

 ReqLLM

 v1.0.0-rc.1

 Table of contents

 	ReqLLM

 	Guides

 	Getting Started

 	Core Concepts

 	API Reference

 	Data Structures Guide

 	Capability Testing Guide

 	Adding a new provider to ReqLLM

 	
 Modules

 	ReqLLM

 	ReqLLM.Application

 	ReqLLM.Capability

 	ReqLLM.Context

 	ReqLLM.Context.Codec

 	ReqLLM.Embedding

 	ReqLLM.Error

 	ReqLLM.Generation

 	ReqLLM.Message

 	ReqLLM.Message.ContentPart

 	ReqLLM.Model

 	ReqLLM.Provider

 	ReqLLM.Provider.DSL

 	ReqLLM.Provider.Options

 	ReqLLM.Provider.Registry

 	ReqLLM.Provider.Utils

 	ReqLLM.Providers.Anthropic

 	ReqLLM.Providers.Anthropic.StreamDecoder

 	ReqLLM.Providers.Google

 	ReqLLM.Providers.Groq

 	ReqLLM.Providers.OpenAI

 	ReqLLM.Providers.OpenRouter

 	ReqLLM.Providers.XAI

 	ReqLLM.Response

 	ReqLLM.Response.Codec

 	ReqLLM.Schema

 	ReqLLM.Step.Error

 	ReqLLM.Step.Stream

 	ReqLLM.Step.Usage

 	ReqLLM.StreamChunk

 	ReqLLM.Tool

 	Exceptions

 	ReqLLM.Error.API

 	ReqLLM.Error.API.JSONDecode

 	ReqLLM.Error.API.Request

 	ReqLLM.Error.API.Response

 	ReqLLM.Error.API.SchemaValidation

 	ReqLLM.Error.Invalid

 	ReqLLM.Error.Invalid.Content

 	ReqLLM.Error.Invalid.Message

 	ReqLLM.Error.Invalid.MessageList

 	ReqLLM.Error.Invalid.NotImplemented

 	ReqLLM.Error.Invalid.Parameter

 	ReqLLM.Error.Invalid.Provider

 	ReqLLM.Error.Invalid.Role

 	ReqLLM.Error.Invalid.Schema

 	ReqLLM.Error.Unknown

 	ReqLLM.Error.Unknown.Unknown

 	ReqLLM.Error.Validation

 	ReqLLM.Error.Validation.Error

 	
 Mix Tasks

 	mix req.llm.stream_text

 	mix req_llm.model_sync

 ReqLLM

[image: Hex.pm]
[image: Documentation]
[image: License]
A Req-based library for LLM interactions, providing a unified interface to AI providers through a plugin-based architecture.
Why ReqLLM?
ReqLLM brings the composability and middleware advantages of the Req ecosystem to LLM interactions. With its plugin architecture, provider/model auto-sync, typed data structures, and ergonomic helpers, it provides a robust foundation for building AI-powered applications in Elixir while leveraging Req's powerful middleware, tracing, and instrumentation capabilities.
Installation
Add req_llm to your list of dependencies in mix.exs:
def deps do
 [
 {:req_llm, "~> 1.0-rc"}
]
end
Requirements: Elixir ~> 1.15, OTP 24+
Features
	45 providers / 665+ models auto-synced from models.dev (mix req_llm.models.sync)
	Cost, context length, modality and capability metadata included

	Typed data structures for every call
	Context, Message, ContentPart, StreamChunk, Tool
	All structs are Jason.Encoders and can be inspected / persisted

	Two ergonomic client layers
	Low-level Req plugin interface with full HTTP + model metadata
	Vercel AI-style helpers (generate_text/3, stream_text/3, bang ! variants)

	Streaming built in (ReqLLM.stream_text/3) — each chunk is a StreamChunk

	Usage & cost extraction on every response (response.usage)

	Plugin-based provider system
	Anthropic, OpenAI, Groq, Google, xAI and OpenRouter included
	Easily extendable with new providers (see Adding a Provider Guide)

	Context Codec protocol converts ReqLLM structs to provider wire formats

	Extensive test matrix (local fixtures + optional live calls)

Quick Start
Configure API keys using JidoKeys (secure, in-memory storage)
ReqLLM.put_key(:anthropic_api_key, "sk-ant-...")

model = "anthropic:claude-3-sonnet"

Simple text generation
{:ok, text} = ReqLLM.generate_text!(model, "Hello world")
#=> {:ok, "Hello! How can I assist you today?"}

Structured data generation
schema = [name: [type: :string, required: true], age: [type: :pos_integer]]
{:ok, person} = ReqLLM.generate_object!(model, "Generate a person", schema)
#=> {:ok, %{name: "John Doe", age: 30}}

With system prompts and parameters
{:ok, response} = ReqLLM.generate_text(
 model,
 [
 system("You are a helpful coding assistant"),
 user("Explain recursion in Elixir")
],
 temperature: 0.7,
 max_tokens: 200
)

Tool calling
weather_tool = ReqLLM.tool(
 name: "get_weather",
 description: "Get current weather for a location",
 parameter_schema: [
 location: [type: :string, required: true, doc: "City name"]
],
 callback: fn args -> {:ok, "Sunny, 72°F"} end
)

{:ok, response} = ReqLLM.generate_text(
 model,
 "What's the weather in Paris?",
 tools: [weather_tool]
)

Streaming text generation
ReqLLM.stream_text!(model, "Write a short story")
|> Stream.each(&IO.write(&1.text))
|> Stream.run()

Embeddings
{:ok, embeddings} = ReqLLM.generate_embeddings("openai:text-embedding-3-small", ["Hello", "World"])
Provider Support
	Provider	Chat	Streaming	Tools	Embeddings
	Anthropic	✓	✓	✓	✗
	OpenAI	✓	✓	✓	✓
	Google	✓	✓	✓	✗
	Groq	✓	✓	✓	✗
	xAI	✓	✓	✓	✗
	OpenRouter	✓	✓	✓	✗

API Key Management with JidoKeys
ReqLLM uses JidoKeys for secure in-memory key storage. Keys are never written to disk by default:
Store keys in memory
ReqLLM.put_key(:openai_api_key, System.get_env("OPENAI_API_KEY"))
ReqLLM.put_key(:anthropic_api_key, System.get_env("ANTHROPIC_API_KEY"))

Or load from environment variables automatically
ReqLLM.put_key(:openai_api_key, {:env, "OPENAI_API_KEY"})

Keys are automatically resolved when making requests
ReqLLM.generate_text!("openai:gpt-4", "Hello")
Usage Cost Tracking
Every response includes detailed usage and cost information:
{:ok, response} = ReqLLM.generate_text("openai:gpt-4", "Hello")

response.usage
#=> %ReqLLM.Usage{
input_tokens: 8,
output_tokens: 12,
total_tokens: 20,
input_cost: 0.00024,
output_cost: 0.00036,
total_cost: 0.0006
}
Adding a Provider
See the Adding a Provider Guide for detailed instructions on implementing new providers using the ReqLLM.Plugin behaviour.
Lower-Level Req Plugin API
For advanced use cases, you can use ReqLLM providers directly as Req plugins:
alias ReqLLM.Providers.Anthropic

Configure your API key
ReqLLM.put_key(:anthropic_api_key, "sk-ant-...")

Build context and model
context = ReqLLM.Context.new([
 ReqLLM.Context.system("You are a helpful assistant"),
 ReqLLM.Context.user("Hello!")
])
model = ReqLLM.Model.from!("anthropic:claude-3-sonnet")

Option 1: Use provider's prepare_request (recommended)
{:ok, request} = Anthropic.prepare_request(:chat, model, context, temperature: 0.7)
{:ok, response} = Req.request(request)

Option 2: Build Req request manually with attach
request =
 Req.new(url: "/messages", method: :post)
 |> Anthropic.attach(model, context: context, temperature: 0.7)

{:ok, response} = Req.request(request)

Access response data
response.body["content"]
#=> [%{"type" => "text", "text" => "Hello! How can I help you today?"}]
This approach gives you full control over the Req pipeline, allowing you to add custom middleware, modify requests, or integrate with existing Req-based applications.
Documentation
	Getting Started – first call and basic concepts
	Core Concepts – architecture & data model
	API Reference – functions & types
	Data Structures – detailed type information
	Capability Testing – testing strategies
	Adding a Provider – extend with new providers

Roadmap & Status
ReqLLM 1.0-rc.1 is a release candidate. The core API is stable, but minor breaking changes may occur before the final 1.0.0 release based on community feedback.
Planned for 1.x:
	Additional open-source providers (Ollama, LocalAI)
	Enhanced streaming capabilities
	Performance optimizations
	Extended model metadata

Development
Install dependencies
mix deps.get

Run tests with cached fixtures
mix test

Run tests against live APIs (regenerates fixtures)
LIVE=true mix test

Run quality checks
mix q # format, compile, dialyzer, credo

Generate documentation
mix docs

Testing with Fixtures
ReqLLM uses a sophisticated fixture system powered by LiveFixture:
	Default mode: Tests run against cached JSON fixtures
	Live mode (LIVE=true): Tests run against real APIs and regenerate fixtures
	Provider filtering (FIXTURE_FILTER=anthropic): Regenerate fixtures for specific providers only

Contributing
We welcome contributions! Please:
	Fork the repository
	Create a feature branch
	Add tests for your changes
	Run mix q to ensure quality standards
	Submit a pull request

Running Tests
	mix test - Run all tests with fixtures
	LIVE=true mix test - Run against live APIs (requires API keys)
	FIXTURE_FILTER=openai mix test - Limit to specific provider

License
Copyright 2025 Mike Hostetler
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

 Getting Started

Installation
def deps do
 [
 {:req_llm, "~> 1.0.0-rc.1"}
]
end
Generate Text
ReqLLM.put_key(:anthropic_api_key, "sk-ant-...")
{:ok, text} = ReqLLM.generate_text!("anthropic:claude-3-sonnet", "Hello")
Returns: "Hello! How can I assist you today?"

{:ok, stream} = ReqLLM.stream_text!("anthropic:claude-3-sonnet", "Tell me a story")
stream |> Enum.each(&IO.write/1)
Structured Data
schema = [
 name: [type: :string, required: true],
 age: [type: :pos_integer, required: true]
]
{:ok, object} = ReqLLM.generate_object("anthropic:claude-3-sonnet", "Generate a person", schema)
Returns: %{name: "John Doe", age: 30}
Full Response with Usage
{:ok, response} = ReqLLM.generate_text("anthropic:claude-3-sonnet", "Hello")
text = ReqLLM.Response.text(response)
usage = ReqLLM.Response.usage(response)
usage => %{input_tokens: 10, output_tokens: 8}
Model Specifications
"anthropic:claude-3-sonnet"
{:anthropic, "claude-3-sonnet", temperature: 0.7}
%ReqLLM.Model{provider: :anthropic, model: "claude-3-sonnet", temperature: 0.7}
Key Management
ReqLLM.put_key(:anthropic_api_key, "sk-ant-...")
ReqLLM.put_key("OPENAI_API_KEY", "sk-...")
Providers automatically retrieve keys
Message Context
messages = [
 ReqLLM.Context.system("You are a helpful coding assistant"),
 ReqLLM.Context.user("Write a function to reverse a list")
]
{:ok, text} = ReqLLM.generate_text!("anthropic:claude-3-sonnet", messages)
Common Options
ReqLLM.generate_text!(
 "anthropic:claude-3-sonnet",
 "Write code",
 temperature: 0.1, # Control randomness (0.0-2.0)
 max_tokens: 1000 # Limit response length
)
Available Providers
Run mix req_llm.models for up-to-date list of supported models.

 Core Concepts

ReqLLM = Req (HTTP) + Provider Plugins (format) + Canonical Data Model
Data Model
ReqLLM.Model # Model configuration with metadata
 ↓
ReqLLM.Context # Collection of conversation messages
 ↓
ReqLLM.Message # Individual messages with typed content
 ↓
ReqLLM.Message.ContentPart # Text, images, files, tool calls
 ↓
ReqLLM.StreamChunk # Unified streaming response format
 ↓
ReqLLM.Tool # Function definitions with validation
Model Abstraction
%ReqLLM.Model{
 provider: :anthropic,
 model: "claude-3-5-sonnet",
 temperature: 0.7,
 max_tokens: 1000,

 # Capability metadata from models.dev
 capabilities: %{tool_call: true, reasoning: false},
 modalities: %{input: [:text, :image], output: [:text]},
 cost: %{input: 3.0, output: 15.0}
}
Multimodal Content
message = %ReqLLM.Message{
 role: :user,
 content: [
 ContentPart.text("Analyze this image and document:"),
 ContentPart.image_url("https://example.com/chart.png"),
 ContentPart.file(pdf_data, "report.pdf", "application/pdf"),
 ContentPart.text("What insights do you see?")
]
}
Unified Streaming
Text content
%StreamChunk{type: :content, text: "Hello there!"}

Reasoning tokens (for supported models)
%StreamChunk{type: :thinking, text: "Let me consider..."}

Tool calls
%StreamChunk{type: :tool_call, name: "get_weather", arguments: %{location: "NYC"}}

Metadata
%StreamChunk{type: :meta, metadata: %{finish_reason: "stop"}}
Plugin Architecture
Providers implement ReqLLM.Provider behavior with callbacks for request preparation and response parsing.
defmodule ReqLLM.Providers.Anthropic do
 @behaviour ReqLLM.Provider

 use ReqLLM.Provider.DSL,
 id: :anthropic,
 base_url: "https://api.anthropic.com/v1",
 metadata: "priv/models_dev/anthropic.json"

 @impl ReqLLM.Provider
 def prepare_request(operation, model, messages, opts) do
 # Configure operation-specific request
 end

 @impl ReqLLM.Provider
 def attach(request, model, opts) do
 # Register request/response steps generated by DSL
 end
end
Request Flow
User API Call
 ↓ ReqLLM.generate_text/3
Model Resolution
 ↓ ReqLLM.Model.from/1
Provider Lookup
 ↓ ReqLLM.Provider.Registry.fetch/1
Request Creation
 ↓ Req.new/1
Provider Attachment
 ↓ ReqLLM.attach/2
HTTP Request
 ↓ Req.request/1
Provider Parsing
 ↓ provider.decode_response/2
Canonical Response
Composable Middleware
request = Req.new()
|> Req.Request.append_request_steps(log_request: &log_request/1)
|> Req.Request.append_response_steps(cache_response: &cache/1)

{:ok, configured} = ReqLLM.attach(request, "anthropic:claude-3-sonnet")
{:ok, response} = Req.request(configured)
Format Translation
Context Encoding
	ReqLLM.Context.Codec handles canonical-to-provider request format
	Provider-specific wrappers transform messages and options

Response Decoding
	ReqLLM.Response.Codec handles provider-to-canonical response format
	Unified streaming chunks across all providers

Req Integration
Transport vs Format separation:
Transport (Req):
	Connection pooling
	SSL/TLS
	Streaming (SSE)
	Retries & error handling

Format (ReqLLM):
	Model validation
	Message normalization
	Response standardization
	Usage extraction

Generation Flow
API call
ReqLLM.generate_text("anthropic:claude-3-sonnet", "Hello")

Model resolution
{:ok, model} = ReqLLM.Model.from("anthropic:claude-3-sonnet")

Provider lookup
{:ok, provider} = ReqLLM.provider(:anthropic)

Request creation & attachment
{:ok, configured} = ReqLLM.attach(Req.new(), model)

HTTP execution
{:ok, http_response} = Req.request(configured)

Response parsing
{:ok, chunks} = provider.parse_response(http_response, model)
Streaming Flow
{:ok, response} = ReqLLM.stream_text("anthropic:claude-3-sonnet", "Tell a story")
Returns %ReqLLM.Response{stream?: true, stream: #Stream<...>}

response.stream
|> Stream.filter(&(&1.type == :content))
|> Stream.map(&(&1.text))
|> Stream.each(&IO.write/1)
|> Stream.run()
Provider System
Creating Providers
defmodule ReqLLM.Providers.CustomProvider do
 @behaviour ReqLLM.Provider

 use ReqLLM.Provider.DSL,
 id: :custom,
 base_url: "https://api.custom.com",
 metadata: "priv/models_dev/custom.json"

 @impl ReqLLM.Provider
 def prepare_request(operation, model, data, opts) do
 # Create and configure request for operation type
 end

 @impl ReqLLM.Provider
 def attach(request, model, opts) do
 # Register encode_body/decode_response steps
 end
end
Integration Points
	ReqLLM.Provider behavior with prepare_request/4 and attach/3 callbacks
	Context/Response codec protocols for format translation
	Models.dev metadata for capabilities and pricing

Testing
Capability-focused test suites with live/cached fixture support:
defmodule CoreTest do
 use ReqLLM.Test.LiveFixture, provider: :anthropic
 use ExUnit.Case, async: true

 describe "generate_text/3" do
 test "basic response" do
 {:ok, response} =
 use_fixture(:anthropic, "core-basic", fn ->
 ReqLLM.generate_text("anthropic:claude-3-haiku", "Hello")
 end)

 assert %ReqLLM.Response{} = response
 assert ReqLLM.Response.text(response) =~ "Hello"
 end
 end
end
Observability
Standard Req steps enable monitoring and debugging:
request = Req.new()
|> Req.Request.append_request_steps(
 log_request: &log_request/1,
 trace_request: &add_trace_headers/1
)
|> Req.Request.append_response_steps(
 log_response: &log_response/1,
 extract_usage: &ReqLLM.Step.Usage.extract_usage/1
)

{:ok, configured} = ReqLLM.attach(request, model)

 API Reference

Complete reference for ReqLLM 1.0.0-rc.1 public API. Provides Vercel AI SDK-inspired functions with consistent signatures across streaming and non-streaming modes.
Text Generation
generate_text/3
Generate text using an AI model with full response metadata.
@spec generate_text(model_spec, messages, opts) :: {:ok, ReqLLM.Response.t()} | {:error, Splode.t()}
Returns a canonical ReqLLM.Response with usage data, context, and metadata.
Examples:
Simple text generation
{:ok, response} = ReqLLM.generate_text("anthropic:claude-3-sonnet", "Hello world")
ReqLLM.Response.text(response) # => "Hello! How can I assist you today?"

