

 req

 v0.5.8

 Table of contents

 	Req

 	CHANGELOG

 	

 	Modules

 	Req

 	Req.Request

 	Req.Response

 	Req.Response.Async

 	Req.Steps

 	Req.Test

 	Exceptions

 	Req.ArchiveError

 	Req.ChecksumMismatchError

 	Req.DecompressError

 	Req.HTTPError

 	Req.TooManyRedirectsError

 	Req.TransportError

Req

[image: CI]
[image: License]
[image: Version]
[image: Hex Docs]
Req is a batteries-included HTTP client for Elixir.
With just a couple lines of code:
Mix.install([
 {:req, "~> 0.5.0"}
])

Req.get!("https://api.github.com/repos/wojtekmach/req").body["description"]
#=> "Req is a batteries-included HTTP client for Elixir."
we get automatic response body decompression & decoding, following redirects, retrying on errors,
and much more. Virtually all of the features are broken down into individual functions called
steps. You can easily re-use and re-arrange built-in steps (see Req.Steps module) and
write new ones.

 Features

	An easy to use high-level API: Req.request/1, Req.new/1, Req.get!/2, Req.post!/2, etc.

	Extensibility via request, response, and error steps.

	Request body compression (via compress_body step)

	Automatic response body decompression (via compressed and decompress_body steps). Supports gzip, brotli, and zstd.

	Request body encoding. Supports urlencoded and multipart forms, and JSON. See encode_body.

	Automatic response body decoding (via decode_body step.)

	Encode params as query string (via put_params step.)

	Setting base URL (via put_base_url step.)

	Templated request paths (via put_path_params step.)

	Basic, bearer, and .netrc authentication (via auth step.)

	Range requests (via put_range) step.)

	Use AWS V4 Signature (via put_aws_sigv4) step.)

	Request body streaming (by setting body: enumerable.)

	Response body streaming (by setting into: fun | collectable | :self.)

	Follows redirects (via redirect step.)

	Retries on errors (via retry step.)

	Raise on 4xx/5xx errors (via handle_http_errors step.)

	Verify response body against a checksum (via checksum step.)

	Basic HTTP caching (via cache step.)

	Easily create test stubs (see Req.Test.)

	Running against a plug (via run_plug step.)

	Pluggable adapters. By default, Req uses Finch (via run_finch step.)

 Usage

The easiest way to use Req is with Mix.install/2 (requires Elixir v1.12+):
Mix.install([
 {:req, "~> 0.5.0"}
])

Req.get!("https://api.github.com/repos/wojtekmach/req").body["description"]
#=> "Req is a batteries-included HTTP client for Elixir."
If you want to use Req in a Mix project, you can add the above dependency to your mix.exs.
Here's an example POST with JSON data:
iex> Req.post!("https://httpbin.org/post", json: %{x: 1, y: 2}).body["json"]
%{"x" => 1, "y" => 2}
You can stream request body:
iex> stream = Stream.duplicate("foo", 3)
iex> Req.post!("https://httpbin.org/post", body: stream).body["data"]
"foofoofoo"
and stream the response body:
iex> resp = Req.get!("http://httpbin.org/stream/2", into: IO.stream())
output: {"url": "http://httpbin.org/stream/2", ...}
output: {"url": "http://httpbin.org/stream/2", ...}
iex> resp.status
200
iex> resp.body
%IO.Stream{}
(See Req module documentation for more examples of response body streaming.)
If you are planning to make several similar requests, you can build up a request struct with
desired common options and re-use it:
req = Req.new(base_url: "https://api.github.com")

Req.get!(req, url: "/repos/sneako/finch").body["description"]
#=> "Elixir HTTP client, focused on performance"

Req.get!(req, url: "/repos/elixir-mint/mint").body["description"]
#=> "Functional HTTP client for Elixir with support for HTTP/1 and HTTP/2."
See Req.new/1 for more information on available options.
Virtually all of Req's features are broken down into individual pieces - steps. Req works by running
the request struct through these steps. You can easily reuse or rearrange built-in steps or write new
ones. Importantly, steps are just regular functions. Here is another example where we append a request
step that inspects the URL just before requesting it:
req =
 Req.new(base_url: "https://api.github.com")
 |> Req.Request.append_request_steps(
 debug_url: fn request ->
 IO.inspect(URI.to_string(request.url))
 request
 end
)

Req.get!(req, url: "/repos/wojtekmach/req").body["description"]
output: "https://api.github.com/repos/wojtekmach/req"
#=> "Req is a batteries-included HTTP client for Elixir."
Custom steps can be packaged into plugins so that they are even easier to use by others. See Related Packages.
Here is how they can be used:
Mix.install([
 {:req, "~> 0.5.0"},
 {:req_easyhtml, "~> 0.1.0"},
 {:req_s3, "~> 0.2.3"},
 {:req_hex, "~> 0.2.0"},
 {:req_github_oauth, "~> 0.1.0"}
])

req =
 (Req.new(http_errors: :raise)
 |> ReqEasyHTML.attach()
 |> ReqS3.attach()
 |> ReqHex.attach()
 |> ReqGitHubOAuth.attach())

Req.get!(req, url: "https://elixir-lang.org").body[".entry-summary h5"]
#=>
#EasyHTML[<h5>
Elixir is a dynamic, functional language for building scalable and maintainable applications.
</h5>]

Req.get!(req, url: "s3://ossci-datasets/mnist/t10k-images-idx3-ubyte.gz").body
#=> <<0, 0, 8, 3, ...>>

Req.get!(req, url: "https://repo.hex.pm/tarballs/req-0.1.0.tar").body["metadata.config"]["links"]
#=> %{"GitHub" => "https://github.com/wojtekmach/req"}

Req.get!(req, url: "https://api.github.com/user").body["login"]
output:
paste this user code:
#
6C44-30A8
#
at:
#
https://github.com/login/device
#
open browser window? [Yn]
15:22:28.350 [info] response: authorization_pending
15:22:33.519 [info] response: authorization_pending
15:22:38.678 [info] response: authorization_pending
#=> "wojtekmach"

Req.get!(req, url: "https://api.github.com/user").body["login"]
#=> "wojtekmach"
See Req.Request module documentation for more information on low-level API, request struct, and developing plugins.

 Related Packages

There are many packages that extend the Req library. To get yours listed here, send a PR.
	req_easyhtml
	req_s3
	req_hex
	req_github_oauth
	curl_req

 Presentations

	Req: A batteries-included HTTP client for Elixir - ElixirConf 2023, 2023-09-08
	Req: A batteries included HTTP client for Elixir - Elixir Kenya, 2022-08-26

 Acknowledgments

Req is built on top of Finch and is inspired by cURL, Requests, Tesla, and many other HTTP clients - thank you!

 License

Copyright (c) 2021 Wojtek Mach
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

CHANGELOG

 v0.5.8 (2024-11-29)

	Req: Check legacy headers when streaming headers

	Req: Ignore :into collectable for non-200 responses

	put_aws_sigv4: Fix encoding path

	run_finch: Add option to configure Finch :pool_max_idle_time

	run_finch: Prepare for upcoming Finch v0.20

 v0.5.7 (2024-10-29)

	put_aws_sigv4: Fix signature when using custom port

	retry: Do not call retry_delay fun twice

	auth: Support passing a 0-arity function

 v0.5.6 (2024-08-01)

	Fix compatibility with Elixir v1.13

 v0.5.5 (2024-08-01)

	put_aws_sigv4: Fix detecting service

	put_aws_sigv4: Raise on no :access_key_id/:secret_access_key/:service

	put_aws_sigv4: Fix handling ?name (no value)

	handle_http_errors: should run before verify_checksum

	encode_body: Support %File.Stream{} in :form_multipart

	encode_body: Support %File.Stream{} from other nodes in :form_multipart

 v0.5.4 (2024-07-18)

	run_finch, Req.parse_message/2: Gracefully handle process messages not meant
for the asynchronous response. In that case, Req.parse_message/2 returns :unknown.

 v0.5.3 (2024-07-18)

	Req.Test: Fix using shared mode

	encode_body: Add :form_multipart option

	put_aws_sigv4: Try detecting the service

	run_finch: Fix setting :finch option

 v0.5.2 (2024-07-08)

	put_aws_sigv4: Fix bug when using custom headers

	put_aws_sigv4: Add :token option

	redirect: Cancel async request before redirecting

	decode_body: Support application/zstd and .zst

 v0.5.1 (2024-06-24)

	retry: Default :retry_log_level to :warning

	put_path_params: Add :path_params_style option

	put_aws_sigv4: Fix path encoding

	decode_body: Improve tar detection

	run_finch: Fix defaulting to using just HTTP/1

 v0.5.0 (2024-05-28)

Req v0.5.0 brings testing enhancements, errors standardization, %Req.Response.Async{}, and more improvements and bug fixes.

