Brewer, E. (2012). CAP Twelve Years Later: How the "Rules" Have Changed. IEEE Computer, 45(2), 23-29.
	Kleppmann, M. (2017). Designing Data-Intensive Applications. O'Reilly Media. Chapter 9: Consistency and Consensus.

See Also
	Storage Internals - Khepri/Ra replication details
	Memory Pressure - Resource management
	Subscriptions - Event delivery in clusters

esdb_aggregate_nif

Optimized event aggregation operations for reckon-db.
This module provides high-performance event aggregation implementations:
	aggregate_events: Bulk fold with tagged value semantics
	sum_field: Vectorized sum accumulation for numeric fields
	count_where: Count events matching a condition
	merge_tagged_batch: Batch map merge with tagged values

The mode is automatically detected at startup based on whether the NIF library is available. Community edition users (hex.pm) will always use the Erlang fallbacks, which provide identical functionality.
[bookmark: Tagged_Value_Semantics]Tagged Value Semantics
Tagged values control how fields are aggregated:
	{sum, N}: Add N to the current value (numeric accumulation)
	{overwrite, V}: Replace current value with V
	Plain value: Replace current value (default behavior)

[bookmark: Usage]Usage
 %% Aggregate events with tagged value semantics
 Events = [#{amount => {sum, 100}}, #{amount => {sum, 50}}],
 Result = esdb_aggregate_nif:aggregate_events(Events, #{}, true),
 #{amount := 150} = Result.

 %% Sum a specific field across all events
 Total = esdb_aggregate_nif:sum_field(Events, amount).

 %% Check which mode is active
 nif = esdb_aggregate_nif:implementation(). %% Enterprise
 erlang = esdb_aggregate_nif:implementation(). %% Community

 Summary

 Functions

 aggregate_events(Events, InitialState, Finalize)

 Aggregate a list of events with tagged value semantics.

 aggregation_stats(Events)

 Get statistics about event aggregation.

 count_where(Events, Field, Value)

 Count events matching a simple field condition.

 finalize(TaggedMap)

 Finalize a tagged map by unwrapping all tagged values.

 implementation()

 Get the current implementation mode.

 is_nif_loaded()

 Check if the NIF is loaded (Enterprise mode).

 merge_tagged_batch(Pairs, State)

 Merge a batch of key-value pairs into a state map.

 sum_field(Events, Field)

 Sum a specific field across all events.

 Functions

 aggregate_events(Events, InitialState, Finalize)

 -spec aggregate_events(Events :: [map()], InitialState :: map(), Finalize :: boolean()) -> map().

Aggregate a list of events with tagged value semantics.
Processes events in order, applying tagged value rules: - {sum, N} adds N to the current value - {overwrite, V} replaces the current value with V - Plain values replace the current value
If Finalize is true, the result will have tagged values unwrapped.

 aggregation_stats(Events)

 -spec aggregation_stats(Events :: [map()]) -> map().

Get statistics about event aggregation.
Returns counts and basic metrics about the event list.

 count_where(Events, Field, Value)

 -spec count_where(Events :: [map()], Field :: atom() | binary(), Value :: term()) -> non_neg_integer().

Count events matching a simple field condition.
Returns the number of events where the specified field equals the expected value.

 finalize(TaggedMap)

 -spec finalize(TaggedMap :: map()) -> map().

Finalize a tagged map by unwrapping all tagged values.
Converts {sum, N} to N and {overwrite, V} to V.

 implementation()

 -spec implementation() -> nif | erlang.

Get the current implementation mode.

 is_nif_loaded()

 -spec is_nif_loaded() -> boolean().

Check if the NIF is loaded (Enterprise mode).

 merge_tagged_batch(Pairs, State)

 -spec merge_tagged_batch(Pairs :: [{term(), term()}], State :: map()) -> map().

Merge a batch of key-value pairs into a state map.
Applies tagged value semantics to each pair.

 sum_field(Events, Field)

 -spec sum_field(Events :: [map()], Field :: atom() | binary()) -> number().

Sum a specific field across all events.
Efficiently accumulates numeric values from a named field. Handles tagged values ({sum, N}) and plain numeric values.

esdb_archive_nif

Optimized archive compression for reckon-db.
This module provides high-performance compression implementations:
	LZ4: Fastest compression/decompression (real-time use)
	Zstd: Best compression ratio (cold storage)
	Zlib: Standard compatibility (Erlang term_to_binary)

The mode is automatically detected at startup based on whether the NIF library is available. Community edition users (hex.pm) will always use the Erlang fallbacks, which provide identical functionality.
[bookmark: Algorithm_Selection]Algorithm Selection
| Algorithm | Speed | Ratio | Use Case | |-----------|-------|-------|----------| | LZ4 | Fastest | ~2.5:1 | Hot archives, real-time | | Zstd | Fast | ~4:1 | Cold archives, storage | | Zlib | Moderate | ~3:1 | Compatibility |
[bookmark: Usage]Usage
 %% Compress with LZ4 (fastest)
 {ok, Compressed} = esdb_archive_nif:compress(Data, lz4).

 %% Compress with Zstd level 3 (good balance)
 {ok, Compressed} = esdb_archive_nif:compress(Data, zstd, 3).

 %% Decompress
 {ok, Original} = esdb_archive_nif:decompress(Compressed, lz4).

 %% Check which mode is active
 nif = esdb_archive_nif:implementation(). %% Enterprise
 erlang = esdb_archive_nif:implementation(). %% Community

 Summary

 Functions

 compress(Data, Algorithm)

 Compress data with specified algorithm using default level.

 compress(Data, Algorithm, Level)

 Compress data with specified algorithm and compression level.

 compress_lz4(Data)

 Compress data using LZ4 (fastest).

 compress_zlib(Data)

 Compress data using Zlib with default level.

 compress_zlib(Data, Level)

 Compress data using Zlib with specified level (0-9).

 compress_zstd(Data)

 Compress data using Zstd with default level.

 compress_zstd(Data, Level)

 Compress data using Zstd with specified level (1-22).

 compression_stats(Data, Algorithm)

 Get compression statistics for data with algorithm.

 compression_stats(Data, Algorithm, Level)

 Get compression statistics with specified level.

 decompress(Data, Algorithm)

 Decompress data with specified algorithm.

 decompress_lz4(Data)

 Decompress LZ4-compressed data.

 decompress_zlib(Data)

 Decompress Zlib-compressed data.

 decompress_zstd(Data)

 Decompress Zstd-compressed data.

 implementation()

 Get the current implementation mode.

 is_nif_loaded()

 Check if the NIF is loaded (Enterprise mode).

 Functions

 compress(Data, Algorithm)

 -spec compress(Data :: binary(), Algorithm :: lz4 | zstd | zlib) -> {ok, binary()} | {error, term()}.

Compress data with specified algorithm using default level.

 compress(Data, Algorithm, Level)

 -spec compress(Data :: binary(), Algorithm :: lz4 | zstd | zlib, Level :: integer()) ->
 {ok, binary()} | {error, term()}.

Compress data with specified algorithm and compression level.

 compress_lz4(Data)

 -spec compress_lz4(Data :: binary()) -> {ok, binary()} | {error, term()}.

Compress data using LZ4 (fastest).

 compress_zlib(Data)

 -spec compress_zlib(Data :: binary()) -> {ok, binary()} | {error, term()}.

Compress data using Zlib with default level.

 compress_zlib(Data, Level)

 -spec compress_zlib(Data :: binary(), Level :: integer()) -> {ok, binary()} | {error, term()}.

Compress data using Zlib with specified level (0-9).

 compress_zstd(Data)

 -spec compress_zstd(Data :: binary()) -> {ok, binary()} | {error, term()}.

Compress data using Zstd with default level.

 compress_zstd(Data, Level)

 -spec compress_zstd(Data :: binary(), Level :: integer()) -> {ok, binary()} | {error, term()}.

Compress data using Zstd with specified level (1-22).

 compression_stats(Data, Algorithm)

 -spec compression_stats(Data :: binary(), Algorithm :: lz4 | zstd | zlib) ->
 {ok,
 #{original_size := integer(),
 compressed_size := integer(),
 ratio := float()}} |
 {error, term()}.

Get compression statistics for data with algorithm.

 compression_stats(Data, Algorithm, Level)

 -spec compression_stats(Data :: binary(), Algorithm :: lz4 | zstd | zlib, Level :: integer()) ->
 {ok,
 #{original_size := integer(),
 compressed_size := integer(),
 ratio := float()}} |
 {error, term()}.

Get compression statistics with specified level.

 decompress(Data, Algorithm)

 -spec decompress(Data :: binary(), Algorithm :: lz4 | zstd | zlib) -> {ok, binary()} | {error, term()}.

Decompress data with specified algorithm.

 decompress_lz4(Data)

 -spec decompress_lz4(Data :: binary()) -> {ok, binary()} | {error, term()}.

Decompress LZ4-compressed data.

 decompress_zlib(Data)

 -spec decompress_zlib(Data :: binary()) -> {ok, binary()} | {error, term()}.

Decompress Zlib-compressed data.

 decompress_zstd(Data)

 -spec decompress_zstd(Data :: binary()) -> {ok, binary()} | {error, term()}.

Decompress Zstd-compressed data.

 implementation()

 -spec implementation() -> nif | erlang.

Get the current implementation mode.

 is_nif_loaded()

 -spec is_nif_loaded() -> boolean().

Check if the NIF is loaded (Enterprise mode).

esdb_capability_verifier

Server-side capability token verification for reckon-db.
Verifies UCAN-inspired capability tokens for authorization decisions. Tokens are created client-side (reckon-gater) and verified server-side here.
Verification steps:
	Decode token (JWT or binary format, auto-detected)
	Verify Ed25519 signature using issuer's public key from DID
	Check token is not expired (exp less than now)
	Check token is active (nbf less than or equal to now, if present)
	Check token is not revoked (via gossip list)
	Match resource URI against request
	Match action against permitted actions

See also: esdb_capability, esdb_identity.

 Summary

 Types

 capability/0

 capability_error/0

 capability_grant/0

 verification_result/0

 verify_opts/0

 Functions

 authorize(Token, Resource, Action)

 Authorize a request with a capability token

 authorize(Token, Resource, Action, Opts)

 Authorize a request with options

 check_permission(Capability, Resource, Action)

 Check if a verified capability grants permission for resource/action

 extract_token_cid(Capability)

 Extract a content-addressed identifier for a token

 is_revoked(TokenCID)

 Check if a token CID is revoked

 verify(Token)

 Verify a capability token

 verify(Token, Opts)

 Verify a capability token with options

 Types

 capability/0

 -type capability() ::
 #capability{alg :: binary(),
 typ :: binary(),
 iss :: binary(),
 aud :: binary(),
 nbf :: integer() | undefined,
 exp :: integer(),
 iat :: integer(),
 nnc :: binary(),
 att :: [capability_grant()],
 fct :: map(),
 prf :: [binary()],
 sig :: binary() | undefined}.

 capability_error/0

 -type capability_error() ::
 {invalid_signature, binary()} |
 {expired, integer()} |
 {not_yet_valid, integer()} |
 {revoked, binary()} |
 {invalid_delegation, binary()} |
 {insufficient_permissions, binary()} |
 {invalid_resource, binary()} |
 {invalid_action, binary()} |
 {parse_error, term()}.

 capability_grant/0

 -type capability_grant() :: #{with := binary(), can := binary()}.

 verification_result/0

 -type verification_result() ::
 #verification_result{capability :: capability(),
 issuer_chain :: [binary()],
 resource :: binary(),
 action :: binary(),
 verified_at :: integer()}.

 verify_opts/0

 -type verify_opts() :: #{skip_signature => boolean(), skip_revocation => boolean(), now => integer()}.

 Functions

 authorize(Token, Resource, Action)

 -spec authorize(binary(), binary(), binary()) ->
 {ok, verification_result()} | {error, capability_error()}.

Authorize a request with a capability token
Verifies the token AND checks it grants permission for the specified resource and action.

 authorize(Token, Resource, Action, Opts)

 -spec authorize(binary(), binary(), binary(), verify_opts()) ->
 {ok, verification_result()} | {error, capability_error()}.

Authorize a request with options

 check_permission(Capability, Resource, Action)

 -spec check_permission(capability(), binary(), binary()) -> ok | {error, capability_error()}.

Check if a verified capability grants permission for resource/action
The capability should already be verified (signature, expiration). This function only checks the grants against the requested resource/action.

 extract_token_cid(Capability)

 -spec extract_token_cid(capability()) -> binary().

Extract a content-addressed identifier for a token
Uses SHA-256 hash of the token's core fields (excluding signature). This CID can be used for revocation.

 is_revoked(TokenCID)

 -spec is_revoked(binary()) -> boolean().

Check if a token CID is revoked
Currently returns false (not revoked) as revocation gossip is not yet implemented. This will be integrated with a gossip-based revocation list in Phase 4.

 verify(Token)

 -spec verify(binary()) -> {ok, capability()} | {error, capability_error()}.

Verify a capability token
Decodes the token and verifies: - Signature is valid (Ed25519) - Token is not expired - Token is not revoked
Does NOT check permissions against a specific resource/action. Use authorize/3 for full authorization.

 verify(Token, Opts)

 -spec verify(binary(), verify_opts()) -> {ok, capability()} | {error, capability_error()}.

Verify a capability token with options

esdb_crypto_nif

Optimized cryptographic operations for reckon-db.
This module provides high-performance implementations of cryptographic operations used throughout reckon-db. It supports two modes:
	Enterprise mode: Uses Rust NIFs for maximum performance
	Community mode: Uses pure Erlang fallbacks (fully functional)

The mode is automatically detected at startup based on whether the NIF library is available. Community edition users (hex.pm) will always use the Erlang fallbacks, which provide identical functionality.
[bookmark: Usage]Usage
All functions work identically regardless of which implementation is active:
 %% Verify Ed25519 signature
 true = esdb_crypto_nif:verify_ed25519(Message, Signature, PublicKey).

 %% Generate token CID (SHA256 + base64)
 CID = esdb_crypto_nif:hash_sha256_base64(Data).

 %% Check which mode is active
 true = esdb_crypto_nif:is_nif_loaded(). %% Enterprise
 false = esdb_crypto_nif:is_nif_loaded(). %% Community

 Summary

 Functions

 base64_decode_urlsafe(Data)

 Decode URL-safe base64 string.

 base64_encode_urlsafe(Data)

 Encode binary as URL-safe base64 (no padding).

 hash_sha256(Data)

 Compute SHA-256 hash.

 hash_sha256_base64(Data)

 Compute SHA-256 hash and encode as URL-safe base64.

 implementation()

 Get the current implementation mode.

 is_nif_loaded()

 Check if the NIF is loaded (Enterprise mode).

 secure_compare(A, B)

 Constant-time comparison of two binaries.

 verify_ed25519(Message, Signature, PublicKey)

 Verify an Ed25519 signature.

 Functions

 base64_decode_urlsafe(Data)

 -spec base64_decode_urlsafe(Data :: binary()) -> {ok, binary()} | {error, invalid_base64}.

Decode URL-safe base64 string.
Returns {ok, Binary} on success, {error, invalid_base64} on failure.

 base64_encode_urlsafe(Data)

 -spec base64_encode_urlsafe(Data :: binary()) -> binary().

Encode binary as URL-safe base64 (no padding).

 hash_sha256(Data)

 -spec hash_sha256(Data :: binary()) -> binary().

Compute SHA-256 hash.
Returns a 32-byte binary containing the SHA-256 hash of the input.

 hash_sha256_base64(Data)

 -spec hash_sha256_base64(Data :: binary()) -> binary().

Compute SHA-256 hash and encode as URL-safe base64.
This is optimized for token CID generation - combines hash + encode in a single call to avoid intermediate allocations.
Returns a URL-safe base64 string (no padding).

 implementation()

 -spec implementation() -> nif | erlang.

Get the current implementation mode.
Returns nif for Enterprise mode or erlang for Community mode.

 is_nif_loaded()

 -spec is_nif_loaded() -> boolean().

Check if the NIF is loaded (Enterprise mode).
Returns true if running in Enterprise mode with NIF optimizations, false if running in Community mode with pure Erlang.

 secure_compare(A, B)

 -spec secure_compare(A :: binary(), B :: binary()) -> boolean().

Constant-time comparison of two binaries.
This is important for security - prevents timing attacks when comparing signatures, hashes, or tokens. Always takes the same amount of time regardless of where the difference is (if any).
Returns true if equal, false otherwise.

 verify_ed25519(Message, Signature, PublicKey)

 -spec verify_ed25519(Message :: binary(), Signature :: binary(), PublicKey :: binary()) -> boolean().

Verify an Ed25519 signature.
This function verifies that a signature was created by the private key corresponding to the given public key.
Arguments:
	Message - The original message that was signed (binary)
	Signature - The 64-byte Ed25519 signature (binary)
	PublicKey - The 32-byte Ed25519 public key (binary)

Returns true if valid, false otherwise.

esdb_filter_nif

Optimized pattern matching and filtering operations for reckon-db.
This module provides high-performance pattern matching implementations:
	Wildcard matching: Fast * and ? pattern matching
	Regex matching: Compiled regex pattern matching
	Prefix/Suffix matching: Optimized start/end checks
	Batch filtering: Filter lists by patterns efficiently

The mode is automatically detected at startup based on whether the NIF library is available. Community edition users (hex.pm) will always use the Erlang fallbacks, which provide identical functionality.
[bookmark: Wildcard_Patterns]Wildcard Patterns
Wildcards supported:
	* matches any sequence of characters (including empty)
	? matches any single character

[bookmark: Usage]Usage
 %% Check if a stream matches a pattern
 true = esdb_filter_nif:wildcard_match(<<"orders-123">>, <<"orders-*">>).