With options
{:ok, response} = ReqLLM.generate_text(
 "anthropic:claude-3-sonnet",
 "Write a haiku",
 temperature: 0.8,
 max_tokens: 100
)

Using context helper
ctx = ReqLLM.context([
 ReqLLM.Context.system("You are a helpful assistant"),
 ReqLLM.Context.user("What's 2+2?")
])
{:ok, response} = ReqLLM.generate_text("anthropic:claude-3-sonnet", ctx)
generate_text!/3
Generate text returning only the text content.
@spec generate_text!(model_spec, messages, opts) :: {:ok, String.t()} | {:error, Splode.t()}
Examples:
{:ok, text} = ReqLLM.generate_text!("anthropic:claude-3-sonnet", "Hello")
text => "Hello! How can I assist you today?"
stream_text/3
Stream text generation with full response metadata.
@spec stream_text(model_spec, messages, opts) :: {:ok, ReqLLM.Response.t()} | {:error, Splode.t()}
Returns a canonical ReqLLM.Response containing usage data and stream.
Examples:
{:ok, response} = ReqLLM.stream_text("anthropic:claude-3-sonnet", "Tell me a story")
ReqLLM.Response.text_stream(response) |> Enum.each(&IO.write/1)

Access usage after streaming
ReqLLM.Response.usage(response)
stream_text!/3
Stream text generation returning only the stream.
@spec stream_text!(model_spec, messages, opts) :: {:ok, Stream.t()} | {:error, Splode.t()}
Examples:
{:ok, stream} = ReqLLM.stream_text!("anthropic:claude-3-sonnet", "Count to 10")
stream |> Enum.each(&IO.write/1)
Structured Data Generation
generate_object/4
Generate structured data with schema validation.
@spec generate_object(model_spec, messages, schema, opts) :: {:ok, ReqLLM.Response.t()} | {:error, Splode.t()}
Equivalent to Vercel AI SDK's generateObject().
Examples:
schema = [
 name: [type: :string, required: true],
 age: [type: :pos_integer, required: true]
]
{:ok, response} = ReqLLM.generate_object("anthropic:claude-3-sonnet", "Generate a person", schema)
generate_object!/4
Generate structured data returning only the object.
@spec generate_object!(model_spec, messages, schema, opts) :: {:ok, term()} | {:error, Splode.t()}
stream_object/4
Stream structured data generation.
@spec stream_object(model_spec, messages, schema, opts) :: {:ok, ReqLLM.Response.t()} | {:error, Splode.t()}
stream_object!/4
Stream structured data returning only the stream.
@spec stream_object!(model_spec, messages, schema, opts) :: {:ok, Stream.t()} | {:error, Splode.t()}
Embedding Functions
embed/3
Generate a single embedding vector.
@spec embed(model_spec, text, opts) :: {:ok, [float()]} | {:error, Splode.t()}
Examples:
{:ok, embedding} = ReqLLM.embed("openai:text-embedding-3-small", "Hello world")
embedding => [0.1234, -0.5678, ...]
embed_many/3
Generate embeddings for multiple texts.
@spec embed_many(model_spec, [text], opts) :: {:ok, [[float()]]} | {:error, Splode.t()}
Examples:
{:ok, embeddings} = ReqLLM.embed_many("openai:text-embedding-3-small", ["Hello", "World"])
Model Specification Formats
ReqLLM accepts flexible model specifications:
String Format
"provider:model"
"anthropic:claude-3-sonnet"
"openai:gpt-4o"
"ollama:llama3"
Tuple Format
{:anthropic, "claude-3-sonnet", temperature: 0.7}
{:openai, "gpt-4o", max_tokens: 1000}
Struct Format
%ReqLLM.Model{
 provider: :anthropic,
 model: "claude-3-sonnet",
 temperature: 0.7,
 max_tokens: 1000
}
Common Options
Generation Parameters
	:temperature - Controls randomness (0.0 to 2.0)
	:max_tokens - Maximum tokens to generate
	:top_p - Nucleus sampling parameter
	:presence_penalty - Penalize new tokens based on presence
	:frequency_penalty - Penalize new tokens based on frequency
	:stop - Stop sequences (string or list)

Context and Tools
	:system - System message for the model
	:context - Conversation context as ReqLLM.Context
	:tools - List of tool definitions for function calling
	:tool_choice - Tool selection strategy (:auto, :required, specific tool)

Provider Options
	:provider_options - Provider-specific options map

Examples:
Using context helper
ctx = ReqLLM.context("Hello")

{:ok, response} = ReqLLM.generate_text(
 "anthropic:claude-3-sonnet",
 ctx,
 temperature: 0.8,
 max_tokens: 500,
 tools: [weather_tool]
)
Error Handling
ReqLLM uses Splode-based structured errors:
Error Types
	ReqLLM.Error.Invalid.Provider - Unknown provider
	ReqLLM.Error.Invalid.Parameter - Invalid parameters
	ReqLLM.Error.Invalid.Schema - Invalid schema definitions
	ReqLLM.Error.Invalid.Message - Invalid message structures
	ReqLLM.Error.API.Request - API request failures
	ReqLLM.Error.API.Response - Response parsing errors
	ReqLLM.Error.Validation.Error - Parameter validation failures

Examples:
case ReqLLM.generate_text("invalid:model", "Hello") do
 {:ok, response} ->
 handle_success(response)

 {:error, %ReqLLM.Error.Invalid.Provider{} = error} ->
 Logger.error("Unknown provider: #{error.message}")

 {:error, %ReqLLM.Error.API.Request{} = error} ->
 Logger.error("API request failed: #{error.message}")

 {:error, error} ->
 Logger.error("Generation failed: #{inspect(error)}")
end
Helper Functions
tool/1
Create tool definitions for function calling:
weather_tool = ReqLLM.tool(
 name: "get_weather",
 description: "Get current weather for a location",
 parameters: [
 location: [type: :string, required: true],
 units: [type: :string, default: "metric"]
],
 callback: {WeatherAPI, :fetch_weather}
)

{:ok, response} = ReqLLM.generate_text(
 "anthropic:claude-3-sonnet",
 "What's the weather in Paris?",
 tools: [weather_tool]
)
json_schema/2
Create JSON schemas for structured data:
schema = ReqLLM.json_schema([
 name: [type: :string, required: true],
 age: [type: :integer]
])
cosine_similarity/2
Calculate similarity between embedding vectors:
similarity = ReqLLM.cosine_similarity(embedding1, embedding2)
=> 0.9487...
context/1
Create conversation contexts:
From string
ctx = ReqLLM.context("Hello world")

From message list
ctx = ReqLLM.context([
 ReqLLM.Context.system("You are helpful"),
 ReqLLM.Context.user("Hello")
])

 Data Structures Guide

ReqLLM 1.0.0-rc.1 core data structures and practical usage patterns. Six primary structures provide unified, provider-agnostic AI interactions.
Table of Contents
	Core Structure Overview
	Model Configuration
	Context and Message Management
	Multimodal Content Handling
	Tool Calling Patterns
	Streaming Response Processing
	Type Safety and Validation
	Advanced Composition Patterns

Core Structure Overview
Hierarchical data structure design:
ReqLLM.Model # Model configuration and capabilities
 ↓
ReqLLM.Context # Collection of conversation messages
 ↓
ReqLLM.Message # Individual conversation turn
 ↓
ReqLLM.Message.ContentPart # Typed content within messages
 ↓
ReqLLM.StreamChunk # Streaming response chunks
 ↓
ReqLLM.Tool # Function calling definitions
Design principles: provider-agnostic, type-safe with discriminated unions, composable immutable structures, extensible via metadata.
Model Configuration
Basic Model Creation
ReqLLM.Model struct represents AI model configurations with provider information, runtime parameters, and optional metadata.
From string specification (simplest)
{:ok, model} = ReqLLM.Model.from("anthropic:claude-3-5-sonnet")

From tuple with configuration
{:ok, model} = ReqLLM.Model.from({:anthropic,
 "claude-3-5-sonnet",
 temperature: 0.7,
 max_tokens: 1000
})

Direct construction with full control
model = ReqLLM.Model.new(:anthropic, "claude-3-5-sonnet",
 temperature: 0.5,
 max_tokens: 2000,
 capabilities: %{reasoning?: true, tool_call?: true}
)
Advanced Model Configuration
Model with comprehensive metadata
model = ReqLLM.Model.new(:anthropic, "claude-3-5-sonnet",
 temperature: 0.3,
 max_tokens: 4000,
 max_retries: 5,
 limit: %{context: 200_000, output: 8192},
 modalities: %{
 input: [:text, :image, :pdf],
 output: [:text]
 },
 capabilities: %{
 reasoning?: true,
 tool_call?: true,
 supports_temperature?: true
 },
 cost: %{input: 3.0, output: 15.0} # Per 1K tokens
)

Provider-agnostic model switching
models = [
 ReqLLM.Model.from("anthropic:claude-3-5-sonnet"),
 ReqLLM.Model.from("openai:gpt-4"),
 ReqLLM.Model.from("google:gemini-pro")
]

All use identical API
context = ReqLLM.Context.new([
 ReqLLM.Context.user("What's 2+2?")
])

for {:ok, model} <- models do
 {:ok, response} = ReqLLM.generate_text(model, context)
 IO.puts("#{model.provider}: #{response.message.content}")
end
Context and Message Management
Building Conversations
ReqLLM.Context struct manages conversation history as a collection of messages with convenient constructor functions.
import ReqLLM.Context
alias ReqLLM.Message.ContentPart

Build natural conversations
context = Context.new([
 system("You are a helpful assistant specializing in data analysis."),
 user("Can you help me analyze some data?"),
 assistant("I'd be happy to help! Please share your data."),
 user([
 ContentPart.text("Here's my sales data:"),
 ContentPart.file(csv_data, "sales.csv", "text/csv")
])
])
Message Composition Patterns
Messages always contain lists of ContentPart structs, eliminating polymorphism:
Text-only message (still uses list)
simple_message = %ReqLLM.Message{
 role: :user,
 content: [ContentPart.text("Hello world")]
}

Complex multimodal message
complex_message = %ReqLLM.Message{
 role: :user,
 content: [
 ContentPart.text("Please analyze this document and image:"),
 ContentPart.file(pdf_data, "report.pdf", "application/pdf"),
 ContentPart.text("Compare it with this chart:"),
 ContentPart.image_url("https://example.com/chart.png"),
 ContentPart.text("What trends do you see?")
]
}

Adding to existing context
updated_context = Context.add_message(context, complex_message)
Context Enumeration and Manipulation
Context implements Enumerable
user_messages = context
|> Enum.filter(&(&1.role == :user))
|> length()

Context implements Collectable
new_message = user("What about pricing trends?")
extended_context = Enum.into([new_message], context)

Transform conversation
anonymized_context = context
|> Enum.map(fn msg ->
 %{msg | content: Enum.map(msg.content, &anonymize_content/1)}
end)
|> Context.new()
Multimodal Content Handling
Content Type Overview
ReqLLM.Message.ContentPart supports multiple content types through a discriminated union:
Text content
text_part = ContentPart.text("Explain this data")

Reasoning content (for models supporting chain-of-thought)
reasoning_part = ContentPart.reasoning("Let me think step by step...")

Image from URL
image_url_part = ContentPart.image_url("https://example.com/chart.jpg")

Image from binary data
{:ok, image_data} = File.read("photo.png")
image_part = ContentPart.image(image_data, "image/png")

File attachment
{:ok, document_data} = File.read("report.pdf")
file_part = ContentPart.file(document_data, "report.pdf", "application/pdf")
Building Complex Multimodal Conversations
Document analysis conversation
analyze_documents = fn documents ->
 content_parts = [
 ContentPart.text("Please analyze these documents for key insights:")
]

 doc_parts = Enum.flat_map(documents, fn {filename, data, mime_type} ->
 [
 ContentPart.text("Document: #{filename}"),
 ContentPart.file(data, filename, mime_type)
]
 end)

 question_parts = [
 ContentPart.text("Questions:"),
 ContentPart.text("1. What are the main themes?"),
 ContentPart.text("2. Are there any concerning patterns?"),
 ContentPart.text("3. What recommendations do you have?")
]

 content_parts ++ doc_parts ++ question_parts
end

documents = [
 {"quarterly_report.pdf", report_data, "application/pdf"},
 {"sales_data.csv", csv_data, "text/csv"},
 {"customer_feedback.txt", feedback_data, "text/plain"}
]

context = Context.new([
 system("You are an expert business analyst."),
 user(analyze_documents.(documents))
])
Image Processing Workflows
Multi-image comparison
compare_images = fn image_urls ->
 Context.new([
 system("You are an expert image analyst."),
 user([
 ContentPart.text("Compare these images and identify differences:")
] ++ Enum.with_index(image_urls, 1)
 |> Enum.flat_map(fn {url, idx} ->
 [
 ContentPart.text("Image #{idx}:"),
 ContentPart.image_url(url)
]
 end) ++ [
 ContentPart.text("Provide a detailed comparison focusing on:"),
 ContentPart.text("- Visual differences"),
 ContentPart.text("- Quality variations"),
 ContentPart.text("- Content changes")
])
])
end

Usage
image_urls = [
 "https://example.com/before.jpg",
 "https://example.com/after.jpg"
]

context = compare_images.(image_urls)
{:ok, response} = ReqLLM.generate_text(model, context)
Tool Calling Patterns
Basic Tool Definition
ReqLLM.Tool struct defines functions that AI models can call:
Simple weather tool
{:ok, weather_tool} = ReqLLM.Tool.new(
 name: "get_weather",
 description: "Get current weather conditions for a location",
 parameter_schema: [
 location: [type: :string, required: true, doc: "City name or coordinates"],
 units: [type: :string, default: "celsius", doc: "Temperature units (celsius/fahrenheit)"]
],
 callback: {WeatherService, :get_current_weather}
)

Execute tool directly
{:ok, result} = ReqLLM.Tool.execute(weather_tool, %{location: "New York"})
=> {:ok, %{temperature: 22, conditions: "sunny", units: "celsius"}}
Advanced Tool Patterns
Database query tool with validation
{:ok, db_tool} = ReqLLM.Tool.new(
 name: "query_database",
 description: "Execute read-only SQL queries on the sales database",
 parameter_schema: [
 query: [type: :string, required: true, doc: "SELECT SQL query"],
 limit: [type: :pos_integer, default: 100, doc: "Maximum rows to return"]
],
 callback: fn params ->
 # Validate query safety
 if String.contains?(String.downcase(params.query), ["insert", "update", "delete", "drop"]) do
 {:error, "Only SELECT queries are allowed"}
 else
 DatabaseService.execute_query(params.query, params.limit)
 end
 end
)

File system tool with path restrictions
{:ok, file_tool} = ReqLLM.Tool.new(
 name: "read_file",
 description: "Read contents of files in the allowed directory",
 parameter_schema: [
 filename: [type: :string, required: true, doc: "Filename to read"],
 encoding: [type: :string, default: "utf-8", doc: "File encoding"]
],
 callback: {FileService, :read_safe_file, ["/safe/directory"]}
)
Tool Calling in Conversations
Multi-tool conversation
tools = [weather_tool, db_tool, file_tool]

context = Context.new([
 system("You have access to weather data, database queries, and file reading. Use these tools to help users."),
 user("What's the weather in NYC, and can you also show me the top 5 sales from our database?")
])

Generate with tools
{:ok, response} = ReqLLM.generate_text(model, context,
 tools: tools,
 max_tokens: 1000
)

Process tool calls from response
response.context.messages
|> Enum.flat_map(fn msg -> msg.content end)
|> Enum.filter(&(&1.type == :tool_call))
|> Enum.each(fn tool_call ->
 tool = Enum.find(tools, &(&1.name == tool_call.tool_name))
 {:ok, result} = ReqLLM.Tool.execute(tool, tool_call.input)
 IO.puts("#{tool_call.tool_name}: #{inspect(result)}")
end)
Tool Result Integration
Handle tool execution in conversation flow
execute_tools_in_context = fn context, tools ->
 # Find tool calls in the latest assistant message
 latest_message = List.last(context.messages)

 tool_calls = latest_message.content
 |> Enum.filter(&(&1.type == :tool_call))

 # Execute each tool call
 tool_results = Enum.map(tool_calls, fn tool_call ->
 tool = Enum.find(tools, &(&1.name == tool_call.tool_name))
 {:ok, result} = ReqLLM.Tool.execute(tool, tool_call.input)

 ContentPart.tool_result(tool_call.tool_call_id, result)
 end)

 # Add tool results as a user message
 if tool_results != [] do
 Context.add_message(context, %ReqLLM.Message{
 role: :user,
 content: tool_results
 })
 else
 context
 end
end

Multi-turn tool conversation
{:ok, response1} = ReqLLM.generate_text(model, context, tools: tools)
context_with_results = execute_tools_in_context.(response1.context, tools)

Continue conversation with tool results
{:ok, response2} = ReqLLM.generate_text(model, context_with_results, tools: tools)
Streaming Response Processing
Basic Streaming
ReqLLM.StreamChunk struct provides a unified format for streaming responses with fields type, text, name, arguments, metadata:
{:ok, response} = ReqLLM.stream_text(model, context)

Basic text streaming
response.body
|> Stream.filter(&(&1.type == :content))
|> Stream.map(&(&1.text))
|> Stream.each(&IO.write/1)
|> Stream.run()
Advanced Stream Processing
Stream processor with chunk type handling
process_stream = fn stream ->
 stream.body
 |> Stream.each(fn chunk ->
 case chunk.type do
 :content ->
 IO.write(chunk.text)

 :thinking ->
 IO.puts(IO.ANSI.cyan() <> "[thinking: #{chunk.text}]" <> IO.ANSI.reset())

 :tool_call ->
 IO.puts(IO.ANSI.yellow() <> "[calling #{chunk.name}(#{inspect(chunk.arguments)})]" <> IO.ANSI.reset())

 :meta ->
 case chunk.metadata do
 %{finish_reason: reason} ->
 IO.puts(IO.ANSI.green() <> "\n[finished: #{reason}]" <> IO.ANSI.reset())
 %{usage: usage} ->
 IO.puts(IO.ANSI.blue() <> "[tokens: #{usage.input_tokens + usage.output_tokens}]" <> IO.ANSI.reset())
 _ ->
 :ok
 end
 end
 end)
 |> Stream.run()
end

{:ok, response} = ReqLLM.stream_text(model, context)
process_stream.(response)
Streaming with Real-time Processing
Accumulate content while streaming
stream_with_accumulation = fn model, context ->
 {:ok, response} = ReqLLM.stream_text(model, context)

 {final_content, tool_calls, metadata} =
 response.body
 |> Enum.reduce({"", [], %{}}, fn chunk, {content, tools, meta} ->
 case chunk.type do
 :content ->
 new_content = content <> chunk.text
 IO.write(chunk.text) # Real-time display
 {new_content, tools, meta}

 :tool_call ->
 new_tools = [chunk | tools]
 {content, new_tools, meta}

 :meta ->
 new_meta = Map.merge(meta, chunk.metadata)
 {content, tools, new_meta}

 _ ->
 {content, tools, meta}
 end
 end)

 %{content: final_content, tool_calls: Enum.reverse(tool_calls), metadata: metadata}
end

result = stream_with_accumulation.(model, context)
IO.puts("\n\nFinal result: #{result.content}")
Streaming Tool Execution
Stream with live tool execution
stream_with_tools = fn model, context, tools ->
 {:ok, response} = ReqLLM.stream_text(model, context, tools: tools)

 response.body
 |> Stream.transform(%{}, fn chunk, state ->
 case chunk.type do
 :content ->
 IO.write(chunk.text)
 {[], state}

 :tool_call ->
 # Execute tool immediately when streaming completes the call
 if Map.has_key?(chunk.arguments, :complete) do
 tool = Enum.find(tools, &(&1.name == chunk.name))
 {:ok, result} = ReqLLM.Tool.execute(tool, chunk.arguments)
 IO.puts("\n[Tool #{chunk.name} result: #{inspect(result)}]")
 end
 {[], state}

 _ ->
 {[], state}
 end
 end)
 |> Stream.run()
end
Type Safety and Validation
Struct Validation
ReqLLM provides validation functions for type safety:
Context validation
validate_conversation = fn context ->
 case ReqLLM.Context.validate(context) do
 {:ok, valid_context} ->
 IO.puts("✓ Context is valid with #{length(valid_context.messages)} messages")
 valid_context

 {:error, reason} ->
 IO.puts("✗ Context validation failed: #{reason}")
 raise ArgumentError, "Invalid context: #{reason}"
 end
end

StreamChunk validation
validate_chunk = fn chunk ->
 case ReqLLM.StreamChunk.validate(chunk) do
 {:ok, valid_chunk} -> valid_chunk
 {:error, reason} -> raise ArgumentError, "Invalid chunk: #{reason}"
 end
end

Usage in processing pipeline
context
|> validate_conversation.()
|> ReqLLM.generate_text(model)
ContentPart Type Guards
Type-safe content processing
process_content_parts = fn parts ->
 Enum.map(parts, fn part ->
 case part.type do
 :text ->
 String.length(part.text)

 :image_url ->
 {:url, URI.parse(part.url)}

 :image ->
 {:binary, byte_size(part.data)}

 :file ->
 {:file, part.filename, byte_size(part.data)}

 :tool_call ->
 {:tool, part.tool_name, map_size(part.input)}

 :tool_result ->
 {:result, part.tool_call_id, part.output}

 :reasoning ->
 {:thinking, String.length(part.text)}
 end
 end)
end

Safe content extraction
extract_text_content = fn message ->
 message.content
 |> Enum.filter(&(&1.type == :text))
 |> Enum.map(&(&1.text))
 |> Enum.join(" ")
end
Custom Validation Patterns
Simple validation
defmodule ContextValidator do
 def validate(context) do
 cond do
 length(context.messages) > 100 -> {:error, "Too many messages"}
 alternates_properly?(context) -> {:ok, context}
 true -> {:error, "Invalid role flow"}
 end
 end

 defp alternates_properly?(context) do
 roles = Enum.map(context.messages, & &1.role)
 # Check user/assistant alternation logic here
 true
 end
end
Advanced Composition Patterns
Conversation Templates
Reusable templates
defmodule Templates do
 import ReqLLM.Context
 alias ReqLLM.Message.ContentPart

 def code_review(code, language) do
 Context.new([
 system("You are a code reviewer. Provide concise, actionable feedback."),
 user([
 ContentPart.text("Review this #{language} code:"),
 ContentPart.text("```#{language}\n#{code}\n```")
])
])
 end

 def document_analysis(files) do
 content_parts = [ContentPart.text("Analyze these documents:")] ++
 Enum.map(files, fn {data, name, type} ->
 ContentPart.file(data, name, type)
 end)

 Context.new([
 system("You are a document analyst. Provide key insights."),
 user(content_parts)
])
 end
end

Usage
context = Templates.code_review("def hello, do: :world", "elixir")
{:ok, response} = ReqLLM.generate_text(model, context)
Analysis Pipeline
Simple analysis pipeline
defmodule SimpleAnalysis do
 def analyze(text, model) do
 context = ReqLLM.Context.new([
 ReqLLM.Context.system("You are a data analyst. Provide concise insights."),
 ReqLLM.Context.user(text)
])

 {:ok, response} = ReqLLM.generate_text(model, context)

 response.context.messages
 |> List.last()
 |> Map.get(:content, [])
 |> Enum.find(&(&1.type == :text))
 |> Map.get(:text, "")
 end
end

Usage
analysis = SimpleAnalysis.analyze("Sales increased 15%", model)
Multi-Model Orchestration
Use different models for specialized tasks
text_model = ReqLLM.Model.from!("anthropic:claude-3-haiku")
vision_model = ReqLLM.Model.from!("anthropic:claude-3-5-sonnet")

Text analysis
{:ok, text_result} = ReqLLM.generate_text(text_model, text_context)

Vision analysis
{:ok, vision_result} = ReqLLM.generate_text(vision_model, image_context)

Combine results
final_analysis = text_result.content <> " " <> vision_result.content
ReqLLM 1.0.0-rc.1 provides type-safe, provider-agnostic data structures for building composable AI workflows. Each structure builds on the others to create a unified foundation for AI application development.