 Testing Enhancements

In previous releases, we could only create test stubs (using Req.Test.stub/2), that is, fake
HTTP servers which had predefined behaviour. Let's say we're integrating with a third-party
weather service and we might create a stub for it like below:
Req.Test.stub(MyApp.Weather, fn conn ->
 Req.Test.json(conn, %{"celsius" => 25.0})
end)
Anytime we hit this fake we'll get the same result. This works extremely well for simple
integrations however it's not quite enough for more complicated ones. Imagine we're using
something like AWS S3 and we test uploading some data and reading it back again. While we could do
this:
Req.Test.stub(MyApp.S3, fn
 conn when conn.method == "PUT" ->
 # ...

 conn when conn.method == "GET" ->
 # ...
end)
making the test just a little bit more thorough will make it MUCH more complicated, for example:
the first GET request should return a 404, we then make a PUT, and now GET should return a 200.
We could solve it by adding some state to our test (e.g. an agent) but there is a simpler way and
that is to set request expectations using the new Req.Test.expect/3 function:
Req.Test.expect(MyApp.S3, fn conn when conn.method == "GET" ->
 Plug.Conn.send_resp(conn, 404, "not found")
end)

Req.Test.expect(MyApp.S3, fn conn when conn.method == "PUT" ->
 {:ok, body, conn} = Plug.Conn.read_body(conn)
 assert body == "foo"
 Plug.Conn.send_resp(conn, 200, "")
end)

Req.Test.expect(MyApp.S3, fn conn when conn.method == "GET" ->
 Plug.Conn.send_resp(conn, 200, "foo")
end)
The important part is the request expectations are meant to run in order (and fail if they don't).
In this release we're also adding Req.Test.transport_error/2, a way to simulate network
errors.
Here is another example using both of the new features, let's simulate a server that is
having issues: on the first request it is not responding and on the following two requests it
returns an HTTP 500. Only on the fourth request it returns an HTTP 200. Req by default
automatically retries transient errors (using retry step) so it will make multiple
requests exercising all of our request expectations:
iex> Req.Test.expect(MyApp.S3, &Req.Test.transport_error(&1, :econnrefused))
iex> Req.Test.expect(MyApp.S3, 2, &Plug.Conn.send_resp(&1, 500, "internal server error"))
iex> Req.Test.expect(MyApp.S3, &Plug.Conn.send_resp(&1, 200, "ok"))
iex> Req.get!(plug: {Req.Test, MyApp.S3}).body
15:57:06.309 [error] retry: got exception, will retry in 1000ms, 3 attempts left
15:57:06.309 [error] ** (Req.TransportError) connection refused
15:57:07.310 [error] retry: got response with status 500, will retry in 2000ms, 2 attempts left
15:57:09.311 [error] retry: got response with status 500, will retry in 4000ms, 1 attempt left
"ok"
Finally, for parity with Mox, we add functions for setting ownership
mode:
	Req.Test.set_req_test_from_context/1
	Req.Test.set_req_test_to_private/1
	Req.Test.set_req_test_to_shared/1

And for verifying expectations:
	Req.Test.verify!/0
	Req.Test.verify!/1
	Req.Test.verify_on_exit!/1

Thanks to Andrea Leopardi for driving the testing improvements.

 Standardized Errors

In previous releases, when using the default adapter, Finch, Req could return these exceptions on
network/protocol errors: Mint.TransportError, Mint.HTTPError, and Finch.Error. They have
now been standardized into: Req.TransportError and Req.HTTPError for more consistent
experience. In fact, this standardization was the pre-requisite of adding
Req.Test.transport_error/2!
Two additional exception structs have been added: Req.ArchiveError and Req.DecompressError
for zip/tar/etc errors in decode_body and gzip/br/zstd/etc errors in decompress_body
respectively. Additionally, decode_body now returns Jason.DecodeError instead of raising it.

 %Req.Response.Async{}

In previous releases we added ability to stream response body chunks into the current process
mailbox using the into: :self option. When such is used, the response.body is now set to
Req.Response.Async struct which implements the Enumerable protocol.
Here's a quick example:
resp = Req.get!("http://httpbin.org/stream/2", into: :self)
resp.body
#=> #Req.Response.Async<...>
Enum.each(resp.body, &IO.puts/1)
{"url": "http://httpbin.org/stream/2", ..., "id": 0}
{"url": "http://httpbin.org/stream/2", ..., "id": 1}
Here is another example where we use Req to talk to two different servers. The first server
produces some test data, strings "foo", "bar" and "baz". The second one is an "echo" server, it simply
responds with the request body it returned. We then stream data from one server, transform it, and
stream it to the other one:
Mix.install([
 {:req, "~> 0.5"},
 {:bandit, "~> 1.0"}
])

{:ok, _} =
 Bandit.start_link(
 scheme: :http,
 port: 4000,
 plug: fn conn, _ ->
 conn = Plug.Conn.send_chunked(conn, 200)
 {:ok, conn} = Plug.Conn.chunk(conn, "foo")
 {:ok, conn} = Plug.Conn.chunk(conn, "bar")
 {:ok, conn} = Plug.Conn.chunk(conn, "baz")
 conn
 end
)

{:ok, _} =
 Bandit.start_link(
 scheme: :http,
 port: 4001,
 plug: fn conn, _ ->
 {:ok, body, conn} = Plug.Conn.read_body(conn)
 Plug.Conn.send_resp(conn, 200, body)
 end
)

resp = Req.get!("http://localhost:4000", into: :self)
stream = resp.body |> Stream.with_index() |> Stream.map(fn {data, idx} -> "[#{idx}]#{data}" end)
Req.put!("http://localhost:4001", body: stream).body
#=> "[0]foo[1]bar[2]baz"
Req.Response.Async is an experimental feature which may change in the future.
The existing caveats to into: :self still apply, that is:
	If the request is sent using HTTP/1, an extra process is spawned to consume messages from the
underlying socket.

	On both HTTP/1 and HTTP/2 the messages are sent to the current process as soon as they arrive,
as a firehose with no back-pressure.

If you wish to maximize request rate or have more control over how messages are streamed, use
into: fun or into: collectable instead.

 Full v0.5.0 CHANGELOG

	Req: Deprecate setting :headers to values other than string/integer/DateTime.
This is to potentially allow special handling of atom values in the future.

	Req: Add Req.run/2 and Req.run!/2.

	Req: into: :self now sets response.body as Req.Response.Async which implements
enumerable.

	Req.Request: Deprecate setting :redact_auth. It now has no effect. Instead of allowing
to opt out of, we give an idea what the secret was without revealing it fully:
iex> Req.new(auth: {:basic, "foobar:baz"})
%Req.Request{
 options: %{auth: {:basic, "foo*******"}},
 ...
}

iex> Req.new(headers: [authorization: "bearer foobarbaz"])
%Req.Request{
 headers: %{"authorization" => ["bearer foo******"]},
 ...
}

	Req.Request: Deprecate halt/1 in favour of Req.Request.halt/2.

