

 req

 v0.3.5

 Table of contents

 	Req

 	CHANGELOG

 	Modules

 	Req

 	Req.Request

 	Req.Response

 	Req.Steps

Req

[image: CI]
Docs
Req is a batteries-included HTTP client for Elixir.
Features
	An easy to use high-level API: Req.request/1, Req.new/1, Req.get!/2, Req.post!/2, etc.

	Extensibility via request, response, and error steps.

	Request body compression and automatic response body decompression (via compress_body, compressed, and decompress_body steps). Supports gzip, deflate, brotli and zstd decompression.

	Request body encoding and automatic response body decoding (via encode_body and decode_body steps)

	Encode params as query string (via put_params step)

	Basic, bearer, and .netrc authentication (via auth step)

	Range requests (via put_range) step)

	Follows redirects (via follow_redirects step)

	Retries on errors (via retry step)

	Raise on 4xx/5xx errors (via handle_http_errors step)

	Basic HTTP caching (via cache step)

	Setting base URL (via put_base_url step)

	Templated request paths (via put_path_params step)

	Running against a plug (via put_plug step)

	Pluggable adapters. By default, Req uses Finch (via run_finch step).

Usage
The easiest way to use Req is with Mix.install/2 (requires Elixir v1.12+):
Mix.install([
 {:req, "~> 0.3"}
])

Req.get!("https://api.github.com/repos/elixir-lang/elixir").body["description"]
#=> "Elixir is a dynamic, functional language designed for building scalable and maintainable applications"
If you want to use Req in a Mix project, you can add the above dependency to your mix.exs.
If you are planning to make several similar requests, you can build up a request struct with
desired common options and re-use it:
req = Req.new(base_url: "https://api.github.com")

Req.get!(req, url: "/repos/sneako/finch").body["description"]
#=> "Elixir HTTP client, focused on performance"

Req.get!(req, url: "/repos/elixir-mint/mint").body["description"]
#=> "Functional HTTP client for Elixir with support for HTTP/1 and HTTP/2."
See Req.request/1 for more information on available
options.
Virtually all of Req's features are broken down into individual pieces - steps. Req works by running
the request struct through these steps. You can easily reuse or rearrange built-in steps or write new
ones. Importantly, steps are just regular functions. Here is another example where we append a request
step that inspects the URL just before requesting it:
req =
 Req.new(base_url: "https://api.github.com")
 |> Req.Request.append_request_steps(
 debug_url: fn request ->
 IO.inspect(URI.to_string(request.url))
 request
 end
)

Req.get!(req, url: "/repos/wojtekmach/req").body["description"]
Outputs: "https://api.github.com/repos/wojtekmach/req"
#=> "Req is a batteries-included HTTP client for Elixir."
Custom steps can be packaged into plugins so that they are even easier to use by others.
Here are some examples:
	req_easyhtml
	req_s3
	req_hex
	req_github_oauth

And here is how they can be used:
Mix.install([
 {:req, "~> 0.3.0"},
 {:req_easyhtml, "~> 0.1.0"},
 {:req_s3, "~> 0.1.0"},
 {:req_hex, "~> 0.1.0"},
 {:req_github_oauth, "~> 0.1.0"}
])

req =
 (Req.new(http_errors: :raise)
 |> ReqEasyHTML.attach()
 |> ReqS3.attach()
 |> ReqHex.attach()
 |> ReqGitHubOAuth.attach())

Req.get!(req, url: "https://elixir-lang.org").body[".entry-summary h5"]
#=>
#EasyHTML[<h5>
Elixir is a dynamic, functional language for building scalable and maintainable applications.
</h5>]

Req.get!(req, url: "s3://ossci-datasets").body
#=>
[
"mnist/",
"mnist/t10k-images-idx3-ubyte.gz",
"mnist/t10k-labels-idx1-ubyte.gz",
"mnist/train-images-idx3-ubyte.gz",
"mnist/train-labels-idx1-ubyte.gz"
]

Req.get!(req, url: "https://repo.hex.pm/tarballs/req-0.1.0.tar").body["metadata.config"]["links"]
#=> %{"GitHub" => "https://github.com/wojtekmach/req"}

Req.get!(req, url: "https://api.github.com/user").body["login"]
Outputs:
paste this user code:
#
6C44-30A8
#
at:
#
https://github.com/login/device
#
open browser window? [Yn]
15:22:28.350 [info] response: authorization_pending
15:22:33.519 [info] response: authorization_pending
15:22:38.678 [info] response: authorization_pending
#=> "wojtekmach"

Req.get!(req, url: "https://api.github.com/user").body["login"]
#=> "wojtekmach"
See Req.Request module documentation for more information on low-level API, request struct, and developing plugins.
Acknowledgments
Req is built on top of Finch and is inspired by cURL, Requests, Tesla, and many other HTTP clients - thank you!
License
Copyright (c) 2021 Wojtek Mach
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

CHANGELOG

v0.3.5 (2023-02-01)
	New step: put_path_params
	[auth]: Accept string

v0.3.4 (2023-01-03)
	retry: Add :retry_log_level option

v0.3.3 (2022-12-08)
	follow_redirects: Inherit scheme from previous location
	run_finch: Fix setting connect timeout
	run_finch: Add :finch_request option

v0.3.2 (2022-11-14)
	decode_body: Decode JSON when response is json-api mime type
	put_params: Fix bug when params have been duplicated when retrying requeset
	retry: Remove retry: :always option
	retry: Soft-deprecate retry: :never in favour of retry: false
	run_finch: Add :transport_opts, :proxy_headers, :proxy, and :client_settings options
	Req.Response.json/2: Do not override content-type

v0.3.1 (2022-09-09)
	encode_body: Set Accept header in JSON requests
	put_base_url: Fix merging with leading and/or trailing slashes
	Fix merging :adapter option
	Add get/2, post/2, put/2, patch/2, delete/2 and head/2

v0.3.0 (2022-06-21)
Req v0.3.0 brings redesigned API, new steps, and improvements to existing steps.
New API
The new API allows building a request struct with all the built-in steps. It can be then piped
to functions like Req.get!/2:
iex> req = Req.new(base_url: "https://api.github.com")

iex> req |> Req.get!(url: "/repos/sneako/finch") |> then(& &1.body["description"])
"Elixir HTTP client, focused on performance"

iex> req |> Req.get(url: "/repos/elixir-mint/mint") |> then(& &1.body["description"])
"Functional HTTP client for Elixir with support for HTTP/1 and HTTP/2."
Setting body and encoding it to form/JSON is now done through :body/:form/:json options:
iex> Req.post!("https://httpbin.org/anything", body: "hello!").body["data"]
"hello!"

iex> req = Req.new(url: "https://httpbin.org/anything")
iex> Req.post!(req, form: [x: 1]).body["form"]
%{"x" => "1"}
iex> Req.post!(req, json: %{x: 2}).body["form"]
%{"x" => 2}
Improved Error Handling
Req now validates option names ensuring users didn't accidentally mistyped them.
If they did, it will try to give a helpful error message. Here are some examples:
Req.request!(urll: "https://httpbin.org")
** (ArgumentError) unknown option :urll. Did you mean :url?

Req.new(bas_url: "https://httpbin.org")
** (ArgumentError) unknown option :bas_url. Did you mean :base_url?
Req also has a new option to handle HTTP errors (4xx/5xx). By default it will continue to
return the error responses:
Req.get!("https://httpbin.org/status/404")
#=> %Req.Response{status: 404, ...}
but users can now pass http_errors: :raise to raise an exception instead:
Req.get!("https://httpbin.org/status/404", http_errors: :raise)
** (RuntimeError) The requested URL returned error: 404
Response body: ""
This is especially useful in one-off scripts where we only really care about the
"happy path" but would still like to get a good error message when something
unexpected happened.
Plugins
From the very beginning, Req could be extended with custom steps. To make using such custom steps
by others even easier, they can be packaged up into plugins.
Here are some examples:
	req_easyhtml
	req_s3
	req_hex
	req_github_oauth

And here's how they can be used:
Mix.install([
 {:req, "~> 0.3.0"},
 {:req_easyhtml, github: "wojtekmach/req_easyhtml"},
 {:req_s3, github: "wojtekmach/req_s3"},
 {:req_hex, github: "wojtekmach/req_hex"},
 {:req_github_oauth, github: "wojtekmach/req_github_oauth"}
])

req =
 (Req.new(http_errors: :raise)
 |> ReqEasyHTML.attach()
 |> ReqS3.attach()
 |> ReqHex.attach()
 |> ReqGitHubOAuth.attach())