 Capability Testing Guide

This guide covers testing and verification workflows for ReqLLM, focusing on capability-driven testing patterns that ensure provider behavior matches advertised features.
Overview
ReqLLM's testing system is built around two core principles:
	Capability-driven testing - Tests verify that advertised capabilities actually work
	Fixture-based testing - Tests can run against live APIs or cached fixtures

Testing Modes
Fixture Mode (Default)
By default, tests use cached fixtures for fast, reliable testing:
mix test # Uses fixtures
mix test --only openai # Test specific provider with fixtures

Live Mode
Set LIVE=true to test against real APIs and capture new fixtures:
LIVE=true mix test # Run all tests live
LIVE=true mix test --only openai # Test specific provider live
LIVE=true mix test --only coverage # Run coverage tests live

Live mode will:
	Make real API calls to providers
	Capture responses as JSON fixtures
	Overwrite existing fixtures with new responses
	Require valid API keys for each provider

Quality & CI
CI runs mix quality alias before tests. Locally:
mix quality # or mix q - runs format, compile --warnings-as-errors, dialyzer, credo

Test Organization
Directory Structure
test/
├── coverage/ # Provider capability coverage tests
│ ├── anthropic/
│ │ ├── core_test.exs # Basic generation
│ │ ├── streaming_test.exs # Streaming responses
│ │ └── tool_calling_test.exs # Tool calling
│ └── openai/ # Similar structure for each provider
├── support/
│ ├── fixtures/ # Cached API responses
│ │ ├── anthropic/
│ │ └── openai/
│ ├── live_fixture.ex # Test fixture system
│ └── provider_test/ # Shared test macros
├── req_llm/
└── req_llm_test.exs # Core library tests
Test Tags
Tests use ExUnit tags for organization:
@moduletag :coverage # Coverage test
@moduletag :openai # Provider-specific
@moduletag :streaming # Feature-specific
@moduletag :tools # Capability-specific
Run specific test groups:
mix test --only coverage
mix test --only openai
mix test --only streaming

Writing Capability Tests
Using Provider Test Macros
ReqLLM uses shared test macros to eliminate duplication while maintaining clear per-provider organization:
defmodule ReqLLM.Coverage.MyProvider.CoreTest do
 use ReqLLM.ProviderTest.Core,
 provider: :my_provider,
 model: "my_provider:my-model"

 # Provider-specific tests can be added here
end
Available macros:
	ReqLLM.ProviderTest.Core - Basic text generation
	ReqLLM.ProviderTest.Streaming - Streaming responses
	ReqLLM.ProviderTest.ToolCalling - Tool/function calling

Manual Testing with LiveFixture
For custom tests, use the LiveFixture API directly:
defmodule ReqLLM.Coverage.MyProvider.CustomTest do
 use ExUnit.Case, async: false

 import ReqLLM.Test.LiveFixture

 @moduletag :coverage
 @moduletag :my_provider

 @model "my_provider:my-model"

 test "basic text generation" do
 result = use_fixture(:my_provider, "basic_generation", fn ->
 ctx = ReqLLM.Context.new([ReqLLM.Context.user("Hello!")])
 ReqLLM.generate_text(@model, ctx, max_tokens: 50)
 end)

 {:ok, resp} = result
 text = ReqLLM.Response.text(resp)
 assert is_binary(text)
 assert text != ""
 assert resp.id != nil
 end
end
Capability-Driven Tests
Verify capabilities match metadata before testing:
test "temperature parameter works as advertised" do
 # Check if model advertises temperature support
 supports_temp = ReqLLM.Capability.supports?(@model, :temperature)

 if supports_temp do
 result = use_fixture(:my_provider, "temperature_test", fn ->
 ctx = ReqLLM.Context.new([ReqLLM.Context.user("Be creative")])
 ReqLLM.generate_text(@model, ctx, temperature: 1.0, max_tokens: 50)
 end)

 {:ok, resp} = result
 assert resp.id != nil
 else
 skip("Model does not advertise temperature support")
 end
end
Testing Tool Calling
Comprehensive tool calling tests:
describe "tool calling capabilities" do
 @weather_tool %{
 name: "get_weather",
 description: "Get weather for a location",
 input_schema: %{
 type: "object",
 properties: %{
 location: %{type: "string", description: "City name"}
 },
 required: ["location"]
 }
 }

 test "basic tool calling" do
 result = use_fixture(:my_provider, "tool_calling_basic", fn ->
 ctx = ReqLLM.Context.new([
 ReqLLM.Context.user("What's the weather in Paris?")
])

 ReqLLM.generate_text(@model, ctx,
 tools: [@weather_tool],
 max_tokens: 200
)
 end)

 {:ok, resp} = result
 assert resp.id != nil
 end

 test "tool choice control" do
 if ReqLLM.Capability.supports?(@model, :tool_choice) do
 result = use_fixture(:my_provider, "tool_choice_specific", fn ->
 ctx = ReqLLM.Context.new([
 ReqLLM.Context.user("Tell me about weather")
])

 ReqLLM.generate_text(@model, ctx,
 tools: [@weather_tool],
 tool_choice: %{type: "tool", name: "get_weather"}
)
 end)

 {:ok, resp} = result
 assert resp.id != nil
 else
 skip("Model does not support tool choice control")
 end
 end

 test "tool result handling" do
 result = use_fixture(:my_provider, "tool_with_result", fn ->
 ctx = ReqLLM.Context.new([
 ReqLLM.Context.user("What's the weather like?"),
 ReqLLM.Context.assistant("", tool_calls: [
 %{id: "call_1", name: "get_weather", arguments: %{"location" => "Paris"}}
]),
 ReqLLM.Context.tool_result("call_1", %{"weather" => "sunny", "temp" => 22})
])

 ReqLLM.generate_text(@model, ctx, tools: [@weather_tool])
 end)

 {:ok, resp} = result
 assert resp.id != nil
 end
end
Testing Streaming
Test streaming with proper chunk handling:
test "streaming text generation" do
 if ReqLLM.Capability.supports?(@model, :streaming) do
 result = use_fixture(:my_provider, "streaming_test", fn ->
 ctx = ReqLLM.Context.new([ReqLLM.Context.user("Tell me a story")])

 {:ok, resp} = ReqLLM.stream_text(@model, ctx, max_tokens: 100)

 # LiveFixture automatically materializes streams
 resp
 end)

 {:ok, resp} = result
 assert resp.id != nil
 text = ReqLLM.Response.text(resp)
 assert is_binary(text)
 else
 skip("Model does not support streaming")
 end
end
Testing Multimodal Capabilities
Test image and other modality support:
test "image input processing" do
 modalities = ReqLLM.Capability.modalities(@model)
 input_modalities = get_in(modalities, [:input]) || []

 if "image" in input_modalities do
 result = use_fixture(:my_provider, "image_input", fn ->
 # Base64 encoded test image
 image_data = "iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAYAAAAfFcSJAAAADUlEQVR42mNkYPhfDwAChwGA60e6kgAAAABJRU5ErkJggg=="

 ctx = ReqLLM.Context.new([
 ReqLLM.Context.user([
 %{type: "text", text: "What do you see in this image?"},
 %{type: "image", source: %{
 type: "base64",
 media_type: "image/png",
 data: image_data
 }}
])
])

 ReqLLM.generate_text(@model, ctx, max_tokens: 100)
 end)

 {:ok, resp} = result
 assert resp.id != nil
 else
 skip("Model does not support image input")
 end
end
Fixture Management
Fixture Format
Fixtures are stored as JSON with metadata:
{
 "captured_at": "2024-01-15T10:30:00Z",
 "result": {
 "type": "ok_req_llm_response",
 "data": {
 "id": "resp_123",
 "model": "openai:gpt-4o",
 "message": {
 "role": "assistant",
 "content": [{"type": "text", "text": "Hello there!"}]
 },
 "usage": {"input_tokens": 5, "output_tokens": 3}
 }
 }
}
Fixture Organization
Organize fixtures by provider and test name:
test/support/fixtures/
├── anthropic/
│ ├── basic_completion.json
│ ├── system_prompt_completion.json
│ ├── temperature_test.json
│ ├── streaming_test.json
│ ├── tool_calling_basic.json
│ ├── tool_choice_specific.json
│ └── tool_with_result.json
└── openai/
 ├── basic_completion.json
 └── tool_calling_basic.json
LiveFixture API Changes (1.0.0-rc.1)
The LiveFixture API now requires the provider as the first argument:
Current API (1.0.0-rc.1)
use_fixture(:provider_atom, "fixture_name", fn ->
 # test code
end)

Old API (deprecated)
use_fixture("fixture_name", [], fn ->
 # test code
end)
Fixture Best Practices
	Descriptive naming - Use clear fixture names that indicate what they test
	Minimal responses - Use max_tokens to keep fixtures small
	Deterministic content - Use low temperature for reproducible responses
	Regular updates - Refresh fixtures when APIs change

Good fixture usage
use_fixture(:openai, "low_temperature", fn ->
 ReqLLM.generate_text(@model, ctx,
 temperature: 0.1, # Deterministic
 max_tokens: 20 # Minimal
)
end)
Provider Verification Workflows
Adding a New Provider
	Create provider module with DSL
	Add metadata file in priv/models_dev/
	Create coverage tests using provider macros
	Run live tests to capture fixtures
	Validate capabilities match implementation

Create provider tests using macros
test/coverage/my_provider/core_test.exs
test/coverage/my_provider/streaming_test.exs
test/coverage/my_provider/tool_calling_test.exs

Run live tests to capture fixtures
LIVE=true mix test --only coverage --only my_provider

Quality check
mix quality

Ongoing Verification
Regular verification workflows:
Daily: Validate all providers with fixtures
mix test --only coverage

Weekly: Refresh critical fixtures
LIVE=true mix test test/coverage/*/core_test.exs

Release: Full live test suite
LIVE=true mix test --only coverage

API Changes: Update specific provider
LIVE=true mix test --only anthropic --only coverage

Best Practices
Test Organization
	Use provider macros - Leverage shared test patterns for consistency
	Group by capability - Organize tests around features, not just providers
	Use descriptive names - Test names should explain what capability is tested
	Tag appropriately - Use ExUnit tags for selective test execution

Fixture Management
	Keep fixtures small - Use minimal token limits to reduce file size
	Use deterministic settings - Low temperature for consistent responses
	Version control fixtures - Commit fixtures to track API changes over time
	Update regularly - Refresh fixtures when provider APIs change

Error Handling
Test error conditions with proper fixture handling:
test "handles invalid model gracefully" do
 result = use_fixture(:anthropic, "invalid_model_error", fn ->
 ReqLLM.generate_text("anthropic:invalid-model", "Hello")
 end)

 {:error, error} = result
 assert %ReqLLM.Error.API{} = error
end
Environment Management
Handle API keys and environment variables properly:
Skip tests if API key not available
setup do
 unless ReqLLM.get_key(:anthropic_api_key) do
 skip("ANTHROPIC_API_KEY not configured")
 end
 :ok
end
This capability testing approach ensures that ReqLLM providers work as advertised and helps maintain compatibility as APIs evolve.

 Adding a new provider to ReqLLM

Rev. 2025-01 – ReqLLM 1.0.0-rc.1
Developer checklist
	[] lib/req_llm/providers/<provider>.ex with behaviour + DSL + prepare_request/4
	[] lib/req_llm/providers/<provider>/context.ex implementing ReqLLM.Context.Codec
	[] lib/req_llm/providers/<provider>/response.ex implementing ReqLLM.Response.Codec
	[] priv/models_dev/<provider>.json capability metadata
	[] Unit tests for encode/decode helpers
	[] Coverage tests + fixtures under test/coverage/<provider>/
	[] Run LIVE=true mix test --only coverage --only <provider> for first recording
	[] CI must pass unit + fixture layers

Overview
This guide shows how to write a first-class provider for ReqLLM using:
	The prepare_request/4 callback
	Protocol-based context/response encoding
	Declarative DSL for registration & option validation
	Structured error handling with Splode errors
	Capability-based testing with LiveFixture

1. Provider module – the new skeleton
lib/req_llm/providers/my_provider.ex
defmodule ReqLLM.Providers.MyProvider do
 @moduledoc "MyProvider – Messages/Chat API."

 @behaviour ReqLLM.Provider # ❶ mandatory behaviour

 import ReqLLM.Provider.Utils,
 only: [prepare_options!: 3, maybe_put: 3, ensure_parsed_body: 1]

 use ReqLLM.Provider.DSL, # �② declarative registration
 id: :my_provider,
 base_url: "https://api.my-provider.com/v1",
 metadata: "priv/models_dev/my_provider.json",
 context_wrapper: ReqLLM.Providers.MyProvider.Context,
 response_wrapper: ReqLLM.Providers.MyProvider.Response,
 default_env_key: "MY_PROVIDER_API_KEY",
 provider_schema: [# ❸ validated request options
 # Provider-specific options only - core options handled centrally
]

 @doc """
 Build an outbound Req pipeline for the `:chat` operation.
 """
 @impl ReqLLM.Provider
 def prepare_request(:chat, model_input, %ReqLLM.Context{} = ctx, user_opts) do
 with {:ok, model} <- ReqLLM.Model.from(model_input) do
 req =
 Req.new(url: "/messages", method: :post, receive_timeout: 30_000)
 |> attach(model, Keyword.put(user_opts, :context, ctx))

 {:ok, req}
 end
 end

 # Fallback for unsupported operations
 def prepare_request(op, _, _, _),
 do:
 {:error,
 ReqLLM.Error.Invalid.Parameter.exception(
 parameter: "operation #{inspect(op)} not supported"
)}

 @doc "Low-level Req attachment – installs headers, validation, steps."
 @impl ReqLLM.Provider
 def attach(%Req.Request{} = request, model_input, user_opts \\ []) do
 %ReqLLM.Model{} = model = ReqLLM.Model.from!(model_input)

 # Validate provider match
 unless model.provider == provider_id() do
 raise ReqLLM.Error.Invalid.Provider.exception(provider: model.provider)
 end

 # Validate model exists in registry
 unless ReqLLM.Provider.Registry.model_exists?("#{provider_id()}:#{model.model}") do
 raise ReqLLM.Error.Invalid.Parameter.exception(parameter: "model: #{model.model}")
 end

 # Get API key from JidoKeys
 api_key_env = ReqLLM.Provider.Registry.get_env_key(provider_id())
 api_key = JidoKeys.get(api_key_env)

 unless api_key && api_key != "" do
 raise ReqLLM.Error.Invalid.Parameter.exception(
 parameter: "api_key (set via JidoKeys.put(#{inspect(api_key_env)}, key))"
)
 end

 # Extract tools separately to avoid validation issues
 {tools, other_opts} = Keyword.pop(user_opts, :tools, [])

 # Prepare validated options
 opts = prepare_options!(__MODULE__, model, other_opts)
 opts = Keyword.put(opts, :tools, tools)
 base_url = Keyword.get(user_opts, :base_url, default_base_url())
 req_keys = __MODULE__.supported_provider_options() ++ [:model, :context]

 # Build Req pipeline
 request
 |> Req.Request.register_options(req_keys)
 |> Req.Request.merge_options(Keyword.take(opts, req_keys) ++ [base_url: base_url])
 |> Req.Request.put_header("authorization", "Bearer #{api_key}")
 |> ReqLLM.Step.Error.attach()
 |> Req.Request.append_request_steps(llm_encode_body: &__MODULE__.encode_body/1)
 |> ReqLLM.Step.Stream.maybe_attach(opts[:stream])
 |> Req.Request.append_response_steps(llm_decode_response: &__MODULE__.decode_response/1)
 |> ReqLLM.Step.Usage.attach(model)
 end

 # -- Req step: request encoding --
 @impl ReqLLM.Provider
 def encode_body(req) do
 body =
 %{
 model: req.options[:model],
 temperature: req.options[:temperature],
 max_tokens: req.options[:max_tokens],
 stream: req.options[:stream]
 }
 |> Map.merge(tools_payload(req.options[:tools]))
 |> Map.merge(context_payload(req.options[:context]))
 |> maybe_put(:system, req.options[:system])

 encoded = Jason.encode!(body)

 req
 |> Req.Request.put_header("content-type", "application/json")
 |> Map.put(:body, encoded)
 end

 # -- Req step: response decoding ---
 @impl ReqLLM.Provider
 def decode_response({req, resp}) do
 case resp.status do
 200 ->
 body = ensure_parsed_body(resp.body)
 # Return raw parsed data directly - no wrapping needed
 {req, %{resp | body: body}}

 status ->
 err =
 ReqLLM.Error.API.Response.exception(
 reason: "MyProvider API error",
 status: status,
 response_body: resp.body
)

 {req, err}
 end
 end

 # -- Usage extraction (optional) ---
 @impl ReqLLM.Provider
 def extract_usage(%{"usage" => u}, _), do: {:ok, u}
 def extract_usage(_, _), do: {:error, :no_usage}

 # -- helpers ---

 defp tools_payload([]), do: %{}
 defp tools_payload(tools),
 do: %{tools: Enum.map(tools, &ReqLLM.Schema.to_my_provider_format/1)}

 defp context_payload(%ReqLLM.Context{} = ctx),
 do:
 ctx
 |> wrap_context()
 |> ReqLLM.Context.Codec.encode_request()

 defp context_payload(_), do: %{}

end
Key changes in ReqLLM 1.0.0-rc.1
	Provider validation
Use model.provider == provider_id() instead of ensure_correct_provider!().
DSL generates provider_id/0 helper automatically.

	Model registry
Validate models via ReqLLM.Provider.Registry.model_exists?/1.

	API key handling
Use JidoKeys.get/1 with registry-provided env key instead of direct env access.

	Core options centralized
provider_schema now only for provider-specific options.
Temperature, max_tokens, system, stream handled centrally.

	Response decoding simplified
Return {req, %{resp | body: parsed_body}} directly - no wrapper struct needed.