	Req.Test: Add Req.Test.transport_error/2 to simulate transport errors.

	Req.Test: Add Req.Test.expect/3.

	Req.Test: Add functions for setting ownership mode: Req.Test.set_req_test_from_context/1, Req.Test.set_req_test_to_private/1,
Req.Test.set_req_test_to_shared/1 and for verifying expectations: Req.Test.verify!/0, Req.Test.verify!/1, and Req.Test.verify_on_exit!/1.

	Req.Test: Add Req.Test.html/2.

	Req.Test: Add Req.Test.text/2.

	Req.Test: Drop :nimble_ownership dependency.

	Req.Test: Deprecate Req.Test.stub/1, i.e. the intended use case is to only work
with plug stubs/mocks.

	decode_body: Return Jason.DecodeError on JSON errors instead of raising it.

	decode_body: Return Req.ArchiveError on tar/zip errors.

	decompress_body: Return Req.DecompressError.

	put_aws_sigv4: Drop :aws_signature dependency.

	retry: (BREAKING CHANGE) Consider
%Req.TransportError{reason: :closed | :econnrefused | :timeout} as transient. Previously
any exceptions with those reason values were consider as such.

	retry: (BREAKING CHANGE) Consider
%Req.HTTPError{protocol: :http2, reason: :unprocessed} as transient.

	run_finch: (BREAKING CHANGE) Return Req.HTTPError instead of Mint.HTTPError.

	run_finch: (BREAKING CHANGE) Return Req.TransportError instead of Mint.TransportError.

	run_finch: Set inet6: true if URL looks like IPv6 address.

	put_plug: Move most documentation to run_plug.

	run_plug: Make public.

	run_plug: Add support for simulating network issues using Req.Test.transport_error/2.

	run_plug: Support passing 2-arity functions as plugs.

	run_plug: Automatically fetch query params.

	verify_checksum: Fix handling compressed responses.

 v0.4.14 (2024-03-15)

	redirect: Return Req.TooManyRedirectsError exception.
Previously we always raised a RuntimeError. Besides changing the exception struct, now
it is returned:
iex> Req.get("https://httpbin.org/redirect/4", max_redirects: 3)
07:08:06.868 [debug] redirecting to /relative-redirect/3
07:08:06.988 [debug] redirecting to /relative-redirect/2
07:08:07.109 [debug] redirecting to /relative-redirect/1
{:error, %Req.TooManyRedirectsError{max_redirects: 3}}
When users where using functions like Req.get!, the exception will of course still be
raised.

	Relax nimble_ownership version requirement

	Req.Test: Allow plug stub to be a module or {module, options}

	Req.Test: Document stubbing with Broadway

 v0.4.13 (2024-03-07)

	run_finch: Default to connect_options: [protocols: [:http1]] due to regression
with HTTP/2 requests over HTTP/1 connections (protocols: [:http1, :http2]) with request body
size exceeding 64kib.

 v0.4.12 (2024-03-06)

	Req: Add response body streaming via into: :self, Req.parse_message/2,
and Req.cancel_async_response/1.

	Req: Deprecate Req.update/2 in favour of Req.merge/2

	Req.Test: Add Req.Test.allow/3

	compressed: Default compressed: false when streaming response body

	put_base_url: Allow :base_url to be a 0-arity function or MFArgs

	put_plug: Do not leak Plug.Test messages

 v0.4.11 (2024-02-19)

	Req.Test.json/2: Don't crash compilation when Plug is not available

 v0.4.10 (2024-02-19)

	run_finch: Default to connect_options: [protocols: [:http1, :http2]].

	run_finch: Change version requirement to ~> 0.17, that is all versions up to 1.0.

	put_aws_sigv4: Support streaming request body.

	auth: Always update authorization header.

	decode_body: Gracefully handle multiple content-type values.

	Req.Request.new/1: Use URI.parse for now.

 v0.4.9 (2024-02-14)

	retry: Raise on invalid return from :retry_delay function

	run_finch: Update to Finch 0.17

	run_finch: Deprecate connect_options: [protocol: ...] in favour of
connect_options: [protocols: ...]] which defaults to [:http1, :http2], that is,
make request using HTTP/1 but if negotiated switch to HTTP/2 over the HTTP/1 connection.

	New step: put_aws_sigv4 - signs request with AWS Signature Version 4.

 v0.4.8 (2023-12-11)

	put_plug: Fix response streaming. Previously we were relying on unreleased
Plug features (which may never get released). Now, Plug adapter will emit the
entire response body as one chunk. Thus,
plug: plug, into: fn ... -> {:halt, acc} end is not yet supported as it
requires Plug changes that are still being discussed. On the flip side,
we should have much more stable Plug integration regardless of this small
limitation.

 v0.4.7 (2023-12-11)

	put_plug: Don't crash if plug is not installed and :plug is not used

 v0.4.6 (2023-12-11)

	New step: checksum
	put_plug: Fix response streaming when plug uses send_resp or send_file
	retry: Retry on :closed

 v0.4.5 (2023-10-27)

	decompress_body: Remove content-length header

	auth: Deprecate auth: {user, pass} in favour of auth: {:basic, "user:pass"}

	Req.Request: Allow steps to be {mod, fun, args}

 v0.4.4 (2023-10-05)

	compressed: Check for optional depenedencies brotli and ezstd only at compile-time.
(backported from v0.3.12.)

	decode_body: Check for optional depenedency nimble_csv at compile-time.
(backported from v0.3.12.)

	run_finch: Add :finch_private option

 v0.4.3 (2023-09-13)

	Req.new/1: Fix setting :redact_auth

	Req.Request: Add Req.Request.get_option_lazy/3

	Req.Request: Add Req.Request.drop_options/2

 v0.4.2 (2023-09-04)

	put_plug: Handle response streaming on Plug 1.15+.

	Don't warn on mixed-case header names

 v0.4.1 (2023-09-01)

	Fix Req.Request Inspect regression

 v0.4.0 (2023-09-01)

Req v0.4.0 changes headers to be maps, adds request & response streaming, and improves steps.

 Change Headers to be Maps

Previously headers were lists of name/value tuples, e.g.:
[{"content-type", "text/html"}]
This is a standard across the ecosystem (with minor difference that some Erlang libraries use
charlists instead of binaries.)
There are some problems with this particular choice though:
	We cannot use headers[name]
	We cannot use pattern matching

In short, this representation isn't very ergonomic to use.
Now headers are maps of string names and lists of values, e.g.:
%{"content-type" => ["text/html"]}
This allows headers[name] usage:
response.headers["content-type"]
#=> ["text/html"]
and pattern matching:
case Req.request!(req) do
 %{headers: %{"content-type" => ["application/json" <> _]}} ->
 # handle JSON response
end
This is a major breaking change. If you cannot easily update your app
or your dependencies, do:
config/config.exs
config :req, legacy_headers_as_lists: true
This legacy fallback will be removed on Req 1.0.
There are two other changes to headers in this release.
Header names are now case-insensitive in functions like
Req.Response.get_header/2.
Trailer headers, or more precisely trailer fields or simply trailers, are now stored
in a separate trailers field on the %Req.Response{} struct as long as you use Finch 0.17+.

 Add Request Body Streaming

Req v0.4 adds official support for request body streaming by setting the request body to an
enumerable. Here's an example:
iex> stream = Stream.duplicate("foo", 3)
iex> Req.post!("https://httpbin.org/post", body: stream).body["data"]
"foofoofoo"
The enumerable is passed through request steps and they may change it. For example,
the compress_body step gzips the request body on the fly.

