

 redlines

 v0.6.0

 Table of contents

 	Changelog

 	
 Modules

 	Redlines

 	Redlines.Change

 	Redlines.DOCX

 	Redlines.Format

 	Redlines.PDF

 	Redlines.Result

 Changelog

0.6.0
	Breaking: Removed has_redlines?/1. Callers should use extract/2 and check result.changes == [] instead. The old heuristic pre-check doubled the PDF rendering cost and risked false negatives on non-standard redline colors.
	Bumped pdf_redlines to ~> 0.7.0.
	Added performance section to README (under 700 ms on 35 MB+ scanned documents).

0.5.1
	Bump pdf_redlines dependency to ~> 0.6.3

0.5.0
	pdf_redlines is now a required dependency (precompiled NIF, no toolchain needed).
	Removed runtime detection of PDFRedlines module availability.
	Expanded README with badges, full API docs, and usage examples.

0.1.0
	Initial release.
	DOCX track-changes extraction from word/document.xml.
	Optional PDF extraction via the pdf_redlines package.
	Unified Redlines.Change shape and Redlines.format_for_llm/1.

Redlines

Extract and normalize tracked changes ("redlines") from documents.
This library provides a single normalized shape (Redlines.Change) across:
	DOCX track changes (<w:ins>, <w:del>)
	PDFs with embedded tracked-changes markup (via pdf_redlines)

 Summary

 Types

 doc_type()

 Functions

 extract(path, opts \\ [])

 Extract tracked changes from a file path, inferring type from the extension.

 format_for_llm(input, opts \\ [])

 Format tracked changes for LLM prompts.

 Types

 doc_type()

 @type doc_type() :: :pdf | :docx

 Functions

 extract(path, opts \\ [])

 @spec extract(
 Path.t(),
 keyword()
) :: {:ok, Redlines.Result.t()} | {:error, term()}

Extract tracked changes from a file path, inferring type from the extension.
Options
	:type - Override the inferred type (:pdf or :docx)
	:pdf_opts - Options forwarded to PDFRedlines (only when extracting PDFs)

 format_for_llm(input, opts \\ [])

 @spec format_for_llm(
 Redlines.Result.t() | [Redlines.Change.t()] | map() | list(),
 keyword()
) :: String.t()

Format tracked changes for LLM prompts.
Accepts:
	Redlines.Result
	a list of Redlines.Change
	a DOCX track_changes map (%{insertions: [...], deletions: [...]})
	a list of PDF redline structs/maps (anything with :type, :deletion, :insertion, :location)

Redlines.Change

A single tracked-change entry, normalized across sources.

 Summary

 Types

 t()

 type()

 Types

 t()

 @type t() :: %Redlines.Change{
 deletion: String.t() | nil,
 insertion: String.t() | nil,
 location: String.t() | nil,
 meta: map(),
 type: type()
}

 type()

 @type type() :: :deletion | :insertion | :paired

Redlines.DOCX

Extract track changes from DOCX files by parsing word/document.xml.

 Summary

 Functions

 extract_track_changes(docx_path)

 Extract raw DOCX track changes.

 to_changes(arg1)

 Convert a raw %{insertions: [...], deletions: [...]} map into normalized changes.

 Functions

 extract_track_changes(docx_path)

 @spec extract_track_changes(Path.t()) :: {:ok, map()} | {:error, term()}

Extract raw DOCX track changes.
Returns a map with :insertions and :deletions, each containing a list of
maps with keys: :id, :author, :date, and :text.

 to_changes(arg1)

 @spec to_changes(map()) :: [Redlines.Change.t()]

Convert a raw %{insertions: [...], deletions: [...]} map into normalized changes.

Redlines.Format

Formatting helpers.

 Summary

 Functions

 format_for_llm(input, opts \\ [])

 Format tracked changes for LLM prompts.

 Functions

 format_for_llm(input, opts \\ [])

 @spec format_for_llm(
 Redlines.Result.t() | [Redlines.Change.t()] | map() | list(),
 keyword()
) :: String.t()

Format tracked changes for LLM prompts.
Returns "" for empty inputs.
Options
	:pair_separator - Default "→"
	:max_len - Truncation length, default 150

Redlines.PDF

PDF adapter using the pdf_redlines package (precompiled Rust/MuPDF NIF).

 Summary

 Functions

 extract_redlines(pdf_path, opts \\ [])

 Extract redlines from a PDF file path.

 to_changes(redlines)

 Convert pdf_redlines entries into normalized changes.

 Functions

 extract_redlines(pdf_path, opts \\ [])

 @spec extract_redlines(
 Path.t(),
 keyword()
) :: {:ok, list()} | {:error, term()}

Extract redlines from a PDF file path.

 to_changes(redlines)

 @spec to_changes(list()) :: [Redlines.Change.t()]

Convert pdf_redlines entries into normalized changes.

Redlines.Result

Extraction result.

 Summary

 Types

 source()

 t()

 Types

 source()

 @type source() :: :pdf | :docx

 t()

 @type t() :: %Redlines.Result{changes: [Redlines.Change.t()], source: source()}

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