 %% Filter streams by pattern
 Matching = esdb_filter_nif:filter_by_wildcard(Streams, <<"user-*">>).

 %% Check which mode is active
 nif = esdb_filter_nif:implementation(). %% Enterprise
 erlang = esdb_filter_nif:implementation(). %% Community

 Summary

 Functions

 count_matches(Items, Pattern)

 Count items matching a wildcard pattern.

 filter_by_prefix(Items, Prefix)

 Filter a list of binaries by prefix.

 filter_by_regex(Items, RegexPattern)

 Filter a list of binaries by regex pattern.

 filter_by_suffix(Items, Suffix)

 Filter a list of binaries by suffix.

 filter_by_wildcard(Items, Pattern)

 Filter a list of binaries by wildcard pattern.

 has_prefix(Text, Prefix)

 Check if a string has a specific prefix.

 has_suffix(Text, Suffix)

 Check if a string has a specific suffix.

 implementation()

 Get the current implementation mode.

 is_nif_loaded()

 Check if the NIF is loaded (Enterprise mode).

 is_valid_regex(Pattern)

 Validate that a pattern is a valid regex.

 match_indices(Items, Pattern)

 Return indices of items matching a wildcard pattern.

 regex_match(Text, RegexPattern)

 Check if a string matches a regex pattern.

 wildcard_match(Text, Pattern)

 Check if a string matches a wildcard pattern.

 wildcard_to_regex(Pattern)

 Convert a wildcard pattern to a regex pattern.

 Functions

 count_matches(Items, Pattern)

 -spec count_matches(Items :: [binary()], Pattern :: binary()) -> non_neg_integer().

Count items matching a wildcard pattern.

 filter_by_prefix(Items, Prefix)

 -spec filter_by_prefix(Items :: [binary()], Prefix :: binary()) -> [binary()].

Filter a list of binaries by prefix.

 filter_by_regex(Items, RegexPattern)

 -spec filter_by_regex(Items :: [binary()], RegexPattern :: binary()) -> [binary()].

Filter a list of binaries by regex pattern.

 filter_by_suffix(Items, Suffix)

 -spec filter_by_suffix(Items :: [binary()], Suffix :: binary()) -> [binary()].

Filter a list of binaries by suffix.

 filter_by_wildcard(Items, Pattern)

 -spec filter_by_wildcard(Items :: [binary()], Pattern :: binary()) -> [binary()].

Filter a list of binaries by wildcard pattern.

 has_prefix(Text, Prefix)

 -spec has_prefix(Text :: binary(), Prefix :: binary()) -> boolean().

Check if a string has a specific prefix.

 has_suffix(Text, Suffix)

 -spec has_suffix(Text :: binary(), Suffix :: binary()) -> boolean().

Check if a string has a specific suffix.

 implementation()

 -spec implementation() -> nif | erlang.

Get the current implementation mode.

 is_nif_loaded()

 -spec is_nif_loaded() -> boolean().

Check if the NIF is loaded (Enterprise mode).

 is_valid_regex(Pattern)

 -spec is_valid_regex(Pattern :: binary()) -> boolean().

Validate that a pattern is a valid regex.

 match_indices(Items, Pattern)

 -spec match_indices(Items :: [binary()], Pattern :: binary()) -> [non_neg_integer()].

Return indices of items matching a wildcard pattern.

 regex_match(Text, RegexPattern)

 -spec regex_match(Text :: binary(), RegexPattern :: binary()) -> boolean().

Check if a string matches a regex pattern.

 wildcard_match(Text, Pattern)

 -spec wildcard_match(Text :: binary(), Pattern :: binary()) -> boolean().

Check if a string matches a wildcard pattern.

 wildcard_to_regex(Pattern)

 -spec wildcard_to_regex(Pattern :: binary()) -> binary().

Convert a wildcard pattern to a regex pattern.
Wildcards: - * matches any sequence of characters - ? matches any single character

esdb_graph_nif

Optimized graph operations for causation analysis in reckon-db.
This module provides high-performance graph algorithms:
	Graph building: Build edges from event causation relationships
	Topological sort: Order events by causation (causes before effects)
	Path finding: Check paths, find ancestors/descendants
	DOT export: Generate Graphviz visualization

The mode is automatically detected at startup based on whether the NIF library is available. Community edition users (hex.pm) will always use the Erlang fallbacks, which provide identical functionality.
[bookmark: Usage]Usage
 %% Build edges from events (event_id, causation_id pairs)
 Nodes = [{<<"evt-1">>, undefined}, {<<"evt-2">>, <<"evt-1">>}],
 Edges = esdb_graph_nif:build_edges(Nodes).

 %% Topological sort
 {ok, Sorted} = esdb_graph_nif:topo_sort([<<"evt-1">>, <<"evt-2">>], Edges).

 %% Check which mode is active
 nif = esdb_graph_nif:implementation(). %% Enterprise
 erlang = esdb_graph_nif:implementation(). %% Community

 Summary

 Functions

 build_edges(Nodes)

 Build edges from a list of event_id, causation_id tuples.

 find_leaves(Nodes, Edges)

 Find leaf nodes (nodes with no outgoing edges).

 find_roots(Nodes, Edges)

 Find root nodes (nodes with no incoming edges).

 get_ancestors(Nodes, Edges, Target)

 Get all ancestors of a node (nodes that can reach it).

 get_descendants(Nodes, Edges, Source)

 Get all descendants of a node (nodes reachable from it).

 graph_stats(Nodes, Edges)

 Get graph statistics.

 has_cycle(Nodes, Edges)

 Check if the graph contains cycles.

 has_path(Nodes, Edges, From, To)

 Check if there's a path between two nodes.

 implementation()

 Get the current implementation mode.

 is_nif_loaded()

 Check if the NIF is loaded (Enterprise mode).

 to_dot(Nodes, Edges)

 Generate DOT format for Graphviz visualization.

 to_dot_simple(Nodes, Edges)

 Generate DOT format with simplified labels (just type).

 topo_sort(Nodes, Edges)

 Perform topological sort on the graph.

 Functions

 build_edges(Nodes)

 -spec build_edges([{EventId :: binary(), CausationId :: binary() | undefined}]) ->
 [{binary(), binary()}].

Build edges from a list of event_id, causation_id tuples.
Causation ID can be undefined for root events. Returns list of from_id, to_id edges.

 find_leaves(Nodes, Edges)

 -spec find_leaves(Nodes :: [binary()], Edges :: [{binary(), binary()}]) -> [binary()].

Find leaf nodes (nodes with no outgoing edges).

 find_roots(Nodes, Edges)

 -spec find_roots(Nodes :: [binary()], Edges :: [{binary(), binary()}]) -> [binary()].

Find root nodes (nodes with no incoming edges).

 get_ancestors(Nodes, Edges, Target)

 -spec get_ancestors(Nodes :: [binary()], Edges :: [{binary(), binary()}], Target :: binary()) ->
 [binary()].

Get all ancestors of a node (nodes that can reach it).

 get_descendants(Nodes, Edges, Source)

 -spec get_descendants(Nodes :: [binary()], Edges :: [{binary(), binary()}], Source :: binary()) ->
 [binary()].

Get all descendants of a node (nodes reachable from it).

 graph_stats(Nodes, Edges)

 -spec graph_stats(Nodes :: [binary()], Edges :: [{binary(), binary()}]) -> map().

Get graph statistics.
Returns a map with node_count, edge_count, root_count, leaf_count, max_depth.

 has_cycle(Nodes, Edges)

 -spec has_cycle(Nodes :: [binary()], Edges :: [{binary(), binary()}]) -> boolean().

Check if the graph contains cycles.

 has_path(Nodes, Edges, From, To)

 -spec has_path(Nodes :: [binary()], Edges :: [{binary(), binary()}], From :: binary(), To :: binary()) ->
 boolean().

Check if there's a path between two nodes.

 implementation()

 -spec implementation() -> nif | erlang.

Get the current implementation mode.

 is_nif_loaded()

 -spec is_nif_loaded() -> boolean().

Check if the NIF is loaded (Enterprise mode).

 to_dot(Nodes, Edges)

 -spec to_dot(Nodes :: [{binary(), binary(), binary()}], Edges :: [{binary(), binary()}]) -> binary().

Generate DOT format for Graphviz visualization.
Nodes are tuples of {event_id, event_type, label}.

 to_dot_simple(Nodes, Edges)

 -spec to_dot_simple(Nodes :: [{binary(), binary()}], Edges :: [{binary(), binary()}]) -> binary().

Generate DOT format with simplified labels (just type).
Nodes are tuples of {event_id, event_type}.

 topo_sort(Nodes, Edges)

 -spec topo_sort(Nodes :: [binary()], Edges :: [{binary(), binary()}]) ->
 {ok, [binary()]} | {error, cycle_detected}.

Perform topological sort on the graph.
Returns nodes in dependency order (causes before effects).

esdb_hash_nif

Optimized hashing operations for reckon-db.
This module provides high-performance hash implementations:
	xxHash64: Extremely fast 64-bit hash
	xxHash3: Even faster, modern 64-bit hash with SIMD
	Partition hash: For consistent stream/subscription routing
	FNV-1a: Fast for small keys

The mode is automatically detected at startup based on whether the NIF library is available. Community edition users (hex.pm) will always use the Erlang fallbacks, which provide identical functionality.
[bookmark: Usage]Usage
 %% Fast hash for routing
 Partition = esdb_hash_nif:partition_hash(StreamId, 16).

 %% Stream-specific routing
 Partition = esdb_hash_nif:stream_partition(StoreId, StreamId, 16).

 %% Raw xxHash for checksums
 Hash = esdb_hash_nif:xxhash64(Data).

 %% Check which mode is active
 nif = esdb_hash_nif:implementation(). %% Enterprise
 erlang = esdb_hash_nif:implementation(). %% Community

 Summary

 Functions

 fast_phash(Data, Range)

 Fast replacement for erlang:phash2/2.

 fnv1a(Data)

 Compute FNV-1a hash of binary data. Fast for small keys (under 32 bytes).

 implementation()

 Get the current implementation mode.

 is_nif_loaded()

 Check if the NIF is loaded (Enterprise mode).

 partition_hash(Data, Partitions)

 Hash data and map to a partition number. Used for consistent routing of streams/subscriptions to workers.

 partition_hash_batch(Items, Partitions)

 Hash multiple binaries and return their partition assignments.

 stream_partition(StoreId, StreamId, Partitions)

 Hash {StoreId, StreamId} tuple for stream routing.

 xxhash3(Data)

 Compute xxHash3 (64-bit) of binary data. xxHash3 is faster than xxHash64, especially for small inputs.

 xxhash64(Data)

 Compute xxHash64 of binary data.

 xxhash64(Data, Seed)

 Compute xxHash64 with a seed.

 Functions

 fast_phash(Data, Range)

 -spec fast_phash(Data :: binary(), Range :: pos_integer()) -> non_neg_integer().

Fast replacement for erlang:phash2/2.

 fnv1a(Data)

 -spec fnv1a(Data :: binary()) -> non_neg_integer().

Compute FNV-1a hash of binary data. Fast for small keys (under 32 bytes).

 implementation()

 -spec implementation() -> nif | erlang.

Get the current implementation mode.

 is_nif_loaded()

 -spec is_nif_loaded() -> boolean().

Check if the NIF is loaded (Enterprise mode).

 partition_hash(Data, Partitions)

 -spec partition_hash(Data :: binary(), Partitions :: pos_integer()) -> non_neg_integer().

Hash data and map to a partition number. Used for consistent routing of streams/subscriptions to workers.

 partition_hash_batch(Items, Partitions)

 -spec partition_hash_batch(Items :: [binary()], Partitions :: pos_integer()) -> [non_neg_integer()].

Hash multiple binaries and return their partition assignments.

 stream_partition(StoreId, StreamId, Partitions)

 -spec stream_partition(StoreId :: binary(), StreamId :: binary(), Partitions :: pos_integer()) ->
 non_neg_integer().

Hash {StoreId, StreamId} tuple for stream routing.

 xxhash3(Data)

 -spec xxhash3(Data :: binary()) -> non_neg_integer().

Compute xxHash3 (64-bit) of binary data. xxHash3 is faster than xxHash64, especially for small inputs.

 xxhash64(Data)

 -spec xxhash64(Data :: binary()) -> non_neg_integer().

Compute xxHash64 of binary data.

 xxhash64(Data, Seed)

 -spec xxhash64(Data :: binary(), Seed :: non_neg_integer()) -> non_neg_integer().

Compute xxHash64 with a seed.

esdb_revocation

Token revocation management for reckon-db.
Manages revocation of capability tokens. Tokens can be revoked before their expiration when:
	A key is compromised
	An identity is removed from the system
	Permissions need to be immediately revoked

This module supports multiple revocation strategies:
	Local ETS (current): Fast local lookups, no distribution
	Gossip (planned): Eventually consistent, partition tolerant
	Epoch-based (planned): Revoke all tokens before a timestamp

 Summary

 Functions

 clear()

 Clear all revocations (for testing)

 get_revocations()

 Get all active revocations (for debugging/monitoring)

 is_issuer_revoked(IssuerDID)

 Check if an issuer DID is revoked

 is_revoked(TokenCID)

 Check if a token CID is revoked

 revoke(TokenCID)

 Revoke a token by its CID

 revoke(TokenCID, Reason)

 Revoke a token with a reason

 revoke_issuer(IssuerDID)

 Revoke all tokens from an issuer

 start_link()

 Start the revocation server

 Functions

 clear()

 -spec clear() -> ok.

Clear all revocations (for testing)

 get_revocations()

 -spec get_revocations() -> #{tokens := [binary()], issuers := [binary()]}.

Get all active revocations (for debugging/monitoring)

 is_issuer_revoked(IssuerDID)

 -spec is_issuer_revoked(binary()) -> boolean().

Check if an issuer DID is revoked

 is_revoked(TokenCID)

 -spec is_revoked(binary()) -> boolean().

Check if a token CID is revoked

 revoke(TokenCID)

 -spec revoke(binary()) -> ok.

Revoke a token by its CID

 revoke(TokenCID, Reason)

 -spec revoke(binary(), binary() | undefined) -> ok.

Revoke a token with a reason

 revoke_issuer(IssuerDID)

 -spec revoke_issuer(binary()) -> ok.

Revoke all tokens from an issuer
This is useful when an identity is compromised or removed. All tokens with this issuer DID will be considered revoked.

 start_link()

 -spec start_link() -> {ok, pid()} | {error, term()}.

Start the revocation server

reckon_db_aggregator

Event aggregator for reckon-db
Aggregates events from an event stream using tagged rules. Supports special value tags for custom aggregation behavior:
Tagged value types: {sum, N} - Add N to current value (starts at 0) {overwrite, V} - Replace current value with V plain value - Replace current value (default behavior)

 Summary

 Types

 event/0

 snapshot/0

 tagged_map/0

 tagged_value/0

 Functions

 aggregate(Events, Snapshot, Opts)

 Aggregate events from a stream with optional snapshot

 finalize(TaggedMap)

 Finalize a tagged map by unwrapping all tagged values

 foldl(Events)

 Fold a list of events from left to right (chronological order)

 foldl(Events, InitialState)

 Fold events with an initial state

 foldr(Events)

 Fold a list of events from right to left

 foldr(Events, InitialState)

 Fold events from right with an initial state

 Types

 event/0

 -type event() ::
 #event{event_id :: binary(),
 event_type :: binary(),
 stream_id :: binary(),
 version :: non_neg_integer(),
 data :: map() | binary(),
 metadata :: map(),
 tags :: [binary()] | undefined,
 timestamp :: integer(),
 epoch_us :: integer(),
 data_content_type :: binary(),
 metadata_content_type :: binary()}.

 snapshot/0

 -type snapshot() ::
 #snapshot{stream_id :: binary(),
 version :: non_neg_integer(),
 data :: map() | binary(),
 metadata :: map(),
 timestamp :: integer()}.

 tagged_map/0

 -type tagged_map() :: #{atom() | binary() => tagged_value()}.

 tagged_value/0

 -type tagged_value() :: {sum, number()} | {overwrite, term()} | term().

 Functions

 aggregate(Events, Snapshot, Opts)

 -spec aggregate([event() | map()], snapshot() | undefined, map()) -> map().

Aggregate events from a stream with optional snapshot
This is a convenience function that: 1. Starts from a snapshot's data (if provided) or empty map 2. Applies events in order 3. Returns the finalized aggregate state

 finalize(TaggedMap)

 -spec finalize(tagged_map()) -> map().

Finalize a tagged map by unwrapping all tagged values
Converts {sum, N} to N and {overwrite, V} to V.

 foldl(Events)

 -spec foldl([event() | map()]) -> tagged_map().