Req.get!(req, url: "https://elixir-lang.org").body[".entry-summary h5"]
#=>
#EasyHTML[<h5>
Elixir is a dynamic, functional language for building scalable and maintainable applications.
</h5>]

Req.get!(req, url: "s3://ossci-datasets").body
#=>
[
"mnist/",
"mnist/t10k-images-idx3-ubyte.gz",
"mnist/t10k-labels-idx1-ubyte.gz",
"mnist/train-images-idx3-ubyte.gz",
"mnist/train-labels-idx1-ubyte.gz"
]

Req.get!(req, url: "https://repo.hex.pm/tarballs/req-0.1.0.tar").body["metadata.config"]["links"]
#=> %{"GitHub" => "https://github.com/wojtekmach/req"}

Req.get!(req, url: "https://api.github.com/user").body["login"]
Outputs:
paste this user code:
#
6C44-30A8
#
at:
#
https://github.com/login/device
#
open browser window? [Yn]
15:22:28.350 [info] response: authorization_pending
15:22:33.519 [info] response: authorization_pending
15:22:38.678 [info] response: authorization_pending
#=> "wojtekmach"

Req.get!(req, url: "https://api.github.com/user").body["login"]
#=> "wojtekmach"
Notice all plugins can be attached to the same request struct which makes it really easy to
explore different endpoints.
See "Writing Plugins" section in Req.Request module documentation
for more information.
Plug Integration
Req can now be used to easily test plugs using the :plug option:
defmodule Echo do
 def call(conn, _) do
 "/" <> path = conn.request_path
 Plug.Conn.send_resp(conn, 200, path)
 end
end

test "echo" do
 assert Req.get!("http:///hello", plug: Echo).body == "hello"
end
you can define plugs as functions too:
test "echo" do
 echo = fn conn ->
 "/" <> path = conn.request_path
 Plug.Conn.send_resp(conn, 200, path)
 end

 assert Req.get!("http:///hello", plug: echo).body == "hello"
end
which is particularly useful to create HTTP service mocks with tools like
Bypass.
Request Adapters
While Req always used Finch as the underlying HTTP client, it was designed from the day one to
easily swap it out. This is now even easier with an :adapter option.
Here is a mock adapter that always returns a successful response:
adapter = fn request ->
 response = %Req.Response{status: 200, body: "it works!"}
 {request, response}
end

Req.request!(url: "http://example", adapter: adapter).body
#=> "it works!"
Here is another one that uses the json/2 function to conveniently
return a JSON response:
adapter = fn request ->
 response = Req.Response.json(%{hello: 42})
 {request, response}
end

resp = Req.request!(url: "http://example", adapter: adapter)
resp.headers
#=> [{"content-type", "application/json"}]
resp.body
#=> %{"hello" => 42}
And here is a naive Hackney-based adapter and how we can use it:
hackney = fn request ->
 case :hackney.request(
 request.method,
 URI.to_string(request.url),
 request.headers,
 request.body,
 [:with_body]
) do
 {:ok, status, headers, body} ->
 headers = for {name, value} <- headers, do: {String.downcase(name), value}
 response = %Req.Response{status: status, headers: headers, body: body}
 {request, response}

 {:error, reason} ->
 {request, RuntimeError.exception(inspect(reason))}
 end
end

Req.get!("https://api.github.com/repos/elixir-lang/elixir", adapter: hackney).body["description"]
#=> "Elixir is a dynamic, functional language designed for building scalable and maintainable applications"
See "Adapter" section in Req.Request module documentation for more information.
Major changes
	Add high-level functional API: Req.new(...) |> Req.request(...), Req.new(...) |> Req.get!(...), etc.

	Add Req.Request.options field that steps can read from. Also, make
all steps be arity 1.
When using "High-level" API, we now run all steps by default. (The
steps, by looking at request.options, can decide to be no-op.)

	Move low-level API to Req.Request

	Move built-in steps to Req.Steps

	Add step names

	Add Req.head!/2

	Add Req.patch!/2

	Add Req.Request.adapter field

	Add Req.Request.merge_options/2

	Add Req.Request.register_options/2

	Add Req.Request.put_header/3

	Add Req.Request.put_headers/2

	Add Req.Request.put_new_header/3

	Add Req.Request.get_header/2

	Add Req.Request.update_private/4

	Add Req.Response.new/1

	Add Req.Response.json/2

	Add Req.Response.get_header/2

	Add Req.Response.put_header/3

	Rename put_if_modified_since step to cache

	Rename decompress step to decompress_body

	Remove put_default_steps step

	Remove run_steps step

	Remove put_default_headers step

	Remove encode_headers step. The headers are now encoded in Req.new/1 and Req.request/2

	Remove Req.Request.unix_socket field. Add option on run_finch step with the same name
instead.

	Require Elixir 1.12

Step changes
	New step: put_plug

	New step: put_user_agent (replaces part of removed put_default_headers)

	New step: compressed (replaces part of removed put_default_headers)

	New step: compress_body

	New step: output

	New step: handle_http_errors

	put_base_url: Ignore base URL if given URL contains scheme

	run_finch: Add :connect_options which dynamically starts (or re-uses already started)
Finch pool with the given connection options.

	run_finch: Replace :finch_options with :receive_timeout and :pool_timeout options

	encode_body: Add :form and :json options (previously used as {:form, data} and
{:json, data})

	cache: Include request method in cache key

	decompress_body, compressed: Support Brotli

	decompress_body, compressed: Support Zstandard

	decode_body: Support decode_body: false option to disable automatic body decoding

	follow_redirects: Change method to GET on 301..303 redirects

	follow_redirects: Don't send auth headers on redirect to different scheme/host/port
unless location_trusted: true is set

	retry: The Retry-After response header on HTTP 429 responses is now respected

	retry: The :retry option can now be set to :safe (default) to only retry GET/HEAD
requests on HTTP 408/429/5xx responses or exceptions, :always to always retry, :never to never
retry, and fun - a 1-arity function that accepts either a Req.Response or an exception
struct and returns boolean whether to retry

	retry: The :retry_delay option now accepts a function that takes a retry count (starting at 0)
and returns the delay. Defaults to a simple exponential backoff: 1s, 2s, 4s, 8s, ...

Deprecations
	Deprecate calling Req.post!(url, body) in favour of Req.post!(url, body: body).
Also, deprecate Req.post!(url, {:form, data}) in favour of Req.post!(url, form: data).
and Req.post!(url, {:json, data}) in favour of Req.post!(url, json: data). Same for
Req.put!/2.

	Deprecate setting retry: [delay: delay, max_retries: max_retries]
in favour of retry_delay: delay, max_retries: max_retries.

	Deprecate setting cache: [dir: dir] in favour of cache_dir: dir.

	Deprecate Req.build/3 in favour of manually building the struct.

v0.2.2 (2022-04-04)
	Relax Finch version requirement

v0.2.1 (2021-11-24)
	Add :private field to Response
	Update Finch to 0.9.1

v0.2.0 (2021-11-08)
	Rename normalize_headers to encode_headers
	Rename prepend_default_steps to put_default_steps
	Rename encode and decode to encode_body and decode_body
	Rename netrc to load_netrc
	Rename finch step to run_finch
	Rename if_modified_since to put_if_modified_since
	Rename range to put_range
	Rename params to put_params
	Rename request.uri to request.url
	Change response/error step contract from f(req, resp_err) to f({req, resp_err})
	Support mime 2.x
	Add Req.Response struct
	Add put!/3 and delete!/2
	Add run_steps/2
	Initial support for UNIX domain sockets
	Accept {module, args} and module as steps
	Ensure get_private and put_private have atom keys
	put_default_steps: Use MFArgs instead of captures for the default steps
	put_if_modified_since: Fix generating internet time
	encode_headers: Encode header values
	retry: Rename :max_attempts to :max_retries

v0.1.1 (2021-07-16)
	Fix append_request_steps/2 and prepend_request_steps/2 (they did the opposite)
	Add finch/1

v0.1.0 (2021-07-15)
	Initial release

Req

The high-level API.
Req is composed of three main pieces:
	Req - the high-level API (you're here!)