2. Context & Response codec modules
lib/req_llm/providers/my_provider/context.ex
defmodule ReqLLM.Providers.MyProvider.Context do
 defstruct [:context]
 @type t :: %__MODULE__{context: ReqLLM.Context.t()}
end

Outbound & inbound translation
defimpl ReqLLM.Context.Codec, for: ReqLLM.Providers.MyProvider.Context do
 # OUTBOUND ---
 def encode_request(%{context: %ReqLLM.Context{messages: msgs}}) do
 %{messages: Enum.map(msgs, &encode_msg/1)}
 end

 # INBOUND (chunk list)
 def decode_response(%{"content" => blocks}) when is_list(blocks) do
 blocks
 |> Enum.map(&decode_block/1)
 |> List.flatten()
 end

 # helpers ...
end
lib/req_llm/providers/my_provider/response.ex
defmodule ReqLLM.Providers.MyProvider.Response do
 defstruct [:payload]
 @type t :: %__MODULE__{payload: term()}
end

defimpl ReqLLM.Response.Codec, for: ReqLLM.Providers.MyProvider.Response do
 alias ReqLLM.{Response, Context}

 # Final non-streaming
 def decode_response(%{payload: data}, model) when is_map(data) do
 with {:ok, chunks} <- ReqLLM.Context.Codec.decode_response(data),
 message <- build_message(chunks) do
 resp = %Response{
 id: Map.get(data, "id"),
 model: Map.get(data, "model", model.model),
 context: %Context{messages: [message]},
 message: message,
 stream?: false,
 usage: Map.get(data, "usage", %{}),
 finish_reason: Map.get(data, "finish_reason")
 }

 {:ok, resp}
 end
 end

 # Streaming variant receives a Stream.t()
 def decode_response(%{payload: %Stream{} = stream}, model) do
 {:ok,
 %Response{
 id: "stream",
 model: model.model,
 context: %Context{messages: []},
 stream?: true,
 stream: stream,
 usage: %{}
 }}
 end
end
Start with text only; add images, tool calls, thinking tokens later.

3. Capability metadata
priv/models_dev/my_provider.json
{
 "provider": {
 "env": ["MY_PROVIDER_API_KEY"]
 },
 "models": [
 {
 "id": "small-1",
 "max_tokens": 8192,
 "streaming": true,
 "tool_call": true,
 "temperature": true,
 "top_p": true
 }
]
}
New flags → add mapping in the provider's capability metadata.

4. Capability testing
Create provider-specific tests under test/coverage/<provider>/.
See capability-testing.md for comprehensive testing guide.
Basic structure:
test/coverage/my_provider/
├── core_test.exs # Text generation
├── streaming_test.exs # Streaming responses
└── tool_calling_test.exs # Function calling
Example:
defmodule ReqLLM.Coverage.MyProvider.CoreTest do
 use ExUnit.Case, async: false
 @moduletag :coverage
 @moduletag :my_provider

 alias ReqLLM.Test.LiveFixture
 @model "my_provider:small-1"

 test "basic completion" do
 {:ok, resp} =
 LiveFixture.use_fixture(:my_provider, "basic_completion", fn ->
 ReqLLM.generate_text(@model, "Hello!", max_tokens: 10, temperature: 0)
 end)

 assert is_binary(resp.message.content)
 end
end
Commands:
mix test --only my_provider # Provider tests only
LIVE=true mix test --only my_provider # Record fixtures
FIXTURE_FILTER=my_provider mix test # Regenerate specific provider

5. Best practices
	Keep prepare_request/4 minimal - delegate to attach/3
	Use provider_id() helper for validation, not hardcoded atoms
	Provider schema only for provider-specific options
	Use JidoKeys for API key management
	Return raw parsed response body from decode_response/1
	Test with cheapest model using temperature: 0 for deterministic fixtures
	Start with text-only support, add multimodal features incrementally

Welcome to ReqLLM 1.0!

ReqLLM

Main API facade for Req AI.
Inspired by the Vercel AI SDK, provides a unified interface to AI providers with
flexible model specifications, rich prompt support, configuration management,
and structured data generation.
Quick Start
Simple text generation using string format
ReqLLM.generate_text("anthropic:claude-3-5-sonnet", "Hello world")
#=> {:ok, "Hello! How can I assist you today?"}

Structured data generation with schema validation
schema = [
 name: [type: :string, required: true],
 age: [type: :pos_integer, required: true]
]
ReqLLM.generate_object("anthropic:claude-3-5-sonnet", "Generate a person", schema)
#=> {:ok, %{name: "John Doe", age: 30}}
Model Specifications
Multiple formats supported for maximum flexibility:
String format: "provider:model"
ReqLLM.generate_text("anthropic:claude-3-5-sonnet-20241022", messages)

Tuple format: {provider, options}
ReqLLM.generate_text({:anthropic, "claude-3-5-sonnet", temperature: 0.7}, messages)

Model struct format
model = %ReqLLM.Model{provider: :anthropic, model: "claude-3-5-sonnet", temperature: 0.5}
ReqLLM.generate_text(model, messages)
Configuration
ReqLLM uses the Kagi keyring for API key storage:
Store API keys in session keyring
ReqLLM.put_key(:anthropic_api_key, "sk-ant-...")
ReqLLM.put_key(:openai_api_key, "sk-...")

Retrieve API keys
ReqLLM.get_key(:anthropic_api_key)
Providers
Built-in support for major AI providers:
	Anthropic: Claude 3.5 Sonnet, Claude 3 Haiku, Claude 3 Opus
 # Access provider modules directly
 provider = ReqLLM.provider(:anthropic)
 provider.generate_text(model, messages, opts)

 Summary

 Functions

 context(message_list)

 Creates a context from a list of messages, a single message struct, or a string.

 cosine_similarity(embedding_a, embedding_b)

 Calculates cosine similarity between two embedding vectors.

 embed(model_spec, text, opts \\ [])

 Generates embeddings for a single text input.

 embed_many(model_spec, texts, opts \\ [])

 Generates embeddings for multiple text inputs.

 generate_object(model_spec, messages, schema, opts \\ [])

 Generates structured data using an AI model with schema validation.

 generate_object!(model_spec, messages, schema, opts \\ [])

 Generates structured data using an AI model, returning only the object content.

 generate_text(model_spec, messages, opts \\ [])

 Generates text using an AI model with full response metadata.

 generate_text!(model_spec, messages, opts \\ [])

 Generates text using an AI model, returning only the text content.

 get_key(key)

 Gets an API key from the keyring.

 json_schema(schema, opts \\ [])

 Creates a JSON schema object compatible with ReqLLM.

 model(model_spec)

 Creates a model struct from various specifications.

 provider(provider)

 Gets a provider module from the registry.

 put_key(key, value)

 Stores an API key in the session keyring.

 stream_object(model_spec, messages, schema, opts \\ [])

 Streams structured data generation using an AI model with schema validation.

 stream_object!(model_spec, messages, schema, opts \\ [])

 Streams structured data generation using an AI model, returning only the stream.

 stream_text(model_spec, messages, opts \\ [])

 Streams text generation using an AI model with full response metadata.

 stream_text!(model_spec, messages, opts \\ [])

 Streams text generation using an AI model, returning only the stream.

 tool(opts)

 Creates a Tool struct for AI model function calling.

 Functions

 context(message_list)

 @spec context([struct()] | struct() | String.t()) :: ReqLLM.Context.t()

Creates a context from a list of messages, a single message struct, or a string.
Parameters
	messages - List of Message structs, a single Message struct, or a string

Examples
messages = [
 ReqLLM.Context.system("You are helpful"),
 ReqLLM.Context.user("Hello!")
]
ctx = ReqLLM.context(messages)
Now you can use Enum functions on the context
user_msgs = ctx |> Enum.filter(&(&1.role == :user))

Single message struct
ctx = ReqLLM.context(ReqLLM.Context.user("Hello!"))

String prompt
ctx = ReqLLM.context("Hello!")

 cosine_similarity(embedding_a, embedding_b)

 @spec cosine_similarity([number()], [number()]) :: float()

Calculates cosine similarity between two embedding vectors.
Equivalent to Vercel AI SDK's cosineSimilarity() function.
Returns a similarity score between -1 and 1, where:
	1.0 indicates identical vectors (maximum similarity)
	0.0 indicates orthogonal vectors (no similarity)
	-1.0 indicates opposite vectors (maximum dissimilarity)

Parameters
	embedding_a - First embedding vector (list of numbers)
	embedding_b - Second embedding vector (list of numbers)

Examples
Identical vectors
ReqLLM.cosine_similarity([1.0, 0.0, 0.0], [1.0, 0.0, 0.0])
#=> 1.0

Orthogonal vectors
ReqLLM.cosine_similarity([1.0, 0.0], [0.0, 1.0])
#=> 0.0

Opposite vectors
ReqLLM.cosine_similarity([1.0, 0.0], [-1.0, 0.0])
#=> -1.0

Similar vectors
ReqLLM.cosine_similarity([0.5, 0.8, 0.3], [0.6, 0.7, 0.4])
#=> 0.9487...

 embed(model_spec, text, opts \\ [])

Generates embeddings for a single text input.
Parameters
	model_spec - Model specification in various formats
	text - Text to generate embeddings for
	opts - Additional options (keyword list)

Options
	:dimensions - Number of dimensions for embeddings
	:provider_options - Provider-specific options

Examples
{:ok, embedding} = ReqLLM.embed("openai:text-embedding-3-small", "Hello world")
#=> {:ok, [0.1, -0.2, 0.3, ...]}

 embed_many(model_spec, texts, opts \\ [])

Generates embeddings for multiple text inputs.
Parameters
	model_spec - Model specification in various formats
	texts - List of texts to generate embeddings for
	opts - Additional options (keyword list)

Options
Same as embed/3.
Examples
{:ok, embeddings} = ReqLLM.embed_many(
 "openai:text-embedding-3-small",
 ["Hello", "World"]
)
#=> {:ok, [[0.1, -0.2, ...], [0.3, 0.4, ...]]}

 generate_object(model_spec, messages, schema, opts \\ [])

Generates structured data using an AI model with schema validation.
Equivalent to Vercel AI SDK's generateObject() function, this method
generates structured data according to a provided schema and validates
the output against that schema.
Parameters
	model_spec - Model specification in various formats
	messages - Text prompt or list of messages
	schema - Schema definition for structured output
	opts - Additional options (keyword list)

Options
	:output - Output type: :object, :array, :enum, or :no_schema
	:mode - Generation mode: :auto, :json, or :tool
	:schema_name - Optional name for the schema
	:schema_description - Optional description for the schema
	:enum - List of possible values (for enum output)
	:temperature - Control randomness in responses (0.0 to 2.0)
	:max_tokens - Limit the length of the response
	:provider_options - Provider-specific options

Examples
Generate a structured object
schema = [
 name: [type: :string, required: true],
 age: [type: :pos_integer, required: true]
]
{:ok, object} = ReqLLM.generate_object("anthropic:claude-3-sonnet", "Generate a person", schema)
#=> {:ok, %{name: "John Doe", age: 30}}

Generate an array of objects
{:ok, objects} = ReqLLM.generate_object(
 "anthropic:claude-3-sonnet",
 "Generate 3 heroes",
 schema,
 output: :array
)

 generate_object!(model_spec, messages, schema, opts \\ [])

Generates structured data using an AI model, returning only the object content.
This is a convenience function that extracts just the object from the response.
For access to usage metadata and other response data, use generate_object/4.
Parameters
Same as generate_object/4.
Examples
{:ok, object} = ReqLLM.generate_object!("anthropic:claude-3-sonnet", "Generate a person", schema)
object
#=> %{name: "John Doe", age: 30}

 generate_text(model_spec, messages, opts \\ [])

Generates text using an AI model with full response metadata.
Returns a canonical ReqLLM.Response which includes usage data, context, and metadata.
For simple text-only results, use generate_text!/3.
Parameters
	model_spec - Model specification in various formats
	messages - Text prompt or list of messages
	opts - Additional options (keyword list)

Options
	:temperature - Control randomness in responses (0.0 to 2.0)
	:max_tokens - Limit the length of the response
	:top_p - Nucleus sampling parameter
	:presence_penalty - Penalize new tokens based on presence
	:frequency_penalty - Penalize new tokens based on frequency
	:tools - List of tool definitions
	:tool_choice - Tool choice strategy
	:system_prompt - System prompt to prepend
	:provider_options - Provider-specific options

Examples
{:ok, response} = ReqLLM.generate_text("anthropic:claude-3-sonnet", "Hello world")
ReqLLM.Response.text(response)
#=> "Hello! How can I assist you today?"

Access usage metadata
ReqLLM.Response.usage(response)
#=> %{input_tokens: 10, output_tokens: 8}

 generate_text!(model_spec, messages, opts \\ [])

Generates text using an AI model, returning only the text content.
This is a convenience function that extracts just the text from the response.
For access to usage metadata and other response data, use generate_text/3.
Parameters
Same as generate_text/3.
Examples
{:ok, text} = ReqLLM.generate_text!("anthropic:claude-3-sonnet", "Hello world")
text
#=> "Hello! How can I assist you today?"

 get_key(key)

 @spec get_key(atom() | String.t()) :: String.t() | nil

Gets an API key from the keyring.
Parameters
	key - The configuration key (atom or string, case-insensitive)

Examples
ReqLLM.get_key(:anthropic_api_key)
ReqLLM.get_key("ANTHROPIC_API_KEY")

 json_schema(schema, opts \\ [])

 @spec json_schema(keyword(), keyword()) :: map()

Creates a JSON schema object compatible with ReqLLM.
Equivalent to Vercel AI SDK's jsonSchema() helper, this function
creates schema objects for structured data generation and validation.
Parameters
	schema - NimbleOptions schema definition (keyword list)
	opts - Additional options (optional)

Options
	:validate - Custom validation function (optional)

Examples
Basic schema
schema = ReqLLM.json_schema([
 name: [type: :string, required: true, doc: "User name"],
 age: [type: :integer, doc: "User age"]
])

Schema with custom validation
schema = ReqLLM.json_schema(
 [email: [type: :string, required: true]],
 validate: fn value ->
 if String.contains?(value["email"], "@") do
 {:ok, value}
 else
 {:error, "Invalid email format"}
 end
 end
)

 model(model_spec)

 @spec model(String.t() | {atom(), keyword()} | struct()) ::
 {:ok, struct()} | {:error, term()}

Creates a model struct from various specifications.
Parameters
	model_spec - Model specification in various formats:	String format: "anthropic:claude-3-sonnet"
	Tuple format: {:anthropic, "claude-3-sonnet", temperature: 0.7}
	Model struct: %ReqLLM.Model{}

Examples
ReqLLM.model("anthropic:claude-3-sonnet")
#=> {:ok, %ReqLLM.Model{provider: :anthropic, model: "claude-3-sonnet"}}

ReqLLM.model({:anthropic, "claude-3-sonnet", temperature: 0.5})
#=> {:ok, %ReqLLM.Model{provider: :anthropic, model: "claude-3-sonnet", temperature: 0.5}}

 provider(provider)

 @spec provider(atom()) :: {:ok, module()} | {:error, :not_found}

Gets a provider module from the registry.
Parameters
	provider - Provider identifier (atom)

Examples
ReqLLM.provider(:anthropic)
#=> {:ok, ReqLLM.Providers.Anthropic}

ReqLLM.provider(:unknown)
#=> {:error, :not_found}

 put_key(key, value)

 @spec put_key(atom() | String.t(), term()) :: :ok

Stores an API key in the session keyring.
Parameters
	key - The configuration key (atom or string)
	value - The value to store

Examples
ReqLLM.put_key(:anthropic_api_key, "sk-ant-...")

 stream_object(model_spec, messages, schema, opts \\ [])

Streams structured data generation using an AI model with schema validation.
Equivalent to Vercel AI SDK's streamObject() function, this method
streams structured data generation according to a provided schema.
Parameters
	model_spec - Model specification in various formats
	messages - Text prompt or list of messages
	schema - Schema definition for structured output
	opts - Additional options (keyword list)

Options
 Same as generate_object/4.
Examples
Stream structured object generation
schema = [
 name: [type: :string, required: true],
 description: [type: :string, required: true]
]
{:ok, stream} = ReqLLM.stream_object("anthropic:claude-3-sonnet", "Generate a character", schema)
stream |> Enum.each(&IO.inspect/1)

 stream_object!(model_spec, messages, schema, opts \\ [])

Streams structured data generation using an AI model, returning only the stream.
This is a convenience function that extracts just the stream from the response.
For access to usage metadata and other response data, use stream_object/4.
Parameters
Same as stream_object/4.
Examples
{:ok, stream} = ReqLLM.stream_object!("anthropic:claude-3-sonnet", "Generate a character", schema)
stream |> Enum.each(&IO.inspect/1)

 stream_text(model_spec, messages, opts \\ [])

Streams text generation using an AI model with full response metadata.
Returns a canonical ReqLLM.Response containing usage data and stream.
For simple streaming without metadata, use stream_text!/3.
Parameters
Same as generate_text/3.
Examples
{:ok, response} = ReqLLM.stream_text("anthropic:claude-3-sonnet", "Tell me a story")
ReqLLM.Response.text_stream(response) |> Enum.each(&IO.write/1)

Access usage metadata after streaming
ReqLLM.Response.usage(response)
#=> %{input_tokens: 15, output_tokens: 42}

 stream_text!(model_spec, messages, opts \\ [])

Streams text generation using an AI model, returning only the stream.
This is a convenience function that extracts just the stream from the response.
For access to usage metadata and other response data, use stream_text/3.
Parameters
Same as stream_text/3.
Examples
{:ok, stream} = ReqLLM.stream_text!("anthropic:claude-3-sonnet", "Tell me a story")
stream |> Enum.each(&IO.write/1)

 tool(opts)

 @spec tool(keyword()) :: ReqLLM.Tool.t()

Creates a Tool struct for AI model function calling.
Equivalent to Vercel AI SDK's tool() helper, providing type-safe tool
definitions with parameter validation. This is a convenience function
for creating ReqLLM.Tool structs.
Parameters
	opts - Tool definition options (keyword list)

Options
	:name - Tool name (required, must be valid identifier)
	:description - Tool description for AI model (required)
	:parameters - Parameter schema as NimbleOptions keyword list (optional)
	:callback - Callback function or MFA tuple (required)

Examples
Simple tool with no parameters
tool = ReqLLM.tool(
 name: "get_time",
 description: "Get the current time",
 callback: fn _args -> {:ok, DateTime.utc_now()} end
)

Tool with parameters
weather_tool = ReqLLM.tool(
 name: "get_weather",
 description: "Get current weather for a location",
 parameters: [
 location: [type: :string, required: true, doc: "City name"],
 units: [type: :string, default: "metric", doc: "Temperature units"]
],
 callback: {WeatherAPI, :fetch_weather}
)

ReqLLM.Application

Application module for ReqLLM.
Providers register themselves automatically via @on_load when their modules
are loaded by the VM. No manual bootstrapping is required.

ReqLLM.Capability

Model capability discovery and validation.
This module dynamically extracts capabilities from provider metadata
loaded from models.dev, providing a programmatic interface to query
what features are supported by specific models.

 Summary

 Functions

 for(model_spec)

 Get all supported capabilities for a model spec.

 models_for(provider, feature)

 Get all models that support a specific feature for a provider.

 provider_models(provider)

 Get all available models for a provider as model specs.

 providers_for(feature)

 Get all providers that have models supporting a feature.

 supports?(model_spec, feature)

 Check if a model supports a specific feature.

 Functions

 for(model_spec)

Get all supported capabilities for a model spec.
Examples
iex> ReqLLM.Capability.for("anthropic:claude-3-haiku-20240307")
[:max_tokens, :system_prompt, :temperature, :tools, :streaming, :metadata]

 models_for(provider, feature)

Get all models that support a specific feature for a provider.
Examples
iex> ReqLLM.Capability.models_for(:anthropic, :reasoning)
["anthropic:claude-3-5-sonnet-20241022"]

 provider_models(provider)

Get all available models for a provider as model specs.
Examples
iex> ReqLLM.Capability.provider_models(:anthropic)
["anthropic:claude-3-haiku-20240307", "anthropic:claude-3-sonnet-20240229", ...]

 providers_for(feature)

Get all providers that have models supporting a feature.

 supports?(model_spec, feature)

Check if a model supports a specific feature.
Examples
iex> ReqLLM.Capability.supports?("anthropic:claude-3-sonnet-20240229", :tools)
true

ReqLLM.Context

Context represents a conversation history as a collection of messages.
Provides canonical message constructor functions that can be imported
for clean, readable message creation.
Example
import ReqLLM.Context

context = Context.new([
 system("You are a helpful assistant"),
 user("What's the weather like?"),
 assistant("I'll check that for you")
])

Context.validate!(context)

 Summary

 Types

 t()

 Functions

 assistant(content, meta \\ %{})

 encode_request(ctx, model_input)

 Encode a context to provider JSON format for API requests.

 new(list \\ [])

 new(role, content, meta \\ %{})

 system(content, meta \\ %{})

 text(role, content, meta \\ %{})

 to_list(context)

 user(content, meta \\ %{})

 validate(context)

 validate!(context)

 with_image(role, text, url, meta \\ %{})

 wrap(ctx, model)

 Wrap a context with provider-specific tagged struct.