Fold a list of events from left to right (chronological order)
Events should be sorted by version in ascending order. Returns a tagged map that can be finalized with finalize/1.

 foldl(Events, InitialState)

 -spec foldl([event() | map()], tagged_map()) -> tagged_map().

Fold events with an initial state

 foldr(Events)

 -spec foldr([event() | map()]) -> tagged_map().

Fold a list of events from right to left
Events should be sorted by version in ascending order. This will process them in reverse (newest first).

 foldr(Events, InitialState)

 -spec foldr([event() | map()], tagged_map()) -> tagged_map().

Fold events from right with an initial state

reckon_db_app

Application behaviour for reckon-db

 Summary

 Functions

 start()

 Start the reckon_db application

 stop()

 Stop the reckon_db application

 Functions

 start()

 -spec start() -> {ok, pid()} | {error, term()}.

Start the reckon_db application

 stop()

 -spec stop() -> ok | {error, term()}.

Stop the reckon_db application

reckon_db_archive_backend behaviour

Archive backend behaviour for reckon-db
Defines the interface for archive storage backends. Implementations can store archived events in various formats: - Local files - S3/object storage - Network storage

 Summary

 Callbacks

 archive/3

 delete/2

 exists/2

 init/1

 list/3

 read/2

 Functions

 make_key(StoreId, StreamId, FromVersion, ToVersion)

 Generate a standard archive key.

 parse_key(Key)

 Parse an archive key to extract metadata.

 Callbacks

 archive/3

 -callback archive(State :: term(), ArchiveKey :: binary(), Events :: [event()]) ->
 {ok, NewState :: term()} | {error, Reason :: term()}.

 delete/2

 -callback delete(State :: term(), ArchiveKey :: binary()) ->
 {ok, NewState :: term()} | {error, Reason :: term()}.

 exists/2

 -callback exists(State :: term(), ArchiveKey :: binary()) -> {boolean(), NewState :: term()}.

 init/1

 -callback init(Opts :: map()) -> {ok, State :: term()} | {error, Reason :: term()}.

 list/3

 -callback list(State :: term(), StoreId :: atom(), StreamId :: binary()) ->
 {ok, [binary()], NewState :: term()} | {error, Reason :: term()}.

 read/2

 -callback read(State :: term(), ArchiveKey :: binary()) ->
 {ok, [event()], NewState :: term()} | {error, Reason :: term()}.

 Functions

 make_key(StoreId, StreamId, FromVersion, ToVersion)

 -spec make_key(atom(), binary(), integer(), integer()) -> binary().

Generate a standard archive key.

 parse_key(Key)

 -spec parse_key(binary()) -> {ok, map()} | {error, invalid_key}.

Parse an archive key to extract metadata.

reckon_db_archive_file

File-based archive backend for reckon-db
Stores archived events as Erlang term files on the local filesystem. Archives are organized in directories by store and stream.
Directory structure:
 {base_dir}/
 {store_id}/
 {stream_id}/
 0-99.archive
 100-199.archive

 Summary

 Types

 event/0

 Functions

 archive(State, ArchiveKey, Events)

 Archive events to a file.

 delete(State, ArchiveKey)

 Delete an archive file.

 exists(State, ArchiveKey)

 Check if an archive exists.

 init(Opts)

 Initialize the file archive backend.

 list(State, StoreId, StreamId)

 List all archive keys for a stream.

 read(State, ArchiveKey)

 Read events from an archive file.

 Types

 event/0

 -type event() ::
 #event{event_id :: binary(),
 event_type :: binary(),
 stream_id :: binary(),
 version :: non_neg_integer(),
 data :: map() | binary(),
 metadata :: map(),
 tags :: [binary()] | undefined,
 timestamp :: integer(),
 epoch_us :: integer(),
 data_content_type :: binary(),
 metadata_content_type :: binary()}.

 Functions

 archive(State, ArchiveKey, Events)

 -spec archive(#state{base_dir :: string()}, binary(), [event()]) ->
 {ok, #state{base_dir :: string()}} | {error, term()}.

Archive events to a file.

 delete(State, ArchiveKey)

 -spec delete(#state{base_dir :: string()}, binary()) ->
 {ok, #state{base_dir :: string()}} | {error, term()}.

Delete an archive file.

 exists(State, ArchiveKey)

 -spec exists(#state{base_dir :: string()}, binary()) -> {boolean(), #state{base_dir :: string()}}.

Check if an archive exists.

 init(Opts)

 -spec init(map()) -> {ok, #state{base_dir :: string()}} | {error, term()}.

Initialize the file archive backend.
Options: - base_dir: Directory where archives are stored (required)

 list(State, StoreId, StreamId)

 -spec list(#state{base_dir :: string()}, atom(), binary()) ->
 {ok, [binary()], #state{base_dir :: string()}} | {error, term()}.

List all archive keys for a stream.

 read(State, ArchiveKey)

 -spec read(#state{base_dir :: string()}, binary()) ->
 {ok, [event()], #state{base_dir :: string()}} | {error, term()}.

Read events from an archive file.

reckon_db_backpressure

Backpressure management for reckon-db subscriptions
Provides queue-based backpressure handling to prevent memory explosion when subscribers are slower than event producers.
Features: - Configurable queue size limits - Multiple overflow strategies (drop_oldest, drop_newest, block, error) - Pull mode for explicit demand - Warning thresholds with telemetry
Usage:
 {ok, Queue} = reckon_db_backpressure:new(#{
 max_queue => 1000,
 strategy => drop_oldest,
 warning_threshold => 800
 }),
 {ok, Queue2} = reckon_db_backpressure:enqueue(Queue, Event),
 {ok, Events, Queue3} = reckon_db_backpressure:dequeue(Queue2, 10).

 Summary

 Types

 bp_opts/0

 bp_queue/0

 event/0

 mode/0

 strategy/0

 Functions

 add_demand(Bp_queue, Count)

 Add to demand (for pull mode).

 dequeue(Queue, Count)

 Dequeue up to N events.

 dequeue_all(Queue)

 Dequeue all events.

 enqueue(Queue, Event)

 Enqueue an event, applying backpressure strategy if full.

 enqueue_many(Queue, Rest)

 Enqueue multiple events.

 get_demand(Bp_queue)

 Get current demand.

 info(Bp_queue)

 Get queue statistics.

 is_empty(Bp_queue)

 Check if queue is empty.

 is_full(Bp_queue)

 Check if queue is at capacity.

 new(Opts)

 Create a new backpressure queue.

 set_demand(Queue, Demand)

 Set demand (for pull mode).

 size(Bp_queue)

 Get current queue size.

 Types

 bp_opts/0

 -type bp_opts() ::
 #{max_queue => pos_integer(),
 strategy => strategy(),
 mode => mode(),
 warning_threshold => pos_integer(),
 store_id => atom(),
 subscription_key => binary()}.

 bp_queue/0

 -type bp_queue() ::
 #bp_queue{queue :: queue:queue(event()),
 max_size :: pos_integer(),
 strategy :: strategy(),
 mode :: mode(),
 warning_threshold :: pos_integer(),
 demand :: non_neg_integer(),
 dropped :: non_neg_integer(),
 store_id :: atom(),
 subscription_key :: binary()}.

 event/0

 -type event() ::
 #event{event_id :: binary(),
 event_type :: binary(),
 stream_id :: binary(),
 version :: non_neg_integer(),
 data :: map() | binary(),
 metadata :: map(),
 tags :: [binary()] | undefined,
 timestamp :: integer(),
 epoch_us :: integer(),
 data_content_type :: binary(),
 metadata_content_type :: binary()}.

 mode/0

 -type mode() :: push | pull.

 strategy/0

 -type strategy() :: drop_oldest | drop_newest | block | error.

 Functions

 add_demand(Bp_queue, Count)

 -spec add_demand(bp_queue(), pos_integer()) -> bp_queue().

Add to demand (for pull mode).

 dequeue(Queue, Count)

 -spec dequeue(bp_queue(), pos_integer()) -> {ok, [event()], bp_queue()}.

Dequeue up to N events.

 dequeue_all(Queue)

 -spec dequeue_all(bp_queue()) -> {ok, [event()], bp_queue()}.

Dequeue all events.

 enqueue(Queue, Event)

 -spec enqueue(bp_queue(), event()) -> {ok, bp_queue()} | {error, queue_full | blocked}.

Enqueue an event, applying backpressure strategy if full.

 enqueue_many(Queue, Rest)

 -spec enqueue_many(bp_queue(), [event()]) -> {ok, bp_queue()} | {error, term()}.

Enqueue multiple events.

 get_demand(Bp_queue)

 -spec get_demand(bp_queue()) -> non_neg_integer() | infinity.

Get current demand.

 info(Bp_queue)

 -spec info(bp_queue()) -> map().

Get queue statistics.

 is_empty(Bp_queue)

 -spec is_empty(bp_queue()) -> boolean().

Check if queue is empty.

 is_full(Bp_queue)

 -spec is_full(bp_queue()) -> boolean().

Check if queue is at capacity.

 new(Opts)

 -spec new(bp_opts()) -> {ok, bp_queue()}.

Create a new backpressure queue.

 set_demand(Queue, Demand)

 -spec set_demand(bp_queue(), non_neg_integer()) -> bp_queue().

Set demand (for pull mode).

 size(Bp_queue)

 -spec size(bp_queue()) -> non_neg_integer().

Get current queue size.

reckon_db_causation

Causation and correlation tracking for reckon-db
Provides functionality to trace event lineage: - Causation ID: Links an event to its direct cause - Correlation ID: Groups related events in a business process/saga - Actor ID: Identifies who/what triggered the event
Standard metadata fields (convention):
 #{
 causation_id => binary(), %% ID of event/command that caused this
 correlation_id => binary(), %% Business process/saga ID
 actor_id => binary() %% Who/what triggered this
 }
Use cases: - Debugging distributed event flows - Audit trails - Saga/process manager state reconstruction - Dependency analysis

 Summary

 Types

 causation_graph/0

 event/0

 Functions

 build_graph(StoreId, Id)

 Build a causation graph for visualization.

 get_cause(StoreId, EventId)

 Get the event that caused the given event.

 get_chain(StoreId, EventId)

 Get the full causation chain from root to the given event.

 get_correlated(StoreId, CorrelationId)

 Get all events sharing the same correlation ID.

 get_effects(StoreId, EventId)

 Get all events caused by the given event.

 to_dot(_)

 Export a causation graph as DOT format for Graphviz.

 Types

 causation_graph/0

 -type causation_graph() ::
 #{nodes := [event()], edges := [{binary(), binary()}], root := binary() | undefined}.

 event/0

 -type event() ::
 #event{event_id :: binary(),
 event_type :: binary(),
 stream_id :: binary(),
 version :: non_neg_integer(),
 data :: map() | binary(),
 metadata :: map(),
 tags :: [binary()] | undefined,
 timestamp :: integer(),
 epoch_us :: integer(),
 data_content_type :: binary(),
 metadata_content_type :: binary()}.

 Functions

 build_graph(StoreId, Id)

 -spec build_graph(atom(), binary()) -> {ok, causation_graph()} | {error, term()}.

Build a causation graph for visualization.
Accepts either an event_id (builds graph from that event) or a correlation_id (builds graph from all correlated events). Returns nodes and edges suitable for graph rendering.

 get_cause(StoreId, EventId)

 -spec get_cause(atom(), binary()) -> {ok, event()} | {error, not_found | term()}.

Get the event that caused the given event.
Finds the event whose event_id matches this event's causation_id.

 get_chain(StoreId, EventId)

 -spec get_chain(atom(), binary()) -> {ok, [event()]} | {error, term()}.

Get the full causation chain from root to the given event.
Walks backward through causation_id links until reaching an event with no cause. Returns events in order from root to target.

 get_correlated(StoreId, CorrelationId)

 -spec get_correlated(atom(), binary()) -> {ok, [event()]} | {error, term()}.

Get all events sharing the same correlation ID.
Useful for finding all events in a saga or business process.

 get_effects(StoreId, EventId)

 -spec get_effects(atom(), binary()) -> {ok, [event()]} | {error, term()}.

Get all events caused by the given event.
Returns events whose causation_id matches the given event_id.

 to_dot(_)

 -spec to_dot(causation_graph()) -> binary().

Export a causation graph as DOT format for Graphviz.
Usage: dot -Tpng -o graph.png with the output.

reckon_db_cluster_sup

Cluster supervisor for reckon-db
Manages cluster-related components (cluster mode only): - Discovery (UDP multicast / K8s DNS) - Store coordinator (cluster join coordination) - Node monitor (health probing)

 Summary

 Types

 store_config/0

 Functions

 start_link(Store_config)

 Start the cluster supervisor

 Types

 store_config/0

 -type store_config() ::
 #store_config{store_id :: atom(),
 data_dir :: string(),
 mode :: single | cluster,
 timeout :: pos_integer(),
 writer_pool_size :: pos_integer(),
 reader_pool_size :: pos_integer(),
 gateway_pool_size :: pos_integer(),
 options :: map()}.

 Functions

 start_link(Store_config)

 -spec start_link(store_config()) -> {ok, pid()} | {error, term()}.

Start the cluster supervisor

reckon_db_config

Configuration management for reckon-db
Handles reading and validating store configurations from the application environment.

 Summary

 Types

 store_config/0

 Functions

 get_all_store_configs()

 Get all configured store configurations

 get_env(Key, Default)

 Get an application environment value

 get_env(App, Key, Default)

 Get an application environment value with a specific app

 get_store_config(StoreId)

 Get configuration for a specific store

 Types

 store_config/0

 -type store_config() ::
 #store_config{store_id :: atom(),
 data_dir :: string(),
 mode :: single | cluster,
 timeout :: pos_integer(),
 writer_pool_size :: pos_integer(),
 reader_pool_size :: pos_integer(),
 gateway_pool_size :: pos_integer(),
 options :: map()}.

 Functions

 get_all_store_configs()

 -spec get_all_store_configs() -> [store_config()].

Get all configured store configurations

 get_env(Key, Default)

 -spec get_env(atom(), term()) -> term().

Get an application environment value

 get_env(App, Key, Default)

 -spec get_env(atom(), atom(), term()) -> term().

Get an application environment value with a specific app

 get_store_config(StoreId)

 -spec get_store_config(atom()) -> {ok, store_config()} | {error, not_found}.

Get configuration for a specific store

reckon_db_consistency_checker

Cluster consistency checker for reckon-db
Provides active split-brain detection and cluster health verification. Implements multi-layer consistency checking:
1. Membership Consensus - All nodes agree on cluster membership 2. Raft Log Consistency - Log terms and indices match across followers 3. Leader Consensus - All nodes agree on who the leader is 4. Quorum Verification - Sufficient nodes available for operations
Split-Brain Detection:
Split-brain occurs when network partitions cause nodes to form independent clusters. This module detects such scenarios by:
- Collecting membership views from all nodes via RPC - Comparing views to find inconsistencies - Detecting when nodes report different leaders - Identifying when quorum is at risk
Academic References:
- Ongaro, D. and Ousterhout, J. (2014). In Search of an Understandable Consensus Algorithm (Raft). USENIX ATC 2014. - Brewer, E. (2012). CAP Twelve Years Later: How the "Rules" Have Changed. IEEE Computer, 45(2), 23-29.
See also: reckon_db_health_prober.

 Summary

 Types

 check_detail/0

 check_result/0

 consistency_status/0

 store_config/0

 Functions

 check_now(StoreId)

 Force an immediate consistency check

 get_quorum_status(StoreId)

 Get current quorum status

 get_status(StoreId)

 Get current consistency status

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Store_config)

 on_status_change(StoreId, Callback)

 Register a callback for status changes

 remove_callback(StoreId, Ref)

 Remove a previously registered callback

 start_link(Store_config)

 Start the consistency checker

 terminate(Reason, State)

 verify_leader_consensus(StoreId)

 Verify all nodes agree on the current leader

 verify_membership_consensus(StoreId)

 Verify membership consensus across all cluster nodes

 verify_raft_consistency(StoreId)

 Verify Raft log consistency across cluster

 Types

 check_detail/0

 -type check_detail() :: #{status := ok | warning | error, message := binary(), data := term()}.

 check_result/0

 -type check_result() ::
 #{status := consistency_status(),
 checks := #{atom() => check_detail()},
 timestamp := integer(),
 duration_us := non_neg_integer()}.

 consistency_status/0

 -type consistency_status() :: healthy | degraded | split_brain | no_quorum.

 store_config/0

 -type store_config() ::
 #store_config{store_id :: atom(),
 data_dir :: string(),
 mode :: single | cluster,
 timeout :: pos_integer(),
 writer_pool_size :: pos_integer(),
 reader_pool_size :: pos_integer(),
 gateway_pool_size :: pos_integer(),
 options :: map()}.

 Functions

 check_now(StoreId)

 -spec check_now(atom()) -> check_result().

Force an immediate consistency check

 get_quorum_status(StoreId)

 -spec get_quorum_status(atom()) -> {ok, map()} | {error, term()}.

Get current quorum status
Returns quorum availability and margin information.

 get_status(StoreId)

 -spec get_status(atom()) -> {ok, consistency_status()} | {error, not_running}.

Get current consistency status

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Store_config)

 on_status_change(StoreId, Callback)

 -spec on_status_change(atom(), fun((consistency_status()) -> any())) -> reference().