	Req.Request - the low-level API and the request struct

	Req.Steps - the collection of built-in steps

The high-level API is what most users of Req will use most of the time.
Examples
Making a GET request with Req.get!/1:
iex> Req.get!("https://api.github.com/repos/elixir-lang/elixir").body["description"]
"Elixir is a dynamic, functional language designed for building scalable and maintainable applications"
Same, but by explicitly building request struct first:
iex> req = Req.new(base_url: "https://api.github.com")
iex> Req.get!(req, url: "/repos/elixir-lang/elixir").body["description"]
"Elixir is a dynamic, functional language designed for building scalable and maintainable applications"
Making a POST request with Req.post!/2:
iex> Req.post!("https://httpbin.org/post", form: [comments: "hello!"]).body["form"]
%{"comments" => "hello!"}

 Anchor for this section

 Summary

 Types

 url()

 Functions

 default_options()

 Returns default options.

 default_options(options)

 Sets default options for Req.new/1.

 delete(url_or_request, options \\ [])

 Makes a DELETE request.

 delete!(url_or_request, options \\ [])

 Makes a DELETE request.

 get(url_or_request, options \\ [])

 Makes a GET request.

 get!(url_or_request, options \\ [])

 Makes a GET request.

 head(url_or_request, options \\ [])

 Makes a HEAD request.

 head!(url_or_request, options \\ [])

 Makes a HEAD request.

 new(options \\ [])

 Returns a new request struct with built-in steps.

 patch(url_or_request, options \\ [])

 Makes a PATCH request.

 patch!(url_or_request, options \\ [])

 Makes a PATCH request.

 post(url_or_request, options \\ [])

 Makes a POST request.

 post!(url_or_request, options \\ [])

 Makes a POST request.

 put(url_or_request, options \\ [])

 Makes a PUT request.

 put!(url_or_request, options \\ [])

 Makes a PUT request.

 request(request_or_options)

 Makes an HTTP request.

 request(request, options)

 Makes an HTTP request.

 request!(request_or_options)

 Makes an HTTP request and returns a response or raises an error.

 request!(request, options)

 Makes an HTTP request and returns a response or raises an error.

 update(request, options)

 Updates a request struct.

 Anchor for this section

Types

 Link to this type

 url()

 View Source

 @type url() :: URI.t() | String.t()

 Anchor for this section

Functions

 Link to this function

 default_options()

 View Source

 @spec default_options() :: keyword()

Returns default options.
See default_options/1 for more information.

 Link to this function

 default_options(options)

 View Source

 @spec default_options(keyword()) :: :ok

Sets default options for Req.new/1.
Avoid setting default options in libraries as they are global.

 examples

 Examples

iex> Req.default_options(base_url: "https://httpbin.org")
iex> Req.get!("/statuses/201").status
201
iex> Req.new() |> Req.get!(url: "/statuses/201").status
201

 Link to this function

 delete(url_or_request, options \\ [])

 View Source

 @spec delete(url() | Req.Request.t(), options :: keyword()) ::
 {:ok, Req.Response.t()} | {:error, Exception.t()}

Makes a DELETE request.
See request/1 for a list of supported options.

 examples

 Examples

With URL:
iex> {:ok, res} = Req.delete("https://httpbin.org/anything")
iex> res.body["method"]
"DELETE"
With request struct:
iex> req = Req.new(url: "https://httpbin.org/anything")
iex> {:ok, res} = Req.delete(req)
iex> res.body["method"]
"DELETE"

 Link to this function

 delete!(url_or_request, options \\ [])

 View Source

 @spec delete!(url() | Req.Request.t(), options :: keyword()) :: Req.Response.t()

Makes a DELETE request.
See request/1 for a list of supported options.

 examples

 Examples

With URL:
iex> Req.delete!("https://httpbin.org/anything").body["method"]
"DELETE"
With request struct:
iex> req = Req.new(url: "https://httpbin.org/anything")
iex> Req.delete!(req).body["method"]
"DELETE"

 Link to this function

 get(url_or_request, options \\ [])

 View Source

 @spec get(url() | Req.Request.t(), options :: keyword()) ::
 {:ok, Req.Response.t()} | {:error, Exception.t()}

Makes a GET request.
See request/1 for a list of supported options.

 examples

 Examples

With URL:
iex> {:ok, res} = Req.get("https://api.github.com/repos/elixir-lang/elixir")
iex> res.body["description"]
"Elixir is a dynamic, functional language designed for building scalable and maintainable applications"
With request struct:
iex> req = Req.new(base_url: "https://api.github.com")
iex> {:ok, res} = Req.get(req, url: "/repos/elixir-lang/elixir")
iex> res.status
200

 Link to this function

 get!(url_or_request, options \\ [])

 View Source

 @spec get!(url() | Req.Request.t(), options :: keyword()) :: Req.Response.t()

Makes a GET request.
See request/1 for a list of supported options.

 examples

 Examples

With URL:
iex> Req.get!("https://api.github.com/repos/elixir-lang/elixir").body["description"]
"Elixir is a dynamic, functional language designed for building scalable and maintainable applications"
With request struct:
iex> req = Req.new(base_url: "https://api.github.com")
iex> Req.get!(req, url: "/repos/elixir-lang/elixir").status
200

 Link to this function

 head(url_or_request, options \\ [])

 View Source

 @spec head(url() | Req.Request.t(), options :: keyword()) :: Req.Response.t()

Makes a HEAD request.
See request/1 for a list of supported options.

 examples

 Examples

With URL:
iex> {:ok, res} = Req.head("https://httpbin.org/status/201")
iex> res.status
201
With request struct:
iex> req = Req.new(base_url: "https://httpbin.org")
iex> {:ok, res} = Req.head(req, url: "/status/201")
iex> res.status
201

 Link to this function

 head!(url_or_request, options \\ [])

 View Source

 @spec head!(url() | Req.Request.t(), options :: keyword()) :: Req.Response.t()

Makes a HEAD request.
See request/1 for a list of supported options.

 examples

 Examples

With URL:
iex> Req.head!("https://httpbin.org/status/201").status
201
With request struct:
iex> req = Req.new(base_url: "https://httpbin.org")
iex> Req.head!(req, url: "/status/201").status
201

 Link to this function

 new(options \\ [])

 View Source

 @spec new(options :: keyword()) :: Req.Request.t()

Returns a new request struct with built-in steps.
See request/1 for a list of available options. See Req.Request module documentation
for more information on the underlying request struct.

 examples

 Examples

iex> req = Req.new(url: "https://elixir-lang.org")
iex> req.method
:get
iex> URI.to_string(req.url)
"https://elixir-lang.org"

 Link to this function

 patch(url_or_request, options \\ [])

 View Source

 @spec patch(url() | Req.Request.t(), options :: keyword()) ::
 {:ok, Req.Response.t()} | {:error, Exception.t()}

Makes a PATCH request.
See request/1 for a list of supported options.

 examples

 Examples

With URL:
iex> {:ok, res} = Req.patch("https://httpbin.org/anything", body: "hello!")
iex> res.body["data"]
"hello!"
With request struct:
iex> req = Req.new(url: "https://httpbin.org/anything")
iex> {:ok, res} = Req.patch(req, body: "hello!")
iex> res.body["data"]
"hello!"

 Link to this function

 patch!(url_or_request, options \\ [])

 View Source

 @spec patch!(url() | Req.Request.t(), options :: keyword()) :: Req.Response.t()

Makes a PATCH request.
See request/1 for a list of supported options.

 examples

 Examples

With URL:
iex> Req.patch!("https://httpbin.org/anything", body: "hello!").body["data"]
"hello!"
With request struct:
iex> req = Req.new(url: "https://httpbin.org/anything")
iex> Req.patch!(req, body: "hello!").body["data"]
"hello!"

 Link to this function

 post(url_or_request, options \\ [])

 View Source

 @spec post(url() | Req.Request.t(), options :: keyword()) ::
 {:ok, Req.Response.t()} | {:error, Exception.t()}

Makes a POST request.
See request/1 for a list of supported options.

 examples

 Examples

With URL:
iex> {:ok, res} = Req.post("https://httpbin.org/anything", body: "hello!")
iex> res.body["data"]
"hello!"

iex> {:ok, res} = Req.post("https://httpbin.org/anything", form: [x: 1])
iex> res.body["form"]
%{"x" => "1"}

iex> {:ok, res} = Req.post("https://httpbin.org/anything", json: %{x: 2})
iex> res.body["json"]
%{"x" => 2}
With request struct:
iex> req = Req.new(url: "https://httpbin.org/anything")
iex> {:ok, res} = Req.post(req, body: "hello!")
iex> res.body["data"]
"hello!"

 Link to this function

 post!(url_or_request, options \\ [])

 View Source

 @spec post!(url() | Req.Request.t(), options :: keyword()) :: Req.Response.t()

Makes a POST request.
See request/1 for a list of supported options.

 examples

 Examples

With URL:
iex> Req.post!("https://httpbin.org/anything", body: "hello!").body["data"]
"hello!"

iex> Req.post!("https://httpbin.org/anything", form: [x: 1]).body["form"]
%{"x" => "1"}

iex> Req.post!("https://httpbin.org/anything", json: %{x: 2}).body["json"]
%{"x" => 2}
With request struct:
iex> req = Req.new(url: "https://httpbin.org/anything")
iex> Req.post!(req, body: "hello!").body["data"]
"hello!"