 Add Response Body Streaming

Req v0.4 also adds response body streaming, via the :into option.
Here's an example where we download the first 20kb (by making a range request, via the
put_range step) of Elixir release zip. We stream the response body into a function
and can handle each body chunk. The function receives a {:data, data}, {req, resp} and returns
a {:cont | :halt, {req, resp}} tuple.
resp =
 Req.get!(
 url: "https://github.com/elixir-lang/elixir/releases/download/v1.15.4/elixir-otp-26.zip",
 range: 0..20_000,
 into: fn {:data, data}, {req, resp} ->
 IO.inspect(byte_size(data), label: :chunk)
 {:cont, {req, resp}}
 end
)

output: 17:07:38.131 [debug] redirecting to https://objects.githubusercontent.com/github-production-release-asset-2e6(...)
output: chunk: 16384
output: chunk: 3617

resp.status #=> 206
resp.headers["content-range"] #=> ["bytes 0-20000/6801977"]
resp.body #=> ""
Notice we only stream response body, that is, Req automatically handles HTTP response status and
headers. Once the stream is done, Req passes the response through response steps which allows
following redirects, retrying on errors, etc. Response body is set to empty string ""
which is then ignored by decompress_body, decode_body, and similar steps. If you need
to decompress or decode incoming chunks, you need to do that in your custom into: fun function.
As the name :into implies, we can also stream response body into any Collectable.
Here's a similar snippet to above where we stream to a file:
resp =
 Req.get!(
 url: "https://github.com/elixir-lang/elixir/releases/download/v1.15.4/elixir-otp-26.zip",
 range: 0..20_000,
 into: File.stream!("elixit-otp-26.zip.1")
)

output: 17:07:38.131 [debug] redirecting to (...)
resp.status #=> 206
resp.headers["content-range"] #=> ["bytes 0-20000/6801977"]
resp.body #=> %File.Stream{}

 Full CHANGELOG

	Change request.headers and response.headers to be maps.

	Ensure request.headers and response.headers are downcased.
Per RFC 9110: HTTP Semantics,
HTTP headers should be case-insensitive. However, per
RFC 9113: HTTP/2 headers
must be sent downcased.
Req headers are now stored internally downcased and all accessor functions
like Req.Response.get_header/2 are downcasing the given header name.

	Add trailers field to Req.Response struct. Trailer field is only filled in on Finch 0.17+.

	Make request.registered_options internal representation private.

	Make request.options internal representation private.
Currently request.options field is a map but it may change in the future.
One possible future change is using keywords lists internally which would
allow, for example, Req.new(params: [a: 1]) |> Req.merge(params: [b: 2])
to keep duplicate :params in request.options which would then allow to
decide the duplicate key semantics on a per-step basis. And so, for example,
put_params would merge params but most steps would simply use the
first value.
To have some room for manoeuvre in the future we should stop pattern
matching on request.options. Calling request.options[key],
put_in(request.options[key], value), and
update_in(request.options[key], fun) is allowed.

	Fix typespecs for some functions

	Deprecate output step in favour of into: File.stream!(path).

	Rename follow_redirects step to redirect

	redirect: Rename :follow_redirects option to :redirect.

	redirect: Rename :location_trusted option to :redirect_trusted.

	redirect: Change HTTP request method to GET only on POST requests that result in 301..303.
Previously we were changing the method to GET for all 3xx except 307 and 308.

	decompress_body: Remove support for deflate compression (which was broken)

	decompress_body: Don't crash on unknown codec

	decompress_body: Fix handling HEAD requests

	decompress_body: Re-calculate content-length header after decompresion

	decompress_body: Remove content-encoding header after decompression

	decode_body: Do not decode response with content-encoding header

	run_finch: Add :inet6 option

	retry: Support retry: :safe_transient which retries HTTP 408/429/500/502/503/504
or exceptions with reason field set to :timeout/:econnrefused.
:safe_transient is the new default retry mode. (Previously we retried on 408/429/5xx and
any exception.)

	retry: Support retry: :transient which is the same as :safe_transient except
it retries on all HTTP methods

	retry: Use retry-after header value on HTTP 503 Service Unavailable. Previously
only HTTP 429 Too Many Requests was using this header value.

	retry: Support retry: &fun/2. The function receives request, response_or_exception
and returns either:
	true - retry with the default delay

	{:delay, milliseconds} - retry with the given delay

	false/nil - don't retry

	retry: Deprecate retry: :safe in favour of retry: :safe_transient

	retry: Deprecate retry: :never in favour of retry: false

	Req.request/2: Improve error message on invalid arguments

	Req.merge/2: Do not duplicate headers

	Req.merge/2: Merge :params

	Req.Request: Fix displaying redacted basic authentication

	Req.Request: Add Req.Request.get_option/3

	Req.Request: Add Req.Request.fetch_option/2

	Req.Request: Add Req.Request.fetch_option!/2

	Req.Request: Add Req.Request.delete_option/2

	Req.Response: Add Req.Response.delete_header/2

	Req.Response: Add Req.Response.update_private/4

 v0.3.12 (2023-08-05)

	compressed: Check for optional depenedencies brotli and ezstd only at compile-time.
	decode_body: Check for optional depenedency nimble_csv at compile-time.

 v0.3.11 (2023-07-24)

	Support Req.get(options), Req.post(options), etc
	Add Req.Request.new/1
	retry: Fix returning correct private.req_retry_count

 v0.3.10 (2023-06-20)

	decompress_body: No-op on non-binary response body
	decompress_body: Support multiple content-encoding headers
	decode_body: Remove :extract option
	Remove deprecated Req.post!(url, body) and similar functions

 v0.3.9 (2023-06-08)

	put_path_params: URI-encode path params

 v0.3.8 (2023-05-22)

	Add :redact_auth option to redact auth credentials, defaults to true.
	Soft-deprecate Req.Request.run,run! in favour of Req.Request.run_request/1.

 v0.3.7 (2023-05-18)

	Deprecate setting headers to %NaiveDateTime{}, always use %DateTime{}.
	decode_body: Add :decode_json option
	[follow_redirects]: Add :redirect_log_level
	[follow_redirects]: Preserve HTTP method on 307/308 redirects
	run_finch: Allow :finch_request to perform the underlying request. This deprecates
passing 1-arity function f(finch_request) in favour of 4-arity
f(request, finch_request, finch_name, finch_options).

 v0.3.6 (2023-03-06)

	run_finch: Fix setting :hostname option
	decode_body: Add :extract option to automatically extract archives (zip, tar, etc)

 v0.3.5 (2023-02-01)

	New step: put_path_params
	auth: Accept string

 v0.3.4 (2023-01-03)

	retry: Add :retry_log_level option

 v0.3.3 (2022-12-08)

	[follow_redirects]: Inherit scheme from previous location
	run_finch: Fix setting connect timeout
	run_finch: Add :finch_request option

 v0.3.2 (2022-11-14)

	decode_body: Decode JSON when response is json-api mime type
	put_params: Fix bug when params have been duplicated when retrying requeset
	retry: Remove retry: :always option
	retry: Soft-deprecate retry: :never in favour of retry: false
	run_finch: Add :transport_opts, :proxy_headers, :proxy, and :client_settings options
	Req.Response.json/2: Do not override content-type

 v0.3.1 (2022-09-09)

	encode_body: Set Accept header in JSON requests
	put_base_url: Fix merging with leading and/or trailing slashes
	Fix merging :adapter option
	Add get/2, post/2, put/2, patch/2, delete/2 and head/2

 v0.3.0 (2022-06-21)

Req v0.3.0 brings redesigned API, new steps, and improvements to existing steps.