 Types

 t()

 @type t() :: %ReqLLM.Context{messages: [ReqLLM.Message.t()]}

 Functions

 assistant(content, meta \\ %{})

 @spec assistant([ReqLLM.Message.ContentPart.t()] | String.t(), map()) ::
 ReqLLM.Message.t()

 encode_request(ctx, model_input)

 @spec encode_request(t(), ReqLLM.Model.t() | String.t()) :: term() | {:error, term()}

Encode a context to provider JSON format for API requests.
This is a façade function that accepts a Context and model specification,
wraps them appropriately, and calls the Context.Codec.encode_request protocol.
Supports both Model struct and string inputs, automatically resolving model
strings using Model.from!/1.
Parameters
	context - A ReqLLM.Context to encode
	model - Model specification (Model struct or string like "anthropic:claude-3-sonnet")

Returns
	Provider-specific JSON structure ready for API transmission
	{:error, reason} if encoding fails

Examples
Zero-ceremony encoding with model string
Context.encode_request(context, "anthropic:claude-3-sonnet")
#=> %{system: "...", messages: [...], max_tokens: 4096}

Encoding with Model struct
Context.encode_request(context, model_struct)

 new(list \\ [])

 @spec new([ReqLLM.Message.t()]) :: t()

 new(role, content, meta \\ %{})

 @spec new(atom(), [ReqLLM.Message.ContentPart.t()], map()) :: ReqLLM.Message.t()

 system(content, meta \\ %{})

 @spec system([ReqLLM.Message.ContentPart.t()] | String.t(), map()) ::
 ReqLLM.Message.t()

 text(role, content, meta \\ %{})

 @spec text(atom(), String.t(), map()) :: ReqLLM.Message.t()

 to_list(context)

 @spec to_list(t()) :: [ReqLLM.Message.t()]

 user(content, meta \\ %{})

 @spec user([ReqLLM.Message.ContentPart.t()] | String.t(), map()) :: ReqLLM.Message.t()

 validate(context)

 @spec validate(t()) :: {:ok, t()} | {:error, String.t()}

 validate!(context)

 @spec validate!(t()) :: t()

 with_image(role, text, url, meta \\ %{})

 @spec with_image(atom(), String.t(), String.t(), map()) :: ReqLLM.Message.t()

 wrap(ctx, model)

 @spec wrap(t(), ReqLLM.Model.t()) :: term()

Wrap a context with provider-specific tagged struct.
Takes a ReqLLM.Context and ReqLLM.Model and wraps the context
in the appropriate provider-specific struct for encoding/decoding.
Parameters
	context - A ReqLLM.Context to wrap
	model - A ReqLLM.Model indicating the provider

Returns
	Provider-specific tagged struct ready for encoding

Examples
context = ReqLLM.Context.new([ReqLLM.Context.user("Hello")])
model = ReqLLM.Model.from("anthropic:claude-3-haiku-20240307")
tagged = ReqLLM.Context.wrap(context, model)
#=> %ReqLLM.Providers.Anthropic.Context{context: context}

ReqLLM.Context.Codec protocol

Protocol for encoding canonical ReqLLM structures to provider wire JSON and decoding provider responses back to canonical structures.
This protocol enables clean separation between data translation and transport concerns,
allowing each provider to implement its own format conversion logic while maintaining
a unified interface.
Usage
Encoding: Canonical structures → Provider JSON
context |> ReqLLM.Context.wrap(model) |> ReqLLM.Context.Codec.encode()

Decoding: Provider JSON → StreamChunks
response_data |> provider_tagged_struct() |> ReqLLM.Context.Codec.decode()
Implementation
Each provider implements this protocol for their specific tagged wrapper struct:
defimpl ReqLLM.Context.Codec, for: MyProvider.Tagged do
 def encode(%MyProvider.Tagged{context: ctx}) do
 # Convert ReqLLM.Context to provider JSON format
 end

 def decode(%MyProvider.Tagged{context: data}) do
 # Convert provider response to StreamChunks
 end
end

 Summary

 Types

 t()

 All the types that implement this protocol.

 Functions

 decode_response(tagged_data)

 Decode provider wire JSON back to canonical structures from responses.

 encode_request(tagged_context)

 Encode canonical ReqLLM structures to provider wire JSON format for requests.

 Types

 t()

 @type t() :: term()

All the types that implement this protocol.

 Functions

 decode_response(tagged_data)

 @spec decode_response(t()) :: term()

Decode provider wire JSON back to canonical structures from responses.
Takes a provider-specific tagged wrapper struct containing response data
and converts it to a list of ReqLLM.StreamChunk structs or other canonical formats.
Parameters
	tagged_data - A provider-specific tagged struct wrapping response JSON

Returns
	List of ReqLLM.StreamChunk.t() structs
	{:error, reason} if decoding fails

Examples
Anthropic decoding
response_data
|> ReqLLM.Providers.Anthropic.Tagged.new()
|> ReqLLM.Context.Codec.decode_response()
#=> [%ReqLLM.StreamChunk{type: :text, text: "Hello!"}]

 encode_request(tagged_context)

 @spec encode_request(t()) :: term()

Encode canonical ReqLLM structures to provider wire JSON format for requests.
Takes a provider-specific tagged wrapper struct containing a ReqLLM.Context
and converts it to the JSON format expected by that provider's API.
Parameters
	tagged_context - A provider-specific tagged struct wrapping a ReqLLM.Context

Returns
	Provider-specific JSON structure ready for API transmission
	{:error, reason} if encoding fails

Examples
Anthropic encoding
context
|> ReqLLM.Providers.Anthropic.Tagged.new()
|> ReqLLM.Context.Codec.encode_request()
#=> %{system: "...", messages: [...], max_tokens: 4096}

ReqLLM.Embedding

Embedding functionality for ReqLLM.
This module provides embedding generation capabilities with support for:
	Single text embedding generation
	Batch text embedding generation
	Model validation for embedding support

Currently only OpenAI models are supported for embeddings.

 Summary

 Functions

 dynamic_schema(provider_mod)

 Builds a dynamic schema by composing the base schema with provider-specific options.

 embed(model_spec, text, opts \\ [])

 Generates embeddings for a single text input.

 embed_many(model_spec, texts, opts \\ [])

 Generates embeddings for multiple text inputs.

 schema()

 Returns the base embedding options schema.

 supported_models()

 Returns the list of supported embedding model specifications.

 validate_model(model_spec)

 Validates that a model supports embedding operations.

 Functions

 dynamic_schema(provider_mod)

 @spec dynamic_schema(module()) :: NimbleOptions.t()

Builds a dynamic schema by composing the base schema with provider-specific options.
Parameters
	provider_mod - Provider module that defines provider_schema/0 function

 embed(model_spec, text, opts \\ [])

 @spec embed(
 String.t() | {atom(), keyword()} | struct(),
 String.t(),
 keyword()
) :: {:ok, [float()]} | {:error, term()}

Generates embeddings for a single text input.
Parameters
	model_spec - Model specification in various formats
	text - Text to generate embeddings for
	opts - Additional options (keyword list)

Options
	:dimensions - Number of dimensions for embeddings
	:encoding_format - Format for encoding ("float" or "base64")
	:user - User identifier for tracking
	:provider_options - Provider-specific options

Examples
{:ok, embedding} = ReqLLM.Embedding.embed("openai:text-embedding-3-small", "Hello world")
#=> {:ok, [0.1, -0.2, 0.3, ...]}

 embed_many(model_spec, texts, opts \\ [])

 @spec embed_many(
 String.t() | {atom(), keyword()} | struct(),
 [String.t()],
 keyword()
) :: {:ok, [[float()]]} | {:error, term()}

Generates embeddings for multiple text inputs.
Parameters
	model_spec - Model specification in various formats
	texts - List of texts to generate embeddings for
	opts - Additional options (keyword list)

Options
Same as embed/3.
Examples
{:ok, embeddings} = ReqLLM.Embedding.embed_many(
 "openai:text-embedding-3-small",
 ["Hello", "World"]
)
#=> {:ok, [[0.1, -0.2, ...], [0.3, 0.4, ...]]}

 schema()

 @spec schema() :: NimbleOptions.t()

Returns the base embedding options schema.
This schema contains embedding-specific options that are vendor-neutral.

 supported_models()

 @spec supported_models() :: [String.t()]

Returns the list of supported embedding model specifications.
Examples
ReqLLM.Embedding.supported_models()
#=> ["openai:text-embedding-3-small", "openai:text-embedding-3-large", "openai:text-embedding-ada-002"]

 validate_model(model_spec)

 @spec validate_model(String.t() | {atom(), keyword()} | struct()) ::
 {:ok, ReqLLM.Model.t()} | {:error, term()}

Validates that a model supports embedding operations.
Parameters
	model_spec - Model specification in various formats

Examples
ReqLLM.Embedding.validate_model("openai:text-embedding-3-small")
#=> {:ok, %ReqLLM.Model{provider: :openai, model: "text-embedding-3-small"}}

ReqLLM.Embedding.validate_model("anthropic:claude-3-sonnet")
#=> {:error, :embedding_not_supported}

ReqLLM.Error

Error handling system for ReqLLM using Splode.

 Summary

 Types

 class()

 class_module()

 error_class()

 t()

 Functions

 splode_error?(arg1, splode)

 unwrap!(result, opts \\ nil)

 Raises an error if the result is an error, otherwise returns the result

 validation_error(tag, reason, context \\ [])

 Creates a validation error with the given tag, reason, and context.

 Types

 class()

 @type class() :: %{
 :__struct__ => class_module(),
 :__exception__ => true,
 :errors => [t()],
 :class => error_class(),
 :bread_crumbs => [String.t()],
 :vars => Keyword.t(),
 :stacktrace => Splode.Stacktrace.t() | nil,
 :context => map(),
 optional(atom()) => any()
}

 class_module()

 @type class_module() ::
 ReqLLM.Error.Unknown
 | ReqLLM.Error.Validation
 | ReqLLM.Error.API
 | ReqLLM.Error.Invalid

 error_class()

 @type error_class() :: :unknown | :validation | :api | :invalid

 t()

 @type t() :: %{
 :__struct__ => module(),
 :__exception__ => true,
 :class => error_class(),
 :bread_crumbs => [String.t()],
 :vars => Keyword.t(),
 :stacktrace => Splode.Stacktrace.t() | nil,
 :context => map(),
 optional(atom()) => any()
}

 Functions

 splode_error?(arg1, splode)

 unwrap!(result, opts \\ nil)

Raises an error if the result is an error, otherwise returns the result
Alternatively, you can use the defsplode macro, which does this automatically.
Options
	:error_opts - Options to pass to to_error/2 when converting the returned error
	:unknown_error_opts - Options to pass to the unknown error if the function returns only :error.
not necessary if your function always returns {:error, error}.

Examples
 def function(arg) do
case do_something(arg) do
 :success -> :ok
 {:success, result} -> {:ok, result}
 {:error, error} -> {:error, error}
end
 end
 def function!(arg) do
YourErrors.unwrap!(function(arg))
 end

 validation_error(tag, reason, context \\ [])

 @spec validation_error(atom(), String.t(), keyword()) ::
 ReqLLM.Error.Validation.Error.t()

Creates a validation error with the given tag, reason, and context.
Examples
iex> error = ReqLLM.Error.validation_error(:invalid_model_spec, "Bad model", model: "test")
iex> error.tag
:invalid_model_spec
iex> error.reason
"Bad model"
iex> error.context
[model: "test"]

ReqLLM.Generation

Text generation functionality for ReqLLM.
This module provides the core text generation capabilities including:
	Text generation with full response metadata
	Text streaming with metadata
	Usage and cost extraction utilities

All functions follow Vercel AI SDK patterns and return structured responses
with proper error handling.

 Summary

 Functions

 dynamic_schema(provider_mod)

 Builds a dynamic schema by composing the base schema with provider-specific options.

 generate_object(model_spec, messages, object_schema, opts \\ [])

 Generates structured data using an AI model with schema validation.

 generate_object!(model_spec, messages, object_schema, opts \\ [])

 Generates structured data using an AI model, returning only the object content.

 generate_text(model_spec, messages, opts \\ [])

 Generates text using an AI model with full response metadata.

 generate_text!(model_spec, messages, opts \\ [])

 Generates text using an AI model, returning only the text content.

 schema()

 Returns the base generation options schema.

 stream_object(model_spec, messages, object_schema, opts \\ [])

 Streams structured data generation using an AI model with schema validation.

 stream_object!(model_spec, messages, object_schema, opts \\ [])

 Streams structured data generation using an AI model, returning only the stream.

 stream_text(model_spec, messages, opts \\ [])

 Streams text generation using an AI model with full response metadata.

 stream_text!(model_spec, messages, opts \\ [])

 Streams text generation using an AI model, returning only the stream.

 Functions

 dynamic_schema(provider_mod)

 @spec dynamic_schema(module()) :: NimbleOptions.t()

Builds a dynamic schema by composing the base schema with provider-specific options.
This function takes a provider module and creates a unified schema where provider-specific
options are nested under the :provider_options key with proper validation.
Parameters
	provider_mod - Provider module that defines provider_schema/0 function

Examples
schema = ReqLLM.Generation.dynamic_schema(ReqLLM.Providers.Groq)
NimbleOptions.validate([temperature: 0.7, provider_options: [service_tier: "auto"]], schema)
#=> {:ok, [temperature: 0.7, provider_options: [service_tier: "auto"]]}

 generate_object(model_spec, messages, object_schema, opts \\ [])

 @spec generate_object(
 String.t() | {atom(), keyword()} | struct(),
 String.t() | list(),
 keyword(),
 keyword()
) :: {:ok, ReqLLM.Response.t()} | {:error, term()}

Generates structured data using an AI model with schema validation.
Returns a canonical ReqLLM.Response which includes the generated object, usage data,
context, and metadata. For simple object-only results, use generate_object!/4.
Parameters
	model_spec - Model specification in various formats
	messages - Text prompt or list of messages
	schema - Schema definition for structured output (keyword list)
	opts - Additional options (keyword list)

Options
	:temperature - Control randomness in responses (0.0 to 2.0)
	:max_tokens - Limit the length of the response
	:top_p - Nucleus sampling parameter
	:presence_penalty - Penalize new tokens based on presence
	:frequency_penalty - Penalize new tokens based on frequency
	:system_prompt - System prompt to prepend
	:provider_options - Provider-specific options

Examples
{:ok, response} = ReqLLM.Generation.generate_object("anthropic:claude-3-sonnet", "Generate a person", person_schema)
ReqLLM.Response.object(response)
#=> %{name: "Alice Smith", age: 30, occupation: "Engineer"}

Access usage metadata
ReqLLM.Response.usage(response)
#=> %{input_tokens: 25, output_tokens: 15}

 generate_object!(model_spec, messages, object_schema, opts \\ [])

 @spec generate_object!(
 String.t() | {atom(), keyword()} | struct(),
 String.t() | list(),
 keyword(),
 keyword()
) :: {:ok, map()} | {:error, term()}

Generates structured data using an AI model, returning only the object content.
This is a convenience function that extracts just the object from the response.
For access to usage metadata and other response data, use generate_object/4.
Parameters
Same as generate_object/4.
Examples
{:ok, object} = ReqLLM.Generation.generate_object!("anthropic:claude-3-sonnet", "Generate a person", person_schema)
object
#=> %{name: "Alice Smith", age: 30, occupation: "Engineer"}

 generate_text(model_spec, messages, opts \\ [])

 @spec generate_text(
 String.t() | {atom(), keyword()} | struct(),
 String.t() | list(),
 keyword()
) :: {:ok, ReqLLM.Response.t()} | {:error, term()}

Generates text using an AI model with full response metadata.
Returns a canonical ReqLLM.Response which includes usage data, context, and metadata.
For simple text-only results, use generate_text!/3.
Parameters
	model_spec - Model specification in various formats
	messages - Text prompt or list of messages
	opts - Additional options (keyword list)

Options
	:temperature - Control randomness in responses (0.0 to 2.0)
	:max_tokens - Limit the length of the response
	:top_p - Nucleus sampling parameter
	:presence_penalty - Penalize new tokens based on presence
	:frequency_penalty - Penalize new tokens based on frequency
	:tools - List of tool definitions
	:tool_choice - Tool choice strategy
	:system_prompt - System prompt to prepend
	:provider_options - Provider-specific options

Examples
{:ok, response} = ReqLLM.Generation.generate_text("anthropic:claude-3-sonnet", "Hello world")
ReqLLM.Response.text(response)
#=> "Hello! How can I assist you today?"

Access usage metadata
ReqLLM.Response.usage(response)
#=> %{input_tokens: 10, output_tokens: 8}

 generate_text!(model_spec, messages, opts \\ [])

 @spec generate_text!(
 String.t() | {atom(), keyword()} | struct(),
 String.t() | list(),
 keyword()
) :: {:ok, String.t()} | {:error, term()}

Generates text using an AI model, returning only the text content.
This is a convenience function that extracts just the text from the response.
For access to usage metadata and other response data, use generate_text/3.
Parameters
Same as generate_text/3.
Examples
{:ok, text} = ReqLLM.Generation.generate_text!("anthropic:claude-3-sonnet", "Hello world")
text
#=> "Hello! How can I assist you today?"

 schema()

 @spec schema() :: NimbleOptions.t()

Returns the base generation options schema.
This schema contains only vendor-neutral options. Provider-specific options
should be validated separately by each provider.

 stream_object(model_spec, messages, object_schema, opts \\ [])

 @spec stream_object(
 String.t() | {atom(), keyword()} | struct(),
 String.t() | list(),
 keyword(),
 keyword()
) :: {:ok, ReqLLM.Response.t()} | {:error, term()}

Streams structured data generation using an AI model with schema validation.
Returns a canonical ReqLLM.Response containing usage data and object stream.
For simple object streaming without metadata, use stream_object!/4.
Parameters
	model_spec - Model specification in various formats
	messages - Text prompt or list of messages
	schema - Schema definition for structured output (keyword list)
	opts - Additional options (keyword list)

Options
Same as generate_object/4.
Examples
{:ok, response} = ReqLLM.Generation.stream_object("anthropic:claude-3-sonnet", "Generate a person", person_schema)
ReqLLM.Response.object_stream(response) |> Enum.each(&IO.inspect/1)

Access usage metadata after streaming
ReqLLM.Response.usage(response)
#=> %{input_tokens: 25, output_tokens: 15}

 stream_object!(model_spec, messages, object_schema, opts \\ [])

 @spec stream_object!(
 String.t() | {atom(), keyword()} | struct(),
 String.t() | list(),
 keyword(),
 keyword()
) :: {:ok, Enumerable.t()} | {:error, term()}

Streams structured data generation using an AI model, returning only the stream.
This is a convenience function that extracts just the stream from the response.
For access to usage metadata and other response data, use stream_object/4.
Parameters
Same as stream_object/4.
Examples
{:ok, stream} = ReqLLM.Generation.stream_object!("anthropic:claude-3-sonnet", "Generate a person", person_schema)
stream |> Enum.each(&IO.inspect/1)

 stream_text(model_spec, messages, opts \\ [])

 @spec stream_text(
 String.t() | {atom(), keyword()} | struct(),
 String.t() | list(),
 keyword()
) :: {:ok, ReqLLM.Response.t()} | {:error, term()}

Streams text generation using an AI model with full response metadata.
Returns a canonical ReqLLM.Response containing usage data and stream.
For simple streaming without metadata, use stream_text!/3.
Parameters
Same as generate_text/3.
Examples
{:ok, response} = ReqLLM.Generation.stream_text("anthropic:claude-3-sonnet", "Tell me a story")
ReqLLM.Response.text_stream(response) |> Enum.each(&IO.write/1)

Access usage metadata after streaming
ReqLLM.Response.usage(response)
#=> %{input_tokens: 15, output_tokens: 42}

 stream_text!(model_spec, messages, opts \\ [])

 @spec stream_text!(
 String.t() | {atom(), keyword()} | struct(),
 String.t() | list(),
 keyword()
) :: {:ok, Enumerable.t()} | {:error, term()}

Streams text generation using an AI model, returning only the stream.
This is a convenience function that extracts just the stream from the response.
For access to usage metadata and other response data, use stream_text/3.
Parameters
Same as stream_text/3.
Examples
{:ok, stream} = ReqLLM.Generation.stream_text!("anthropic:claude-3-sonnet", "Tell me a story")
stream |> Enum.each(&IO.write/1)

ReqLLM.Message

Message represents a single conversation message with multi-modal content support.
Content is always a list of ContentPart structs, never a string.
This ensures consistent handling across all providers and eliminates polymorphism.