 Link to this function

 put(url_or_request, options \\ [])

 View Source

 @spec put(url() | Req.Request.t(), options :: keyword()) ::
 {:ok, Req.Response.t()} | {:error, Exception.t()}

Makes a PUT request.
See request/1 for a list of supported options.

 examples

 Examples

With URL:
iex> {:ok, res} = Req.put("https://httpbin.org/anything", body: "hello!")
iex> res.body["data"]
"hello!"
With request struct:
iex> req = Req.new(url: "https://httpbin.org/anything")
iex> {:ok, res} = Req.put(req, body: "hello!")
iex> res.body["data"]
"hello!"

 Link to this function

 put!(url_or_request, options \\ [])

 View Source

 @spec put!(url() | Req.Request.t(), options :: keyword()) :: Req.Response.t()

Makes a PUT request.
See request/1 for a list of supported options.

 examples

 Examples

With URL:
iex> Req.put!("https://httpbin.org/anything", body: "hello!").body["data"]
"hello!"
With request struct:
iex> req = Req.new(url: "https://httpbin.org/anything")
iex> Req.put!(req, body: "hello!").body["data"]
"hello!"

 Link to this function

 request(request_or_options)

 View Source

 @spec request(Req.Request.t() | keyword()) ::
 {:ok, Req.Response.t()} | {:error, Exception.t()}

Makes an HTTP request.
request/1 and request/2 functions give three ways of making requests:
	With a list of options, for example:
iex> Req.request(url: url)

	With a request struct, for example:
iex> Req.new(url: url) |> Req.request()

	With a request struct and more options, for example:
iex> Req.new(base_url: base_url) |> Req.request(url: url)

This function as well as all the other ones in this module accept the same set of options described below.

 options

 Options

Basic request options:
	:method - the request method, defaults to :get.

	:url - the request URL.

	:headers - the request headers.
The headers are automatically encoded using these rules:
	atom header names are turned into strings, replacing _ with -. For example,
:user_agent becomes "user-agent"

	string header names are left as is. Because header keys are case-insensitive
in both HTTP/1.1 and HTTP/2, it is recommended for header keys to be in
lowercase, to avoid sending duplicate keys in a request.

	NaiveDateTime and DateTime header values are encoded as "HTTP date". Otherwise,
the header value is encoded with String.Chars.to_string/1.

If you set :headers options both in Req.new/1 and request/2, the header lists are merged.

	:body - the request body.

Additional URL options:
	:base_url - if set, the request URL is prepended with this base URL (via
put_base_url step).

	:params - if set, appends parameters to the request query string (via
put_params step).

	:path_params - if set, uses a templated request path (via
put_path_params step).

Authentication options:
	:auth - sets request authentication (via auth step).
Can be one of:
	string - sets to this value;

	{username, password} - uses Basic HTTP authentication;

	{:bearer, token} - uses Bearer HTTP authentication;

	:netrc - load credentials from the default .netrc file;

	{:netrc, path} - load credentials from path

Request body options:
	:form - if set, encodes the request body as form data (encode_body step).

	:json - if set, encodes the request body as JSON (encode_body step).

	:compress_body - if set to true, compresses the request body using gzip (via compress_body step).
Defaults to false.

Response body options:
	:compressed - if set to true, asks the server to return compressed response.
(via compressed step). Defaults to true.

	:raw - if set to true, disables automatic body decompression
(decompress_body step) and decoding
(decode_body step). Defaults to false.

	:decode_body - if set to false, disables automatic response body decoding.
Defaults to true.

	:output - if set, writes the response body to a file (via
output step). Can be set to a string path or an atom
:remote_name which would use the remote name as the filename in the current working
directory. Once the file is written, the response body is replaced with "".
Setting :output also sets the decode_body: false option to prevent decoding the
response before writing it to the file.

Response redirect options (follow_redirects step):
	:follow_redirects - if set to false, disables automatic response redirects. Defaults to true.

	:location_trusted - by default, authorization credentials are only sent
on redirects with the same host, scheme and port. If :location_trusted is set to true, credentials
will be sent to any host.

	:max_redirects - the maximum number of redirects, defaults to 10.

Retry options (retry step):
	:retry: can be set to: :safe (default) to only retry GET/HEAD requests on HTTP 408/5xx
responses or exceptions, false to never retry, and fun - a 1-arity function that accepts
either a Req.Response or an exception struct and returns boolean whether to retry

	:retry_delay - a function that receives the retry count (starting at 0) and returns the delay, the
number of milliseconds to sleep before making another attempt.
Defaults to a simple exponential backoff: 1s, 2s, 4s, 8s, ...

	:max_retries - maximum number of retry attempts, defaults to 3 (for a total of 4
requests to the server, including the initial one.)

Caching options (cache step):
	:cache - if true, performs HTTP caching. Defaults to false.

	:cache_dir - the directory to store the cache, defaults to <user_cache_dir>/req
(see: :filename.basedir/3)

Request adapters:
	:adapter - adapter to use to make the actual HTTP request. See :adapter field description
in the Req.Request module documentation for more information. Defaults to calling run_finch.

	:plug - if set, calls the given Plug instead of making an HTTP request over the network (via put_plug step).

Finch options (run_finch step)
	:finch - the Finch pool to use. Defaults to pool automatically started by Req.

	:connect_options - dynamically starts (or re-uses already started) Finch pool with
the given connection options:
	:timeout - socket connect timeout in milliseconds, defaults to 30_000.

	:protocol - the HTTP protocol to use, defaults to :http1.

	:hostname - Mint explicit hostname

	:transport_opts - Mint transport options

	:proxy_headers - Mint proxy headers

	:proxy - Mint HTTP/1 proxy settings, a {schema, address, port, options} tuple.

	:client_settings - Mint HTTP/2 client settings

	:pool_timeout - pool checkout timeout in milliseconds, defaults to 5000.

	:receive_timeout - socket receive timeout in milliseconds, defaults to 15_000.

	:unix_socket - if set, connect through the given UNIX domain socket

	:finch_request - a function to modify the built Finch request before execution. This function takes a
 Finch request and returns a Finch request. If not provided, the finch request will not be modified

 examples

 Examples

With options keywords list:
iex> {:ok, response} = Req.request(url: "https://api.github.com/repos/elixir-lang/elixir")
iex> response.status
200
iex> response.body["description"]
"Elixir is a dynamic, functional language designed for building scalable and maintainable applications"
With request struct:
iex> req = Req.new(url: "https://api.github.com/repos/elixir-lang/elixir")
iex> {:ok, response} = Req.request(req)
iex> response.status
200
With request struct and options:
iex> req = Req.new(base_url: "https://api.github.com")
iex> {:ok, response} = Req.request(req, url: "/repos/elixir-lang/elixir")
iex> response.status
200
With mock adapter:
iex> adapter = fn request ->
...> response = %Req.Response{status: 200, body: "it works!"}
...> {request, response}
...> end
iex>
iex> {:ok, response} = Req.request(adapter: adapter, url: "http://example")
iex> response.body
"it works!"

 Link to this function

 request(request, options)

 View Source

 @spec request(Req.Request.t(), options :: keyword()) ::
 {:ok, Req.Response.t()} | {:error, Exception.t()}

Makes an HTTP request.
See request/1 for more information.

 Link to this function

 request!(request_or_options)

 View Source

 @spec request!(Req.Request.t() | keyword()) :: Req.Response.t()

Makes an HTTP request and returns a response or raises an error.
See request/1 for more information.

 examples

 Examples

iex> Req.request!(url: "https://api.github.com/repos/elixir-lang/elixir").status
200

 Link to this function

 request!(request, options)

 View Source

 @spec request!(Req.Request.t(), options :: keyword()) :: Req.Response.t()

Makes an HTTP request and returns a response or raises an error.
See request/1 for more information.

 examples

 Examples

iex> req = Req.new(base_url: "https://api.github.com")
iex> Req.request!(req, url: "/repos/elixir-lang/elixir").status
200

 Link to this function

 update(request, options)

 View Source

 @spec update(Req.Request.t(), options :: keyword()) :: Req.Request.t()

Updates a request struct.
See request/1 for a list of available options. See Req.Request module documentation
for more information on the underlying request struct.

 examples

 Examples

iex> req = Req.new(base_url: "https://httpbin.org")
iex> req = Req.update(req, auth: {"alice", "secret"})
iex> req.options
%{auth: {"alice", "secret"}, base_url: "https://httpbin.org"}
Passing :headers will automatically encode and merge them:
iex> req = Req.new(headers: [point_x: 1])
iex> req = Req.update(req, headers: [point_y: 2])
iex> req.headers
[{"point-x", "1"}, {"point-y", "2"}]

Req.Request

The low-level API and the request struct.
Req is composed of three main pieces:
	Req - the high-level API

	Req.Request - the low-level API and the request struct (you're here!)