 New API

The new API allows building a request struct with all the built-in steps. It can be then piped
to functions like Req.get!/2:
iex> req = Req.new(base_url: "https://api.github.com")

iex> req |> Req.get!(url: "/repos/sneako/finch") |> then(& &1.body["description"])
"Elixir HTTP client, focused on performance"

iex> req |> Req.get(url: "/repos/elixir-mint/mint") |> then(& &1.body["description"])
"Functional HTTP client for Elixir with support for HTTP/1 and HTTP/2."
Setting body and encoding it to form/JSON is now done through :body/:form/:json options:
iex> Req.post!("https://httpbin.org/anything", body: "hello!").body["data"]
"hello!"

iex> req = Req.new(url: "https://httpbin.org/anything")
iex> Req.post!(req, form: [x: 1]).body["form"]
%{"x" => "1"}
iex> Req.post!(req, json: %{x: 2}).body["form"]
%{"x" => 2}

 Improved Error Handling

Req now validates option names ensuring users didn't accidentally mistyped them.
If they did, it will try to give a helpful error message. Here are some examples:
Req.request!(urll: "https://httpbin.org")
** (ArgumentError) unknown option :urll. Did you mean :url?

Req.new(bas_url: "https://httpbin.org")
** (ArgumentError) unknown option :bas_url. Did you mean :base_url?
Req also has a new option to handle HTTP errors (4xx/5xx). By default it will continue to
return the error responses:
Req.get!("https://httpbin.org/status/404")
#=> %Req.Response{status: 404, ...}
but users can now pass http_errors: :raise to raise an exception instead:
Req.get!("https://httpbin.org/status/404", http_errors: :raise)
** (RuntimeError) The requested URL returned error: 404
Response body: ""
This is especially useful in one-off scripts where we only really care about the
"happy path" but would still like to get a good error message when something
unexpected happened.

 Plugins

From the very beginning, Req could be extended with custom steps. To make using such custom steps
by others even easier, they can be packaged up into plugins.
Here are some examples:
	req_easyhtml
	req_s3
	req_hex
	req_github_oauth

And here's how they can be used:
Mix.install([
 {:req, "~> 0.3.0"},
 {:req_easyhtml, github: "wojtekmach/req_easyhtml"},
 {:req_s3, github: "wojtekmach/req_s3"},
 {:req_hex, github: "wojtekmach/req_hex"},
 {:req_github_oauth, github: "wojtekmach/req_github_oauth"}
])

req =
 (Req.new(http_errors: :raise)
 |> ReqEasyHTML.attach()
 |> ReqS3.attach()
 |> ReqHex.attach()
 |> ReqGitHubOAuth.attach())

Req.get!(req, url: "https://elixir-lang.org").body[".entry-summary h5"]
#=>
#EasyHTML[<h5>
Elixir is a dynamic, functional language for building scalable and maintainable applications.
</h5>]

Req.get!(req, url: "s3://ossci-datasets").body
#=>
[
"mnist/",
"mnist/t10k-images-idx3-ubyte.gz",
"mnist/t10k-labels-idx1-ubyte.gz",
"mnist/train-images-idx3-ubyte.gz",
"mnist/train-labels-idx1-ubyte.gz"
]

Req.get!(req, url: "https://repo.hex.pm/tarballs/req-0.1.0.tar").body["metadata.config"]["links"]
#=> %{"GitHub" => "https://github.com/wojtekmach/req"}

Req.get!(req, url: "https://api.github.com/user").body["login"]
Outputs:
paste this user code:
#
6C44-30A8
#
at:
#
https://github.com/login/device
#
open browser window? [Yn]
15:22:28.350 [info] response: authorization_pending
15:22:33.519 [info] response: authorization_pending
15:22:38.678 [info] response: authorization_pending
#=> "wojtekmach"

Req.get!(req, url: "https://api.github.com/user").body["login"]
#=> "wojtekmach"
Notice all plugins can be attached to the same request struct which makes it really easy to
explore different endpoints.
See "Writing Plugins" section in Req.Request module documentation
for more information.

 Plug Integration

Req can now be used to easily test plugs using the :plug option:
defmodule Echo do
 def call(conn, _) do
 "/" <> path = conn.request_path
 Plug.Conn.send_resp(conn, 200, path)
 end
end

test "echo" do
 assert Req.get!("http:///hello", plug: Echo).body == "hello"
end
you can define plugs as functions too:
test "echo" do
 echo = fn conn ->
 "/" <> path = conn.request_path
 Plug.Conn.send_resp(conn, 200, path)
 end

 assert Req.get!("http:///hello", plug: echo).body == "hello"
end
which is particularly useful to create HTTP service mocks with tools like
Bypass.

 Request Adapters

While Req always used Finch as the underlying HTTP client, it was designed from the day one to
easily swap it out. This is now even easier with an :adapter option.
Here is a mock adapter that always returns a successful response:
adapter = fn request ->
 response = %Req.Response{status: 200, body: "it works!"}
 {request, response}
end

Req.request!(url: "http://example", adapter: adapter).body
#=> "it works!"
Here is another one that uses the json/2 function to conveniently
return a JSON response:
adapter = fn request ->
 response = Req.Response.json(%{hello: 42})
 {request, response}
end

resp = Req.request!(url: "http://example", adapter: adapter)
resp.headers
#=> [{"content-type", "application/json"}]
resp.body
#=> %{"hello" => 42}
And here is a naive Hackney-based adapter and how we can use it:
hackney = fn request ->
 case :hackney.request(
 request.method,
 URI.to_string(request.url),
 request.headers,
 request.body,
 [:with_body]
) do
 {:ok, status, headers, body} ->
 headers = for {name, value} <- headers, do: {String.downcase(name), value}
 response = %Req.Response{status: status, headers: headers, body: body}
 {request, response}

 {:error, reason} ->
 {request, RuntimeError.exception(inspect(reason))}
 end
end

Req.get!("https://api.github.com/repos/elixir-lang/elixir", adapter: hackney).body["description"]
#=> "Elixir is a dynamic, functional language designed for building scalable and maintainable applications"
See "Adapter" section in Req.Request module documentation for more information.

 Major changes

	Add high-level functional API: Req.new(...) |> Req.request(...), Req.new(...) |> Req.get!(...), etc.

	Add Req.Request.options field that steps can read from. Also, make
all steps be arity 1.
When using "High-level" API, we now run all steps by default. (The
steps, by looking at request.options, can decide to be no-op.)

	Move low-level API to Req.Request

	Move built-in steps to Req.Steps

	Add step names

	Add Req.head!/2

	Add Req.patch!/2

	Add Req.Request.adapter field

	Add Req.Request.merge_options/2

	Add Req.Request.register_options/2

	Add Req.Request.put_header/3

	Add Req.Request.put_headers/2

	Add Req.Request.put_new_header/3

	Add Req.Request.get_header/2

	Add Req.Request.update_private/4

	Add Req.Response.new/1

	Add Req.Response.json/2

	Add Req.Response.get_header/2

	Add Req.Response.put_header/3

	Rename put_if_modified_since step to cache

	Rename decompress step to decompress_body

	Remove put_default_steps step

	Remove run_steps step

	Remove put_default_headers step

	Remove encode_headers step. The headers are now encoded in Req.new/1 and Req.request/2

	Remove Req.Request.unix_socket field. Add option on run_finch step with the same name
instead.

	Require Elixir 1.12

 Step changes

	New step: put_plug

	New step: put_user_agent (replaces part of removed put_default_headers)

	New step: compressed (replaces part of removed put_default_headers)

	New step: compress_body

	New step: [output]

	New step: handle_http_errors

	put_base_url: Ignore base URL if given URL contains scheme

	run_finch: Add :connect_options which dynamically starts (or re-uses already started)
Finch pool with the given connection options.

	run_finch: Replace :finch_options with :receive_timeout and :pool_timeout options

	encode_body: Add :form and :json options (previously used as {:form, data} and
{:json, data})

	cache: Include request method in cache key

	decompress_body, compressed: Support Brotli

	decompress_body, compressed: Support Zstandard

	decode_body: Support decode_body: false option to disable automatic body decoding

	[follow_redirects]: Change method to GET on 301..303 redirects

	[follow_redirects]: Don't send auth headers on redirect to different scheme/host/port
unless location_trusted: true is set

	retry: The Retry-After response header on HTTP 429 responses is now respected

	retry: The :retry option can now be set to :safe (default) to only retry GET/HEAD
requests on HTTP 408/429/5xx responses or exceptions, :always to always retry, :never to never
retry, and fun - a 1-arity function that accepts either a Req.Response or an exception
struct and returns boolean whether to retry

	retry: The :retry_delay option now accepts a function that takes a retry count (starting at 0)
and returns the delay. Defaults to a simple exponential backoff: 1s, 2s, 4s, 8s, ...

