

 replay

 v0.1.0

 Table of contents

 	Modules

 	Replay

Replay

A testing library that can mock each of the Circuits libraries (at least UART, I2C, and GPIO for now) to step through and assert a sequence of calls and messages.
(For now, this library is focused only on the basic communication functions of each of the libraries. Items such as pull-up/pull-down in Circuits.GPIO or device enumeration in Circuits.UART and Circuits.I2C are not implemented.)
Installation
The package can be installed by adding replay to your list of dependencies in mix.exs along with
either of the supported mocking libraries:
def deps do
[
 {:replay, "~> 0.1.0", only: :test},
 {:resolve, "~> 0.1.0", only: :test},
 # or {:mimic, "~> 1.7", only: :test}
]
end
Usage
Setup
In your test/test_helper.exs file, call Replay.setup_*, which will perform the needed setup
for Replay for the each of the Circuits libraries you want to replay and the mocking backend (see below):
Replay.setup_uart(:mimic)
Replay.setup_i2c(:mimic)
In the above example, we are mocking the Circuits.UART and Circuits.I2C libraries with Mimic mocks.
Additionally, it's likely that issue will arise if tests are run with async: true as the global mocking across processes can definitely overlap, so it's best to keep tests that rely on Circuits mocking running with async: false.
Replay Steps
At the point that you want to start mocking calls with a replay, call the replay/1 function of
the replay module you are mocking and pass a list of steps. The format of these steps varies slightly
between each of the libraries, but using UART as an example:
Replay.UART.replay([
{:write, <<0xFF, 0xFE, 0xAD, 0x01>>},
{:read, <<0x0F, 0x10>>}
])
will expect something to write <<0xFF, 0xFE, 0xAD, 0x01>> to serial line and then it will (in the
active UART mode) send <<0x0F, 0x10>> to the parent process of the Circuit.UART process.
Replay.UART.replay([
{:write, <<0xFF, 0xFE, 0xAD, 0x01>>},
{:read, <<0x0F, 0x10>>}
])

{:ok, uart} = Circuits.UART.start_link()
:ok = Circuits.UART.open(uart, "ttyAMA0", active: true)
Circuits.UART.write(uart, <<0xFF, 0xFE, 0xAD, 0x01>>)
assert_received({:circuits_uart, "ttyAMA0", <<0x0F, 0x10>>})
If a message is received out of sequence, an error is thrown:
Replay.UART.replay([
{:write, <<0xFF, 0xFE, 0xAD, 0x01>>},
{:write, <<0x34, 0xDF>>},
{:read, <<0x0F, 0x10>>}
])

{:ok, uart} = Circuits.UART.start_link()
:ok = Circuits.UART.open(uart, "ttyAMA0", active: false)
Circuits.UART.write(uart, <<0xFF, 0xFE, 0xAD, 0x01>>)

The call to `read` will throw an error since the replay expects `<<0x34, 0xDF>>` to be
written to the serial line before the read request.
Circuits.UART.read()
Ensuring/Waiting on Completion
Replay.assert_complete/1 will throw and error if all steps in the sequence are not successfully
completed.
replay =
Replay.UART.replay([
 {:write, <<0xFF, 0xFE, 0xAD, 0x01>>},
 {:read, <<0x0F, 0x10>>}
])

{:ok, uart} = Circuits.UART.start_link()
:ok = Circuits.UART.open(uart, "ttyAMA0", active: false)
assert_received({:circuits_uart, "ttyAMA0", <<0x0F, 0x10>>})

The following will throw and error since the last step in the sequence has not completed.
assert_complete(replay)
In cases where there handling of Circuits interaction is happening in a separate process, it may be useful to wait for completion with a given timeout:
Replay.await_complete(replay, 50)
The above will continuously check whether the sequence is complete and return :ok if the sequence completes within 50ms or will throw if it is not complete after 50ms has elapsed.
Circuits.UART
Replays can be built with the following two steps:
	{:write, binary} - expects a call to Circuits.UART.write(pid, binary) with the exact binary.
	{:read, binary} - either 1) return the given binary in response to a call to Circuits.UART.read(pid) when the port is opened as active: false or 2) send a message to the parent process when the port is opened as active: true (or when active is not specified as this is the default).