Register a callback for status changes

 remove_callback(StoreId, Ref)

 -spec remove_callback(atom(), reference()) -> ok.

Remove a previously registered callback

 start_link(Store_config)

 -spec start_link(store_config()) -> {ok, pid()} | {error, term()}.

Start the consistency checker

 terminate(Reason, State)

 verify_leader_consensus(StoreId)

 -spec verify_leader_consensus(atom()) -> {ok, map()} | {error, term()}.

Verify all nodes agree on the current leader

 verify_membership_consensus(StoreId)

 -spec verify_membership_consensus(atom()) -> {ok, map()} | {error, term()}.

Verify membership consensus across all cluster nodes
Collects membership views from each node and compares them. Returns consensus if all nodes agree, split_brain if they disagree.

 verify_raft_consistency(StoreId)

 -spec verify_raft_consistency(atom()) -> {ok, map()} | {error, term()}.

Verify Raft log consistency across cluster
Checks that follower nodes have consistent log terms and indices. Significant divergence may indicate replication issues.

reckon_db_core_sup

Core supervisor for reckon-db
Manages tightly-coupled core components using one_for_all strategy: - PersistenceSystem (Khepri store, streams, snapshots, subscriptions) - NotificationSystem (leader, emitters) - StoreMgr (store lifecycle coordination)
If any child fails, all children are restarted to ensure consistency.

 Summary

 Types

 store_config/0

 Functions

 start_link(Store_config)

 Start the core supervisor

 Types

 store_config/0

 -type store_config() ::
 #store_config{store_id :: atom(),
 data_dir :: string(),
 mode :: single | cluster,
 timeout :: pos_integer(),
 writer_pool_size :: pos_integer(),
 reader_pool_size :: pos_integer(),
 gateway_pool_size :: pos_integer(),
 options :: map()}.

 Functions

 start_link(Store_config)

 -spec start_link(store_config()) -> {ok, pid()} | {error, term()}.

Start the core supervisor

reckon_db_discovery

Cluster discovery for reckon-db
Handles node discovery via UDP multicast (LAN) or Kubernetes DNS. Ported from LibCluster's gossip strategy.
Protocol: 1. Broadcast {gossip, Node, ClusterSecret, Timestamp} every BROADCAST_INTERVAL 2. On receive: verify secret, call net_kernel:connect_node/1 3. On node up: trigger Khepri cluster join via StoreCoordinator

 Summary

 Types

 store_config/0

 Functions

 get_discovered_nodes(StoreId)

 Get list of discovered nodes

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Store_config)

 start_link(Store_config)

 terminate(Reason, State)

 trigger_discovery(StoreId)

 Trigger immediate discovery broadcast

 Types

 store_config/0

 -type store_config() ::
 #store_config{store_id :: atom(),
 data_dir :: string(),
 mode :: single | cluster,
 timeout :: pos_integer(),
 writer_pool_size :: pos_integer(),
 reader_pool_size :: pos_integer(),
 gateway_pool_size :: pos_integer(),
 options :: map()}.

 Functions

 get_discovered_nodes(StoreId)

 -spec get_discovered_nodes(atom()) -> [node()].

Get list of discovered nodes

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Store_config)

 start_link(Store_config)

 -spec start_link(store_config()) -> {ok, pid()} | {error, term()}.

 terminate(Reason, State)

 trigger_discovery(StoreId)

 -spec trigger_discovery(atom()) -> ok.

Trigger immediate discovery broadcast

reckon_db_emitter

Emitter worker for reckon-db
A gen_server that handles event broadcasting for subscriptions. Each subscription has a pool of emitter workers that receive events from Khepri triggers and forward them to subscribers.
Message types handled: - {broadcast, Topic, Event}: Broadcast event to all subscribers on topic - {forward_to_local, Topic, Event}: Forward event locally (optimization) - {events, [Event]}: Direct event delivery to subscriber pid

 Summary

 Types

 event/0

 Functions

 child_spec(StoreId, SubscriptionKey, Subscriber, EmitterName)

 Create a child spec for the emitter worker

 code_change(OldVsn, State, Extra)

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(_)

 start_link(StoreId, SubscriptionKey, Subscriber, EmitterName)

 Start an emitter worker

 terminate(Reason, State)

 update_subscriber(Emitter, NewSubscriber)

 Update the subscriber pid

 Types

 event/0

 -type event() ::
 #event{event_id :: binary(),
 event_type :: binary(),
 stream_id :: binary(),
 version :: non_neg_integer(),
 data :: map() | binary(),
 metadata :: map(),
 tags :: [binary()] | undefined,
 timestamp :: integer(),
 epoch_us :: integer(),
 data_content_type :: binary(),
 metadata_content_type :: binary()}.

 Functions

 child_spec(StoreId, SubscriptionKey, Subscriber, EmitterName)

 -spec child_spec(atom(), binary(), pid() | undefined, atom()) -> supervisor:child_spec().

Create a child spec for the emitter worker

 code_change(OldVsn, State, Extra)

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(_)

 start_link(StoreId, SubscriptionKey, Subscriber, EmitterName)

 -spec start_link(atom(), binary(), pid() | undefined, atom()) -> {ok, pid()} | {error, term()}.

Start an emitter worker

 terminate(Reason, State)

 update_subscriber(Emitter, NewSubscriber)

 -spec update_subscriber(pid() | atom(), pid()) -> ok.

Update the subscriber pid

reckon_db_emitter_group

Emitter group management for reckon-db
Uses pg (process groups) for managing emitter workers. Emitters are responsible for broadcasting events to subscribers.
This module provides: - Process group management for emitter workers - Random emitter selection for load distribution - Topic generation for pub/sub - Emitter name generation for registration

 Summary

 Types

 event/0

 store_id/0

 subscription_id/0

 Functions

 broadcast(StoreId, SubscriptionId, Event)

 Broadcast an event to a random emitter in the group

 emitter_name(StoreId, SubscriptionId)

 Generate the base emitter name for a subscription

 emitter_name(StoreId, SubscriptionId, Number)

 Generate a numbered emitter name for a subscription

 group_key(StoreId, SubscriptionId)

 Generate the group key for a subscription's emitters

 join(StoreId, SubscriptionId, PidOrPids)

 Join one or more processes to the emitter group

 leave(StoreId, SubscriptionId, PidOrPids)

 Remove one or more processes from the emitter group

 members(StoreId, SubscriptionId)

 Get all member processes in the emitter group

 persist_emitters(StoreId, SubscriptionId, PoolSize)

 Persist emitter names to persistent_term for fast retrieval

 retrieve_emitters(StoreId, SubscriptionId)

 Retrieve previously persisted emitter names

 topic(StoreId, SubscriptionId)

 Generate the topic name for a subscription

 Types

 event/0

 -type event() ::
 #event{event_id :: binary(),
 event_type :: binary(),
 stream_id :: binary(),
 version :: non_neg_integer(),
 data :: map() | binary(),
 metadata :: map(),
 tags :: [binary()] | undefined,
 timestamp :: integer(),
 epoch_us :: integer(),
 data_content_type :: binary(),
 metadata_content_type :: binary()}.

 store_id/0

 -type store_id() :: atom().

 subscription_id/0

 -type subscription_id() :: binary().

 Functions

 broadcast(StoreId, SubscriptionId, Event)

 -spec broadcast(store_id(), subscription_id(), event()) -> ok | {error, no_emitters}.

Broadcast an event to a random emitter in the group
If the selected emitter is on the local node, sends a forward_to_local message for optimized local delivery. Otherwise sends a broadcast message.

 emitter_name(StoreId, SubscriptionId)

 -spec emitter_name(store_id(), subscription_id()) -> atom().

Generate the base emitter name for a subscription

 emitter_name(StoreId, SubscriptionId, Number)

 -spec emitter_name(store_id(), subscription_id(), pos_integer()) -> atom().

Generate a numbered emitter name for a subscription

 group_key(StoreId, SubscriptionId)

 -spec group_key(store_id(), subscription_id()) -> {atom(), subscription_id(), emitters}.

Generate the group key for a subscription's emitters

 join(StoreId, SubscriptionId, PidOrPids)

 -spec join(store_id(), subscription_id(), pid() | [pid()]) -> ok.

Join one or more processes to the emitter group

 leave(StoreId, SubscriptionId, PidOrPids)

 -spec leave(store_id(), subscription_id(), pid() | [pid()]) -> ok.

Remove one or more processes from the emitter group

 members(StoreId, SubscriptionId)

 -spec members(store_id(), subscription_id()) -> [pid()].

Get all member processes in the emitter group

 persist_emitters(StoreId, SubscriptionId, PoolSize)

 -spec persist_emitters(store_id(), subscription_id(), pos_integer()) -> [atom()].

Persist emitter names to persistent_term for fast retrieval

 retrieve_emitters(StoreId, SubscriptionId)

 -spec retrieve_emitters(store_id(), subscription_id()) -> [atom()].

Retrieve previously persisted emitter names

 topic(StoreId, SubscriptionId)

 -spec topic(store_id(), subscription_id()) -> binary().

Generate the topic name for a subscription
Special case: the binary <<"$all">> creates a topic for all events

reckon_db_emitter_pool

Emitter pool supervisor for reckon-db
Supervises a pool of emitter workers for a single subscription. Each subscription can have multiple emitter workers for load distribution.

 Summary

 Types

 subscription/0

 subscription_type/0

 Functions

 init(_)

 name(StoreId, SubscriptionKey)

 Generate the name for an emitter pool

 start_emitter(StoreId, Subscription)

 Start an emitter pool for a subscription

 start_link(StoreId, Subscription)

 Start the emitter pool supervisor

 stop(StoreId, SubscriptionKey)

 Stop an emitter pool by key (deprecated, use stop_emitter/2)

 stop_emitter(StoreId, Subscription)

 Stop an emitter pool for a subscription

 update_emitter(StoreId, Subscription)

 Update an emitter pool configuration

 Types

 subscription/0

 -type subscription() ::
 #subscription{id :: binary(),
 type :: subscription_type(),
 selector :: binary() | map(),
 subscription_name :: binary(),
 subscriber_pid :: pid() | undefined,
 created_at :: integer(),
 pool_size :: pos_integer(),
 checkpoint :: non_neg_integer() | undefined,
 options :: map()}.

 subscription_type/0

 -type subscription_type() :: stream | event_type | event_pattern | event_payload | tags.

 Functions

 init(_)

 name(StoreId, SubscriptionKey)

 -spec name(atom(), binary()) -> atom().

Generate the name for an emitter pool

 start_emitter(StoreId, Subscription)

 -spec start_emitter(atom(), subscription()) -> {ok, pid()} | {error, term()}.

Start an emitter pool for a subscription

 start_link(StoreId, Subscription)

 -spec start_link(atom(), subscription()) -> {ok, pid()} | {error, term()}.

Start the emitter pool supervisor

 stop(StoreId, SubscriptionKey)

 -spec stop(atom(), binary()) -> ok | {error, term()}.

Stop an emitter pool by key (deprecated, use stop_emitter/2)

 stop_emitter(StoreId, Subscription)

 -spec stop_emitter(atom(), subscription()) -> ok | {error, term()}.

Stop an emitter pool for a subscription

 update_emitter(StoreId, Subscription)

 -spec update_emitter(atom(), subscription()) -> ok | {error, term()}.

Update an emitter pool configuration

reckon_db_emitter_sup

Emitter supervisor for reckon-db
Manages emitter pools for subscriptions. Emitter pools are created dynamically when subscriptions are registered.

 Summary

 Types

 store_config/0

 subscription/0

 subscription_type/0

 Functions

 start_emitter_pool(StoreId, Subscription)

 Start an emitter pool for a subscription

 start_link(Store_config)

 Start the emitter supervisor

 stop_emitter_pool(StoreId, SubscriptionId)

 Stop an emitter pool

 Types

 store_config/0

 -type store_config() ::
 #store_config{store_id :: atom(),
 data_dir :: string(),
 mode :: single | cluster,
 timeout :: pos_integer(),
 writer_pool_size :: pos_integer(),
 reader_pool_size :: pos_integer(),
 gateway_pool_size :: pos_integer(),
 options :: map()}.

 subscription/0

 -type subscription() ::
 #subscription{id :: binary(),
 type :: subscription_type(),
 selector :: binary() | map(),
 subscription_name :: binary(),
 subscriber_pid :: pid() | undefined,
 created_at :: integer(),
 pool_size :: pos_integer(),
 checkpoint :: non_neg_integer() | undefined,
 options :: map()}.

 subscription_type/0

 -type subscription_type() :: stream | event_type | event_pattern | event_payload | tags.

 Functions

 start_emitter_pool(StoreId, Subscription)

 -spec start_emitter_pool(atom(), subscription()) -> {ok, pid()} | {error, term()}.

Start an emitter pool for a subscription

 start_link(Store_config)

 -spec start_link(store_config()) -> {ok, pid()} | {error, term()}.

Start the emitter supervisor

 stop_emitter_pool(StoreId, SubscriptionId)

 -spec stop_emitter_pool(atom(), binary()) -> ok | {error, term()}.

Stop an emitter pool

reckon_db_filters

Khepri event filters for reckon-db
Provides filter builders for Khepri event subscriptions. These filters are used to watch for new events matching specific criteria.

 Summary

 Functions

 by_event_pattern(EventPattern)

 Create a filter matching events with a specific pattern in their metadata

 by_event_payload(PayloadPattern)

 Create a filter matching events with a specific pattern in their payload

 by_event_type(EventType)

 Create a filter for events of a specific type

 by_stream(Stream)

 Create a filter for all events in a specific stream

 Functions

 by_event_pattern(EventPattern)

 -spec by_event_pattern(map()) -> khepri_evf:tree().

Create a filter matching events with a specific pattern in their metadata
The pattern is a map that must be a subset of the event record.

 by_event_payload(PayloadPattern)

 -spec by_event_payload(map()) -> khepri_evf:tree().

Create a filter matching events with a specific pattern in their payload
The pattern is checked against the data field of the event.

 by_event_type(EventType)

 -spec by_event_type(binary()) -> khepri_evf:tree().

Create a filter for events of a specific type

 by_stream(Stream)

 -spec by_stream(binary()) -> khepri_evf:tree() | {error, invalid_stream}.

Create a filter for all events in a specific stream
Special case: the binary <<"$all">> matches events in all streams.

reckon_db_gateway_sup

Gateway supervisor for reckon-db
Manages a pool of gateway workers that provide the external interface for the event store. Starts last in the supervision hierarchy to ensure the system is fully operational before accepting external requests.
[bookmark: Gateway_Worker_Pool]Gateway Worker Pool
The supervisor starts gateway_pool_size workers (default 1) for load distribution. Each worker registers with reckon-gater independently, allowing round-robin load balancing across all workers.
[bookmark: Gateway_Integration]Gateway Integration
Gateway workers register themselves with reckon-gater (when available) to enable load-balanced, distributed access to the event store.
When reckon-gater is not available, the gateway workers still run locally but are not registered for external load balancing.

 Summary

 Types

 store_config/0

 Functions

 start_link(Store_config)

 Start the gateway supervisor

 Types

 store_config/0

 -type store_config() ::
 #store_config{store_id :: atom(),
 data_dir :: string(),
 mode :: single | cluster,
 timeout :: pos_integer(),
 writer_pool_size :: pos_integer(),
 reader_pool_size :: pos_integer(),
 gateway_pool_size :: pos_integer(),
 options :: map()}.

 Functions

 start_link(Store_config)

 -spec start_link(store_config()) -> {ok, pid()} | {error, term()}.

Start the gateway supervisor

reckon_db_gateway_worker

Gateway worker for reckon-db
This worker process acts as the gateway endpoint for a store. It registers with reckon-gater and handles incoming requests routed through the gateway API.
Multiple gateway workers can run per store for load balancing. Each worker registers independently with the gater's Ra-based worker registry.
The message format matches the ExESDB.GatewayWorker from the original Elixir implementation.

 Summary

 Types

 store_config/0

 subscription/0

 subscription_type/0

 Functions

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 start_link(Config)

 Start a gateway worker for a store Workers are not locally registered to allow multiple per store. They register with reckon-gater for discovery and load balancing.

 terminate(Reason, State)

 Types

 store_config/0

 -type store_config() ::
 #store_config{store_id :: atom(),
 data_dir :: string(),
 mode :: single | cluster,
 timeout :: pos_integer(),
 writer_pool_size :: pos_integer(),
 reader_pool_size :: pos_integer(),
 gateway_pool_size :: pos_integer(),
 options :: map()}.

 subscription/0

 -type subscription() ::
 #subscription{id :: binary(),
 type :: subscription_type(),
 selector :: binary() | map(),
 subscription_name :: binary(),
 subscriber_pid :: pid() | undefined,
 created_at :: integer(),
 pool_size :: pos_integer(),
 checkpoint :: non_neg_integer() | undefined,
 options :: map()}.

 subscription_type/0

 -type subscription_type() :: stream | event_type | event_pattern | event_payload | tags.

 Functions

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 start_link(Config)

 -spec start_link(store_config()) -> {ok, pid()} | {error, term()}.

