

 Reply

 v1.1.0

 Table of contents

 	Reply for Phoenix LiveView

 	MIT License

 	
 Modules

 	Reply

 Reply for Phoenix LiveView

Pipe the response of LiveView functions
[image: Tests]
[image: Code Quality]
[image: Hex.pm]
[image: hexdocs.pm]
[image: Hex.pm Downloads]
[image: License]
Installation
Simply add reply to your list of dependencies in your mix.exs:
def deps do
 [
 {:reply, "~> 1.1"}
]
end
and import it in your Web-Module lib/my_app_web.ex inside html_helpers
defp html_helpers do
 quote do
 # HTML escaping functionality
 import Phoenix.HTML

+ import Reply

 ...
Documentation can be found at https://hexdocs.pm/reply
Usage
You can now use ok/2, noreply/2 or reply/3 to pipe the response in mount and handle_* all the way down.
def mount(_params, _session, socket) do
 socket
 |> assign(:posts, Blog.list_posts())
 |> ok()
end

def handle_params(%{"id" => id}, _, socket) do
 socket
 |> assign(:post, Blog.get_post!(id))
 |> noreply()
end
and if you want to reply with data, it works as well using reply/3
def handle_event("update", %{"id" => id}, socket) do
 {:ok, post} = Blog.get_post!(id)

 socket
 |> assign(:post, post)
 |> reply(%{last_update: post.updated_at})
end

 MIT License

Copyright (c) 2024 sorax
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Reply

Lets you pipe the reply in a Phoenix LiveView.
Just write socket |> assigns |> ok() in mount or socket |> assigns |> noreply() in handle_* functions insted of dealing with tuples.

 Summary

 Functions

 noreply(socket)

 Transforms a piped reply into a {:noreply, socket} response tuple.

 ok(socket)

 Transforms a piped reply into a {:ok, socket} response tuple.

 ok(socket, keyword)

 reply(socket, payload)

 Transforms a piped reply with payload into a {:reply, payload, socket} response tuple.

 Functions

 noreply(socket)

Transforms a piped reply into a {:noreply, socket} response tuple.
Examples
def handle_event("update", %{"id" => id}, socket) do
 socket
 |> assign(:post, Blog.get_post!(id))
 |> noreply()
end

 ok(socket)

Transforms a piped reply into a {:ok, socket} response tuple.
Examples
def mount(_params, _session, socket) do
 socket
 |> assign(:posts, Blog.list_posts())
 |> ok()
end

 ok(socket, keyword)

 reply(socket, payload)

Transforms a piped reply with payload into a {:reply, payload, socket} response tuple.
Examples
def handle_event("update", %{"id" => id}, socket) do
 {:ok, post} = Blog.get_post!(id)

 socket
 |> assign(:post, post)
 |> reply(%{last_update: post.updated_at})
end

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