 Deprecations

	Deprecate calling Req.post!(url, body) in favour of Req.post!(url, body: body).
Also, deprecate Req.post!(url, {:form, data}) in favour of Req.post!(url, form: data).
and Req.post!(url, {:json, data}) in favour of Req.post!(url, json: data). Same for
Req.put!/2.

	Deprecate setting retry: [delay: delay, max_retries: max_retries]
in favour of retry_delay: delay, max_retries: max_retries.

	Deprecate setting cache: [dir: dir] in favour of cache_dir: dir.

	Deprecate Req.build/3 in favour of manually building the struct.

 v0.2.2 (2022-04-04)

	Relax Finch version requirement

 v0.2.1 (2021-11-24)

	Add :private field to Response
	Update Finch to 0.9.1

 v0.2.0 (2021-11-08)

	Rename normalize_headers to encode_headers
	Rename prepend_default_steps to put_default_steps
	Rename encode and decode to encode_body and decode_body
	Rename netrc to load_netrc
	Rename finch step to run_finch
	Rename if_modified_since to put_if_modified_since
	Rename range to put_range
	Rename params to put_params
	Rename request.uri to request.url
	Change response/error step contract from f(req, resp_err) to f({req, resp_err})
	Support mime 2.x
	Add Req.Response struct
	Add put!/3 and delete!/2
	Add run_steps/2
	Initial support for UNIX domain sockets
	Accept {module, args} and module as steps
	Ensure get_private and put_private have atom keys
	put_default_steps: Use MFArgs instead of captures for the default steps
	put_if_modified_since: Fix generating internet time
	encode_headers: Encode header values
	retry: Rename :max_attempts to :max_retries

 v0.1.1 (2021-07-16)

	Fix append_request_steps/2 and prepend_request_steps/2 (they did the opposite)
	Add finch/1

 v0.1.0 (2021-07-15)

	Initial release

Req

The high-level API.
Req is composed of:
	Req - the high-level API (you're here!)

	Req.Request - the low-level API and the request struct

	Req.Steps - the collection of built-in steps

	Req.Test - the testing conveniences

The high-level API is what most users of Req will use most of the time.

 Examples

Making a GET request with Req.get!/1:
iex> Req.get!("https://api.github.com/repos/wojtekmach/req").body["description"]
"Req is a batteries-included HTTP client for Elixir."
Same, but by explicitly building request struct first:
iex> req = Req.new(base_url: "https://api.github.com")
iex> Req.get!(req, url: "/repos/wojtekmach/req").body["description"]
"Req is a batteries-included HTTP client for Elixir."
Return the request that was sent using Req.run!/2:
iex> {req, resp} = Req.run!("https://httpbin.org/basic-auth/foo/bar", auth: {:basic, "foo:bar"})
iex> req.headers["authorization"]
["Basic Zm9vOmJhcg=="]
iex> resp.status
200
Making a POST request with Req.post!/2:
iex> Req.post!("https://httpbin.org/post", form: [comments: "hello!"]).body["form"]
%{"comments" => "hello!"}
Set connection timeout:
iex> resp = Req.get!("https://httpbin.org", connect_options: [timeout: 100])
iex> resp.status
200
See run_finch for more connection related options and usage examples.
Stream request body:
iex> stream = Stream.duplicate("foo", 3)
iex> Req.post!("https://httpbin.org/post", body: stream).body["data"]
"foofoofoo"
Stream response body using a callback:
iex> resp =
...> Req.get!("http://httpbin.org/stream/2", into: fn {:data, data}, {req, resp} ->
...> IO.puts(data)
...> {:cont, {req, resp}}
...> end)
output: {"url": "http://httpbin.org/stream/2", ...}
output: {"url": "http://httpbin.org/stream/2", ...}
iex> resp.status
200
iex> resp.body
""
Stream response body into a Collectable:
iex> resp = Req.get!("http://httpbin.org/stream/2", into: IO.stream())
output: {"url": "http://httpbin.org/stream/2", ...}
output: {"url": "http://httpbin.org/stream/2", ...}
iex> resp.status
200
iex> resp.body
%IO.Stream{}
Stream response body to the current process and parse incoming messages using Req.parse_message/2.
iex> resp = Req.get!("http://httpbin.org/stream/2", into: :self)
iex> Req.parse_message(resp, receive do message -> message end)
{:ok, [data: "{\"url\": \"http://httpbin.org/stream/2\", ..., \"id\": 0}\n"]}
iex> Req.parse_message(resp, receive do message -> message end)
{:ok, [data: "{\"url\": \"http://httpbin.org/stream/2\", ..., \"id\": 1}\n"]}
iex> Req.parse_message(resp, receive do message -> message end)
{:ok, [:done]}
""
Same as above, using enumerable API:
iex> resp = Req.get!("http://httpbin.org/stream/2", into: :self)
iex> resp.body
#Req.Response.Async<...>
iex> Enum.each(resp.body, &IO.puts/1)
{"url": "http://httpbin.org/stream/2", ..., "id": 0}
{"url": "http://httpbin.org/stream/2", ..., "id": 1}
:ok
See :into option in Req.new/1 documentation for more information on response body streaming.

 Header Names

The HTTP specification requires that header names should be case-insensitive.
Req allows two ways to access the headers; using functions and by accessing
the data directly:
iex> Req.Response.get_header(response, "content-type")
["text/html"]

iex> response.headers["content-type"]
["text/html"]
While we can ensure case-insensitive handling in the former case, we can't
in the latter. For this reason, Req made the following design choices:
	header names are stored as downcased

	functions like Req.Request.get_header/2, Req.Request.put_header/3,
Req.Response.get_header/2, Req.Response.put_header/3, etc
automatically downcase the given header name.

 Summary

 Types

 Req.Request - req v0.5.8

Req.Request

The low-level API and the request struct.
Req is composed of:
	Req - the high-level API

	Req.Request - the low-level API and the request struct (you're here!)

	Req.Steps - the collection of built-in steps

	Req.Test - the testing conveniences

The low-level API and the request struct is the foundation of Req's extensibility. Virtually all
of the functionality is broken down into individual pieces - steps. Req works by running the
request struct through these steps. You can easily reuse or rearrange built-in steps or write new
ones.
To make using custom steps by others even easier, they can be packaged up into plugins.
See "Writing Plugins" section for more information.

 The Low-level API

Most Req users would use it like this:
Req.get!("https://api.github.com/repos/wojtekmach/req").body["description"]
#=> "Req is a batteries-included HTTP client for Elixir."
Here is the equivalent using the low-level API:
url = "https://api.github.com/repos/wojtekmach/req"

req =
 Req.Request.new(method: :get, url: url)
 |> Req.Request.append_request_steps(
 put_user_agent: &Req.Steps.put_user_agent/1,
 # ...
)
 |> Req.Request.append_response_steps(
 # ...
 decompress_body: &Req.Steps.decompress_body/1,
 decode_body: &Req.Steps.decode_body/1,
 # ...
)
 |> Req.Request.append_error_steps(
 retry: &Req.Steps.retry/1,
 # ...
)

{req, resp} = Req.Request.run_request(req)
resp.body["description"]
#=> "Req is a batteries-included HTTP client for Elixir."
By putting the request pipeline yourself you have precise control of exactly what is running and in what order.

