

 rein

 v0.1.0

 Table of contents

 	First steps with Gridworld

 	Modules

 	Rein

 	Rein.Agent

 	Rein.Environment

 	Rein.Agents.DDPG

 	Rein.Agents.DQN

 	Rein.Agents.QLearning

 	Rein.Agents.SAC

 	Rein.Environments.Gridworld

 	Rein.Utils.CircularBuffer

 	Rein.Utils.Noise.OUProcess

First steps with Gridworld

my_app_root = Path.join(__DIR__, "..")

Mix.install(
 [
 {:rein, path: my_app_root},
 {:kino_vega_lite, "~> 0.1"}
],
 config_path: Path.join(my_app_root, "config/config.exs"),
 lockfile: Path.join(my_app_root, "mix.lock"),
 # change to "cuda118" or "cuda120" to use CUDA
 system_env: %{"XLA_TARGET" => "cpu"}
)
Initializing the plot
In the code block below, we initialize some meta variables and configure our VegaLite plot in way that it can be updated iteratively over the algorithm iterations.
alias VegaLite, as: Vl

{min_x, max_x, min_y, max_y} = Rein.Environments.Gridworld.bounding_box()

possible_targets_l = [[round((min_x + max_x) / 2), max_y]]

possible_targets_l =
for x <- (min_x + 2)..(max_x - 2), y <- 2..max_y do
[x, y]
end

possible_targets = Nx.tensor(Enum.shuffle(possible_targets_l))

width = 600
height = 600

grid_widget =
 Vl.new(width: width, height: height)
 |> Vl.layers([
 Vl.new()
 |> Vl.data(name: "target")
 |> Vl.mark(:point,
 fill: true,
 tooltip: [content: "data"],
 grid: true,
 size: [expr: "height * 4 * #{:math.pi()} / #{max_y - min_y}"]
)
 |> Vl.encode_field(:x, "x", type: :quantitative)
 |> Vl.encode_field(:y, "y", type: :quantitative)
 |> Vl.encode_field(:color, "episode",
 type: :nominal,
 scale: [scheme: "blues"],
 legend: false
),
 Vl.new()
 |> Vl.data(name: "trajectory")
 |> Vl.mark(:line, point: true, opacity: 1, tooltip: [content: "data"])
 |> Vl.encode_field(:x, "x", type: :quantitative, scale: [domain: [min_x, max_x], clamp: true])
 |> Vl.encode_field(:y, "y", type: :quantitative, scale: [domain: [min_y, max_y], clamp: true])
 |> Vl.encode_field(:order, "index")
])
 |> Kino.VegaLite.new()
 |> Kino.render()

nil
Configuring and running the Q Learning Agent
Now we're ready to start configuring our agent. The plot_fn function defined below is a callback that Rein calls at the end of each iteration, so that we can do anything with the data.
Usually, this means that we'll extract data to either plot, report or save somewhere.
250 max_iter * 15 episodes
max_points = 1000

plot_fn = fn axon_state ->
 if axon_state.iteration > 1 do
 episode = axon_state.epoch

 Kino.VegaLite.clear(grid_widget, dataset: "target")
 Kino.VegaLite.clear(grid_widget, dataset: "trajectory")

 Kino.VegaLite.push(
 grid_widget,
 %{
 x: Nx.to_number(axon_state.step_state.environment_state.target_x),
 y: Nx.to_number(axon_state.step_state.environment_state.target_y)
 },
 dataset: "target"
)

 IO.inspect("Episode #{episode} ended")

 trajectory = axon_state.step_state.trajectory

 iteration = Nx.to_number(axon_state.step_state.iteration)

 points =
 trajectory[0..(iteration - 1)//1]
 |> Nx.to_list()
 |> Enum.with_index(fn [x, y], index ->
 %{
 x: x,
 y: y,
 index: index
 }
 end)

 Kino.VegaLite.push_many(grid_widget, points, dataset: "trajectory")
 end

 axon_state
end
Now, we get to the actual training!
The code below calls Rein.train with some configuration for the Gridworld environment being solved through a QLearning agent.
This will return the whole Axon.Loop struct in the result variable, so that we can inspect and/or save it afterwards.
Kino.VegaLite.clear(grid_widget)

episodes = 15_000
max_iter = 20

environment_to_state_vector_fn = fn %{x: x, y: y, target_x: target_x, target_y: target_y} ->
 delta_x = Nx.subtract(x, min_x)
 delta_y = Nx.subtract(y, min_y)