 Summary

 Types

 t()

 Functions

 valid?(arg1)

 Types

 t()

 @type t() :: %ReqLLM.Message{
 content: [ReqLLM.Message.ContentPart.t()],
 metadata: map(),
 name: String.t() | nil,
 role: :user | :assistant | :system | :tool,
 tool_call_id: String.t() | nil,
 tool_calls: [term()] | nil
}

 Functions

 valid?(arg1)

 @spec valid?(t()) :: boolean()

ReqLLM.Message.ContentPart

ContentPart represents a single piece of content within a message.
Supports multiple content types:
	:text - Plain text content
	:image_url - Image from URL
	:image - Image from binary data
	:file - File attachment
	:tool_call - Tool invocation
	:tool_result - Tool execution result
	:reasoning - Chain-of-thought reasoning content

 Summary

 Types

 t()

 Functions

 file(data, filename, media_type \\ "application/octet-stream")

 image(data, media_type \\ "image/png")

 image_url(url)

 reasoning(content)

 reasoning(content, metadata)

 text(content)

 text(content, metadata)

 tool_call(id, name, input)

 tool_result(id, output)

 Types

 t()

 @type t() :: %ReqLLM.Message.ContentPart{
 data: binary() | nil,
 filename: String.t() | nil,
 input: term() | nil,
 media_type: String.t() | nil,
 metadata: map(),
 output: term() | nil,
 text: String.t() | nil,
 tool_call_id: String.t() | nil,
 tool_name: String.t() | nil,
 type:
 :text | :image_url | :image | :file | :tool_call | :tool_result | :reasoning,
 url: String.t() | nil
}

 Functions

 file(data, filename, media_type \\ "application/octet-stream")

 @spec file(binary(), String.t(), String.t()) :: t()

 image(data, media_type \\ "image/png")

 @spec image(binary(), String.t()) :: t()

 image_url(url)

 @spec image_url(String.t()) :: t()

 reasoning(content)

 @spec reasoning(String.t()) :: t()

 reasoning(content, metadata)

 @spec reasoning(String.t(), map()) :: t()

 text(content)

 @spec text(String.t()) :: t()

 text(content, metadata)

 @spec text(String.t(), map()) :: t()

 tool_call(id, name, input)

 @spec tool_call(String.t(), String.t(), term()) :: t()

 tool_result(id, output)

 @spec tool_result(String.t(), term()) :: t()

ReqLLM.Model

Represents an AI model configuration for ReqLLM.
This module provides a simplified model structure focused on essential
fields needed for AI interactions: provider information, model name,
and runtime parameters like temperature and token limits.
Examples
Create a model with 3-tuple format (preferred)
{:ok, model} = ReqLLM.Model.from({:anthropic, "claude-3-5-sonnet", temperature: 0.7})

Create a model with legacy 2-tuple format
{:ok, model} = ReqLLM.Model.from({:anthropic, model: "claude-3-5-sonnet", temperature: 0.7})

Create a model from string specification
{:ok, model} = ReqLLM.Model.from("anthropic:claude-3-5-sonnet")

Create a model directly
model = ReqLLM.Model.new(:anthropic, "claude-3-sonnet", temperature: 0.5, max_tokens: 1000)

 Summary

 Types

 capabilities()

 cost()

 limit()

 modality()

 t()

 An AI model configuration

 Functions

 default_model(spec)

 Gets the default model for a provider spec.

 from(model)

 Creates a model from various input formats.

 from!(input)

 Creates a model from input, raising an exception on error.

 new(provider, model, opts \\ [])

 Creates a new model with the specified provider and model name.

 valid?(arg1)

 Validates that a model struct has required fields.

 with_defaults(model)

 Returns a model with sensible defaults for missing metadata fields.

 with_metadata(model_spec)

 Loads a model with full metadata from the models_dev directory.

 Types

 capabilities()

 @type capabilities() :: %{
 reasoning: boolean(),
 tool_call: boolean(),
 temperature: boolean(),
 attachment: boolean()
}

 cost()

 @type cost() :: %{input: float(), output: float()}

 limit()

 @type limit() :: %{context: non_neg_integer(), output: non_neg_integer()}

 modality()

 @type modality() :: :text | :audio | :image | :video | :pdf

 t()

 @type t() :: %ReqLLM.Model{
 capabilities: (capabilities() | nil) | nil,
 cost: (cost() | nil) | nil,
 limit: (limit() | nil) | nil,
 max_retries: non_neg_integer() | nil,
 max_tokens: (non_neg_integer() | nil) | nil,
 modalities: (%{input: [modality()], output: [modality()]} | nil) | nil,
 model: String.t(),
 provider: atom()
}

An AI model configuration

 Functions

 default_model(spec)

 @spec default_model(map()) :: binary() | nil

Gets the default model for a provider spec.
Falls back to the first available model if no default is specified.
Parameters
	spec - Provider spec struct with :default_model and :models fields

Returns
The default model string, or nil if no models are available.
Examples
iex> spec = %{default_model: "gpt-4", models: %{"gpt-3.5" => %{}, "gpt-4" => %{}}}
iex> ReqLLM.Model.default_model(spec)
"gpt-4"

iex> spec = %{default_model: nil, models: %{"model-a" => %{}, "model-b" => %{}}}
iex> ReqLLM.Model.default_model(spec)
"model-a"

iex> spec = %{default_model: nil, models: %{}}
iex> ReqLLM.Model.default_model(spec)
nil

 from(model)

 @spec from(t() | {atom(), String.t(), keyword()} | {atom(), keyword()} | String.t()) ::
 {:ok, t()} | {:error, term()}

Creates a model from various input formats.
Supports:
	Existing Model struct (returned as-is)
	3-tuple format: {provider, model, opts} where provider is atom, model is string, opts is keyword list
	2-tuple format (legacy): {provider, opts} where provider is atom and opts is keyword list with :model key
	String format: "provider:model" (e.g., "anthropic:claude-3-5-sonnet")

Examples
From existing struct
{:ok, model} = ReqLLM.Model.from(%ReqLLM.Model{provider: :anthropic, model: "claude-3-5-sonnet"})

From 3-tuple format (preferred)
{:ok, model} = ReqLLM.Model.from({:anthropic, "claude-3-5-sonnet", max_tokens: 1000})

From 2-tuple format (legacy support)
{:ok, model} = ReqLLM.Model.from({:anthropic, model: "claude-3-5-sonnet", max_tokens: 1000,
 capabilities: %{tool_call: true}})

From string specification
{:ok, model} = ReqLLM.Model.from("anthropic:claude-3-sonnet")

 from!(input)

 @spec from!(t() | {atom(), String.t(), keyword()} | {atom(), keyword()} | String.t()) ::
 t()

Creates a model from input, raising an exception on error.
Examples
iex> model = ReqLLM.Model.from!("anthropic:claude-3-haiku-20240307")
iex> {model.provider, model.model, model.max_tokens}
{:anthropic, "claude-3-haiku-20240307", 4096}

 new(provider, model, opts \\ [])

 @spec new(atom(), String.t(), keyword()) :: t()

Creates a new model with the specified provider and model name.
Parameters
	provider - The provider atom (e.g., :anthropic)
	model - The model name string (e.g., "gpt-4", "claude-3-sonnet")
	opts - Optional keyword list of parameters

Options
	:max_tokens - Maximum tokens the model can generate (defaults to model's output limit)
	:max_retries - Maximum retry attempts (default: 3)
	:limit - Token limits map with :context and :output keys
	:modalities - Input/output modalities map with lists of supported types
	:capabilities - Model capabilities like :reasoning, :tool_call, :temperature, :attachment
	:cost - Pricing information with :input and :output cost per 1K tokens

Examples
iex> ReqLLM.Model.new(:anthropic, "claude-3-5-sonnet")
%ReqLLM.Model{provider: :anthropic, model: "claude-3-5-sonnet", max_tokens: nil, max_retries: 3}

iex> ReqLLM.Model.new(:anthropic, "claude-3-sonnet", max_tokens: 1000)
%ReqLLM.Model{provider: :anthropic, model: "claude-3-sonnet", max_tokens: 1000, max_retries: 3}

 valid?(arg1)

 @spec valid?(t()) :: boolean()

Validates that a model struct has required fields.
Examples
iex> model = %ReqLLM.Model{provider: :anthropic, model: "claude-3-5-sonnet", max_tokens: 4096, max_retries: 3}
iex> ReqLLM.Model.valid?(model)
true

iex> ReqLLM.Model.valid?(%{provider: :anthropic, model: "claude-3-5-sonnet"})
false

 with_defaults(model)

 @spec with_defaults(t()) :: t()

Returns a model with sensible defaults for missing metadata fields.
This helper fills in common defaults for models that don't have complete metadata.
Examples
iex> model = ReqLLM.Model.new(:anthropic, "claude-3-5-sonnet")
iex> ReqLLM.Model.with_defaults(model).capabilities
%{reasoning: false, tool_call: false, temperature: true, attachment: false}

 with_metadata(model_spec)

 @spec with_metadata(String.t()) :: {:ok, t()} | {:error, String.t()}

Loads a model with full metadata from the models_dev directory.
This is useful for capability verification and other scenarios requiring
detailed model information beyond what's needed for API calls.
Examples
{:ok, model_with_metadata} = ReqLLM.Model.with_metadata("anthropic:claude-3-sonnet")
model_with_metadata.cost
#=> %{"input" => 3.0, "output" => 15.0, ...}

ReqLLM.Provider behaviour

Behavior for LLM provider implementations.
Providers implement this behavior to handle model-specific request configuration,
body encoding, response parsing, and usage extraction. Each provider is a Req plugin
that uses the standard Req request/response pipeline.
Provider Responsibilities
	Request Preparation: Configure operation-specific requests via prepare_request/4
	Request Configuration: Set headers, base URLs, authentication via attach/3
	Body Encoding: Transform Context to provider-specific JSON via encode_body/1
	Response Parsing: Decode API responses via decode_response/1
	Usage Extraction: Parse usage/cost data via extract_usage/2 (optional)

Implementation Pattern
Providers use ReqLLM.Provider.DSL to define their configuration and implement
the required callbacks as Req pipeline steps.
Examples
defmodule MyProvider do
 @behaviour ReqLLM.Provider

 use ReqLLM.Provider.DSL,
 id: :myprovider,
 base_url: "https://api.example.com/v1",
 metadata: "priv/models_dev/myprovider.json"

 @impl ReqLLM.Provider
 def prepare_request(operation, model, messages, opts) do
 with {:ok, request} <- Req.new(base_url: "https://api.example.com/v1"),
 request <- add_auth_headers(request),
 request <- add_operation_specific_config(request, operation) do
 {:ok, request}
 end
 end

 @impl ReqLLM.Provider
 def attach(request, model, opts) do
 request
 |> add_auth_headers()
 |> Req.Request.append_request_steps(llm_encode_body: &encode_body/1)
 |> Req.Request.append_response_steps(llm_decode_response: &decode_response/1)
 end

 def encode_body(request) do
 # Transform request.options[:context] to provider JSON
 end

 def decode_response({req, resp}) do
 # Parse response body and return {req, updated_resp}
 end
end

 Summary

 Types

 operation()

 Callbacks

 attach(t, t, keyword)

 Attaches provider-specific configuration to a Req request.

 decode_response({})

 Decodes provider API response.

 default_env_key()

 Returns the default environment variable name for API authentication.

 encode_body(t)

 Encodes request body for provider API.

 extract_usage(term, arg2)

 Extracts usage/cost metadata from response body (optional).

 prepare_request(operation, arg2, term, keyword)

 Prepares a new request for a specific operation type.

 Functions

 get(provider_id)

 Registry function to get provider module for a provider ID.

 get!(provider_id)

 Registry function with bang syntax (raises on error).

 Types

 operation()

 @type operation() :: :chat | :embed | :moderate | atom()

 Callbacks

 attach(t, t, keyword)

 @callback attach(Req.Request.t(), ReqLLM.Model.t(), keyword()) :: Req.Request.t()

Attaches provider-specific configuration to a Req request.
This callback configures the request for the specific provider by setting up
authentication, base URLs, and registering request/response pipeline steps.
Parameters
	request - The Req.Request struct to configure
	model - The ReqLLM.Model struct with model specification
	opts - Additional options (messages, tools, streaming, etc.)

Returns
	Req.Request.t() - The configured request with pipeline steps attached

 decode_response({})

 @callback decode_response({Req.Request.t(), Req.Response.t()}) ::
 {Req.Request.t(), Req.Response.t() | Exception.t()}

Decodes provider API response.
This callback is typically used as a Req response step that transforms the
raw API response into a standardized format for ReqLLM consumption.
Parameters
	request_response - Tuple of {Req.Request.t(), Req.Response.t()}

Returns
	{Req.Request.t(), Req.Response.t() | Exception.t()} - Decoded response or error

 default_env_key()

 (optional)

 @callback default_env_key() :: String.t()

Returns the default environment variable name for API authentication.
This callback provides the fallback environment variable name when the
provider metadata doesn't specify one. Generated automatically by the
DSL if default_env_key is provided.
Returns
	String.t() - Environment variable name (e.g., "ANTHROPIC_API_KEY")

 encode_body(t)

 @callback encode_body(Req.Request.t()) :: Req.Request.t()

Encodes request body for provider API.
This callback is typically used as a Req request step that transforms the
request options (especially :context) into the provider-specific JSON body.
Parameters
	request - The Req.Request struct with options to encode

Returns
	Req.Request.t() - Request with encoded body

 extract_usage(term, arg2)

 (optional)

 @callback extract_usage(term(), ReqLLM.Model.t() | nil) :: {:ok, map()} | {:error, term()}

Extracts usage/cost metadata from response body (optional).
This callback is called by ReqLLM.Step.Usage if the provider module
exports this function. It allows custom usage extraction beyond the
standard formats.
Parameters
	body - The response body (typically a map)
	model - The ReqLLM.Model struct (may be nil)

Returns
	{:ok, map()} - Usage metadata map with keys like :input, :output
	{:error, term()} - Extraction error

 prepare_request(operation, arg2, term, keyword)

 @callback prepare_request(
 operation(),
 ReqLLM.Model.t() | term(),
 term(),
 keyword()
) :: {:ok, Req.Request.t()} | {:error, Exception.t()}

Prepares a new request for a specific operation type.
This callback creates and configures a new Req request from scratch for the
given operation, model, and parameters. It should handle all operation-specific
configuration including authentication, headers, and base URLs.
Parameters
	operation - The type of operation (:chat, :embed, :moderate, etc.)
	model - The ReqLLM.Model struct or model identifier
	data - Operation-specific data (messages for chat, text for embed, etc.)
	opts - Additional options (stream, temperature, etc.)

Returns
	{:ok, Req.Request.t()} - Successfully configured request
	{:error, Exception.t()} - Configuration error (using Splode exception types)

Examples
Chat operation
def prepare_request(:chat, model, messages, opts) do
 {:ok, request} = Req.new(base_url: "https://api.anthropic.com")
 request = add_auth_headers(request)
 request = put_in(request.options[:json], %{
 model: model.name,
 messages: messages,
 stream: opts[:stream] || false
 })
 {:ok, request}
end

Embedding operation
def prepare_request(:embed, model, text, opts) do
 {:ok, request} = Req.new(base_url: "https://api.anthropic.com/v1/embed")
 {:ok, add_auth_headers(request)}
end

 Functions

 get(provider_id)

 @spec get(atom()) :: {:ok, module()} | {:error, term()}

Registry function to get provider module for a provider ID.
Parameters
	provider_id - Atom identifying the provider (e.g., :anthropic)

Returns
	{:ok, module()} - Provider module that implements this behavior
	{:error, term()} - Provider not found

 get!(provider_id)

 @spec get!(atom()) :: module()

Registry function with bang syntax (raises on error).

ReqLLM.Provider.DSL

Domain-Specific Language for defining ReqLLM providers.
This macro simplifies provider creation by automatically handling:
	Plugin behaviour implementation
	Metadata loading from JSON files
	Provider registry registration
	Default configuration setup

Usage
defmodule MyProvider do
use ReqLLM.Provider.DSL,
id: :my_provider,
base_url: "https://api.example.com/v1",
metadata: "priv/models_dev/my_provider.json"

 def attach(request, model) do
 # Provider-specific request configuration
 end

 def parse(response, model) do
 # Provider-specific response parsing
 end
end
Options
	:id - Unique provider identifier (required atom)
	:base_url - Default API base URL (required string)
	:metadata - Path to JSON metadata file (optional string)
	:context_wrapper - Module name for context wrapper struct (optional atom)
	:response_wrapper - Module name for response wrapper struct (optional atom)
	:provider_schema - NimbleOptions schema defining supported options and defaults (optional keyword list)

Generated Code
The DSL automatically generates:
	Plugin Behaviour: use Req.Plugin
	Default Base URL: def default_base_url(), do: "https://api.example.com/v1"
	Registry Registration: Calls ReqLLM.Provider.Registry.register/3
	Metadata Loading: Loads and parses JSON metadata at compile time

Metadata Files
Metadata files should contain JSON with model information:
{
 "models": [
 {
 "id": "my-model-1",
 "context_length": 8192,
 "capabilities": ["text_generation"],
 "pricing": {
 "input": 0.001,
 "output": 0.002
 }
 }
],
 "capabilities": ["text_generation", "embeddings"],
 "documentation": "https://api.example.com/docs"
}
Example Implementation
defmodule ReqLLM.Providers.Example do
use ReqLLM.Provider.DSL,
id: :example,
base_url: "https://api.example.com/v1",
metadata: "priv/models_dev/example.json",
context_wrapper: ReqLLM.Providers.Example.Context,
response_wrapper: ReqLLM.Providers.Example.Response,
provider_schema: [
 temperature: [type: :float, default: 0.7],
 max_tokens: [type: :pos_integer, default: 1024],
 stream: [type: :boolean, default: false],
 api_version: [type: :string, default: "2023-06-01"]
]

 def attach(request, %ReqLLM.Model{} = model) do
 api_key = ReqLLM.get_key(:example_api_key)

 request
 |> Req.Request.put_header("authorization", "Bearer #{api_key}")
 |> Req.Request.put_header("content-type", "application/json")
 |> Req.Request.put_base_url(default_base_url())
 |> Req.Request.put_body(%{
 model: model.model,
 messages: format_messages(model.context),
 temperature: model.temperature
 })
 end

 def parse(response, %ReqLLM.Model{} = model) do
 case response.body do
 %{"content" => content} ->
 {:ok, content}
 %{"error" => error} ->
 {:error, ReqLLM.Error.api_error(error)}
 _ ->
 {:error, ReqLLM.Error.parse_error("Invalid response format")}
 end
 end

 # Private helper functions...
end

 Summary

 Functions

 __using__(opts)

 Sigil for defining lists of atoms from space-separated words.