Start a gateway worker for a store Workers are not locally registered to allow multiple per store. They register with reckon-gater for discovery and load balancing.

 terminate(Reason, State)

reckon_db_health_prober

Active health prober for reckon-db cluster nodes
Implements active health probing to detect node failures faster than passive net_kernel:monitor_nodes/1 events. This is critical for timely split-brain detection and quorum management.
Design Philosophy:
Passive monitoring (nodeup/nodedown) can take 60+ seconds to detect failures depending on net_ticktime configuration. Active probing provides sub-second detection with configurable thresholds.
Probe Types:
1. Ping Probe - net_adm:ping/1, fast but shallow 2. RPC Probe - rpc:call with actual work, deeper health check 3. Khepri Probe - khepri_cluster:members/1, verifies store health
Failure Threshold:
A node is only declared failed after consecutive probe failures (default: 3). This prevents transient network issues from triggering false positives.
Recovery Detection:
Once a node is marked failed, probing continues. When probes succeed again, the node is marked recovered and callbacks are notified.
See also: reckon_db_consistency_checker.

 Summary

 Types

 node_status/0

 probe_config/0

 store_config/0

 Functions

 configure(StoreId, Config)

 Update prober configuration

 get_all_status(StoreId)

 Get health status of all monitored nodes

 get_node_status(StoreId, Node)

 Get health status of a specific node

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 health_check(CallerNode)

 Health check function called via RPC Returns basic node health information

 init(Store_config)

 on_node_failed(StoreId, Callback)

 Register callback for node failure events

 on_node_recovered(StoreId, Callback)

 Register callback for node recovery events

 probe_now(StoreId)

 Force immediate probe cycle

 remove_callback(StoreId, Ref)

 Remove a previously registered callback

 start_link(Store_config)

 Start the health prober

 terminate(Reason, State)

 Types

 node_status/0

 -type node_status() :: healthy | suspect | failed | unknown.

 probe_config/0

 -type probe_config() ::
 #{probe_interval => pos_integer(),
 probe_timeout => pos_integer(),
 failure_threshold => pos_integer(),
 probe_type => ping | rpc | khepri}.

 store_config/0

 -type store_config() ::
 #store_config{store_id :: atom(),
 data_dir :: string(),
 mode :: single | cluster,
 timeout :: pos_integer(),
 writer_pool_size :: pos_integer(),
 reader_pool_size :: pos_integer(),
 gateway_pool_size :: pos_integer(),
 options :: map()}.

 Functions

 configure(StoreId, Config)

 -spec configure(atom(), probe_config()) -> ok.

Update prober configuration

 get_all_status(StoreId)

 -spec get_all_status(atom()) -> #{node() => node_status()}.

Get health status of all monitored nodes

 get_node_status(StoreId, Node)

 -spec get_node_status(atom(), node()) -> {ok, node_status()} | {error, unknown_node}.

Get health status of a specific node

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 health_check(CallerNode)

 -spec health_check(node()) -> {ok, map()}.

Health check function called via RPC Returns basic node health information

 init(Store_config)

 on_node_failed(StoreId, Callback)

 -spec on_node_failed(atom(), fun((node()) -> any())) -> reference().

Register callback for node failure events

 on_node_recovered(StoreId, Callback)

 -spec on_node_recovered(atom(), fun((node()) -> any())) -> reference().

Register callback for node recovery events

 probe_now(StoreId)

 -spec probe_now(atom()) -> ok.

Force immediate probe cycle

 remove_callback(StoreId, Ref)

 -spec remove_callback(atom(), reference()) -> ok.

Remove a previously registered callback

 start_link(Store_config)

 -spec start_link(store_config()) -> {ok, pid()} | {error, term()}.

Start the health prober

 terminate(Reason, State)

reckon_db_leader

Leader worker for reckon-db
Handles leader responsibilities when this node is the Raft leader.
Responsibilities: - Save default subscriptions (like $all stream) - Start emitter pools for active subscriptions - Coordinate leader-specific tasks

 Summary

 Types

 store_config/0

 subscription/0

 subscription_type/0

 Functions

 activate(StoreId)

 Activate leader responsibilities Called when this node becomes the cluster leader.

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Store_config)

 is_active(StoreId)

 Check if leader is currently active

 start_link(Store_config)

 terminate(Reason, State)

 Types

 store_config/0

 -type store_config() ::
 #store_config{store_id :: atom(),
 data_dir :: string(),
 mode :: single | cluster,
 timeout :: pos_integer(),
 writer_pool_size :: pos_integer(),
 reader_pool_size :: pos_integer(),
 gateway_pool_size :: pos_integer(),
 options :: map()}.

 subscription/0

 -type subscription() ::
 #subscription{id :: binary(),
 type :: subscription_type(),
 selector :: binary() | map(),
 subscription_name :: binary(),
 subscriber_pid :: pid() | undefined,
 created_at :: integer(),
 pool_size :: pos_integer(),
 checkpoint :: non_neg_integer() | undefined,
 options :: map()}.

 subscription_type/0

 -type subscription_type() :: stream | event_type | event_pattern | event_payload | tags.

 Functions

 activate(StoreId)

 -spec activate(atom()) -> ok | {error, term()}.

Activate leader responsibilities Called when this node becomes the cluster leader.

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Store_config)

 is_active(StoreId)

 -spec is_active(atom()) -> boolean().

Check if leader is currently active

 start_link(Store_config)

 -spec start_link(store_config()) -> {ok, pid()} | {error, term()}.

 terminate(Reason, State)

reckon_db_leader_sup

Leader supervisor for reckon-db
Manages leader-related components: - Leader tracker (subscription tracking) - Leader worker (leader responsibilities)

 Summary

 Types

 store_config/0

 Functions

 start_link(Store_config)

 Start the leader supervisor

 Types

 store_config/0

 -type store_config() ::
 #store_config{store_id :: atom(),
 data_dir :: string(),
 mode :: single | cluster,
 timeout :: pos_integer(),
 writer_pool_size :: pos_integer(),
 reader_pool_size :: pos_integer(),
 gateway_pool_size :: pos_integer(),
 options :: map()}.

 Functions

 start_link(Store_config)

 -spec start_link(store_config()) -> {ok, pid()} | {error, term()}.

Start the leader supervisor

reckon_db_leader_tracker

Leader tracker for reckon-db
Tracks subscriptions and coordinates with pg groups.
Responsibilities: - Observe subscription changes via tracker_group - Start emitter pools when subscriptions are created (on leader) - Stop emitter pools when subscriptions are deleted (on leader) - Update emitter pools when subscriptions are modified (on leader)
Since Khepri triggers execute on the leader node, this module coordinates emitter lifecycle with subscription changes.

 Summary

 Types

 store_config/0

 subscription/0

 subscription_type/0

 Functions

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Store_config)

 start_link(Store_config)

 terminate(Reason, State)

 Types

 store_config/0

 -type store_config() ::
 #store_config{store_id :: atom(),
 data_dir :: string(),
 mode :: single | cluster,
 timeout :: pos_integer(),
 writer_pool_size :: pos_integer(),
 reader_pool_size :: pos_integer(),
 gateway_pool_size :: pos_integer(),
 options :: map()}.

 subscription/0

 -type subscription() ::
 #subscription{id :: binary(),
 type :: subscription_type(),
 selector :: binary() | map(),
 subscription_name :: binary(),
 subscriber_pid :: pid() | undefined,
 created_at :: integer(),
 pool_size :: pos_integer(),
 checkpoint :: non_neg_integer() | undefined,
 options :: map()}.

 subscription_type/0

 -type subscription_type() :: stream | event_type | event_pattern | event_payload | tags.

 Functions

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Store_config)

 start_link(Store_config)

 -spec start_link(store_config()) -> {ok, pid()} | {error, term()}.

 terminate(Reason, State)

reckon_db_links

Stream linking and simple projections for reckon-db
Provides derived streams from source streams: - Filter events based on predicates - Transform event data - Create materialized streams for specialized queries
Links are live - new events are automatically propagated. Link streams can be subscribed to like regular streams.
Usage:
 %% Create a link for high-value orders
 reckon_db_links:create(my_store, #{
 name => <<"high-value-orders">>,
 source => #{type => stream_pattern, pattern => <<"orders-*">>},
 filter => fun(E) -> maps:get(total, E#event.data, 0) > 1000 end,
 transform => fun(E) -> E#event{data = E#event.data#{flagged => true}} end
 }).

 %% Subscribe to linked stream
 reckon_db_subscriptions:subscribe(my_store, stream, <<"$link:high-value-orders">>, ...).

 Summary

 Types

 event/0

 filter_fun/0

 link_info/0

 link_spec/0

 source_spec/0

 transform_fun/0

 Functions

 create(StoreId, Spec)

 Create a new link.

 delete(StoreId, Name)

 Delete a link.

 get(StoreId, Name)

 Get a link by name.

 info(StoreId, Name)

 Get detailed link info.

 list(StoreId)

 List all links.

 start(StoreId, Name)

 Start processing a link.

 stop(StoreId, Name)

 Stop processing a link.

 Types

 event/0

 -type event() ::
 #event{event_id :: binary(),
 event_type :: binary(),
 stream_id :: binary(),
 version :: non_neg_integer(),
 data :: map() | binary(),
 metadata :: map(),
 tags :: [binary()] | undefined,
 timestamp :: integer(),
 epoch_us :: integer(),
 data_content_type :: binary(),
 metadata_content_type :: binary()}.

 filter_fun/0

 -type filter_fun() :: fun((event()) -> boolean()).

 link_info/0

 -type link_info() ::
 #{name := binary(),
 source := source_spec(),
 status := running | stopped | error,
 processed := non_neg_integer(),
 last_event => binary()}.

 link_spec/0

 -type link_spec() ::
 #{name := binary(),
 source := source_spec(),
 filter => filter_fun(),
 transform => transform_fun(),
 backfill => boolean()}.

 source_spec/0

 -type source_spec() ::
 #{type := stream | stream_pattern | all, stream_id => binary(), pattern => binary()}.

 transform_fun/0

 -type transform_fun() :: fun((event()) -> event()).

 Functions

 create(StoreId, Spec)

 -spec create(atom(), link_spec()) -> ok | {error, term()}.

Create a new link.
Options: - name: Link name (required, will create stream with $link prefix) - source: Source specification (stream, stream_pattern, or all) - filter: Predicate function to filter events - transform: Function to transform events - backfill: Process existing events (default: false)

 delete(StoreId, Name)

 -spec delete(atom(), binary()) -> ok | {error, term()}.

Delete a link.

 get(StoreId, Name)

 -spec get(atom(), binary()) -> {ok, link_info()} | {error, not_found}.

Get a link by name.

 info(StoreId, Name)

 -spec info(atom(), binary()) -> {ok, map()} | {error, not_found}.

Get detailed link info.

 list(StoreId)

 -spec list(atom()) -> {ok, [link_info()]} | {error, term()}.

List all links.

 start(StoreId, Name)

 -spec start(atom(), binary()) -> ok | {error, term()}.

Start processing a link.
This will: 1. Subscribe to source stream(s) 2. Optionally backfill existing events 3. Apply filter and transform to each event 4. Write matching events to the link stream

 stop(StoreId, Name)

 -spec stop(atom(), binary()) -> ok | {error, term()}.

Stop processing a link.

reckon_db_memory

Memory pressure monitoring for reckon-db
Monitors system memory usage and triggers adaptive behavior when memory pressure increases. Components can register callbacks to be notified of pressure changes.
Pressure levels: - normal`: Full caching, all features enabled - `elevated`: Reduce cache sizes, flush more often - `critical`: Pause non-essential operations, aggressive cleanup Usage: ``` %% Start monitoring reckon_db_memory:start_link(). %% Check current level normal = reckon_db_memory:level(). %% Register callback reckon_db_memory:on_pressure_change(fun(Level) -> logger:info("Memory pressure: ~p", [Level]) end).''

 Summary

 Types

 callback_fun/0

 callback_ref/0

 config/0

 pressure_level/0

 Functions

 check_now()

 Force an immediate memory check.

 code_change(OldVsn, State, Extra)

 configure(Config)

 Update configuration.

 get_config()

 Get current configuration.

 get_stats()

 Get current memory statistics.

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Config)

 level()

 Get current memory pressure level.

 level(UsageRatio)

 Get pressure level for a given memory usage ratio. This is a pure function useful for testing.

 on_pressure_change(Fun)

 Register callback for pressure level changes. Returns a reference that can be used to remove the callback.

 remove_callback(Ref)

 Remove a registered callback.

 start_link()

 Start the memory monitor with default configuration.

 start_link(Config)

 Start the memory monitor with custom configuration.

 terminate(Reason, State)

 Types

 callback_fun/0

 -type callback_fun() :: fun((pressure_level()) -> any()).

 callback_ref/0

 -type callback_ref() :: reference().

 config/0

 -type config() ::
 #{elevated_threshold => float(),
 critical_threshold => float(),
 check_interval => pos_integer()}.

 pressure_level/0

 -type pressure_level() :: normal | elevated | critical.

 Functions

 check_now()

 -spec check_now() -> pressure_level().

Force an immediate memory check.

 code_change(OldVsn, State, Extra)

 configure(Config)

 -spec configure(config()) -> ok.

Update configuration.

 get_config()

 -spec get_config() -> config().

Get current configuration.

 get_stats()

 -spec get_stats() -> map().

Get current memory statistics.

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Config)

 level()

 -spec level() -> pressure_level().

Get current memory pressure level.

 level(UsageRatio)

 -spec level(float()) -> pressure_level().

Get pressure level for a given memory usage ratio. This is a pure function useful for testing.

 on_pressure_change(Fun)

 -spec on_pressure_change(callback_fun()) -> callback_ref().

Register callback for pressure level changes. Returns a reference that can be used to remove the callback.

 remove_callback(Ref)

 -spec remove_callback(callback_ref()) -> ok.

Remove a registered callback.

 start_link()

 -spec start_link() -> {ok, pid()} | {error, term()}.

Start the memory monitor with default configuration.

 start_link(Config)

 -spec start_link(config()) -> {ok, pid()} | {error, term()}.

Start the memory monitor with custom configuration.

 terminate(Reason, State)

reckon_db_naming

Process naming utilities for reckon-db
Provides consistent naming conventions for all processes and registered names throughout the system.

 Summary

 Functions

 cluster_sup_name(StoreId)

 Cluster supervisor name for a store

 coordinator_name(StoreId)

 Store coordinator worker name

 core_sup_name(StoreId)

 Core supervisor name for a store

 discovery_name(StoreId)

 Discovery worker name

 emitter_group_key(StoreId, SubscriptionId)

 Emitter group key (for event distribution via pg)

 emitter_pool_name(StoreId, SubscriptionId)

 Emitter pool name for a subscription

 emitter_sup_name(StoreId)

 Emitter supervisor name for a store

 gateway_sup_name(StoreId)

 Gateway supervisor name for a store

 gateway_worker_name(StoreId)

 Gateway worker name for a store

 leader_name(StoreId)

 Leader worker name

 leader_sup_name(StoreId)

 Leader supervisor name for a store

 leader_tracker_name(StoreId)

 Leader tracker worker name

 node_monitor_name(StoreId)

 Node monitor worker name

 notification_sup_name(StoreId)

 Notification supervisor name for a store

 persistence_sup_name(StoreId)

 Persistence supervisor name for a store

 persistence_worker_name(StoreId)

 Persistence worker name

 pg_group_name(StoreId, Feature)

 Process group name for a store feature

 reader_pool_name(StoreId)

 Reader pool name for a store

 snapshots_store_name(StoreId)

 Snapshots store worker name

 store_mgr_name(StoreId)

 Store manager worker name

 store_name(StoreId)

 Khepri store name (this is the atom used for khepri operations)

 store_worker_name(StoreId)

 Store worker name (the gen_server that starts Khepri) NOTE: This is different from store_name/1 (Khepri operations) and store_mgr_name/1 (store lifecycle coordination).

 streams_sup_name(StoreId)

 Streams supervisor name for a store

 subscriptions_store_name(StoreId)

 Subscriptions store worker name

 system_sup_name(StoreId)

 System supervisor name for a store

 tracker_group_key(StoreId, Feature)

 Tracker group key (for subscription tracking via pg)

 writer_pool_name(StoreId)

 Writer pool name for a store

 Functions

 cluster_sup_name(StoreId)

 -spec cluster_sup_name(atom()) -> atom().

Cluster supervisor name for a store

 coordinator_name(StoreId)

 -spec coordinator_name(atom()) -> atom().

Store coordinator worker name

 core_sup_name(StoreId)

 -spec core_sup_name(atom()) -> atom().

Core supervisor name for a store

 discovery_name(StoreId)

 -spec discovery_name(atom()) -> atom().

Discovery worker name

 emitter_group_key(StoreId, SubscriptionId)

 -spec emitter_group_key(atom(), binary()) -> term().

Emitter group key (for event distribution via pg)

 emitter_pool_name(StoreId, SubscriptionId)

 -spec emitter_pool_name(atom(), binary()) -> atom().

Emitter pool name for a subscription

 emitter_sup_name(StoreId)

 -spec emitter_sup_name(atom()) -> atom().

Emitter supervisor name for a store

 gateway_sup_name(StoreId)

 -spec gateway_sup_name(atom()) -> atom().

Gateway supervisor name for a store

 gateway_worker_name(StoreId)

 -spec gateway_worker_name(atom()) -> atom().