 Nx.stack([delta_x, delta_y, Nx.subtract(target_x, min_x), Nx.subtract(target_y, min_y)])
end

state_to_trajectory_fn = fn %{environment_state: %{x: x, y: y}} ->
 Nx.stack([x, y])
end

delta_x = max_x - min_x + 1
delta_y = max_y - min_y + 1

state_space_shape = {delta_x, delta_y, delta_x, delta_y}

{t, result} =
 :timer.tc(fn ->
 Rein.train(
 {Rein.Environments.Gridworld, possible_targets: possible_targets},
 {Rein.Agents.QLearning,
 state_space_shape: state_space_shape,
 num_actions: 4,
 environment_to_state_vector_fn: environment_to_state_vector_fn,
 learning_rate: 1.0e-2,
 gamma: 0.99,
 exploration_eps: 1.0e-4},
 plot_fn,
 state_to_trajectory_fn,
 num_episodes: episodes,
 max_iter: max_iter
)
 end)

"#{Float.round(t / 1_000_000, 3)} s"
With the code below, we can check some points of interest in the learned Q matrix.
Especially, we can see below that for a target at x = 2, y = 4:
	For the position x = 2, y = 3, the selected action is to go up;
	For the position x = 1, y = 4, the selected action is to go right;
	For the position x = 3, y = 4, the selected action is to go left.

This shows that at least for the positions closer to the target, our agent already knows the best policy for those respective states!
state_vector_to_index = fn state_vector, shape ->
 {linear_indices_offsets_list, _} =
 shape
 |> Tuple.to_list()
 |> Enum.reverse()
 |> Enum.reduce({[], 1}, fn x, {acc, multiplier} ->
 {[multiplier | acc], multiplier * x}
 end)

 linear_indices_offsets = Nx.tensor(linear_indices_offsets_list)

 Nx.dot(state_vector, linear_indices_offsets)
end

Actions are [up, down, right, left]

up
idx = state_vector_to_index.(Nx.tensor([2, 3, 2, 4]), {5, 5, 5, 5})
IO.inspect(result.step_state.agent_state.q_matrix[idx])

right
idx = state_vector_to_index.(Nx.tensor([1, 4, 2, 4]), {5, 5, 5, 5})
IO.inspect(result.step_state.agent_state.q_matrix[idx])

left
idx = state_vector_to_index.(Nx.tensor([3, 4, 2, 4]), {5, 5, 5, 5})
IO.inspect(result.step_state.agent_state.q_matrix[idx])

nil

Rein

Reinforcement Learning training and inference framework

 Summary

 Types

 t()

 Functions

 train(environment_with_options, agent_with_options, epoch_completed_callback, state_to_trajectory_fn, opts \\ [])

Types

 Link to this type

 t()

 View Source

 @type t() :: %Rein{
 agent: module(),
 agent_state: term(),
 environment: module(),
 environment_state: term(),
 episode: Nx.t(),
 iteration: Nx.t(),
 random_key: Nx.t(),
 trajectory: Nx.t()
}

Functions

 Link to this function

 train(environment_with_options, agent_with_options, epoch_completed_callback, state_to_trajectory_fn, opts \\ [])

 View Source

 @spec train(
 {environment :: module(), init_opts :: keyword()},
 {agent :: module(), init_opts :: keyword()},
 epoch_completed_callback :: (map() -> :ok),
 state_to_trajectory_fn :: (t() -> Nx.t()),
 opts :: keyword()
) :: term()

Rein.Agent behaviour

The behaviour that should be implemented by a Rein agent module.

 Summary

 Types

 rl_state()

 The full state of the current Reinforcement Learning process, as stored in the Rein struct

 t()

 An arbitrary Nx.Container that holds metadata for the agent

 Callbacks

 init(random_key, opts)

 Initializes the agent state with the given agent-specific options.

 optimize_model(rl_state)

 record_observation(rl_state, action, reward, is_terminal, next_rl_state)

 Can be used to record the observation in an experience replay buffer.

 reset(random_key, rl_state)

 Resets any values that vary between sessions (which would be episodes
for episodic tasks) for the agent state.

 select_action(rl_state, iteration)

 Selects the action to be taken.