 Functions

 __using__(opts)

 (macro)

Sigil for defining lists of atoms from space-separated words.
Examples
~a[temperature max_tokens top_p] # => [:temperature, :max_tokens, :top_p]

ReqLLM.Provider.Options

Comprehensive provider options module for ReqLLM.
This module defines all possible provider options that can be used across different
AI model providers, including both provider-level configuration and model-level
parameters. Options are validated using NimbleOptions schemas.
Option Categories
	Provider Configuration - Base settings for provider connections
	Model Capabilities - What features a model supports
	Generation Parameters - Runtime options for text generation
	Cost & Limits - Pricing and usage constraints
	Advanced Options - Provider-specific advanced settings

 Summary

 Functions

 all_capability_keys()

 Returns a list of all known model capability keys.

 all_cost_keys()

 Returns a list of all known model cost keys.

 all_generation_keys()

 Returns a list of all known generation option keys.

 all_limit_keys()

 Returns a list of all known model limit keys.

 all_provider_keys()

 Returns a list of all known provider option keys.

 complete_options_schema()

 Complete options schema combining all option categories.

 extract_generation_opts(opts)

 Extracts only generation options from a mixed options list.

 extract_provider_options(opts)

 Extracts provider-specific options from a mixed options list.

 filter_for_provider(opts, provider)

 Filters options to only include those supported by a specific provider.

 filter_generation_options(opts, keys)

 Filters generation options to only include supported keys.

 generation_options_schema()

 Generation parameter options.

 generation_subset_schema(keys)

 Returns a NimbleOptions schema that contains only the requested generation keys.

 merge_with_defaults(opts, defaults)

 Merges options with defaults, respecting provider-specific overrides.

 model_capabilities_schema()

 Model capability options.

 model_cost_schema()

 Model cost options.

 model_limits_schema()

 Model limit options.

 provider_options_schema()

 Provider-level configuration options.

 validate_capabilities(opts)

 Validates model capabilities against the schema.

 validate_cost(opts)

 Validates model cost options against the schema.

 validate_generation_options(opts)

 Validates generation options against the schema.

 validate_generation_options(opts, list)

 Validates generation options against a subset of supported keys.

 validate_limits(opts)

 Validates model limits against the schema.

 validate_provider_options(opts)

 Validates provider options against the schema.

 Functions

 all_capability_keys()

Returns a list of all known model capability keys.

 all_cost_keys()

Returns a list of all known model cost keys.

 all_generation_keys()

Returns a list of all known generation option keys.

 all_limit_keys()

Returns a list of all known model limit keys.

 all_provider_keys()

Returns a list of all known provider option keys.

 complete_options_schema()

Complete options schema combining all option categories.
This can be used for validating a complete set of provider and generation options.

 extract_generation_opts(opts)

 @spec extract_generation_opts(keyword()) :: keyword()

Extracts only generation options from a mixed options list.
Unlike extract_provider_options/1, this returns only the generation
options without the unused remainder.
Parameters
	opts - Mixed options list

Returns
Keyword list containing only generation options.
Examples
iex> mixed_opts = [temperature: 0.7, custom_param: "value", max_tokens: 100]
iex> ReqLLM.Provider.Options.extract_generation_opts(mixed_opts)
[temperature: 0.7, max_tokens: 100]

 extract_provider_options(opts)

Extracts provider-specific options from a mixed options list.
This is useful for separating standard options from provider-specific ones.
Examples
iex> opts = [temperature: 0.7, max_tokens: 100, custom_param: "value"]
iex> ReqLLM.Provider.Options.extract_provider_options(opts)
{[temperature: 0.7, max_tokens: 100], [custom_param: "value"]}

 filter_for_provider(opts, provider)

Filters options to only include those supported by a specific provider.
This function would typically be implemented by each provider to filter
out unsupported options.

 filter_generation_options(opts, keys)

Filters generation options to only include supported keys.
This is a pure filter function that doesn't validate - it just removes
unsupported keys from the options.
Examples
iex> opts = [temperature: 0.7, unsupported_key: "value", max_tokens: 100]
iex> ReqLLM.Provider.Options.filter_generation_options(opts, [:temperature, :max_tokens])
[temperature: 0.7, max_tokens: 100]

 generation_options_schema()

Generation parameter options.
These are runtime options that can be passed when generating text.

 generation_subset_schema(keys)

Returns a NimbleOptions schema that contains only the requested generation keys.
Examples
iex> schema = ReqLLM.Provider.Options.generation_subset_schema([:temperature, :max_tokens])
iex> NimbleOptions.validate([temperature: 0.7], schema)
{:ok, [temperature: 0.7]}

 merge_with_defaults(opts, defaults)

Merges options with defaults, respecting provider-specific overrides.
Examples
iex> defaults = [temperature: 0.7, max_tokens: 1000]
iex> user_opts = [temperature: 0.9]
iex> ReqLLM.Provider.Options.merge_with_defaults(user_opts, defaults)
[temperature: 0.9, max_tokens: 1000]

 model_capabilities_schema()

Model capability options.
These options describe what features and modalities a model supports.

 model_cost_schema()

Model cost options.
These options define the pricing structure for a model.

 model_limits_schema()

Model limit options.
These options define the constraints and limits of a model.

 provider_options_schema()

Provider-level configuration options.
These options configure the provider connection and authentication.

 validate_capabilities(opts)

Validates model capabilities against the schema.
Examples
iex> ReqLLM.Provider.Options.validate_capabilities(
...> id: "gpt-4",
...> reasoning: true,
...> tool_call: true
...>)
{:ok, [id: "gpt-4", reasoning: true, tool_call: true]}

 validate_cost(opts)

Validates model cost options against the schema.
Examples
iex> ReqLLM.Provider.Options.validate_cost(
...> input: 3.0,
...> output: 15.0
...>)
{:ok, [input: 3.0, output: 15.0]}

 validate_generation_options(opts)

Validates generation options against the schema.
Examples
iex> ReqLLM.Provider.Options.validate_generation_options(
...> temperature: 0.7,
...> max_tokens: 1000,
...> stream: true
...>)
{:ok, [temperature: 0.7, max_tokens: 1000, stream: true]}

 validate_generation_options(opts, list)

Validates generation options against a subset of supported keys.
Examples
iex> ReqLLM.Provider.Options.validate_generation_options(
...> [temperature: 0.7, max_tokens: 100],
...> only: [:temperature, :max_tokens]
...>)
{:ok, [temperature: 0.7, max_tokens: 100]}

 validate_limits(opts)

Validates model limits against the schema.
Examples
iex> ReqLLM.Provider.Options.validate_limits(
...> context: 128000,
...> output: 4096
...>)
{:ok, [context: 128000, output: 4096]}

 validate_provider_options(opts)

Validates provider options against the schema.
Examples
iex> ReqLLM.Provider.Options.validate_provider_options(
...> id: :openai,
...> base_url: "https://api.openai.com/v1",
...> env: ["OPENAI_API_KEY"]
...>)
{:ok, [id: :openai, base_url: "https://api.openai.com/v1", env: ["OPENAI_API_KEY"]]}

ReqLLM.Provider.Registry

Registry for AI providers and their supported models.
The registry uses :persistent_term for efficient, read-heavy access patterns typical
in AI applications. Providers are registered at compile time through the DSL, ensuring
all available providers and models are known at startup.
Storage Format
The registry stores providers as:
%{
 provider_id => %{
 module: Module,
 metadata: %{models: [...], capabilities: [...], ...}
 }
}
Usage Examples
Get a provider module
{:ok, module} = ReqLLM.Provider.Registry.get_provider(:anthropic)
module #=> ReqLLM.Providers.Anthropic

Get model information
{:ok, model} = ReqLLM.Provider.Registry.get_model(:anthropic, "claude-3-sonnet")
model.metadata.context_length #=> 200000

Check if a model exists
ReqLLM.Provider.Registry.model_exists?("anthropic:claude-3-sonnet") #=> true

List all providers
ReqLLM.Provider.Registry.list_providers() #=> [:anthropic, :openai, :github_models]

List models for a provider
ReqLLM.Provider.Registry.list_models(:anthropic) #=> ["claude-3-sonnet", "claude-3-haiku", ...]
Integration
The registry is automatically populated by providers using ReqLLM.Provider.DSL:
defmodule MyProvider do
 use ReqLLM.Provider.DSL,
 id: :my_provider,
 base_url: "https://api.example.com/v1",
 metadata: "priv/models_dev/my_provider.json"

 # Provider implementation...
end
The DSL calls register/3 during compilation to add the provider to the registry.

 Summary

 Functions

 clear()

 Clears the provider registry.

 fetch(provider_id)

 Alias for get_provider/1 to match legacy API expectations.

 get_env_key(provider_id)

 Gets the environment variable key for a provider's API authentication.

 get_model(provider_id, model_name)

 Retrieves model information for a specific provider and model.

 get_model!(model_spec)

 Retrieves model information with bang syntax (raises on error).

 get_provider(provider_id)

 Retrieves a provider module by ID.

 get_provider_metadata(provider_id)

 Retrieves complete provider metadata by ID.

 implemented?(provider_id)

 Checks if a provider is fully implemented.

 initialize()

 Initializes the provider registry by discovering and registering all provider modules.

 list_implemented_providers()

 Lists only fully implemented providers (have modules).

 list_metadata_only_providers()

 Lists providers that exist only as metadata (no implementation).

 list_models(provider_id)

 Lists all model names supported by a provider.

 list_providers()

 Lists all registered provider IDs.

 model_exists?(model_spec)

 Checks if a model specification exists in the registry.

 register(provider_id, module, metadata)

 Registers a provider in the global registry.

 reload()

 Functions

 clear()

 @spec clear() :: :ok

Clears the provider registry.
Mainly useful for testing.

 fetch(provider_id)

 @spec fetch(atom()) :: {:ok, module()} | {:error, :not_found}

Alias for get_provider/1 to match legacy API expectations.

 get_env_key(provider_id)

 @spec get_env_key(atom()) :: String.t() | nil

Gets the environment variable key for a provider's API authentication.
Tries to get the key from provider metadata first, then falls back
to the provider's default_env_key/0 callback if implemented.
Parameters
	provider_id - Provider atom identifier (e.g., :anthropic)

Returns
The environment variable name string, or nil if not found.
Examples
iex> ReqLLM.Provider.Registry.get_env_key(:anthropic)
"ANTHROPIC_API_KEY"

iex> ReqLLM.Provider.Registry.get_env_key(:unknown)
nil

 get_model(provider_id, model_name)

 @spec get_model(atom(), String.t()) ::
 {:ok, ReqLLM.Model.t()} | {:error, :provider_not_found | :model_not_found}

Retrieves model information for a specific provider and model.
Parameters
	provider_id - The provider identifier (atom)
	model_name - The model name (string)

Returns
	{:ok, model} - ReqLLM.Model struct with metadata
	{:error, :provider_not_found} - Provider not registered
	{:error, :model_not_found} - Model not supported by provider

Examples
{:ok, model} = ReqLLM.Provider.Registry.get_model(:anthropic, "claude-3-sonnet")
model.metadata.context_length #=> 200000
model.metadata.pricing.input #=> 0.003

ReqLLM.Provider.Registry.get_model(:anthropic, "unknown-model")
#=> {:error, :model_not_found}

 get_model!(model_spec)

 @spec get_model!(String.t()) :: ReqLLM.Model.t() | no_return()

Retrieves model information with bang syntax (raises on error).
Same as get_model/2 but raises ArgumentError instead of returning error tuples.
Parameters
	model_spec - Model specification string (e.g., "anthropic:claude-3-sonnet")

Examples
model = ReqLLM.Provider.Registry.get_model!("anthropic:claude-3-sonnet")
model.metadata.context_length #=> 200000

ReqLLM.Provider.Registry.get_model!("unknown:model")
#=> ** (ArgumentError) Provider not found: unknown

 get_provider(provider_id)

 @spec get_provider(atom()) :: {:ok, module()} | {:error, :not_found}

Retrieves a provider module by ID.
Parameters
	provider_id - The provider identifier (atom)

Returns
	{:ok, module} - Provider module found
	{:error, :not_found} - Provider not registered

Examples
{:ok, module} = ReqLLM.Provider.Registry.get_provider(:anthropic)
module #=> ReqLLM.Providers.Anthropic

ReqLLM.Provider.Registry.get_provider(:unknown)
#=> {:error, :not_found}

 get_provider_metadata(provider_id)

 @spec get_provider_metadata(atom()) :: {:ok, map()} | {:error, :not_found}

Retrieves complete provider metadata by ID.
Parameters
	provider_id - The provider identifier (atom)

Returns
	{:ok, metadata} - Provider metadata map
	{:error, :not_found} - Provider not registered

Examples
{:ok, metadata} = ReqLLM.Provider.Registry.get_provider_metadata(:anthropic)
env_vars = get_in(metadata, ["provider", "env"])
env_vars #=> ["ANTHROPIC_API_KEY"]

 implemented?(provider_id)

 @spec implemented?(atom()) :: boolean()

Checks if a provider is fully implemented.
Parameters
	provider_id - The provider identifier (atom)

Returns
	true - Provider has both module and metadata
	false - Provider is metadata-only or doesn't exist

Examples
ReqLLM.Provider.Registry.implemented?(:anthropic)
#=> true

ReqLLM.Provider.Registry.implemented?(:mistral)
#=> false (metadata-only)

 initialize()

 @spec initialize() :: :ok

Initializes the provider registry by discovering and registering all provider modules.
This function scans for modules that implement the ReqLLM.Provider behaviour
and registers them automatically.

 list_implemented_providers()

 @spec list_implemented_providers() :: [atom()]

Lists only fully implemented providers (have modules).
Returns
List of provider atoms that can actually make API calls.
Examples
ReqLLM.Provider.Registry.list_implemented_providers()
#=> [:anthropic, :openai]

 list_metadata_only_providers()

 @spec list_metadata_only_providers() :: [atom()]

Lists providers that exist only as metadata (no implementation).
Returns
List of provider atoms that have metadata but no implementation.
Examples
ReqLLM.Provider.Registry.list_metadata_only_providers()
#=> [:mistral, :openrouter, :groq]

 list_models(provider_id)

 @spec list_models(atom()) :: {:ok, [String.t()]} | {:error, :provider_not_found}

Lists all model names supported by a provider.
Parameters
	provider_id - The provider identifier (atom)

Returns
	{:ok, models} - List of model name strings
	{:error, :not_found} - Provider not registered

Examples
{:ok, models} = ReqLLM.Provider.Registry.list_models(:anthropic)
models #=> ["claude-3-sonnet", "claude-3-haiku", "claude-3-opus"]

ReqLLM.Provider.Registry.list_models(:unknown)
#=> {:error, :not_found}

 list_providers()

 @spec list_providers() :: [atom()]

Lists all registered provider IDs.
Returns
List of provider atoms in registration order.
Examples
ReqLLM.Provider.Registry.list_providers()
#=> [:anthropic, :openai, :github_models]

 model_exists?(model_spec)

 @spec model_exists?(String.t()) :: boolean()

Checks if a model specification exists in the registry.
Parameters
	model_spec - Model specification string (e.g., "anthropic:claude-3-sonnet")

Returns
Boolean indicating if the model exists.
Examples
ReqLLM.Provider.Registry.model_exists?("anthropic:claude-3-sonnet") #=> true
ReqLLM.Provider.Registry.model_exists?("unknown:model") #=> false

 register(provider_id, module, metadata)

 @spec register(atom(), module(), map()) ::
 :ok | {:error, {:already_registered, module()}}

Registers a provider in the global registry.
Called automatically by the DSL during compilation. Should not be called manually.
Parameters
	provider_id - Unique identifier for the provider (atom)
	module - The provider module implementing Req plugin pattern
	metadata - Provider metadata including supported models

Examples
ReqLLM.Provider.Registry.register(:my_provider, MyProvider, %{
 models: ["model-1", "model-2"],
 capabilities: [:text_generation, :embeddings]
})

 reload()

 @spec reload() :: :ok

ReqLLM.Provider.Utils

Shared utilities for provider implementations.
Contains common functions used across multiple providers to eliminate
duplication and ensure consistency.
Examples
iex> ReqLLM.Provider.Utils.normalize_messages("Hello world")
[%{role: "user", content: "Hello world"}]

iex> messages = [%{role: "user", content: "Hi"}]
iex> ReqLLM.Provider.Utils.normalize_messages(messages)
[%{role: "user", content: "Hi"}]

 Summary

 Functions

 ensure_parsed_body(body)

 Ensures the response body is parsed from JSON if it's binary.

 maybe_put(opts, key, value)

 Conditionally puts a value into a keyword list or map if the value is not nil.

 maybe_put_context(opts, user_opts)

 Adds context to options if present in user options, with type validation.

 normalize_messages(prompt)

 Normalizes various prompt formats into a standardized messages list.

 prepare_options!(provider_mod, model, user_opts)

 Prepares provider options using a clean pipeline approach.

 reject_unknown!(opts, allowed)

 Raises an error if unknown options are present.

 validate_subset!(opts, allowed_keys)

 Validates generation options against a subset schema, raising on error.

 Functions

 ensure_parsed_body(body)

 @spec ensure_parsed_body(term()) :: term()

Ensures the response body is parsed from JSON if it's binary.
Common utility for providers to ensure they have parsed JSON data
instead of raw binary response bodies.
Parameters
	body - Response body that may be binary JSON or already parsed

Returns
Parsed body (map/list) or original body if parsing fails.
Examples
iex> ReqLLM.Provider.Utils.ensure_parsed_body(~s({"message": "hello"}))
%{"message" => "hello"}

iex> ReqLLM.Provider.Utils.ensure_parsed_body(%{"already" => "parsed"})
%{"already" => "parsed"}

iex> ReqLLM.Provider.Utils.ensure_parsed_body("invalid json")
"invalid json"

 maybe_put(opts, key, value)

 @spec maybe_put(keyword() | map(), atom(), term()) :: keyword() | map()

Conditionally puts a value into a keyword list or map if the value is not nil.
Parameters
	opts - Keyword list or map to potentially modify
	key - Key to add
	value - Value to add (if not nil)

Returns
The keyword list or map, with key-value pair added if value is not nil.
Examples
iex> ReqLLM.Provider.Utils.maybe_put([], :name, "John")
[name: "John"]

iex> ReqLLM.Provider.Utils.maybe_put(%{}, :name, "John")
%{name: "John"}

iex> ReqLLM.Provider.Utils.maybe_put([], :name, nil)
[]

iex> ReqLLM.Provider.Utils.maybe_put(%{}, :name, nil)
%{}

 maybe_put_context(opts, user_opts)

 @spec maybe_put_context(keyword(), keyword()) :: keyword()

Adds context to options if present in user options, with type validation.
Parameters
	opts - Current options keyword list
	user_opts - Original user options to check for context

Returns
Options with context added if present.
Raises
ReqLLM.Error.Invalid.Parameter if context is not a ReqLLM.Context struct.
Examples
iex> context = %ReqLLM.Context{messages: []}
iex> ReqLLM.Provider.Utils.maybe_put_context([model: "gpt-4"], [context: context])
[model: "gpt-4", context: context]

 normalize_messages(prompt)

 @spec normalize_messages(binary() | list() | term()) :: [map()]

Normalizes various prompt formats into a standardized messages list.
Parameters
	prompt - Can be a string, list of messages, or any other type that can be converted to string

Returns
A list of message maps with :role and :content keys.
Examples
iex> ReqLLM.Provider.Utils.normalize_messages("What is the weather?")
[%{role: "user", content: "What is the weather?"}]

iex> messages = [%{role: "user", content: "Hello"}, %{role: "assistant", content: "Hi there!"}]
iex> ReqLLM.Provider.Utils.normalize_messages(messages)
[%{role: "user", content: "Hello"}, %{role: "assistant", content: "Hi there!"}]

iex> ReqLLM.Provider.Utils.normalize_messages(123)
[%{role: "user", content: "123"}]

 prepare_options!(provider_mod, model, user_opts)

 @spec prepare_options!(module(), ReqLLM.Model.t(), keyword()) :: keyword()

Prepares provider options using a clean pipeline approach.
This is the main helper that providers can use to process user options
into a clean, validated keyword list ready for the Req request.
Parameters
	provider_mod - The provider module (must implement supported_provider_options/0 and default_provider_opts/0)
	model - ReqLLM.Model struct
	user_opts - Raw user options

Returns
Validated and processed options keyword list.
Examples
iex> model = %ReqLLM.Model{provider: :anthropic, model: "claude-3-haiku"}
iex> user_opts = [temperature: 0.7, max_tokens: 1000]
iex> ReqLLM.Provider.Utils.prepare_options!(MyProvider, model, user_opts)
[temperature: 0.7, max_tokens: 1000, model: "claude-3-haiku"]

 reject_unknown!(opts, allowed)

 @spec reject_unknown!(
 keyword(),
 [atom()]
) :: keyword()

Raises an error if unknown options are present.
Parameters
	opts - Options to validate
	allowed - List of allowed option keys

Returns
The original options if all keys are allowed.
Raises
ReqLLM.Error.Invalid.Parameter if unknown options are found.
Examples
iex> ReqLLM.Provider.Utils.reject_unknown!([temperature: 0.7], [:temperature, :max_tokens])
[temperature: 0.7]

iex> ReqLLM.Provider.Utils.reject_unknown!([bad_key: "value"], [:temperature])
** (ReqLLM.Error.Invalid.Parameter) unsupported options: [:bad_key]

 validate_subset!(opts, allowed_keys)

 @spec validate_subset!(
 keyword(),
 [atom()]
) :: keyword()

Validates generation options against a subset schema, raising on error.
Parameters
	opts - Options to validate
	allowed_keys - Keys to include in validation schema

Returns
The validated options.
Raises
NimbleOptions.ValidationError if validation fails.
Examples
iex> ReqLLM.Provider.Utils.validate_subset!([temperature: 0.7], [:temperature, :max_tokens])
[temperature: 0.7]

ReqLLM.Providers.Anthropic

Anthropic provider implementation using the Provider behavior.
Supports Anthropic's Messages API with features including:
	Text generation with Claude models
	Streaming responses
	Tool calling
	Multi-modal inputs (text and images)
	Thinking/reasoning tokens

Configuration
Set your Anthropic API key via environment variable:
export ANTHROPIC_API_KEY="your-api-key-here"
Examples
Simple text generation
model = ReqLLM.Model.from("anthropic:claude-3-haiku-20240307")
{:ok, response} = ReqLLM.generate_text(model, "Hello!")