Gateway worker name for a store

 leader_name(StoreId)

 -spec leader_name(atom()) -> atom().

Leader worker name

 leader_sup_name(StoreId)

 -spec leader_sup_name(atom()) -> atom().

Leader supervisor name for a store

 leader_tracker_name(StoreId)

 -spec leader_tracker_name(atom()) -> atom().

Leader tracker worker name

 node_monitor_name(StoreId)

 -spec node_monitor_name(atom()) -> atom().

Node monitor worker name

 notification_sup_name(StoreId)

 -spec notification_sup_name(atom()) -> atom().

Notification supervisor name for a store

 persistence_sup_name(StoreId)

 -spec persistence_sup_name(atom()) -> atom().

Persistence supervisor name for a store

 persistence_worker_name(StoreId)

 -spec persistence_worker_name(atom()) -> atom().

Persistence worker name

 pg_group_name(StoreId, Feature)

 -spec pg_group_name(atom(), atom()) -> term().

Process group name for a store feature

 reader_pool_name(StoreId)

 -spec reader_pool_name(atom()) -> atom().

Reader pool name for a store

 snapshots_store_name(StoreId)

 -spec snapshots_store_name(atom()) -> atom().

Snapshots store worker name

 store_mgr_name(StoreId)

 -spec store_mgr_name(atom()) -> atom().

Store manager worker name

 store_name(StoreId)

 -spec store_name(atom()) -> atom().

Khepri store name (this is the atom used for khepri operations)

 store_worker_name(StoreId)

 -spec store_worker_name(atom()) -> atom().

Store worker name (the gen_server that starts Khepri) NOTE: This is different from store_name/1 (Khepri operations) and store_mgr_name/1 (store lifecycle coordination).

 streams_sup_name(StoreId)

 -spec streams_sup_name(atom()) -> atom().

Streams supervisor name for a store

 subscriptions_store_name(StoreId)

 -spec subscriptions_store_name(atom()) -> atom().

Subscriptions store worker name

 system_sup_name(StoreId)

 -spec system_sup_name(atom()) -> atom().

System supervisor name for a store

 tracker_group_key(StoreId, Feature)

 -spec tracker_group_key(atom(), atom()) -> integer().

Tracker group key (for subscription tracking via pg)

 writer_pool_name(StoreId)

 -spec writer_pool_name(atom()) -> atom().

Writer pool name for a store

reckon_db_node_monitor

Node monitor for reckon-db
Monitors cluster node health and handles node up/down events.
Responsibilities: - Monitor node connectivity via net_kernel:monitor_nodes/1 - Trigger cluster join attempts on nodeup events - Track cluster membership changes - Emit telemetry on node events - Periodic leader checks

 Summary

 Types

 store_config/0

 Functions

 get_members(StoreId)

 Get current cluster members

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Store_config)

 start_link(Store_config)

 terminate(Reason, State)

 Types

 store_config/0

 -type store_config() ::
 #store_config{store_id :: atom(),
 data_dir :: string(),
 mode :: single | cluster,
 timeout :: pos_integer(),
 writer_pool_size :: pos_integer(),
 reader_pool_size :: pos_integer(),
 gateway_pool_size :: pos_integer(),
 options :: map()}.

 Functions

 get_members(StoreId)

 -spec get_members(atom()) -> {ok, [term()]} | {error, term()}.

Get current cluster members

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Store_config)

 start_link(Store_config)

 -spec start_link(store_config()) -> {ok, pid()} | {error, term()}.

 terminate(Reason, State)

reckon_db_notification_sup

Notification supervisor for reckon-db
Manages notification-related components: - LeaderSystem (leader responsibilities, tracking) - EmitterSystem (event distribution workers)

 Summary

 Types

 store_config/0

 Functions

 start_link(Store_config)

 Start the notification supervisor

 Types

 store_config/0

 -type store_config() ::
 #store_config{store_id :: atom(),
 data_dir :: string(),
 mode :: single | cluster,
 timeout :: pos_integer(),
 writer_pool_size :: pos_integer(),
 reader_pool_size :: pos_integer(),
 gateway_pool_size :: pos_integer(),
 options :: map()}.

 Functions

 start_link(Store_config)

 -spec start_link(store_config()) -> {ok, pid()} | {error, term()}.

Start the notification supervisor

reckon_db_persistence_sup

Persistence supervisor for reckon-db
Manages persistence-related components: - Khepri store worker - Streams supervisor (writers/readers) - Persistence worker (batched flush, currently disabled)
Note: Snapshots and Subscriptions stores are facade modules that work directly with Khepri without needing gen_servers.

 Summary

 Types

 store_config/0

 Functions

 start_link(Store_config)

 Start the persistence supervisor

 Types

 store_config/0

 -type store_config() ::
 #store_config{store_id :: atom(),
 data_dir :: string(),
 mode :: single | cluster,
 timeout :: pos_integer(),
 writer_pool_size :: pos_integer(),
 reader_pool_size :: pos_integer(),
 gateway_pool_size :: pos_integer(),
 options :: map()}.

 Functions

 start_link(Store_config)

 -spec start_link(store_config()) -> {ok, pid()} | {error, term()}.

Start the persistence supervisor

reckon_db_persistence_worker

Persistence worker for reckon-db
A GenServer that handles periodic disk persistence operations. This worker batches and schedules flush operations to ensure data is persisted to disk without blocking event append operations.
Features: - Configurable persistence interval (default: 5 seconds) - Batching of flush operations to reduce disk I/O - Graceful shutdown with final persistence - Per-store persistence workers
NOTE: The actual flush operation is currently DISABLED as Khepri/Ra handles persistence internally via Raft consensus. This module exists for future optimization and to match the architecture of ex-esdb.

 Summary

 Types

 store_config/0

 Functions

 force_persistence(StoreId)

 Force immediate persistence of all pending stores.

 request_persistence(StoreId)

 Request that a store's data be persisted to disk.

 start_link(Store_config)

 Start a persistence worker for a specific store.

 Types

 store_config/0

 -type store_config() ::
 #store_config{store_id :: atom(),
 data_dir :: string(),
 mode :: single | cluster,
 timeout :: pos_integer(),
 writer_pool_size :: pos_integer(),
 reader_pool_size :: pos_integer(),
 gateway_pool_size :: pos_integer(),
 options :: map()}.

 Functions

 force_persistence(StoreId)

 -spec force_persistence(atom()) -> ok | {error, term()}.

Force immediate persistence of all pending stores.
This is a synchronous call that blocks until persistence is complete.

 request_persistence(StoreId)

 -spec request_persistence(atom()) -> ok | {error, not_found}.

Request that a store's data be persisted to disk.
This is a non-blocking call that queues the store for persistence. Returns ok immediately; actual persistence happens asynchronously.

 start_link(Store_config)

 -spec start_link(store_config()) -> {ok, pid()} | {error, term()}.

Start a persistence worker for a specific store.

reckon_db_scavenge

Scavenging and archival for reckon-db
Provides functionality to: - Remove old events beyond a retention period - Optionally archive events before deletion - Maintain stream integrity by requiring snapshots
Use cases: - Reduce storage costs by removing old events - Comply with data retention policies - Archive events to cold storage
Safety guarantees: - By default, requires a snapshot before scavenging - Supports dry-run mode for previewing changes - Telemetry events for monitoring

 Summary

 Types

 event/0

 scavenge_opts/0

 scavenge_result/0

 Functions

 archive_and_scavenge(StoreId, StreamId, _, Opts)

 Archive events to a backend, then scavenge.

 dry_run(StoreId, StreamId, Opts)

 Preview what would be scavenged without making changes.

 scavenge(StoreId, StreamId, Opts)

 Scavenge a single stream.

 scavenge_matching(StoreId, Pattern, Opts)

 Scavenge all streams matching a pattern.

 Types

 event/0

 -type event() ::
 #event{event_id :: binary(),
 event_type :: binary(),
 stream_id :: binary(),
 version :: non_neg_integer(),
 data :: map() | binary(),
 metadata :: map(),
 tags :: [binary()] | undefined,
 timestamp :: integer(),
 epoch_us :: integer(),
 data_content_type :: binary(),
 metadata_content_type :: binary()}.

 scavenge_opts/0

 -type scavenge_opts() ::
 #{before => integer(),
 before_version => integer(),
 keep_versions => pos_integer(),
 require_snapshot => boolean(),
 dry_run => boolean()}.

 scavenge_result/0

 -type scavenge_result() ::
 #{stream_id := binary(),
 deleted_count := non_neg_integer(),
 deleted_versions := {non_neg_integer(), non_neg_integer()},
 archived := boolean(),
 archive_key => binary()}.

 Functions

 archive_and_scavenge(StoreId, StreamId, _, Opts)

 -spec archive_and_scavenge(atom(), binary(), {module(), term()}, scavenge_opts()) ->
 {ok, scavenge_result()} | {error, term()}.

Archive events to a backend, then scavenge.
First archives events to the specified backend, then deletes them. This ensures events are preserved before removal.

 dry_run(StoreId, StreamId, Opts)

 -spec dry_run(atom(), binary(), scavenge_opts()) -> {ok, scavenge_result()} | {error, term()}.

Preview what would be scavenged without making changes.

 scavenge(StoreId, StreamId, Opts)

 -spec scavenge(atom(), binary(), scavenge_opts()) -> {ok, scavenge_result()} | {error, term()}.

Scavenge a single stream.
Deletes old events based on the provided options. By default, requires a snapshot to exist (safety measure).
Options: - before`: Delete events with epoch_us before this timestamp - `before_version`: Delete events before this version (alternative to `before`) - `keep_versions`: Always keep at least N latest versions (default: 0) - `require_snapshot`: Require snapshot exists (default: true) - `dry_run`: Preview only, dont delete (default: false)
Example:
 %% Delete events older than 1 year, keep last 10 versions
 OneYearAgo = erlang:system_time(microsecond) - (365 * 24 * 60 * 60 * 1000000),
 {ok, Result} = reckon_db_scavenge:scavenge(my_store, <<"orders-123">>, #{
 before => OneYearAgo,
 keep_versions => 10
 }).

 scavenge_matching(StoreId, Pattern, Opts)

 -spec scavenge_matching(atom(), binary(), scavenge_opts()) ->
 {ok, [scavenge_result()]} | {error, term()}.

Scavenge all streams matching a pattern.
Pattern uses shell-like wildcards (e.g., "orders-*"). Applies the same options to all matching streams.

reckon_db_schema

Schema registry and upcasting for reckon-db
Provides schema versioning and automatic event transformation: - Register schemas for event types with version numbers - Define upcast functions to transform old versions to new - Auto-upcast events when reading from streams
Event schema evolution strategies: - Weak schema: No validation, just track versions - Strong schema: Validate against JSON Schema or custom validator - Tolerant reader: Accept old versions, upcast on demand
Usage:
 %% Register schema
 reckon_db_schema:register(my_store, <<"OrderPlaced">>, #{
 version => 2,
 upcast_from => #{
 1 => fun(V1Data) -> V1Data#{new_field => default} end
 }
 }).

 %% Read with upcasting
 {ok, Events} = reckon_db_streams:read(my_store, stream, 0, 100, forward),
 UpcastedEvents = reckon_db_schema:upcast(my_store, Events).

 Summary

 Types

 event/0

 schema/0

 schema_info/0

 upcast_fun/0

 validator_fun/0

 version/0

 Functions

 get(StoreId, EventType)

 Get a schema by event type.

 get_version(StoreId, EventType)

 Get current version for an event type.

 list(StoreId)

 List all registered schemas.

 register(StoreId, EventType, Schema)

 Register a schema for an event type.

 unregister(StoreId, EventType)

 Unregister a schema.

 upcast(StoreId, Events)

 Upcast a list of events to their current schema versions.

 upcast_event(StoreId, Event)

 Upcast a single event to current schema version.

 validate(StoreId, Event)

 Validate an event against its registered schema.

 Types

 event/0

 -type event() ::
 #event{event_id :: binary(),
 event_type :: binary(),
 stream_id :: binary(),
 version :: non_neg_integer(),
 data :: map() | binary(),
 metadata :: map(),
 tags :: [binary()] | undefined,
 timestamp :: integer(),
 epoch_us :: integer(),
 data_content_type :: binary(),
 metadata_content_type :: binary()}.

 schema/0

 -type schema() ::
 #{event_type := binary(),
 version := version(),
 upcast_from => #{version() => upcast_fun()},
 validator => validator_fun(),
 description => binary()}.

 schema_info/0

 -type schema_info() :: #{event_type := binary(), version := version(), registered_at := integer()}.

 upcast_fun/0

 -type upcast_fun() :: fun((map()) -> map()).

 validator_fun/0

 -type validator_fun() :: fun((map()) -> ok | {error, term()}).

 version/0

 -type version() :: pos_integer().

 Functions

 get(StoreId, EventType)

 -spec get(atom(), binary()) -> {ok, schema()} | {error, not_found}.

Get a schema by event type.

 get_version(StoreId, EventType)

 -spec get_version(atom(), binary()) -> {ok, version()} | {error, not_found}.

Get current version for an event type.

 list(StoreId)

 -spec list(atom()) -> {ok, [schema_info()]} | {error, term()}.

List all registered schemas.

 register(StoreId, EventType, Schema)

 -spec register(atom(), binary(), schema()) -> ok | {error, term()}.

Register a schema for an event type.
Options: - version: Schema version (required, positive integer) - upcast_from: Map of OldVersion to UpcastFun for transformations - validator: Fun to validate event data (returns ok or error tuple) - description: Human-readable description

 unregister(StoreId, EventType)

 -spec unregister(atom(), binary()) -> ok | {error, term()}.

Unregister a schema.

 upcast(StoreId, Events)

 -spec upcast(atom(), [event()]) -> [event()].

Upcast a list of events to their current schema versions.
Events without registered schemas are returned unchanged. Events already at current version are returned unchanged.

 upcast_event(StoreId, Event)

 -spec upcast_event(atom(), event()) -> event().

Upcast a single event to current schema version.

 validate(StoreId, Event)

 -spec validate(atom(), event()) -> ok | {error, term()}.

Validate an event against its registered schema.

reckon_db_snapshots

Snapshots API facade for reckon-db
Provides the public API for snapshot operations: - save: Save aggregate state as a snapshot - load: Load the latest snapshot for a stream - load_at: Load a specific snapshot version - list: List all snapshots for a stream - delete: Delete snapshots for a stream - exists: Check if a snapshot exists
Snapshots are used to optimize event replay by storing aggregate state at specific versions.

 Summary

 Types

 snapshot/0

 snapshot_data/0

 snapshot_metadata/0

 Functions

 delete(StoreId, StreamId)

 Delete all snapshots for a stream

 delete_at(StoreId, StreamId, Version)

 Delete a specific snapshot version

 exists(StoreId, StreamId)

 Check if any snapshot exists for a stream

 exists_at(StoreId, StreamId, Version)

 Check if a specific snapshot version exists

 list(StoreId, StreamId)

 List all snapshots for a stream

 load(StoreId, StreamId)

 Load the latest snapshot for a stream

 load_at(StoreId, StreamId, Version)

 Load a specific snapshot version

 save(StoreId, StreamId, Version, Data)

 Save a snapshot with default empty metadata

 save(StoreId, StreamId, Version, Data, Metadata)

 Save a snapshot with metadata

 Types

 snapshot/0

 -type snapshot() ::
 #snapshot{stream_id :: binary(),
 version :: non_neg_integer(),
 data :: map() | binary(),
 metadata :: map(),
 timestamp :: integer()}.

 snapshot_data/0

 -type snapshot_data() :: map() | binary().

 snapshot_metadata/0

 -type snapshot_metadata() :: map().

 Functions

 delete(StoreId, StreamId)

 -spec delete(atom(), binary()) -> ok | {error, term()}.

Delete all snapshots for a stream

 delete_at(StoreId, StreamId, Version)

 -spec delete_at(atom(), binary(), non_neg_integer()) -> ok | {error, term()}.

Delete a specific snapshot version

 exists(StoreId, StreamId)

 -spec exists(atom(), binary()) -> boolean().

Check if any snapshot exists for a stream

 exists_at(StoreId, StreamId, Version)

 -spec exists_at(atom(), binary(), non_neg_integer()) -> boolean().

Check if a specific snapshot version exists

 list(StoreId, StreamId)

 -spec list(atom(), binary()) -> {ok, [snapshot()]} | {error, term()}.

List all snapshots for a stream

 load(StoreId, StreamId)

 -spec load(atom(), binary()) -> {ok, snapshot()} | {error, not_found}.

Load the latest snapshot for a stream
Returns {ok, Snapshot} if found, {error, not_found} otherwise.

 load_at(StoreId, StreamId, Version)

 -spec load_at(atom(), binary(), non_neg_integer()) -> {ok, snapshot()} | {error, not_found}.

Load a specific snapshot version

 save(StoreId, StreamId, Version, Data)

 -spec save(atom(), binary(), non_neg_integer(), snapshot_data()) -> ok | {error, term()}.

Save a snapshot with default empty metadata
Parameters: StoreId - The store identifier StreamId - The stream this snapshot belongs to Version - The event version this snapshot represents Data - The aggregate state to snapshot
Returns ok on success or {error, Reason} on failure.

 save(StoreId, StreamId, Version, Data, Metadata)

 -spec save(atom(), binary(), non_neg_integer(), snapshot_data(), snapshot_metadata()) ->
 ok | {error, term()}.