Types

 Link to this type

 rl_state()

 View Source

 @type rl_state() :: Rein.t()

The full state of the current Reinforcement Learning process, as stored in the Rein struct

 Link to this type

 t()

 View Source

 @type t() :: Nx.Container.t()

An arbitrary Nx.Container that holds metadata for the agent

Callbacks

 Link to this callback

 init(random_key, opts)

 View Source

 @callback init(random_key :: Nx.t(), opts :: keyword()) :: {t(), random_key :: Nx.t()}

Initializes the agent state with the given agent-specific options.
Should be implemented in a way that the result would be semantically
the same as if reset/2 was called in the end of the function.
As a suggestion, the implementation should only initialize fixed
values here, that is values that don't change between sessions
(epochs for non-episodic tasks, episodes for episodic tasks). Then,
call reset/2 internally to initialize the rest of variable values.

 Link to this callback

 optimize_model(rl_state)

 View Source

 @callback optimize_model(rl_state()) :: rl_state()

 Link to this callback

 record_observation(rl_state, action, reward, is_terminal, next_rl_state)

 View Source

 @callback record_observation(
 rl_state(),
 action :: Nx.t(),
 reward :: Nx.t(),
 is_terminal :: Nx.t(),
 next_rl_state :: rl_state()
) :: rl_state()

Can be used to record the observation in an experience replay buffer.
If this is not desired, just make this function return the first argument unchanged.

 Link to this callback

 reset(random_key, rl_state)

 View Source

 @callback reset(random_key :: Nx.t(), rl_state :: t()) :: {t(), random_key :: Nx.t()}

Resets any values that vary between sessions (which would be episodes
for episodic tasks) for the agent state.

 Link to this callback

 select_action(rl_state, iteration)

 View Source

 @callback select_action(rl_state(), iteration :: Nx.t()) :: {action :: Nx.t(), rl_state()}

Selects the action to be taken.

Rein.Environment behaviour

Defines an environment to be passed to Rein.

 Summary

 Types

 rl_state()

 The full state of the current Reinforcement Learning process, as stored in the Rein struct

 t()

 An arbitrary Nx.Container that holds metadata for the environment

 Callbacks

 apply_action(rl_state, action)

 Applies the selected action to the environment.

 init(random_key, opts)

 Initializes the environment state with the given enviroment-specific options.

 reset(random_key, environment_state)

 Resets any values that vary between sessions (which would be episodes
for episodic tasks, epochs for non-episodic tasks) for the environment state.

Types

 Link to this type

 rl_state()

 View Source

 @type rl_state() :: Rein.t()

The full state of the current Reinforcement Learning process, as stored in the Rein struct

 Link to this type

 t()

 View Source

 @type t() :: Nx.Container.t()

An arbitrary Nx.Container that holds metadata for the environment

Callbacks

 Link to this callback

 apply_action(rl_state, action)

 View Source

 @callback apply_action(rl_state(), action :: Nx.t()) :: rl_state()

Applies the selected action to the environment.
Returns the updated environment, also updated with the reward
and a flag indicating whether the new state is terminal.

 Link to this callback

 init(random_key, opts)

 View Source

 @callback init(random_key :: Nx.t(), opts :: keyword()) :: {t(), random_key :: Nx.t()}

Initializes the environment state with the given enviroment-specific options.
Should be implemented in a way that the result would be semantically
the same as if reset/2 was called in the end of the function.
As a suggestion, the implementation should only initialize fixed
values here, that is values that don't change between sessions
(epochs for non-episodic tasks, episodes for episodic tasks). Then,
call reset/2 internally to initialize the rest of variable values.

 Link to this callback

 reset(random_key, environment_state)

 View Source

 @callback reset(random_key :: Nx.t(), environment_state :: t()) ::
 {t(), random_key :: Nx.t()}

Resets any values that vary between sessions (which would be episodes
for episodic tasks, epochs for non-episodic tasks) for the environment state.

Rein.Agents.DDPG

Deep Deterministic Policy Gradient implementation.
This assumes that the Actor network will output {nil, num_actions} actions,
and that the Critic network accepts the "actions" input with the same shape.
Actions are deemed to be in a continuous space of type :f32.

 Summary

 Functions

 update_priorities(buffer, entry_indices, td_errors)

Functions

 Link to this function

 update_priorities(buffer, entry_indices, td_errors)

 View Source

Rein.Agents.DQN

Deep Q-Learning implementation.
This implementation utilizes a single target network for
the policy network.