	Req.Steps - the collection of built-in steps

The low-level API and the request struct is the foundation of Req's extensibility. Virtually all
of the functionality is broken down into individual pieces - steps. Req works by running the
request struct through these steps. You can easily reuse or rearrange built-in steps or write new
ones.
To make using custom steps by others even easier, they can be packaged up into plugins.
See "Writing Plugins" section for more information.
The Low-level API
Most Req users would use it like this:
Req.get!("https://api.github.com/repos/elixir-lang/elixir").body["description"]
#=> "Elixir is a dynamic, functional language designed for building scalable and maintainable applications"
Here is the equivalent using the low-level API:
url = "https://api.github.com/repos/elixir-lang/elixir"

req =
 %Req.Request{method: :get, url: url}
 |> Req.Request.append_request_steps(
 put_user_agent: &Req.Steps.put_user_agent/1,
 # ...
)
 |> Req.Request.append_response_steps(
 # ...
 decompress_body: &Req.Steps.decompress_body/1,
 decode_body: &Req.Steps.decode_body/1,
 # ...
)
 |> Req.Request.append_error_steps(
 retry: &Req.Steps.retry/1,
 # ...
)

Req.Request.run!(req).body["description"]
#=> "Elixir is a dynamic, functional language designed for building scalable and maintainable applications"
By putting the request pipeline yourself you have precise control of exactly what is running and in what order.
The Request Struct
	:method - the HTTP request method

	:url - the HTTP request URL

	:headers - the HTTP request headers

	:body - the HTTP request body

	:options - the options to be used by steps. See "Options" section below
for more information.

	:halted - whether the request pipeline is halted. See halt/1

	:adapter - a request step that makes the actual HTTP request. Defaults to
Req.Steps.run_finch/1. See "Adapter" section below for more information.

	:request_steps - the list of request steps

	:response_steps - the list of response steps

	:error_steps - the list of error steps

	:private - a map reserved for libraries and frameworks to use.
Prefix the keys with the name of your project to avoid any future
conflicts. Only accepts atom/0 keys.

Steps
Req has three types of steps: request, response, and error.
Request steps are used to refine the data that will be sent to the server.
After making the actual HTTP request, we'll either get a HTTP response or an error.
The request, along with the response or error, will go through response or
error steps, respectively.
Nothing is actually executed until we run the pipeline with Req.Request.run/1.
Request steps
A request step is a function that accepts a request and returns one of the following:
	A request

	A {request, response_or_error} tuple. In that case no further request steps are executed
and the return value goes through response or error steps

Examples:
def put_default_headers(request) do
 update_in(request.headers, &[{"user-agent", "req"} | &1])
end

def read_from_cache(request) do
 case ResponseCache.fetch(request) do
 {:ok, response} -> {request, response}
 :error -> request
 end
end
Response and error steps
A response step is a function that accepts a {request, response} tuple and returns one of the
following:
	A {request, response} tuple

	A {request, exception} tuple. In that case, no further response steps are executed but the
exception goes through error steps

Similarly, an error step is a function that accepts a {request, exception} tuple and returns one
of the following:
	A {request, exception} tuple

	A {request, response} tuple. In that case, no further error steps are executed but the
response goes through response steps

Examples:
def decode({request, response}) do
 case List.keyfind(response.headers, "content-type", 0) do
 {_, "application/json" <> _} ->
 {request, update_in(response.body, &Jason.decode!/1)}

 _ ->
 {request, response}
 end
end

def log_error({request, exception}) do
 Logger.error(["#{request.method} #{request.uri}: ", Exception.message(exception)])
 {request, exception}
end
Halting
Any step can call halt/1 to halt the pipeline. This will prevent any further steps
from being invoked.
Examples:
def circuit_breaker(request) do
 if CircuitBreaker.open?() do
 {Req.Request.halt(request), RuntimeError.exception("circuit breaker is open")}
 else
 request
 end
end
Writing Plugins
Custom steps can be packaged into plugins so that they are even easier to use by others.
Here's an example plugin:
defmodule PrintHeaders do
 @doc """
 Prints request and response headers.

 ## Request Options

 * `:print_headers` - if `true`, prints the headers. Defaults to `false`.
 """
 def attach(%Req.Request{} = request, options \\ []) do
 request
 |> Req.Request.register_options([:print_headers])
 |> Req.Request.merge_options(options)
 |> Req.Request.append_request_steps(print_headers: &print_request_headers/1)
 |> Req.Request.prepend_response_steps(print_headers: &print_response_headers/1)
 end

 defp print_request_headers(request) do
 if request.options[:print_headers] do
 print_headers("> ", request.headers)
 end

 request
 end

 defp print_response_headers({request, response}) do
 if request.options[:print_headers] do
 print_headers("< ", response.headers)
 end

 {request, response}
 end

 defp print_headers(prefix, headers) do
 for {name, value} <- headers do
 IO.puts([prefix, name, ": ", value])
 end
 end
end
And here is how we can use it:
req = Req.new() |> PrintHeaders.attach()

Req.get!(req, url: "https://httpbin.org/json").status
200

Req.get!(req, url: "https://httpbin.org/json", print_headers: true).status
Outputs:
> accept-encoding: br, gzip, deflate
> user-agent: req/0.3.0-dev
< date: Wed, 11 May 2022 11:10:47 GMT
< content-type: application/json
...
200

req = Req.new() |> PrintHeaders.attach(print_headers: true)
Req.get!(req, url: "https://httpbin.org/json").status
Outputs:
> accept-encoding: br, gzip, deflate
...
200
As you can see a plugin is simply a module. While this is not enforced, the plugin should follow
these conventions:
	It should export an attach/1 function that takes and returns the request struct

	The attach functions mostly just adds steps and it is the steps that do the actual work

	A user should be able to attach your plugin alongside other plugins. For this reason,
plugin functionality should usually only happen on a specific "trigger": on a specific
option, on a specific URL scheme or host, etc. This is especially important for plugins
that perform authentication; you don't want to accidentally expose a token from service A
when a user makes request to service B.

	If your plugin supports custom options, register them with register_options/2

	Sometimes it is useful to pass options when attaching the plugin. For that, export an
attach/2 function and call merge_options/2. Remember to first register
options before merging!

Adapter
As noted in the "Request steps" section, a request step besides returning the request,
might also return {request, response} or {request, exception}, thus invoking either response or error steps next.
This is exactly how Req makes the underlying HTTP call, by invoking a request step that follows this contract.
The default adapter is using Finch via the Req.Steps.run_finch/1 step.
Here is a mock adapter that always returns a successful response:
adapter = fn request ->
 response = %Req.Response{status: 200, body: "it works!"}
 {request, response}
end

Req.request!(url: "http://example", adapter: adapter).body
#=> "it works!"
Here is another one that uses the Req.Response.json/2 function to conveniently
return a JSON response:
adapter = fn request ->
 response = Req.Response.json(%{hello: 42})
 {request, response}
end

resp = Req.request!(url: "http://example", adapter: adapter)
resp.headers
#=> [{"content-type", "application/json"}]
resp.body
#=> %{"hello" => 42}
And here is a naive Hackney-based adapter:
hackney = fn request ->
 case :hackney.request(
 request.method,
 URI.to_string(request.url),
 request.headers,
 request.body,
 [:with_body]
) do
 {:ok, status, headers, body} ->
 headers = for {name, value} <- headers, do: {String.downcase(name), value}
 response = %Req.Response{status: status, headers: headers, body: body}
 {request, response}

 {:error, reason} ->
 {request, RuntimeError.exception(inspect(reason))}
 end
end

Req.get!("https://api.github.com/repos/elixir-lang/elixir", adapter: hackney).body["description"]
"Elixir is a dynamic, functional language designed for building scalable and maintainable applications"

 Anchor for this section

 Summary

 Types

 t()

 Functions

 append_error_steps(request, steps)

 Appends error steps.

 append_request_steps(request, steps)

 Appends request steps.

 append_response_steps(request, steps)

 Appends response steps.

 get_header(request, key)

 Returns the values of the header specified by key.

 get_private(request, key, default \\ nil)

 Gets the value for a specific private key.

 halt(request)

 Halts the request pipeline preventing any further steps from executing.

 merge_options(request, options)

 Merges given options into the request.