Save a snapshot with metadata

reckon_db_snapshots_store

Snapshots store for reckon-db
Manages snapshot persistence and retrieval directly via Khepri. Snapshots are stored at path [snapshots, StreamId, PaddedVersion].

 Summary

 Types

 snapshot/0

 store_id/0

 Functions

 delete(StoreId, StreamId)

 Delete all snapshots for a stream

 delete(StoreId, StreamId, Version)

 Delete a specific snapshot version

 exists(StoreId, StreamId)

 Check if any snapshot exists for a stream

 exists(StoreId, StreamId, Version)

 Check if a specific snapshot version exists

 get(StoreId, StreamId)

 Get the latest snapshot for a stream

 get(StoreId, StreamId, Version)

 Get a specific snapshot version for a stream

 get_latest(StoreId, StreamId)

 Get the latest snapshot for a stream

 list(StoreId, StreamId)

 List all snapshots for a stream

 put(StoreId, Snapshot)

 Store a snapshot

 Types

 snapshot/0

 -type snapshot() ::
 #snapshot{stream_id :: binary(),
 version :: non_neg_integer(),
 data :: map() | binary(),
 metadata :: map(),
 timestamp :: integer()}.

 store_id/0

 -type store_id() :: atom().

 Functions

 delete(StoreId, StreamId)

 -spec delete(store_id(), binary()) -> ok | {error, term()}.

Delete all snapshots for a stream

 delete(StoreId, StreamId, Version)

 -spec delete(store_id(), binary(), non_neg_integer()) -> ok | {error, term()}.

Delete a specific snapshot version

 exists(StoreId, StreamId)

 -spec exists(store_id(), binary()) -> boolean().

Check if any snapshot exists for a stream

 exists(StoreId, StreamId, Version)

 -spec exists(store_id(), binary(), non_neg_integer()) -> boolean().

Check if a specific snapshot version exists

 get(StoreId, StreamId)

 -spec get(store_id(), binary()) -> snapshot() | undefined.

Get the latest snapshot for a stream

 get(StoreId, StreamId, Version)

 -spec get(store_id(), binary(), non_neg_integer()) -> snapshot() | undefined.

Get a specific snapshot version for a stream

 get_latest(StoreId, StreamId)

 -spec get_latest(store_id(), binary()) -> snapshot() | undefined.

Get the latest snapshot for a stream

 list(StoreId, StreamId)

 -spec list(store_id(), binary()) -> {ok, [snapshot()]} | {error, term()}.

List all snapshots for a stream

 put(StoreId, Snapshot)

 -spec put(store_id(), snapshot()) -> ok | {error, term()}.

Store a snapshot

reckon_db_store

Khepri store lifecycle management for reckon-db
Manages the Khepri store instance, including: - Starting and stopping the store - Cluster formation (in cluster mode) - Health checks

 Summary

 Types

 store_config/0

 Functions

 get_leader(StoreId)

 Get the current leader node for the store

 get_store(StoreId)

 Get the store name (for use with khepri operations)

 is_ready(StoreId)

 Check if the store is ready

 start_link(Store_config)

 Start the store worker IMPORTANT: We use store_worker_name/1 for gen_server registration to avoid conflicting with Khepri's internal naming. Khepri uses the StoreId for its Ra cluster and process registration.

 Types

 store_config/0

 -type store_config() ::
 #store_config{store_id :: atom(),
 data_dir :: string(),
 mode :: single | cluster,
 timeout :: pos_integer(),
 writer_pool_size :: pos_integer(),
 reader_pool_size :: pos_integer(),
 gateway_pool_size :: pos_integer(),
 options :: map()}.

 Functions

 get_leader(StoreId)

 -spec get_leader(atom()) -> {ok, node()} | {error, term()}.

Get the current leader node for the store

 get_store(StoreId)

 -spec get_store(atom()) -> atom().

Get the store name (for use with khepri operations)

 is_ready(StoreId)

 -spec is_ready(atom()) -> boolean().

Check if the store is ready

 start_link(Store_config)

 -spec start_link(store_config()) -> {ok, pid()} | {error, term()}.

Start the store worker IMPORTANT: We use store_worker_name/1 for gen_server registration to avoid conflicting with Khepri's internal naming. Khepri uses the StoreId for its Ra cluster and process registration.

reckon_db_store_coordinator

Store coordinator for reckon-db
Coordinates cluster join operations and prevents split-brain scenarios.
Responsibilities: - Detecting existing clusters via RPC - Coordinator election (lowest node name) - Coordinated cluster joining - Split-brain prevention

 Summary

 Types

 store_config/0

 Functions

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Store_config)

 is_leader(StoreId)

 Check if this node is the leader

 join_cluster(StoreId)

 Join the Khepri cluster using coordinated approach

 join_cluster(StoreId, TargetNode)

 Join a specific node's cluster

 leader(StoreId)

 Get current leader node

 members(StoreId)

 Get cluster members

 should_handle_nodeup(StoreId)

 Check if this node should handle nodeup events

 start_link(Store_config)

 terminate(Reason, State)

 Types

 store_config/0

 -type store_config() ::
 #store_config{store_id :: atom(),
 data_dir :: string(),
 mode :: single | cluster,
 timeout :: pos_integer(),
 writer_pool_size :: pos_integer(),
 reader_pool_size :: pos_integer(),
 gateway_pool_size :: pos_integer(),
 options :: map()}.

 Functions

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Store_config)

 is_leader(StoreId)

 -spec is_leader(atom()) -> boolean().

Check if this node is the leader

 join_cluster(StoreId)

 -spec join_cluster(atom()) -> ok | coordinator | no_nodes | waiting | failed.

Join the Khepri cluster using coordinated approach

 join_cluster(StoreId, TargetNode)

 -spec join_cluster(atom(), node()) -> ok | {error, term()}.

Join a specific node's cluster

 leader(StoreId)

 -spec leader(atom()) -> {ok, node()} | {error, no_leader}.

Get current leader node

 members(StoreId)

 -spec members(atom()) -> {ok, [term()]} | {error, term()}.

Get cluster members

 should_handle_nodeup(StoreId)

 -spec should_handle_nodeup(atom()) -> boolean().

Check if this node should handle nodeup events

 start_link(Store_config)

 -spec start_link(store_config()) -> {ok, pid()} | {error, term()}.

 terminate(Reason, State)

reckon_db_store_mgr

Store manager for reckon-db
Coordinates store lifecycle and provides store-level operations.

 Summary

 Types

 store_config/0

 Functions

 get_info(StoreId)

 Get store information

 start_link(Store_config)

 Start the store manager

 Types

 store_config/0

 -type store_config() ::
 #store_config{store_id :: atom(),
 data_dir :: string(),
 mode :: single | cluster,
 timeout :: pos_integer(),
 writer_pool_size :: pos_integer(),
 reader_pool_size :: pos_integer(),
 gateway_pool_size :: pos_integer(),
 options :: map()}.

 Functions

 get_info(StoreId)

 -spec get_info(atom()) -> {ok, map()} | {error, term()}.

Get store information

 start_link(Store_config)

 -spec start_link(store_config()) -> {ok, pid()} | {error, term()}.

Start the store manager

reckon_db_streams

Streams API facade for reckon-db
Provides the public API for stream operations: - append: Write events to a stream with optimistic concurrency - read: Read events from a stream - get_version: Get current stream version - exists: Check if stream exists - list_streams: List all streams in the store

 Summary

 Types

 direction/0

 event/0

 new_event/0

 Functions

 append(StoreId, StreamId, ExpectedVersion, Events)

 Append events to a stream with expected version check

 append(StoreId, StreamId, ExpectedVersion, Events, Opts)

 delete(StoreId, StreamId)

 Delete a stream and all its events

 exists(StoreId, StreamId)

 Check if a stream exists

 get_version(StoreId, StreamId)

 Get current version of a stream

 list_streams(StoreId)

 List all streams in the store

 read(StoreId, StreamId, StartVersion, Count, Direction)

 Read events from a stream

 read_all(StoreId, StreamId, BatchSize, Direction)

 Read all events from a stream

 read_by_event_types(StoreId, EventTypes, BatchSize)

 Read all events of specific types from all streams using Khepri native filtering.

 read_by_tags(StoreId, Tags, Match, BatchSize)

 Read all events matching tags from all streams.

 Types

 direction/0

 -type direction() :: forward | backward.

 event/0

 -type event() ::
 #event{event_id :: binary(),
 event_type :: binary(),
 stream_id :: binary(),
 version :: non_neg_integer(),
 data :: map() | binary(),
 metadata :: map(),
 tags :: [binary()] | undefined,
 timestamp :: integer(),
 epoch_us :: integer(),
 data_content_type :: binary(),
 metadata_content_type :: binary()}.

 new_event/0

 -type new_event() ::
 #{event_type := binary(),
 data := map() | binary(),
 metadata => map(),
 tags => [binary()],
 event_id => binary()}.

 Functions

 append(StoreId, StreamId, ExpectedVersion, Events)

 -spec append(atom(), binary(), integer(), [new_event()]) -> {ok, non_neg_integer()} | {error, term()}.

Append events to a stream with expected version check
Expected version semantics: -1 (NO_STREAM) - Stream must not exist (first write) -2 (ANY_VERSION) - No version check, always append N >= 0 - Stream version must equal N
Returns {ok, NewVersion} on success or {error, Reason} on failure.

 append(StoreId, StreamId, ExpectedVersion, Events, Opts)

 -spec append(atom(), binary(), integer(), [new_event()], map()) ->
 {ok, non_neg_integer()} | {error, term()}.

 delete(StoreId, StreamId)

 -spec delete(atom(), binary()) -> ok | {error, term()}.

Delete a stream and all its events

 exists(StoreId, StreamId)

 -spec exists(atom(), binary()) -> boolean().

Check if a stream exists

 get_version(StoreId, StreamId)

 -spec get_version(atom(), binary()) -> integer().

Get current version of a stream
Returns: -1 - if stream doesn't exist or is empty N >= 0 - representing the version of the latest event

 list_streams(StoreId)

 -spec list_streams(atom()) -> {ok, [binary()]} | {error, term()}.

List all streams in the store

 read(StoreId, StreamId, StartVersion, Count, Direction)

 -spec read(atom(), binary(), non_neg_integer(), pos_integer(), direction()) ->
 {ok, [event()]} | {error, term()}.

Read events from a stream
Parameters: StoreId - The store identifier StreamId - The stream identifier StartVersion - Starting version (0-based) Count - Maximum number of events to read Direction - forward or backward
Returns {ok, [Event]} or {error, Reason}

 read_all(StoreId, StreamId, BatchSize, Direction)

 -spec read_all(atom(), binary(), pos_integer(), direction()) -> {ok, [event()]} | {error, term()}.

Read all events from a stream

 read_by_event_types(StoreId, EventTypes, BatchSize)

 -spec read_by_event_types(atom(), [binary()], pos_integer()) -> {ok, [event()]} | {error, term()}.

Read all events of specific types from all streams using Khepri native filtering.
This function uses Khepri's built-in #if_data_matches condition to filter events by type at the database level, avoiding loading all events into memory.
Parameters: StoreId - The store identifier EventTypes - List of event type binaries to match BatchSize - Maximum number of events to return (for pagination)
Returns events sorted by epoch_us (global ordering).

 read_by_tags(StoreId, Tags, Match, BatchSize)

 -spec read_by_tags(atom(), [binary()], any | all, pos_integer()) -> {ok, [event()]} | {error, term()}.

Read all events matching tags from all streams.
Tags provide a mechanism for cross-stream querying without affecting stream-based concurrency control. This is useful for the process-centric model where you want to find all events related to specific participants.
[bookmark: Match_Modes]Match Modes
any (default): Returns events containing ANY of the specified tags (union). Example: read_by_tags(Store, [<<"student:456">>, <<"student:789">>], any, 100) Returns events for either student.
all: Returns events containing ALL of the specified tags (intersection). Example: read_by_tags(Store, [<<"student:456">>, <<"course:CS101">>], all, 100) Returns only events tagged with both student 456 AND course CS101.
[bookmark: Parameters]Parameters
StoreId - The store identifier Tags - List of tag binaries to match Match - any | all (matching strategy) BatchSize - Maximum number of events to return
[bookmark: Returns]Returns
Events sorted by epoch_us (global ordering).

reckon_db_streams_reader

Streams reader worker for reckon-db
A gen_server that handles read operations for streams. Readers are temporary processes that terminate after a period of inactivity.
Features: - Partitioned by stream_id for concurrent reads from different streams - Idle timeout to free up resources - Registration via pg groups

 Summary

 Types

 event/0

 Functions

 get_reader(StoreId, StreamId)

 Get or create a reader for a stream

 get_streams(StoreId)

 Get all streams in the store

 read(StoreId, StreamId, StartVersion, Count, Direction)

 Read events from a stream via a reader worker

 start_link(_)

 Start a reader worker

 Types

 event/0

 -type event() ::
 #event{event_id :: binary(),
 event_type :: binary(),
 stream_id :: binary(),
 version :: non_neg_integer(),
 data :: map() | binary(),
 metadata :: map(),
 tags :: [binary()] | undefined,
 timestamp :: integer(),
 epoch_us :: integer(),
 data_content_type :: binary(),
 metadata_content_type :: binary()}.

 Functions

 get_reader(StoreId, StreamId)

 -spec get_reader(atom(), binary()) -> pid().

Get or create a reader for a stream

 get_streams(StoreId)

 -spec get_streams(atom()) -> {ok, [binary()]} | {error, term()}.

Get all streams in the store

 read(StoreId, StreamId, StartVersion, Count, Direction)

 -spec read(atom(), binary(), non_neg_integer(), pos_integer(), atom()) ->
 {ok, [event()]} | {error, term()}.

Read events from a stream via a reader worker

 start_link(_)

 -spec start_link({atom(), binary(), non_neg_integer()}) -> {ok, pid()} | {error, term()}.

Start a reader worker

reckon_db_streams_sup

Streams supervisor for reckon-db
Manages stream reader and writer pools for concurrent operations. Uses partitioned workers for high-throughput stream access.

 Summary

 Types

 store_config/0

 Functions

 start_link(Store_config)

 Start the streams supervisor

 Types

 store_config/0

 -type store_config() ::
 #store_config{store_id :: atom(),
 data_dir :: string(),
 mode :: single | cluster,
 timeout :: pos_integer(),
 writer_pool_size :: pos_integer(),
 reader_pool_size :: pos_integer(),
 gateway_pool_size :: pos_integer(),
 options :: map()}.

 Functions

 start_link(Store_config)

 -spec start_link(store_config()) -> {ok, pid()} | {error, term()}.

Start the streams supervisor

reckon_db_streams_writer

Streams writer worker for reckon-db
A gen_server that handles write operations for streams. Writers are temporary processes that terminate after a period of inactivity.
Features: - Partitioned by stream_id for concurrent writes to different streams - Idle timeout to free up resources - Swarm-like registration via pg groups

 Summary

 Functions

 append(StoreId, StreamId, ExpectedVersion, Events)

 Append events to a stream via a writer worker

 get_writer(StoreId, StreamId)

 Get or create a writer for a stream

 start_link(_)

 Start a writer worker

 Functions

 append(StoreId, StreamId, ExpectedVersion, Events)

 -spec append(atom(), binary(), integer(), [map()]) -> {ok, non_neg_integer()} | {error, term()}.

Append events to a stream via a writer worker

 get_writer(StoreId, StreamId)

 -spec get_writer(atom(), binary()) -> pid().

Get or create a writer for a stream

 start_link(_)

 -spec start_link({atom(), binary(), non_neg_integer()}) -> {ok, pid()} | {error, term()}.

Start a writer worker

reckon_db_subscriptions

Subscriptions API facade for reckon-db
Provides the public API for subscription operations: - subscribe: Create a new subscription - unsubscribe: Remove a subscription - get: Get a subscription by key - list: List all subscriptions - exists: Check if a subscription exists
Subscription types: - stream: Subscribe to all events in a specific stream - event_type: Subscribe to events of a specific type - event_pattern: Subscribe to events matching a pattern - event_payload: Subscribe to events with specific payload patterns

 Summary

 Types

 event/0

 subscribe_opts/0

 subscription/0

 subscription_type/0

 Functions

 ack(StoreId, SubscriptionName, StreamId, EventNumber)

 Acknowledge event delivery for a subscription

 exists(StoreId, Key)

 Check if a subscription exists

 get(StoreId, Key)

 Get a subscription by key

 list(StoreId)

 List all subscriptions in the store

 setup_tracking(StoreId, Pid)

 Setup subscription tracking for a process

 subscribe(StoreId, Type, Selector, SubscriptionName)

 Create a subscription with default options

 subscribe(StoreId, Type, Selector, SubscriptionName, Opts)

 Create a subscription with options

 unsubscribe(StoreId, Key)

 Remove a subscription by key

 unsubscribe(StoreId, Type, SubscriptionName)

 Remove a subscription by type, selector, and name

 Types

 event/0

 -type event() ::
 #event{event_id :: binary(),
 event_type :: binary(),
 stream_id :: binary(),
 version :: non_neg_integer(),
 data :: map() | binary(),
 metadata :: map(),
 tags :: [binary()] | undefined,
 timestamp :: integer(),
 epoch_us :: integer(),
 data_content_type :: binary(),
 metadata_content_type :: binary()}.

 subscribe_opts/0

 -type subscribe_opts() ::
 #{subscription_name => binary(),
 pool_size => pos_integer(),
 start_from => non_neg_integer(),
 subscriber => pid()}.

 subscription/0

 -type subscription() ::
 #subscription{id :: binary(),
 type :: subscription_type(),
 selector :: binary() | map(),
 subscription_name :: binary(),
 subscriber_pid :: pid() | undefined,
 created_at :: integer(),
 pool_size :: pos_integer(),
 checkpoint :: non_neg_integer() | undefined,
 options :: map()}.

 subscription_type/0

 -type subscription_type() :: stream | event_type | event_pattern | event_payload | tags.