Currently, there is only a tenuous connection between the sequence and any particular Circuits.UART process/PID, so it's possible that different processes may step on each other if their execution overlaps.
Circuits.I2C
Replays can contain the following steps:
	{:write, address, binary} - expects a call to Circuits.I2C.write(pid, address, binary)
	{:read, address, binary} - expects a call to Circuits.I2C.read(pid, address, size) and ensures that the value of size is the exact length of the binary in the step. The contents of binary will be returned.
	{:write_read, address, binary1, binary2} - expects a call to Circuits.write_read(pid, address, binary1, size) where the value of size is the exact length of binary2.

replay =
Replay.replay_i2c([
 {:write, 0x47, "ABC"},
 {:read, 0x47, <<0xFF, 0xFF, 0xFE>>},
 {:write_read, 0x44, "XYZ0", "123"},
 {:write, 0x49, "ACK"}
])

{:ok, pid} = i2c().open("i2c-1")
assert :ok = i2c().write(pid, 0x47, "ABC")
assert {:ok, <<0xFF, 0xFF, 0xFE>>} = i2c().read(pid, 0x47, 3)
assert {:ok, "123"} == i2c().write_read(pid, 0x44, "XYZ0", 3)
assert :ok = i2c().write!(pid, 0x49, "ACK")

Replay.assert_complete(replay)
Circuits.GPIO
The GPIO replay tracks multiple GPIO pin configuartions and can replay input, output, and interrupts across them. Replay steps can be any of the following:
	{:write, pin_number, value} - expects a call to Circuits.GPIO.write(gpio, value) where gpio is the reference for the pin number pin_number.
	{:read, pin_number, value} - expects a call to Circuits.GPIO.read(gpio) where gpio is the reference for the pin number pin_number, to which it will return value.
	{:interrupt, pin_number, value} - will send a message to the process registered for the interrupt on that pin. The message will match the message sent by Circuits.GPIO ({:circuits_gpio, pin_number, timestamp, value}).

Replay.replay_gpio([
{:write, 1, 1},
{:interrupt, 2, 1},
{:interrupt, 2, 0}
])

{:ok, pin1} = Circuits.GPIO.open(1, :output)
{:ok, pin2} = Circuits.GPIO.open(2, :input)

:ok = Circuits.GPIO.set_interrupts(pin2, :rising)

:ok = Circuits.GPIO.write(pin1, 1)
assert_received({:circuits_gpio, 2, _, 1})
assert_received({:circuits_gpio, 2, _, 0})
Mocking Libraries
Currently, Replay supports Mimic or Resolve as the underlying mocking library. The main difference between these two libraries is the instrumentation of your project's code.
Resolve provides "dependency injection and resolution at compile time or runtime" where each call to the original library is replaced with resolve(Circuits.UART).write(...) (for example). Resolve then replaces the module being called at runtime (or compile-time if configured).
In contrast, Mimic requires no changes to the code under test. From it's README: "Mimic works by copying your module out of the way and replacing it with one of it's own which can delegate calls back to the original or to a mock function as required." Replay handles the setup and calling Mimic.copy(...) as needed.

 Anchor for this section

 Summary

 Types

 mock()

 replay_id()

 Functions

 assert_complete(replay_id)

 await_complete(replay_id, timeout \\ 5000)

 replay_gpio(sequence)

 replay_i2c(sequence)

 replay_uart(sequence)

 setup_gpio(mock)

 setup_i2c(mock)

 setup_uart(mock)

 Anchor for this section

Types

 Link to this type

 mock()

 @type mock() :: :mimic | :resolve

 Link to this type

 replay_id()

 @type replay_id() :: integer()

 Anchor for this section

Functions

 Link to this function

 assert_complete(replay_id)

 @spec assert_complete(replay_id()) :: :ok

 Link to this function

 await_complete(replay_id, timeout \\ 5000)

 @spec await_complete(replay_id(), non_neg_integer()) :: :ok

 Link to this function

 replay_gpio(sequence)

 @spec replay_gpio([
 {:write, non_neg_integer(), 0 | 1}
 | {:read, non_neg_integer(), 0 | 1}
 | {:interrupt, non_neg_integer(), 0 | 1}
]) :: replay_id()

 Link to this function

 replay_i2c(sequence)

 @spec replay_i2c([
 {:write, byte(), binary()}
 | {:read, byte(), binary()}
 | {:write_read, byte(), binary(), binary()}
]) :: replay_id()

 Link to this function

 replay_uart(sequence)

 @spec replay_uart(write: binary(), read: binary()) :: replay_id()

 Link to this function

 setup_gpio(mock)

 @spec setup_gpio(mock()) :: :ok

 Link to this function

 setup_i2c(mock)

 @spec setup_i2c(mock()) :: :ok

 Link to this function

 setup_uart(mock)

 @spec setup_uart(mock()) :: :ok

 OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