 prepend_error_steps(request, steps)

 Prepends error steps.

 prepend_request_steps(request, steps)

 Prepends request steps.

 prepend_response_steps(request, steps)

 Prepends response steps.

 put_header(request, key, value)

 Adds a new request header (key) if not present, otherwise replaces the
previous value of that header with value.

 put_headers(request, headers)

 Adds (or replaces) multiple request headers.

 put_new_header(request, key, value)

 Adds a request header (key) unless already present.

 put_private(request, key, value)

 Assigns a private key to value.

 register_options(request, options)

 Registers options to be used by a custom steps.

 run(request)

 Runs a request pipeline.

 run!(request)

 Runs a request pipeline and returns a response or raises an error.

 update_private(request, key, default, fun)

 Updates private key with the given function.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Req.Request{
 adapter: request_step(),
 body: iodata() | nil,
 current_request_steps: term(),
 error_steps: [{name :: atom(), error_step()}],
 halted: boolean(),
 headers: [{binary(), binary()}],
 method: atom(),
 options: map(),
 private: map(),
 registered_options: MapSet.t(),
 request_steps: [{name :: atom(), request_step()}],
 response_steps: [{name :: atom(), response_step()}],
 url: URI.t()
}

 Anchor for this section

Functions

 Link to this function

 append_error_steps(request, steps)

 View Source

Appends error steps.

 examples

 Examples

Req.Request.append_error_steps(request,
 noop: fn {request, exception} -> {request, exception} end,
 inspect: &IO.inspect/1
)

 Link to this function

 append_request_steps(request, steps)

 View Source

Appends request steps.

 examples

 Examples

Req.Request.append_request_steps(request,
 noop: fn request -> request end,
 inspect: &IO.inspect/1
)

 Link to this function

 append_response_steps(request, steps)

 View Source

Appends response steps.

 examples

 Examples

Req.Request.append_response_steps(request,
 noop: fn {request, response} -> {request, response} end,
 inspect: &IO.inspect/1
)

 Link to this function

 get_header(request, key)

 View Source

 @spec get_header(t(), binary()) :: [binary()]

Returns the values of the header specified by key.

 examples

 Examples

iex> req = Req.new(headers: [{"accept", "application/json"}])
iex> Req.Request.get_header(req, "accept")
["application/json"]

 Link to this function

 get_private(request, key, default \\ nil)

 View Source

Gets the value for a specific private key.

 Link to this function

 halt(request)

 View Source

Halts the request pipeline preventing any further steps from executing.

 Link to this function

 merge_options(request, options)

 View Source

 @spec merge_options(
 t(),
 keyword()
) :: t()

Merges given options into the request.

 examples

 Examples

iex> req = Req.new(auth: {"alice", "secret"}, http_errors: :raise)
iex> req = Req.Request.merge_options(req, auth: {:bearer, "abcd"}, base_url: "https://example.com")
iex> req.options
%{auth: {:bearer, "abcd"}, base_url: "https://example.com", http_errors: :raise}

 Link to this function

 prepend_error_steps(request, steps)

 View Source

Prepends error steps.

 examples

 Examples

Req.Request.prepend_error_steps(request,
 noop: fn {request, exception} -> {request, exception} end,
 inspect: &IO.inspect/1
)

 Link to this function

 prepend_request_steps(request, steps)

 View Source

Prepends request steps.

 examples

 Examples

Req.Request.prepend_request_steps(request,
 noop: fn request -> request end,
 inspect: &IO.inspect/1
)

 Link to this function

 prepend_response_steps(request, steps)

 View Source

Prepends response steps.

 examples

 Examples

Req.Request.prepend_response_steps(request,
 noop: fn {request, response} -> {request, response} end,
 inspect: &IO.inspect/1
)

 Link to this function

 put_header(request, key, value)

 View Source

 @spec put_header(t(), binary(), binary()) :: t()

Adds a new request header (key) if not present, otherwise replaces the
previous value of that header with value.
Because header keys are case-insensitive in both HTTP/1.1 and HTTP/2,
it is recommended for header keys to be in lowercase, to avoid sending
duplicate keys in a request.
Additionally, requests with mixed-case headers served over HTTP/2 are not
considered valid by common clients, resulting in dropped requests.

 examples

 Examples

iex> req = Req.new()
iex> req = Req.Request.put_header(req, "accept", "application/json")
iex> req.headers
[{"accept", "application/json"}]

 Link to this function

 put_headers(request, headers)

 View Source

 @spec put_headers(t(), [{binary(), binary()}]) :: t()

Adds (or replaces) multiple request headers.
See put_header/3 for more information.

 examples

 Examples

iex> req = Req.new()
iex> req = Req.Request.put_headers(req, [{"accept", "text/html"}, {"accept-encoding", "gzip"}])
iex> req.headers
[{"accept", "text/html"}, {"accept-encoding", "gzip"}]

 Link to this function

 put_new_header(request, key, value)

 View Source

 @spec put_new_header(t(), binary(), binary()) :: t()

Adds a request header (key) unless already present.
See put_header/3 for more information.

 examples

 Examples

iex> req =
...> Req.new()
...> |> Req.Request.put_new_header("accept", "application/json")
...> |> Req.Request.put_new_header("accept", "application/html")
iex> req.headers
[{"accept", "application/json"}]

 Link to this function

 put_private(request, key, value)

 View Source

Assigns a private key to value.

 Link to this function

 register_options(request, options)

 View Source

Registers options to be used by a custom steps.
Req ensures that all used options were previously registered which helps
finding accidentally mistyped option names. If you're adding custom steps
that are accepting options, call this function to register them.

 examples

 Examples

iex> Req.request!(urll: "https://httpbin.org")
** (ArgumentError) unknown option :urll. Did you mean :url?

iex> Req.new(bas_url: "https://httpbin.org")
** (ArgumentError) unknown option :bas_url. Did you mean :base_url?

req =
 Req.new(base_url: "https://httpbin.org")
 |> Req.Request.register_options([:foo])

Req.get!(req, url: "/status/201", foo: :bar).status
#=> 201

 Link to this function

 run(request)

 View Source

Runs a request pipeline.
Returns {:ok, response} or {:error, exception}.

 Link to this function

 run!(request)

 View Source

Runs a request pipeline and returns a response or raises an error.
See run/1 for more information.

 Link to this function

 update_private(request, key, default, fun)

 View Source

Updates private key with the given function.
If key is present in request private map then the existing value is passed to fun and its
result is used as the updated value of key. If key is not present, default is inserted
as the value of key. The default value will not be passed through the update function.

 examples

 Examples

iex> req = %Req.Request{private: %{a: 1}}
iex> Req.Request.update_private(req, :a, 11, & &1 + 1).private
%{a: 2}
iex> Req.Request.update_private(req, :b, 11, & &1 + 1).private
%{a: 1, b: 11}

Req.Response

The response struct.
Fields:
	:status - the HTTP status code

	:headers - the HTTP response headers

	:body - the HTTP response body

	:private - a map reserved for libraries and frameworks to use.
Prefix the keys with the name of your project to avoid any future
conflicts. Only accepts atom/0 keys.

 Anchor for this section

 Summary

 Types

 t()

 Functions

 get_header(response, key)

 Returns the values of the header specified by key.

 get_private(response, key, default \\ nil)

 Gets the value for a specific private key.

 json(response \\ new(), body)

 Builds or updates a response with JSON body.

 new(options \\ [])

 Returns a new response.

 put_header(response, key, value)

 Adds a new response header (key) if not present, otherwise replaces the
previous value of that header with value.

 put_private(response, key, value)

 Assigns a private key to value.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Req.Response{
 body: binary() | term(),
 headers: [{binary(), binary()}],
 private: map(),
 status: non_neg_integer()
}

 Anchor for this section

Functions

 Link to this function

 get_header(response, key)

 View Source

 @spec get_header(t(), binary()) :: [binary()]

Returns the values of the header specified by key.

 examples

 Examples

iex> Req.Response.get_header(response, "content-type")
["application/json"]

 Link to this function

 get_private(response, key, default \\ nil)

 View Source

 @spec get_private(t(), key :: atom(), default :: term()) :: term()

Gets the value for a specific private key.