 Functions

 ack(StoreId, SubscriptionName, StreamId, EventNumber)

 -spec ack(atom(), binary(), binary() | undefined, non_neg_integer()) -> ok | {error, term()}.

Acknowledge event delivery for a subscription
Updates the checkpoint for the subscription to track progress. This is typically called after successfully processing an event. The checkpoint allows subscriptions to resume from where they left off after a restart.
Parameters: StoreId - The store identifier SubscriptionName - Name of the subscription StreamId - ID of the stream the event came from (may be undefined for cross-stream) EventNumber - Version/position of the acknowledged event
Returns ok on success, or {error, Reason} if the subscription is not found.

 exists(StoreId, Key)

 -spec exists(atom(), binary()) -> boolean().

Check if a subscription exists

 get(StoreId, Key)

 -spec get(atom(), binary()) -> {ok, subscription()} | {error, not_found}.

Get a subscription by key

 list(StoreId)

 -spec list(atom()) -> {ok, [subscription()]} | {error, term()}.

List all subscriptions in the store

 setup_tracking(StoreId, Pid)

 -spec setup_tracking(atom(), pid()) -> ok.

Setup subscription tracking for a process
Joins the tracker group for subscriptions, allowing the process to receive notifications about subscription lifecycle events (created, updated, deleted).
The process will receive messages in the format: - {feature_created, subscriptions, Data} - {feature_updated, subscriptions, Data} - {feature_deleted, subscriptions, Data}

 subscribe(StoreId, Type, Selector, SubscriptionName)

 -spec subscribe(atom(), subscription_type(), binary() | map(), binary()) ->
 {ok, binary()} | {error, term()}.

Create a subscription with default options
Parameters: StoreId - The store identifier Type - Subscription type (stream, event_type, event_pattern, event_payload) Selector - The selector for matching events SubscriptionName - Human-readable name for the subscription
Returns {ok, SubscriptionKey} on success or {error, Reason} on failure.

 subscribe(StoreId, Type, Selector, SubscriptionName, Opts)

 -spec subscribe(atom(), subscription_type(), binary() | map(), binary(), subscribe_opts()) ->
 {ok, binary()} | {error, term()}.

Create a subscription with options
Options: - pool_size: Number of emitter workers (default: 1) - start_from: Starting position for replay (default: 0) - subscriber: PID to receive events directly (default: undefined)

 unsubscribe(StoreId, Key)

 -spec unsubscribe(atom(), binary()) -> ok | {error, term()}.

Remove a subscription by key

 unsubscribe(StoreId, Type, SubscriptionName)

 -spec unsubscribe(atom(), subscription_type(), binary()) -> ok | {error, term()}.

Remove a subscription by type, selector, and name

reckon_db_subscriptions_store

Subscriptions store for reckon-db
Manages subscription persistence and retrieval directly via Khepri. This is a facade module that provides direct access to the subscription storage without going through a gen_server, since Khepri/Ra handles concurrency internally.

 Summary

 Types

 store_id/0

 subscription/0

 subscription_type/0

 Functions

 delete(StoreId, Key)

 Delete a subscription by key

 exists(StoreId, Key)

 Check if a subscription exists by key

 exists(StoreId, Type, SubscriptionName)

 Check if a subscription exists by record

 find_by_name(StoreId, SubscriptionName)

 Find a subscription by name

 get(StoreId, Key)

 Get a subscription by key

 key(Subscription)

 Generate a unique key for a subscription

 key(Type, Selector, SubscriptionName)

 Generate a unique key for a subscription from components

 list(StoreId)

 List all subscriptions in the store

 put(StoreId, Subscription)

 Store a subscription

 update_checkpoint(StoreId, Key, Position)

 Update the checkpoint for a subscription

 Types

 store_id/0

 -type store_id() :: atom().

 subscription/0

 -type subscription() ::
 #subscription{id :: binary(),
 type :: subscription_type(),
 selector :: binary() | map(),
 subscription_name :: binary(),
 subscriber_pid :: pid() | undefined,
 created_at :: integer(),
 pool_size :: pos_integer(),
 checkpoint :: non_neg_integer() | undefined,
 options :: map()}.

 subscription_type/0

 -type subscription_type() :: stream | event_type | event_pattern | event_payload | tags.

 Functions

 delete(StoreId, Key)

 -spec delete(store_id(), binary()) -> ok | {error, term()}.

Delete a subscription by key

 exists(StoreId, Key)

 -spec exists(store_id(), binary()) -> boolean().

Check if a subscription exists by key

 exists(StoreId, Type, SubscriptionName)

 -spec exists(store_id(), subscription_type(), binary()) -> boolean().

Check if a subscription exists by record

 find_by_name(StoreId, SubscriptionName)

 -spec find_by_name(store_id(), binary()) -> {ok, binary(), subscription()} | {error, not_found}.

Find a subscription by name
Searches all subscriptions for one matching the given name. Returns the subscription key and record if found.

 get(StoreId, Key)

 -spec get(store_id(), binary()) -> subscription() | undefined.

Get a subscription by key

 key(Subscription)

 -spec key(subscription()) -> binary().

Generate a unique key for a subscription
The key is a phash2 hash of {type, selector, subscription_name}

 key(Type, Selector, SubscriptionName)

 -spec key(subscription_type(), binary() | map(), binary()) -> binary().

Generate a unique key for a subscription from components

 list(StoreId)

 -spec list(store_id()) -> {ok, [subscription()]} | {error, term()}.

List all subscriptions in the store

 put(StoreId, Subscription)

 -spec put(store_id(), subscription()) -> ok | {error, term()}.

Store a subscription

 update_checkpoint(StoreId, Key, Position)

 -spec update_checkpoint(store_id(), binary(), non_neg_integer()) -> ok | {error, term()}.

Update the checkpoint for a subscription
Parameters: StoreId - The store identifier Key - The subscription key Position - The new checkpoint position

reckon_db_sup

Top-level supervisor for reckon-db
This supervisor manages all store instances configured in the application environment. Each store gets its own system supervisor subtree.

 Summary

 Types

 store_config/0

 Functions

 start_link()

 Start the top-level supervisor

 start_store(StoreId)

 Start a store dynamically

 stop_store(StoreId)

 Stop a store dynamically

 which_stores()

 Get list of running stores

 Types

 store_config/0

 -type store_config() ::
 #store_config{store_id :: atom(),
 data_dir :: string(),
 mode :: single | cluster,
 timeout :: pos_integer(),
 writer_pool_size :: pos_integer(),
 reader_pool_size :: pos_integer(),
 gateway_pool_size :: pos_integer(),
 options :: map()}.

 Functions

 start_link()

 -spec start_link() -> {ok, pid()} | {error, term()}.

Start the top-level supervisor

 start_store(StoreId)

 -spec start_store(atom() | store_config()) -> {ok, pid()} | {error, term()}.

Start a store dynamically

 stop_store(StoreId)

 -spec stop_store(atom()) -> ok | {error, term()}.

Stop a store dynamically

 which_stores()

 -spec which_stores() -> [atom()].

Get list of running stores

reckon_db_system_sup

Per-store system supervisor for reckon-db
This supervisor manages all subsystems for a single store instance. Uses rest_for_one strategy to ensure proper startup order:
1. CoreSystem (one_for_all) - persistence, notification, store management 2. ClusterSystem (cluster mode only) - discovery, coordination, monitoring 3. GatewaySystem - external interface workers

 Summary

 Types

 store_config/0

 Functions

 start_link(Store_config)

 Start the system supervisor for a store

 Types

 store_config/0

 -type store_config() ::
 #store_config{store_id :: atom(),
 data_dir :: string(),
 mode :: single | cluster,
 timeout :: pos_integer(),
 writer_pool_size :: pos_integer(),
 reader_pool_size :: pos_integer(),
 gateway_pool_size :: pos_integer(),
 options :: map()}.

 Functions

 start_link(Store_config)

 -spec start_link(store_config()) -> {ok, pid()} | {error, term()}.

Start the system supervisor for a store

reckon_db_telemetry

Telemetry handler for reckon-db
Provides logging handler for telemetry events and utilities for attaching/detaching handlers. Additional handlers (e.g., OpenTelemetry) can be added for datacenter deployments.
[bookmark: Usage]Usage
Attach the default logger handler: ok = reckon_db_telemetry:attach_default_handler().
Attach a custom handler: ok = reckon_db_telemetry:attach(my_handler, fun my_module:handle/4, #{}).
Emit an event: reckon_db_telemetry:emit(?STREAM_WRITE_STOP, #{duration => 1000}, #{store_id => my_store}).

 Summary

 Functions

 attach(HandlerId, HandlerFun, Config)

 Attach a custom handler for all reckon_db events

 attach_default_handler()

 Attach the default logger handler for all reckon_db events

 detach(HandlerId)

 Detach a handler by ID

 detach_default_handler()

 Detach the default logger handler

 emit(Event, Measurements, Metadata)

 Emit a telemetry event

 handle_event(Event, Measurements, Meta, Config)

 Handle telemetry events (logger handler)

 span(EventPrefix, Metadata, Fun)

 Execute a function with start/stop telemetry Emits start event before, stop event after (with duration)

 Functions

 attach(HandlerId, HandlerFun, Config)

 -spec attach(term(),
 fun((telemetry:event_name(),
 telemetry:event_measurements(),
 telemetry:event_metadata(),
 term()) ->
 ok),
 term()) ->
 ok | {error, already_exists}.

Attach a custom handler for all reckon_db events

 attach_default_handler()

 -spec attach_default_handler() -> ok | {error, already_exists}.

Attach the default logger handler for all reckon_db events

 detach(HandlerId)

 -spec detach(term()) -> ok | {error, not_found}.

Detach a handler by ID

 detach_default_handler()

 -spec detach_default_handler() -> ok | {error, not_found}.

Detach the default logger handler

 emit(Event, Measurements, Metadata)

 -spec emit(telemetry:event_name(), telemetry:event_measurements(), telemetry:event_metadata()) -> ok.

Emit a telemetry event

 handle_event(Event, Measurements, Meta, Config)

 -spec handle_event(telemetry:event_name(),
 telemetry:event_measurements(),
 telemetry:event_metadata(),
 term()) ->
 ok.

Handle telemetry events (logger handler)

 span(EventPrefix, Metadata, Fun)

 -spec span(telemetry:event_prefix(), telemetry:event_metadata(), fun(() -> Result)) -> Result
 when Result :: term().

Execute a function with start/stop telemetry Emits start event before, stop event after (with duration)

reckon_db_temporal

Temporal queries for reckon-db.
Provides point-in-time and time-range queries for event streams. These queries filter events by their epoch_us timestamp field.
Use cases: - Reconstruct aggregate state at a historical point in time - Audit queries ("what was the state on date X?") - Time-range analytics

 Summary

 Types

 event/0

 opts/0

 timestamp/0

 Microseconds since epoch (epoch_us format)

 Functions

 read_range(StoreId, StreamId, FromTimestamp, ToTimestamp)

 Read events within a time range [FromTimestamp, ToTimestamp].

 read_range(StoreId, StreamId, FromTimestamp, ToTimestamp, Opts)

 Read events within a time range with options.

 read_until(StoreId, StreamId, Timestamp)

 Read all events from a stream up to (and including) a timestamp.

 read_until(StoreId, StreamId, Timestamp, Opts)

 Read events up to a timestamp with options.

 version_at(StoreId, StreamId, Timestamp)

 Get the stream version at a specific timestamp.

 Types

 event/0

 -type event() ::
 #event{event_id :: binary(),
 event_type :: binary(),
 stream_id :: binary(),
 version :: non_neg_integer(),
 data :: map() | binary(),
 metadata :: map(),
 tags :: [binary()] | undefined,
 timestamp :: integer(),
 epoch_us :: integer(),
 data_content_type :: binary(),
 metadata_content_type :: binary()}.

 opts/0

 -type opts() :: #{direction => forward | backward, limit => pos_integer()}.

 timestamp/0

 -type timestamp() :: integer().

Microseconds since epoch (epoch_us format)

 Functions

 read_range(StoreId, StreamId, FromTimestamp, ToTimestamp)

 -spec read_range(atom(), binary(), timestamp(), timestamp()) -> {ok, [event()]} | {error, term()}.

Read events within a time range [FromTimestamp, ToTimestamp].
Returns events where FromTimestamp is less than or equal to epoch_us, and epoch_us is less than or equal to ToTimestamp.
Example:
 %% Get all events from the first week of 2025
 From = 1735689600000000, %% Jan 1, 2025
 To = 1736294400000000, %% Jan 8, 2025
 {ok, Events} = reckon_db_temporal:read_range(my_store, <<"orders-123">>, From, To).

 read_range(StoreId, StreamId, FromTimestamp, ToTimestamp, Opts)

 -spec read_range(atom(), binary(), timestamp(), timestamp(), opts()) ->
 {ok, [event()]} | {error, term()}.

Read events within a time range with options.

 read_until(StoreId, StreamId, Timestamp)

 -spec read_until(atom(), binary(), timestamp()) -> {ok, [event()]} | {error, term()}.

Read all events from a stream up to (and including) a timestamp.
Returns events where epoch_us is less than or equal to Timestamp, sorted by version (ascending). This is useful for reconstructing aggregate state at a point in time.
Example:
 %% Get all events up to January 1, 2025 00:00:00 UTC
 Timestamp = 1735689600000000, %% microseconds
 {ok, Events} = reckon_db_temporal:read_until(my_store, <<"orders-123">>, Timestamp).

 read_until(StoreId, StreamId, Timestamp, Opts)

 -spec read_until(atom(), binary(), timestamp(), opts()) -> {ok, [event()]} | {error, term()}.

Read events up to a timestamp with options.
Options: - direction: forward (default) or backward - limit: Maximum number of events to return

 version_at(StoreId, StreamId, Timestamp)

 -spec version_at(atom(), binary(), timestamp()) -> {ok, integer()} | {error, term()}.

Get the stream version at a specific timestamp.
Returns the version of the last event with epoch_us less than or equal to Timestamp. This is useful for determining what version to replay up to.
Returns: - {ok, Version} if events exist before the timestamp - {ok, -1} if no events exist before the timestamp - {error, Reason} on failure

reckon_db_tracker_group

Tracker group management for reckon-db
Uses pg (process groups) for managing tracker processes. Trackers receive notifications about subscription lifecycle events.
This module provides: - Process group management for tracker processes - Notification broadcasting for created/deleted/updated events
Features that can be tracked: - subscriptions: Subscription lifecycle - streams: Stream lifecycle - snapshots: Snapshot lifecycle

 Summary

 Types

 feature/0

 store_id/0

 Functions

 group_key(StoreId, Feature)

 Generate the group key for a feature's trackers

 join(StoreId, Feature, PidOrPids)

 Join one or more processes to the tracker group for a feature

 leave(StoreId, Feature, PidOrPids)

 Remove one or more processes from the tracker group

 members(StoreId, Feature)

 Get all member processes tracking a feature

 notify_created(StoreId, Feature, Data)

 Notify all trackers that a feature instance was created

 notify_deleted(StoreId, Feature, Data)

 Notify all trackers that a feature instance was deleted

 notify_updated(StoreId, Feature, Data)

 Notify all trackers that a feature instance was updated

 Types

 feature/0

 -type feature() :: subscriptions | streams | snapshots | atom().

 store_id/0

 -type store_id() :: atom().

 Functions

 group_key(StoreId, Feature)

 -spec group_key(store_id(), feature()) -> integer().

Generate the group key for a feature's trackers

 join(StoreId, Feature, PidOrPids)

 -spec join(store_id(), feature(), pid() | [pid()]) -> ok.

Join one or more processes to the tracker group for a feature

 leave(StoreId, Feature, PidOrPids)

 -spec leave(store_id(), feature(), pid() | [pid()]) -> ok.

Remove one or more processes from the tracker group

 members(StoreId, Feature)

 -spec members(store_id(), feature()) -> [pid()].

Get all member processes tracking a feature

 notify_created(StoreId, Feature, Data)

 -spec notify_created(store_id(), feature(), term()) -> ok.

Notify all trackers that a feature instance was created

 notify_deleted(StoreId, Feature, Data)

 -spec notify_deleted(store_id(), feature(), term()) -> ok.

Notify all trackers that a feature instance was deleted

 notify_updated(StoreId, Feature, Data)

 -spec notify_updated(store_id(), feature(), term()) -> ok.

Notify all trackers that a feature instance was updated

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