 The Request Struct

Public fields are:
	:method - the HTTP request method.

	:url - the HTTP request URL.

	:headers - the HTTP request headers. The header names should be downcased.
See also "Header Names" section in Req module documentation.

	:body - the HTTP request body.
Can be one of:
	iodata - eagerly send request body

	enumerable - stream request body

	:into - where to send the response body. It can be one of:
	nil - (default) read the whole response body and store it in the response.body
field.

	fun - stream response body using a function. The first argument is a {:data, data}
tuple containing the chunk of the response body. The second argument is a
{request, response} tuple. To continue streaming chunks, return {:cont, {req, resp}}.
To cancel, return {:halt, {req, resp}}. For example:
into: fn {:data, data}, {req, resp} ->
 IO.puts(data)
 {:cont, {req, resp}}
end

	collectable - stream response body into a Collectable.t/0. For example:
into: File.stream!("path")
Note that the collectable is only used, if the response status is 200. In other cases,
the body is accumulated and processed as usual.

	:options - the options to be used by steps. The exact representation of options is private.
Calling request.options[key], put_in(request.options[key], value), and
update_in(request.options[key], fun) is allowed. get_option/3 and delete_option/2
are also available for additional ways to manipulate the internal representation.

	:halted - whether the request pipeline is halted. See halt/2.

	:adapter - a request step that makes the actual HTTP request. Defaults to
Req.Steps.run_finch/1. See "Adapter" section below for more information.

	:request_steps - the list of request steps

	:response_steps - the list of response steps

	:error_steps - the list of error steps

	:private - a map reserved for libraries and frameworks to use.
The keys must be atoms. Prefix the keys with the name of your project
to avoid any future conflicts. The req_ prefix is reserved for Req.

 Steps

Req has three types of steps: request, response, and error.
Request steps are used to refine the data that will be sent to the server.
After making the actual HTTP request, we'll either get a HTTP response or an error.
The request, along with the response or error, will go through response or
error steps, respectively.
Nothing is actually executed until we run the pipeline with Req.Request.run_request/1.

 Request Steps

A request step (request_step/0) is a function that accepts a request and returns one
of the following:
	A request.

	A {request, response_or_error} tuple. In this case no further request steps are executed
and the return value goes through response or error steps.

Examples
A request step that adds a user-agent header if it's not there already:
def put_default_headers(request) do
 Req.Request.put_new_header(request, "user-agent", "req")
end
The next is a request step that reads the response from cache if available. Note how, if the
cached response is available, this step returns a {request, response} tuple so that the
request doesn't actually go through:
def read_from_cache(request) do
 case ResponseCache.fetch(request) do
 {:ok, response} -> {request, response}
 :error -> request
 end
end

 Response and Error Steps

A response step (response_step/0) is a function that accepts a {request, response} tuple
and returns one of the following:
	A {request, response} tuple.

	A {request, exception} tuple. In that case, no further response steps are executed but the
exception goes through error steps.

Similarly, an error step is a function that accepts a {request, exception} tuple and returns one
of the following:
	A {request, exception} tuple

	A {request, response} tuple. In that case, no further error steps are executed but the
response goes through response steps.

Examples:
def decode({request, response}) do
 case Req.Response.get_header(response, "content-type") do
 ["application/json" <> _] ->
 {request, update_in(response.body, &Jason.decode!/1)}

 [] ->
 {request, response}
 end
end

def log_error({request, exception}) do
 Logger.error(["#{request.method} #{request.uri}: ", Exception.message(exception)])
 {request, exception}
end

 Halting

Any step can call halt/2 to halt the pipeline. This prevents any further steps
from being invoked.
Examples:
def circuit_breaker(request) do
 if CircuitBreaker.open?() do
 Req.Request.halt(request, RuntimeError.exception("circuit breaker is open"))
 else
 request
 end
end

 Writing Plugins

Custom steps can be packaged into plugins so that they are even easier to use by others.
Here's an example plugin:
defmodule PrintHeaders do
 @doc """
 Prints request and response headers.

 ## Request Options

 * `:print_headers` - if `true`, prints the headers. Defaults to `false`.

 """
 def attach(%Req.Request{} = request, options \\ []) do
 request
 |> Req.Request.register_options([:print_headers])
 |> Req.Request.merge_options(options)
 |> Req.Request.append_request_steps(print_headers: &print_request_headers/1)
 |> Req.Request.prepend_response_steps(print_headers: &print_response_headers/1)
 end

 defp print_request_headers(request) do
 if request.options[:print_headers] do
 print_headers("> ", request.headers)
 end

 request
 end

 defp print_response_headers({request, response}) do
 if request.options[:print_headers] do
 print_headers("< ", response.headers)
 end

 {request, response}
 end

 defp print_headers(prefix, headers) do
 for {name, value} <- headers do
 IO.puts([prefix, name, ": ", value])
 end
 end
end
And here is how we can use it:
req = Req.new() |> PrintHeaders.attach()

Req.get!(req, url: "https://httpbin.org/json").status
200

Req.get!(req, url: "https://httpbin.org/json", print_headers: true).status
Outputs:
> accept-encoding: br, gzip
> user-agent: req/0.3.0-dev
< date: Wed, 11 May 2022 11:10:47 GMT
< content-type: application/json
...
200

req = Req.new() |> PrintHeaders.attach(print_headers: true)
Req.get!(req, url: "https://httpbin.org/json").status
Outputs:
> accept-encoding: br, gzip
...
200
As you can see a plugin is simply a module. While this is not enforced, the plugin should follow
these conventions:
	It should export an attach/1 function that takes and returns the request struct

	The attach functions mostly just adds steps and it is the steps that do the actual work

	A user should be able to attach your plugin alongside other plugins. For this reason,
plugin functionality should usually only happen on a specific "trigger": on a specific
option, on a specific URL scheme or host, etc. This is especially important for plugins
that perform authentication; you don't want to accidentally expose a token from service A
when a user makes request to service B.

	If your plugin supports custom options, register them with register_options/2

	Sometimes it is useful to pass options when attaching the plugin. For that, export an
attach/2 function and call merge_options/2. Remember to first register
options before merging!

 Adapter

As noted in the "Request Steps" section, a request step besides returning the request,
might also return {request, response} or {request, exception}, thus invoking either response or error steps next.
This is exactly how Req makes the underlying HTTP call, by invoking a request step that follows this contract.
The default adapter is using Finch via the Req.Steps.run_finch/1 step.
Here is a mock adapter that always returns a successful response:
adapter = fn request ->
 response = %Req.Response{status: 200, body: "it works!"}
 {request, response}
end

Req.request!(url: "http://example", adapter: adapter).body
#=> "it works!"
Here is another one that uses the Req.Response.json/2 function to conveniently
return a JSON response:
adapter = fn request ->
 response = Req.Response.json(%{hello: 42})
 {request, response}
end

resp = Req.request!(url: "http://example", adapter: adapter)
resp.headers
#=> [{"content-type", "application/json"}]
resp.body
#=> %{"hello" => 42}
And here is a naive Hackney-based adapter:
hackney = fn request ->
 case :hackney.request(
 request.method,
 URI.to_string(request.url),
 request.headers,
 request.body,
 [:with_body]
) do
 {:ok, status, headers, body} ->
 headers = for {name, value} <- headers, do: {String.downcase(name, :ascii), value}
 response = %Req.Response{status: status, headers: headers, body: body}
 {request, response}

 {:error, reason} ->
 {request, RuntimeError.exception(inspect(reason))}
 end
end

Req.get!("https://api.github.com/repos/wojtekmach/req", adapter: hackney).body["description"]
#=> "Req is a batteries-included HTTP client for Elixir."