 Link to this function

 json(response \\ new(), body)

 View Source

 @spec json(t(), body :: term()) :: t()

Builds or updates a response with JSON body.

 example

 Example

iex> Req.Response.json(%{hello: 42})
%Req.Response{
 status: 200,
 headers: [{"content-type", "application/json"}],
 body: ~s|{"hello":42}|
}

iex> resp = Req.Response.new()
iex> Req.Response.json(resp, %{hello: 42})
%Req.Response{
 status: 200,
 headers: [{"content-type", "application/json"}],
 body: ~s|{"hello":42}|
}
If the request already contains a 'content-type' header, it is kept as is:
iex> Req.Response.new()
iex> |> Req.Response.put_header("content-type", "application/vnd.api+json; charset=utf-8")
iex> |> Req.Response.json(%{hello: 42})
%Req.Response{
 status: 200,
 headers: [{"content-type", "application/vnd.api+json; charset=utf-8"}],
 body: ~s|{"hello":42}|
}

 Link to this function

 new(options \\ [])

 View Source

 @spec new(options :: keyword()) :: t()

Returns a new response.

 Link to this function

 put_header(response, key, value)

 View Source

 @spec put_header(t(), binary(), binary()) :: t()

Adds a new response header (key) if not present, otherwise replaces the
previous value of that header with value.

 examples

 Examples

iex> Req.Response.put_header(response, "content-type", "application/json").headers
[{"content-type", "application/json"}]

 Link to this function

 put_private(response, key, value)

 View Source

 @spec put_private(t(), key :: atom(), value :: term()) :: t()

Assigns a private key to value.

Req.Steps

The collection of built-in steps.
Req is composed of three main pieces:
	Req - the high-level API

	Req.Request - the low-level API and the request struct

	Req.Steps - the collection of built-in steps (you're here!)

 Anchor for this section

 Summary

 Request steps

 auth(request)

 Sets request authentication.

 cache(request)

 Performs HTTP caching using if-modified-since header.

 compress_body(request)

 Compresses the request body.

 compressed(request)

 Asks the server to return compressed response.

 encode_body(request)

 Encodes the request body.

 put_base_url(request)

 Sets base URL for all requests.

 put_params(request)

 Adds params to request query string.

 put_path_params(request)

 Uses a templated request path.

 put_plug(request)

 Runs the request against a plug instead of over the network.

 put_range(request)

 Sets the "Range" request header.

 put_user_agent(request)

 Sets the user-agent header.

 run_finch(request)

 Runs the request using Finch.

 Response steps

 decode_body(request_response)

 Decodes response body based on the detected format.

 decompress_body(request_response)

 Decompresses the response body based on the content-encoding header.

 follow_redirects(request_response)

 Follows redirects.

 handle_http_errors(request_response)

 Handles HTTP 4xx/5xx error responses.

 output(request_response)

 Writes the response body to a file.

 Error steps

 retry(request_response_or_error)

 Retries a request in face of errors.

 Anchor for this section

Request steps

 Link to this function

 auth(request)

 View Source

Sets request authentication.

 request-options

 Request Options

	:auth - sets the authorization header:
	string - sets to this value;

	{username, password} - uses Basic HTTP authentication;

	{:bearer, token} - uses Bearer HTTP authentication;

	:netrc - load credentials from .netrc at path specified in NETRC environment variable.
If NETRC is not set, load .netrc in user's home directory;

	{:netrc, path} - load credentials from path

 examples

 Examples

iex> Req.get!("https://httpbin.org/basic-auth/foo/bar", auth: {"bad", "bad"}).status
401
iex> Req.get!("https://httpbin.org/basic-auth/foo/bar", auth: {"foo", "bar"}).status
200

iex> Req.get!("https://httpbin.org/bearer", auth: {:bearer, ""}).status
401
iex> Req.get!("https://httpbin.org/bearer", auth: {:bearer, "foo"}).status
200

iex> System.put_env("NETRC", "./test/my_netrc")
iex> Req.get!("https://httpbin.org/basic-auth/foo/bar", auth: :netrc).status
200

iex> Req.get!("https://httpbin.org/basic-auth/foo/bar", auth: {:netrc, "./test/my_netrc"}).status
200

 Link to this function

 cache(request)

 View Source

Performs HTTP caching using if-modified-since header.
Only successful (200 OK) responses are cached.
This step also prepends a response step that loads and writes the cache. Be careful when
prepending other response steps, make sure the cache is loaded/written as soon as possible.

 options

 Options

	:cache - if true, performs caching. Defaults to false.

	:cache_dir - the directory to store the cache, defaults to <user_cache_dir>/req
(see: :filename.basedir/3)

 examples

 Examples

iex> url = "https://elixir-lang.org"
iex> response1 = Req.get!(url, cache: true)
iex> response2 = Req.get!(url, cache: true)
iex> response1 == response2
true

 Link to this function

 compress_body(request)

 View Source

Compresses the request body.

 request-options

 Request Options

	:compress_body - if set to true, compresses the request body using gzip.
Defaults to false.

 Link to this function

 compressed(request)

 View Source

Asks the server to return compressed response.
Supported formats:
	gzip
	deflate
	br (if brotli is installed)
	zstd (if ezstd is installed)

 request-options

 Request Options

	:compressed - if set to true, sets the accept-encoding header with compression
algorithms that Req supports. Defaults to true.

 examples

 Examples

Req automatically decompresses response body (decompress_body/1 step) so let's disable that by
passing raw: true.
By default, we ask the server to send compressed response. Let's look at the headers and the raw
body. Notice the body starts with <<31, 139>> (<<0x1F, 0x8B>>), the "magic bytes" for gzip:
iex> response = Req.get!("https://elixir-lang.org", raw: true)
iex> response.headers |> List.keyfind("content-encoding", 0)
{"content-encoding", "gzip"}
iex> response.body |> binary_part(0, 2)
<<31, 139>>
Now, let's pass compressed: false and notice the raw body was not compressed:
iex> response = Req.get!("https://elixir-lang.org", raw: true, compressed: false)
iex> response.headers |> List.keyfind("content-encoding", 0)
nil
iex> response.body |> binary_part(0, 15)
"<!DOCTYPE html>"
The Brotli and Zstandard compression algorithms are also supported if the optional
packages are installed:
Mix.install([
 :req,
 {:brotli, "~> 0.3.0"},
 {:ezstd, "~> 1.0"}
])

response = Req.get!("https://httpbin.org/anything")
response.body["headers"]["Accept-Encoding"]
#=> "zstd, br, gzip, deflate"

 Link to this function

 encode_body(request)

 View Source

Encodes the request body.

 request-options

 Request Options

	:form - if set, encodes the request body as form data (using URI.encode_query/1).

	:json - if set, encodes the request body as JSON (using Jason.encode_to_iodata!/1), sets
 the `accept` header to `application/json`, and the `content-type`
 header to `application/json`.

 examples

 Examples

iex> Req.post!("https://httpbin.org/anything", form: [x: 1]).body["form"]
%{"x" => "1"}

iex> Req.post!("https://httpbin.org/post", json: %{x: 2}).body["json"]
%{"x" => 2}

 Link to this function

 put_base_url(request)

 View Source

Sets base URL for all requests.

 request-options

 Request Options

	:base_url - if set, the request URL is merged with this base URL.

 examples

 Examples

iex> req = Req.new(base_url: "https://httpbin.org")
iex> Req.get!(req, url: "/status/200").status
200
iex> Req.get!(req, url: "/status/201").status
201

 Link to this function

 put_params(request)

 View Source

Adds params to request query string.

 request-options

 Request Options

	:params - params to add to the request query string. Defaults to [].

 examples

 Examples

iex> Req.get!("https://httpbin.org/anything/query", params: [x: 1, y: 2]).body["args"]
%{"x" => "1", "y" => "2"}

 Link to this function

 put_path_params(request)

 View Source

Uses a templated request path.

 request-options

 Request Options

	:path_params - params to add to the templated path. Defaults to [].

 examples

 Examples

iex> Req.get!("https://httpbin.org/status/:code", path_params: [code: 200]).status
200

 Link to this function

 put_plug(request)

 View Source

Runs the request against a plug instead of over the network.

 request-options

 Request Options

	:plug - if set, the plug to run the request against.

 examples

 Examples

This step is particularly useful to test plugs:
defmodule Echo do
 def call(conn, _) do
 "/" <> path = conn.request_path
 Plug.Conn.send_resp(conn, 200, path)
 end
end

test "echo" do
 assert Req.get!("http:///hello", plug: Echo).body == "hello"
end
You can define plugs as functions too:
test "echo" do
 echo = fn conn ->
 "/" <> path = conn.request_path
 Plug.Conn.send_resp(conn, 200, path)
 end

 assert Req.get!("http:///hello", plug: echo).body == "hello"
end
which is particularly useful to create HTTP service mocks with tools like
Bypass.
Here is another example, let's run the request against Plug.Static pointed to the Req's source
code and fetch the README:
iex> resp = Req.get!("http:///README.md", plug: {Plug.Static, at: "/", from: "."})
iex> resp.body =~ "Req is a batteries-included HTTP client for Elixir."
true