 Summary

 Functions

 update_priorities(buffer, row_idx, target_column, td_errors)

Functions

 Link to this function

 update_priorities(buffer, row_idx, target_column, td_errors)

 View Source

Rein.Agents.QLearning

Q-Learning implementation.
This implementation uses epsilon-greedy sampling
for exploration, and doesn't contemplate any kind
of target network.

Rein.Agents.SAC

Soft Actor-Critic implementation.
This assumes that the Actor network will output {nil, num_actions, 2},
where for each action they output the μ and σ values of a random
normal distribution, and that the Critic network accepts "actions" input with
shape {nil, num_actions}, where the action is calculated by sampling from
said random distribution.
Actions are deemed to be in a continuous space of type :f32.
The Dual Q implementation utilizes two copies of the critic network, critic1 and critic2,
each with their own separate target network.
Vectorized axes from :random_key are propagated normally throughout
the agent state for parallel simulations, but all samples are stored in the same
circular buffer. After all simulations have ran, the optimization steps are run
on a sample space consisting of all previous experiences, including all of the
parallel simulations that have just finished executing.

Rein.Environments.Gridworld

Gridworld environment with 4 discrete actions.
Gridworld is an environment where the agent
aims to reach a given target from a collection
of possible targets, only being able to choose
1 of 4 actions: up, down, left and right.

 Summary

 Functions

 as_state_vector(arg1)

 Default function for turning the environment into a vector representation.

 bounding_box()

 num_actions()

 state_vector_size()

 The size of the state vector returned by as_state_vector/1

Functions

 Link to this function

 as_state_vector(arg1)

 View Source

Default function for turning the environment into a vector representation.

 Link to this function

 bounding_box()

 View Source

 Link to this function

 num_actions()

 View Source

 Link to this function

 state_vector_size()

 View Source

The size of the state vector returned by as_state_vector/1

Rein.Utils.CircularBuffer

Circular Buffer utility via Nx Containers.

 Summary

 Functions

 append(buffer, item)

 Append an item to the current buffer.

 append_multiple(buffer, items)

 Append multiple items to the buffer.

 new(shape, opts \\ [init_value: 0, type: :f32])

 Creates a new Elixir.Rein.Utils.CircularBuffer with a given shape.

 ordered_data(buffer)

 Returns the data starting at the current index.

Functions

 Link to this function

 append(buffer, item)

 View Source

Append an item to the current buffer.
If the buffer data has shape {a, b, c, ...},
item must have shape {b, c, ...}

 Link to this function

 append_multiple(buffer, items)

 View Source

Append multiple items to the buffer.
Works in a similar fashion to append/2, but receives
a tensor with shape equal to the buffer data except
for the first axis, which will be the number of items to be appended.

 Link to this function

 new(shape, opts \\ [init_value: 0, type: :f32])

 View Source

Creates a new Elixir.Rein.Utils.CircularBuffer with a given shape.

 Options

	:init_value - a number or tensor that will be broadcasted
to shape. Defaults to 0. If the value given is vectorized,
the buffer will be vectorized accordingly, but all entries will
share the same current index and size.

	:type - the type for the tensor if :init_value.
Defaults to :f32

 Link to this function

 ordered_data(buffer)

 View Source

Returns the data starting at the current index.
The oldest persisted entry will be the first entry in
the result, and so on.

Rein.Utils.Noise.OUProcess

Ornstein-Uhlenbeck (OU for short) noise generator
for temporally correlated noise.

 Summary

 Functions

 init(shape, opts \\ [])

 Initializes the Elixir.Rein.Utils.Noise.OUProcess.

 reset(state)

 Resets the process to the initial value.

 sample(random_key, state)

 Samples the process and returns the updated state and the updated random_key.

Functions

 Link to this function

 init(shape, opts \\ [])

 View Source

Initializes the Elixir.Rein.Utils.Noise.OUProcess.

 Options

	:theta - the temperature parameter. Defaults to 0.15.
	:sigma - the standard deviation parameter. Defaults to 0.2.
	:mu - the initial mean for the distribution. Defaults to 0.
	:type - the output type for the samples. Should be floating point.
Defaults to :f32.

 Link to this function

 reset(state)

 View Source

Resets the process to the initial value.

 Link to this function

 sample(random_key, state)

 View Source

Samples the process and returns the updated state and the updated random_key.
The new sample is contained within state.x.

 OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