 Summary

 Types

 Req.Response - req v0.5.8

Req.Response

The response struct.
Fields:
	:status - the HTTP status code.

	:headers - the HTTP response headers. The header names should be downcased.
See also "Header Names" section in Req module documentation.

	:body - the HTTP response body.

	:trailers - the HTTP response trailers. The trailer names must be downcased.

	:private - a map reserved for libraries and frameworks to use.
Prefix the keys with the name of your project to avoid any future
conflicts. Only accepts atom/0 keys.

 Summary

 Types

 Req.Response.Async - req v0.5.8

Req.Response.Async

Asynchronous response body.
This is the response.body when making a request with into: :self, that is,
streaming response body chunks to the current process mailbox.
This struct implements the Enumerable protocol where each element is a body chunk received
from the current process mailbox. HTTP Trailer fields are ignored.
If the request is sent using HTTP/1, an extra process is spawned to consume messages from the
underlying socket. On both HTTP/1 and HTTP/2 the messages are sent to the current process as
soon as they arrive, as a firehose. If you wish to maximize request rate or have more control
over how messages are streamed, use into: fun or into: collectable instead.
Note: This feature is currently experimental and it may change in future releases.

 Examples

iex> resp = Req.get!("https://reqbin.org/ndjson?delay=1000", into: :self)
iex> resp.body
#Req.Response.Async<...>
iex> Enum.each(resp.body, &IO.puts/1)
{"id":0}
{"id":1}
{"id":2}
:ok

 Req.Steps - req v0.5.8

Req.Steps

The collection of built-in steps.
Req is composed of:
	Req - the high-level API

	Req.Request - the low-level API and the request struct

	Req.Steps - the collection of built-in steps (you're here!)

	Req.Test - the testing conveniences

 Summary

 Request Steps

 Req.Test - req v0.5.8

Req.Test

Req testing conveniences.
Req is composed of:
	Req - the high-level API

	Req.Request - the low-level API and the request struct

	Req.Steps - the collection of built-in steps

	Req.Test - the testing conveniences (you're here!)

Req already has built-in support for different variants of stubs via :plug, :adapter,
and (indirectly) :base_url options. With this module you can:
	Create request stubs using Req.Test.stub(name, plug) and mocks
using Req.Test.expect(name, count, plug). Both can be used in concurrent
tests.

	Configure Req to run requests through mocks/stubs by setting plug: {Req.Test, name}.
This works because Req.Test itself is a plug whose job is to fetch the mocks/stubs under
name.

	Easily create JSON responses with Req.Test.json(conn, body),
HTML responses with Req.Test.html(conn, body), and
text responses with Req.Test.text(conn, body).

	Simulate network errors with Req.Test.transport_error(conn, reason).

Mocks and stubs are using the same ownership model of
nimble_ownership, also used by
Mox. This allows Req.Test to be used in concurrent tests.

 Example

Imagine we're building an app that displays weather for a given location using an HTTP weather
service:
defmodule MyApp.Weather do
 def get_rating(location) do
 case get_temperature(location) do
 {:ok, %{status: 200, body: %{"celsius" => celsius}}} ->
 cond do
 celsius < 18.0 -> {:ok, :too_cold}
 celsius < 30.0 -> {:ok, :nice}
 true -> {:ok, :too_hot}
 end

 _ ->
 :error
 end
 end

 def get_temperature(location) do
 [
 base_url: "https://weather-service"
]
 |> Keyword.merge(Application.get_env(:myapp, :weather_req_options, []))
 |> Req.request()
 end
end
We configure it for production:
config/runtime.exs
config :myapp, weather_req_options: [
 auth: {:bearer, System.fetch_env!("MYAPP_WEATHER_API_KEY")}
]
In tests, instead of hitting the network, we make the request against
a plug stub named MyApp.Weather:
config/test.exs
config :myapp, weather_req_options: [
 plug: {Req.Test, MyApp.Weather}
]
Now we can control our stubs in concurrent tests:
use ExUnit.Case, async: true

test "nice weather" do
 Req.Test.stub(MyApp.Weather, fn conn ->
 Req.Test.json(conn, %{"celsius" => 25.0})
 end)

 assert MyApp.Weather.get_rating("Krakow, Poland") == {:ok, :nice}
end

 Concurrency and Allowances

The example above works in concurrent tests because MyApp.Weather.get_rating/1 calls
directly to Req.request/1 in the same process. It also works in many cases where the
request happens in a spawned process, such as a Task, GenServer, and more.
However, if you are encountering issues with stubs not being available in spawned processes,
it's likely that you'll need explicit allowances. For example, if
MyApp.Weather.get_rating/1 was calling Req.request/1 in a process spawned with spawn/1,
the stub would not be available in the spawned process:
With code like this, the stub would not be available in the spawned task:
def get_rating_async(location) do
 spawn(fn -> get_rating(location) end)
end
To make stubs defined in the test process available in other processes, you can use
allow/3. For example, imagine that the call to MyApp.Weather.get_rating/1
was happening in a spawned GenServer:
test "nice weather" do
 {:ok, pid} = start_gen_server(...)

 Req.Test.stub(MyApp.Weather, fn conn ->
 Req.Test.json(conn, %{"celsius" => 25.0})
 end)

 Req.Test.allow(MyApp.Weather, self(), pid)

 assert get_weather(pid, "Krakow, Poland") == {:ok, :nice}
end

 Broadway

If you're using Req.Test with Broadway, you may need to use
allow/3 to make stubs available in the Broadway processors. A great way to do that is
to hook into the Telemetry events that Broadway publishes to
manually allow the processors and batch processors to access the stubs. This approach is
similar to what is documented in Broadway
itself.
First, you should add the test PID (which is allowed to use the Req stub) to the metadata
for the test events you're publishing:
Broadway.test_message(MyApp.Pipeline, message, metadata: %{req_stub_owner: self()})
Then, you'll need to define a test helper to hook into the Telemetry events. For example,
in your test/test_helper.exs file:
defmodule BroadwayReqStubs do
 def attach(stub) do
 events = [
 [:broadway, :processor, :start],
 [:broadway, :batch_processor, :start],
]

 :telemetry.attach_many({__MODULE__, stub}, events, &__MODULE__.handle_event/4, %{stub: stub})
 end

 def handle_event(_event_name, _event_measurement, %{messages: messages}, %{stub: stub}) do
 with [%Broadway.Message{metadata: %{req_stub_owner: pid}} | _] <- messages do
 :ok = Req.Test.allow(stub, pid, self())
 end

 :ok
 end
end
Last but not least, attach the helper in your test/test_helper.exs:
BroadwayReqStubs.attach(MyStub)

 Summary

 Functions

 Req.ArchiveError - req v0.5.8

Req.ArchiveError exception

Represents an error when unpacking archives fails, returned by Req.Steps.decode_body/1.

 Req.ChecksumMismatchError - req v0.5.8

Req.ChecksumMismatchError exception

Represents a checksum mismatch error returned by Req.Steps.checksum/1.

 Req.DecompressError - req v0.5.8

Req.DecompressError exception

Represents an error when decompression fails, returned by Req.Steps.decompress_body/1.

 Req.HTTPError - req v0.5.8

Req.HTTPError exception

Represents an HTTP protocol error.
This is a standardised exception that all Req adapters should use for HTTP-protocol-related
errors.
This exception is based on Mint.HTTPError.

 Req.TooManyRedirectsError - req v0.5.8

Req.TooManyRedirectsError exception

Represents an error when too many redirects occured, returned by Req.Steps.redirect/1.

 Req.TransportError - req v0.5.8

Req.TransportError exception

Represents an error with the transport used by an HTTP connection.
This is a standardised exception that all Req adapters should use for transport-layer-related
errors.
This exception is based on Mint.TransportError.

OEBPS/dist/epub-LSJCIYTM.js
(()=>{var s=document.querySelector.bin