 Link to this function

 put_range(request)

 View Source

Sets the "Range" request header.

 request-options

 Request Options

	:range - can be one of the following:
	a string - returned as is

	a first..last range - converted to "bytes=<first>-<last>"

 examples

 Examples

iex> response = Req.get!("https://httpbin.org/range/100", range: 0..3)
iex> response.status
206
iex> response.body
"abcd"
iex> List.keyfind(response.headers, "content-range", 0)
{"content-range", "bytes 0-3/100"}

 Link to this function

 put_user_agent(request)

 View Source

Sets the user-agent header.

 request-options

 Request Options

	:user_agent - sets the user-agent header. Defaults to "req/0.3.5".

 examples

 Examples

iex> Req.get!("https://httpbin.org/user-agent").body
%{"user-agent" => "req/0.3.5"}

iex> Req.get!("https://httpbin.org/user-agent", user_agent: "foo").body
%{"user-agent" => "foo"}

 Link to this function

 run_finch(request)

 View Source

Runs the request using Finch.
This is the default Req adapter. See
"Adapter" section in the Req.Request module
documentation for more information on adapters.

 request-options

 Request Options

	:finch - the name of the Finch pool. Defaults to a pool automatically started by
Req. The default pool uses HTTP/1 although that may change in the future.

	:connect_options - dynamically starts (or re-uses already started) Finch pool with
the given connection options:
	:timeout - socket connect timeout in milliseconds, defaults to 30_000.

	:protocol - the HTTP protocol to use, defaults to :http1.

	:hostname - Mint explicit hostname, see Mint.HTTP.connect/4 for more information.

	:transport_opts - Mint transport options, see Mint.HTTP.connect/4 for more information.

	:proxy_headers - Mint proxy headers, see Mint.HTTP.connect/4 for more information.

	:proxy - Mint HTTP/1 proxy settings, a {schema, address, port, options} tuple.
See Mint.HTTP.connect/4 for more information.

	:client_settings - Mint HTTP/2 client settings, see Mint.HTTP.connect/4 for more information.

	:pool_timeout - pool checkout timeout in milliseconds, defaults to 5000.

	:receive_timeout - socket receive timeout in milliseconds, defaults to 15_000.

	:unix_socket - if set, connect through the given UNIX domain socket

	:finch_request - a function to modify the built Finch request before execution. This function takes a
Finch request and returns a Finch request. If not provided, the finch request will not be modified

 examples

 Examples

Custom :receive_timeout:
iex> Req.get!(url, receive_timeout: 1000)
Connecting through UNIX socket:
iex> Req.get!("http:///v1.41/_ping", unix_socket: "/var/run/docker.sock").body
"OK"
Connecting with custom connection options:
iex> Req.get!(url, connect_options: [timeout: 5000])

iex> Req.get!(url, connect_options: [protocol: :http2])
Connecting with built-in CA store (requires OTP 25+):
iex> Req.get!(url, connect_options: [cacerts: :public_key.cacerts_get()])

 Anchor for this section

Response steps

 Link to this function

 decode_body(request_response)

 View Source

Decodes response body based on the detected format.
Supported formats:
	Format	Decoder
	json	Jason.decode!/1
	gzip	:zlib.gunzip/1
	tar, tgz	:erl_tar.extract/2
	zip	:zip.unzip/2
	csv	NimbleCSV.RFC4180.parse_string/2 (if nimble_csv is installed)

 request-options

 Request Options

	:decode_body - if set to false, disables automatic response body decoding.
Defaults to true.

 examples

 Examples

iex> response = Req.get!("https://httpbin.org/gzip")
...> response.body["gzipped"]
true

iex> response = Req.get!("https://httpbin.org/json")
...> response.body["slideshow"]["title"]
"Sample Slide Show"

 Link to this function

 decompress_body(request_response)

 View Source

Decompresses the response body based on the content-encoding header.
Supported formats:
	Format	Decoder
	gzip, x-gzip	:zlib.gunzip/1
	zip	:zlib.unzip/1
	br	:brotli.decode/1 (if brotli is installed)
	zstd	:ezstd.decompress/1 (if ezstd is installed)

 examples

 Examples

iex> response = Req.get!("https://httpbin.org/gzip")
iex> response.headers |> List.keyfind("content-encoding", 0)
{"content-encoding", "gzip"}
iex> response.body["gzipped"]
true
If the brotli package is installed, Brotli is also supported:
Mix.install([
 :req,
 {:brotli, "~> 0.3.0"}
])

response = Req.get!("https://httpbin.org/brotli")
response.headers |> List.keyfind("content-encoding", 0)
#=> {"content-encoding", "br"}
response.body["brotli"]
#=> true

 Link to this function

 follow_redirects(request_response)

 View Source

Follows redirects.
The original request method may be changed to GET depending on the status code:
	Code	Method handling
	301, 302, 303	Changed to GET
	307, 308	Method not changed

 request-options

 Request Options

	:follow_redirects - if set to false, disables automatic response redirects.
Defaults to true.

	:location_trusted - by default, authorization credentials are only sent
on redirects with the same host, scheme and port. If :location_trusted is set
to true, credentials will be sent to any host.

	:max_redirects - the maximum number of redirects, defaults to 10.
If the limit is reached, an error is raised.

 examples

 Examples

iex> Req.get!("http://api.github.com").status
23:24:11.670 [debug] follow_redirects: redirecting to https://api.github.com/
200

iex> Req.get!("https://httpbin.org/redirect/4", max_redirects: 3)
23:07:59.570 [debug] follow_redirects: redirecting to /relative-redirect/3
23:08:00.068 [debug] follow_redirects: redirecting to /relative-redirect/2
23:08:00.206 [debug] follow_redirects: redirecting to /relative-redirect/1
** (RuntimeError) too many redirects (3)

 Link to this function

 handle_http_errors(request_response)

 View Source

Handles HTTP 4xx/5xx error responses.

 request-options

 Request Options

	:http_errors - how to handle HTTP 4xx/5xx error responses. Can be one of the following:
	:return (default) - return the response

	:raise - raise an error

 examples

 Examples

iex> Req.get!("https://httpbin.org/status/404").status
404

iex> Req.get!("https://httpbin.org/status/404", http_errors: :raise)
** (RuntimeError) The requested URL returned error: 404
Response body: ""

 Link to this function

 output(request_response)

 View Source

Writes the response body to a file.
After the output file is written, the response body is set to "".

 request-options

 Request Options

	:output - if set, writes the response body to a file. Can be one of:
	path - writes to the given path

	:remote_name - uses the remote name as the filename in the current working directory

 examples

 Examples

iex> Req.get!("https://elixir-lang.org/index.html", output: "/tmp/elixir_home.html")
iex> File.exists?("/tmp/elixir_home.html")
true

iex> Req.get!("https://elixir-lang.org/blog/index.html", output: :remote_name)
iex> File.exists?("index.html")
true

 Anchor for this section

Error steps

 Link to this function

 retry(request_response_or_error)

 View Source

Retries a request in face of errors.
This function can be used as either or both response and error step.

 request-options

 Request Options

	:retry - can be one of the following:
	:safe (default) - retry GET/HEAD requests on HTTP 408/429/5xx responses or exceptions

	fun - a 1-arity function that accepts either a Req.Response or an exception struct
and returns boolean whether to retry

	false - never retry

	:retry_delay - a function that receives the retry count (starting at 0) and returns the delay, the
number of milliseconds to sleep before making another attempt.
Defaults to a simple exponential backoff: 1s, 2s, 4s, 8s, ...
If the response is HTTP 429 and contains the retry-after header, the value of the header is used to
determine the next retry delay.

	:retry_log_level - the log level to emit retry logs at. Can also be set to false to disable logging
these messsages. Default to :error if not specified.

	:max_retries - maximum number of retry attempts, defaults to 3 (for a total of 4
requests to the server, including the initial one.)

 examples

 Examples

With default options:
iex> Req.get!("https://httpbin.org/status/500,200").status
19:02:08.463 [error] retry: got response with status 500, will retry in 2000ms, 2 attempts left
19:02:10.710 [error] retry: got response with status 500, will retry in 4000ms, 1 attempt left
200
Delay with jitter:
iex> delay = fn n -> trunc(Integer.pow(2, n) * 1000 * (1 - 0.1 * :rand.uniform())) end
iex> Req.get!("https://httpbin.org/status/500,200", retry_delay: delay).status
08:43:19.101 [error] retry: got response with status 500, will retry in 941ms, 2 attempts left
08:43:22.958 [error] retry: got response with status 500, will retry in 1877s, 1 attempt left
200

 OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