Streaming
{:ok, stream} = ReqLLM.stream_text(model, "Tell me a story", stream: true)

Tool calling
tools = [%ReqLLM.Tool{name: "get_weather", ...}]
{:ok, response} = ReqLLM.generate_text(model, "What's the weather?", tools: tools)

 Summary

 Functions

 default_base_url()

 default_env_key()

 Callback implementation for ReqLLM.Provider.default_env_key/0.

 default_provider_opts()

 metadata()

 prepare_request(operation, model_input, context, opts)

 Attaches the Anthropic plugin to a Req request.

 prepare_request(atom, model_input, context, compiled_schema, opts)

 provider_id()

 provider_schema()

 supported_provider_options()

 Functions

 default_base_url()

 default_env_key()

Callback implementation for ReqLLM.Provider.default_env_key/0.

 default_provider_opts()

 metadata()

 prepare_request(operation, model_input, context, opts)

Attaches the Anthropic plugin to a Req request.
Parameters
	request - The Req request to attach to
	model_input - The model (ReqLLM.Model struct, string, or tuple) that triggers this provider
	opts - Options keyword list (validated against comprehensive schema)

Request Options
	:temperature - Controls randomness (0.0-2.0). Defaults to 0.7
	:max_tokens - Maximum tokens to generate. Defaults to 1024
	:stream? - Enable streaming responses. Defaults to false
	:base_url - Override base URL. Defaults to provider default
	:messages - Chat messages to send
	:system - System message
	All options from ReqLLM.Provider.Options schemas are supported

 prepare_request(atom, model_input, context, compiled_schema, opts)

 provider_id()

 provider_schema()

 supported_provider_options()

ReqLLM.Providers.Anthropic.StreamDecoder

Handles streaming SSE events from Anthropic and properly accumulates JSON deltas
for tool calls before emitting complete StreamChunk structs.
This module fixes the issue where streaming tool calls return empty %{} arguments
by accumulating input_json_delta events until a content_block_stop event
signals that the JSON is complete.

 Summary

 Functions

 build_stream(raw_stream)

 Builds a stream that properly accumulates tool call arguments from SSE events.

 Functions

 build_stream(raw_stream)

Builds a stream that properly accumulates tool call arguments from SSE events.
Takes a raw stream of SSE events and returns a stream of complete StreamChunk structs
with properly populated tool call arguments.

ReqLLM.Providers.Google

Google Gemini provider implementation using the Provider behavior.
Supports Google's Gemini API with features including:
	Text generation with Gemini models
	Streaming responses
	Tool calling
	Multi-modal inputs (text, images, audio, video)
	Various safety settings

Configuration
Set your Google API key via environment variable:
export GOOGLE_API_KEY="your-api-key-here"
Examples
Simple text generation
model = ReqLLM.Model.from("google:gemini-1.5-flash")
{:ok, response} = ReqLLM.generate_text(model, "Hello!")

Streaming
{:ok, stream} = ReqLLM.stream_text(model, "Tell me a story", stream: true)

Tool calling
tools = [%ReqLLM.Tool{name: "get_weather", ...}]
{:ok, response} = ReqLLM.generate_text(model, "What's the weather?", tools: tools)

 Summary

 Functions

 default_base_url()

 default_env_key()

 Callback implementation for ReqLLM.Provider.default_env_key/0.

 default_provider_opts()

 metadata()

 prepare_request(operation, model_input, context, opts)

 Attaches the Google plugin to a Req request.

 provider_id()

 provider_schema()

 supported_provider_options()

 Functions

 default_base_url()

 default_env_key()

Callback implementation for ReqLLM.Provider.default_env_key/0.

 default_provider_opts()

 metadata()

 prepare_request(operation, model_input, context, opts)

Attaches the Google plugin to a Req request.
Parameters
	request - The Req request to attach to
	model_input - The model (ReqLLM.Model struct, string, or tuple) that triggers this provider
	opts - Options keyword list (validated against comprehensive schema)

Request Options
	:temperature - Controls randomness (0.0-2.0). Defaults to 0.7
	:max_tokens - Maximum tokens to generate. Defaults to 1024
	:stream? - Enable streaming responses. Defaults to false
	:base_url - Override base URL. Defaults to provider default
	:messages - Chat messages to send
	:system - System message
	All options from ReqLLM.Provider.Options schemas are supported

 provider_id()

 provider_schema()

 supported_provider_options()

ReqLLM.Providers.Groq

Groq provider implementation using the Provider behavior.
Groq provides fast LLM inference with OpenAI-compatible API endpoints.
It offers high-performance inference for various open-source models.
Configuration
Set your Groq API key via environment variable:
export GROQ_API_KEY="your-api-key-here"
Examples
Simple text generation
model = ReqLLM.Model.from("groq:llama3-8b-8192")
{:ok, response} = ReqLLM.generate_text(model, "Hello!")

Streaming
{:ok, stream} = ReqLLM.stream_text(model, "Tell me a story", stream: true)

Tool calling
tools = [%ReqLLM.Tool{name: "get_weather", ...}]
{:ok, response} = ReqLLM.generate_text(model, "What's the weather?", tools: tools)

 Summary

 Functions

 default_base_url()

 default_env_key()

 Callback implementation for ReqLLM.Provider.default_env_key/0.

 default_provider_opts()

 metadata()

 prepare_request(operation, model_input, context, opts)

 Attaches the Groq plugin to a Req request.

 provider_id()

 provider_schema()

 supported_provider_options()

 Functions

 default_base_url()

 default_env_key()

Callback implementation for ReqLLM.Provider.default_env_key/0.

 default_provider_opts()

 metadata()

 prepare_request(operation, model_input, context, opts)

Attaches the Groq plugin to a Req request.
Parameters
	request - The Req request to attach to
	model_input - The model (ReqLLM.Model struct, string, or tuple) that triggers this provider
	opts - Options keyword list (validated against comprehensive schema)

Request Options
	:temperature - Controls randomness (0.0-2.0). Defaults to 0.7
	:max_tokens - Maximum tokens to generate. Defaults to 1024
	:stream? - Enable streaming responses. Defaults to false
	:base_url - Override base URL. Defaults to provider default
	:messages - Chat messages to send
	:system - System message
	:service_tier - Performance tier (auto, on_demand, flex, performance)
	:reasoning_effort - Reasoning effort level (none, default, low, medium, high)
	:reasoning_format - Format for reasoning output
	All options from ReqLLM.Provider.Options schemas are supported

 provider_id()

 provider_schema()

 supported_provider_options()

ReqLLM.Providers.OpenAI

OpenAI provider implementation using the Provider behavior.
Supports OpenAI's Chat Completions API with features including:
	Text generation with GPT models
	Streaming responses
	Tool calling
	Multi-modal inputs (text and images)

Configuration
Set your OpenAI API key via JidoKeys:
JidoKeys.put("OPENAI_API_KEY", "your-api-key-here")
Examples
Simple text generation
model = ReqLLM.Model.from("openai:gpt-4")
{:ok, response} = ReqLLM.generate_text(model, "Hello!")

Streaming
{:ok, stream} = ReqLLM.stream_text(model, "Tell me a story", stream: true)

Tool calling
tools = [%ReqLLM.Tool{name: "get_weather", ...}]
{:ok, response} = ReqLLM.generate_text(model, "What's the weather?", tools: tools)

 Summary

 Functions

 default_base_url()

 default_env_key()

 Callback implementation for ReqLLM.Provider.default_env_key/0.

 default_provider_opts()

 metadata()

 prepare_request(operation, model_input, context, opts)

 Attaches the OpenAI plugin to a Req request.

 provider_id()

 provider_schema()

 supported_provider_options()

 Functions

 default_base_url()

 default_env_key()

Callback implementation for ReqLLM.Provider.default_env_key/0.

 default_provider_opts()

 metadata()

 prepare_request(operation, model_input, context, opts)

Attaches the OpenAI plugin to a Req request.
Parameters
	request - The Req request to attach to
	model_input - The model (ReqLLM.Model struct, string, or tuple) that triggers this provider
	opts - Options keyword list (validated against comprehensive schema)

Request Options
	:temperature - Controls randomness (0.0-2.0). Defaults to 0.7
	:max_tokens - Maximum tokens to generate. Defaults to 1024
	:stream? - Enable streaming responses. Defaults to false
	:base_url - Override base URL. Defaults to provider default
	:messages - Chat messages to send
	All options from ReqLLM.Provider.Options schemas are supported

 provider_id()

 provider_schema()

 supported_provider_options()

ReqLLM.Providers.OpenRouter

OpenRouter provider implementation using the Provider behavior.
OpenRouter is a unified API for accessing multiple AI models through a single endpoint.
It normalizes request/response schemas and provides model routing capabilities.
Tool Calling Support
OpenRouter supports tool calling with compatible models using OpenAI-compatible format.
Confirmed working models:
	openrouter:openai/gpt-4
	openrouter:openai/gpt-4-turbo
	openrouter:openai/gpt-3.5-turbo
	openrouter:anthropic/claude-3-haiku
	openrouter:google/gemini-2.0-flash-001

Configuration
Set your OpenRouter API key via environment variable:
export OPENROUTER_API_KEY="your-api-key-here"
Examples
Simple text generation
model = ReqLLM.Model.from("openrouter:anthropic/claude-3-haiku")
{:ok, response} = ReqLLM.generate_text(model, "Hello!")

Streaming
{:ok, stream} = ReqLLM.stream_text(model, "Tell me a story", stream: true)

Tool calling
tools = [%ReqLLM.Tool{name: "get_weather", ...}]
{:ok, response} = ReqLLM.generate_text(model, "What's the weather?", tools: tools)

 Summary

 Functions

 default_base_url()

 default_env_key()

 Callback implementation for ReqLLM.Provider.default_env_key/0.

 default_provider_opts()

 metadata()

 prepare_request(operation, model_input, context, opts)

 Attaches the OpenRouter plugin to a Req request.

 provider_id()

 provider_schema()

 supported_provider_options()

 Functions

 default_base_url()

 default_env_key()

Callback implementation for ReqLLM.Provider.default_env_key/0.

 default_provider_opts()

 metadata()

 prepare_request(operation, model_input, context, opts)

Attaches the OpenRouter plugin to a Req request.
Parameters
	request - The Req request to attach to
	model_input - The model (ReqLLM.Model struct, string, or tuple) that triggers this provider
	opts - Options keyword list (validated against comprehensive schema)

Request Options
	:temperature - Controls randomness (0.0-2.0). Defaults to 0.7
	:max_tokens - Maximum tokens to generate. Defaults to 1024
	:stream? - Enable streaming responses. Defaults to false
	:base_url - Override base URL. Defaults to provider default
	:messages - Chat messages to send
	:system - System message
	All options from ReqLLM.Provider.Options schemas are supported

 provider_id()

 provider_schema()

 supported_provider_options()

ReqLLM.Providers.XAI

xAI provider implementation using the Provider behavior.
xAI provides the Grok family of models with advanced reasoning capabilities
and optional Live Search functionality for real-time information access.
Configuration
Set your xAI API key via JidoKeys:
JidoKeys.put("XAI_API_KEY", "your-api-key-here")
Examples
Simple text generation
model = ReqLLM.Model.from("xai:grok-3")
{:ok, response} = ReqLLM.generate_text(model, "Hello!")

Streaming with reasoning model
{:ok, stream} = ReqLLM.stream_text(model, "Explain quantum physics", stream: true)

Tool calling
tools = [%ReqLLM.Tool{name: "get_weather", ...}]
{:ok, response} = ReqLLM.generate_text(model, "What's the weather?", tools: tools)

Using Live Search (Grok models only)
{:ok, response} = ReqLLM.generate_text(
 model,
 "What's the latest news about AI?",
 provider_options: [live_search: true]
)
Model-specific Notes
	Grok 4 is a reasoning-only model (no non-reasoning mode)
	Grok 4 does not support presence_penalty, frequency_penalty, or stop parameters
	Live Search is available for real-time information (additional cost applies)
	Knowledge cutoff is November 2024 for Grok 3 and Grok 4 models

Reasoning Token Budget
Grok models use a two-phase approach with internal reasoning before tool execution.
Ensure adequate token limits when using tool calling:
Insufficient for tool calling
ReqLLM.generate_text(model, "weather query", tools: tools, max_tokens: 100)

Adequate for reasoning + tool execution
ReqLLM.generate_text(model, "weather query", tools: tools, max_tokens: 500)
The provider automatically defaults to 500 tokens for Grok models when max_tokens is not specified.

 Summary

 Functions

 default_base_url()

 default_env_key()

 Callback implementation for ReqLLM.Provider.default_env_key/0.

 default_provider_opts()

 metadata()

 prepare_request(operation, model_input, context, opts)

 Attaches the xAI plugin to a Req request.

 provider_id()

 provider_schema()

 supported_provider_options()

 Functions

 default_base_url()

 default_env_key()

Callback implementation for ReqLLM.Provider.default_env_key/0.

 default_provider_opts()

 metadata()

 prepare_request(operation, model_input, context, opts)

Attaches the xAI plugin to a Req request.
Parameters
	request - The Req request to attach to
	model_input - The model (ReqLLM.Model struct, string, or tuple) that triggers this provider
	opts - Options keyword list (validated against comprehensive schema)

Request Options
	:temperature - Controls randomness (0.0-2.0). Defaults to 0.7
	:max_tokens - Maximum tokens to generate. Defaults to 1024
	:stream? - Enable streaming responses. Defaults to false
	:base_url - Override base URL. Defaults to provider default
	:messages - Chat messages to send
	:live_search - Enable Live Search for real-time information
	:reasoning_effort - Reasoning effort level (not supported by Grok 4)
	:enable_cached_prompt - Enable prompt caching for cost reduction
	All options from ReqLLM.Provider.Options schemas are supported

Note: Grok 4 models do not support presence_penalty, frequency_penalty, or stop parameters.

 provider_id()

 provider_schema()

 supported_provider_options()

ReqLLM.Response

High-level representation of an LLM turn.
Always contains a Context (full conversation history including
the newly-generated assistant/tool messages) plus rich metadata and, when
streaming, a lazy Stream of ReqLLM.StreamChunks.
This struct eliminates the need for manual message extraction and context building
in multi-turn conversations and tool calling workflows.
Examples
Basic response usage
{:ok, response} = ReqLLM.generate_text("anthropic:claude-3-sonnet", context)
response.text() #=> "Hello! I'm Claude."
response.usage() #=> %{input_tokens: 12, output_tokens: 4}

Multi-turn conversation (no manual context building)
{:ok, response2} = ReqLLM.generate_text("anthropic:claude-3-sonnet", response.context)

Tool calling loop
{:ok, final_response} = ReqLLM.Response.handle_tools(response, tools)

 Summary

 Types

 t()

 Functions

 decode_object(raw_data, model_input, schema)

 Decode provider response data into a Response with structured object.

 decode_object_stream(raw_data, model_input, schema)

 Decode provider streaming response data into a Response with object stream.

 decode_response(raw_data, model_input)

 Decode provider response data into a canonical ReqLLM.Response.

 finish_reason(response)

 Get the finish reason for this response.

 join_stream(response)

 Materialize a streaming response into a complete response.

 object(response)

 Extracts the generated object from a Response.

 object_stream(response)

 Create a stream of structured objects from a streaming response.

 ok?(response)

 Check if the response completed successfully without errors.

 text(response)

 Extract text content from the response message.

 text_stream(response)

 Create a stream of text content chunks from a streaming response.

 tool_calls(response)

 Extract tool calls from the response message.

 usage(response)

 Get usage statistics for this response.

 Types

 t()

 @type t() :: %ReqLLM.Response{
 context: ReqLLM.Context.t(),
 error: Exception.t() | nil,
 finish_reason: atom() | String.t() | nil,
 id: String.t(),
 message: ReqLLM.Message.t() | nil,
 model: String.t(),
 object: map() | nil,
 provider_meta: map(),
 stream: Enumerable.t() | nil,
 stream?: boolean(),
 usage: %{optional(atom()) => integer()} | nil
}

 Functions

 decode_object(raw_data, model_input, schema)

 @spec decode_object(term(), ReqLLM.Model.t() | String.t(), keyword()) ::
 {:ok, t()} | {:error, term()}

Decode provider response data into a Response with structured object.
Similar to decode_response/2 but specifically for object generation responses.
Extracts the structured object from tool calls and validates it against the schema.
Parameters
	raw_data - Raw provider response data
	model - Model specification
	schema - Schema definition for validation

Returns
	{:ok, %ReqLLM.Response{}} with object field populated on success
	{:error, reason} on failure

 decode_object_stream(raw_data, model_input, schema)

 @spec decode_object_stream(term(), ReqLLM.Model.t() | String.t(), keyword()) ::
 {:ok, t()} | {:error, term()}

Decode provider streaming response data into a Response with object stream.
Similar to decode_response/2 but for streaming object generation.
The response will contain a stream of structured objects.
Parameters
	raw_data - Raw provider streaming response data
	model - Model specification
	schema - Schema definition for validation

Returns
	{:ok, %ReqLLM.Response{}} with stream populated on success
	{:error, reason} on failure

 decode_response(raw_data, model_input)

 @spec decode_response(term(), ReqLLM.Model.t() | String.t()) ::
 {:ok, t()} | {:error, term()}

Decode provider response data into a canonical ReqLLM.Response.
This is a façade function that accepts raw provider data and a model specification,
and directly calls the Response.Codec.decode_response/2 protocol for zero-ceremony decoding.
Supports both Model struct and string inputs, automatically resolving model
strings using Model.from!/1.
Parameters
	raw_data - Raw provider response data or Stream
	model - Model specification (Model struct or string like "anthropic:claude-3-sonnet")

Returns
	{:ok, %ReqLLM.Response{}} on success
	{:error, reason} on failure

Examples
{:ok, response} = ReqLLM.Response.decode_response(raw_json, "anthropic:claude-3-sonnet")
{:ok, response} = ReqLLM.Response.decode_response(raw_json, model_struct)

 finish_reason(response)

 @spec finish_reason(t()) :: atom() | String.t() | nil

Get the finish reason for this response.
Examples
iex> ReqLLM.Response.finish_reason(response)
:stop

 join_stream(response)

 @spec join_stream(t()) :: {:ok, t()} | {:error, term()}

Materialize a streaming response into a complete response.
Consumes the entire stream, builds the complete message, and returns
a new response with the stream consumed and message populated.
Examples
{:ok, complete_response} = ReqLLM.Response.join_stream(streaming_response)

 object(response)

 @spec object(t()) :: map() | nil

Extracts the generated object from a Response.

 object_stream(response)

 @spec object_stream(t()) :: Enumerable.t()

Create a stream of structured objects from a streaming response.
Only yields valid objects from tool call stream chunks, filtering out
metadata and other chunk types.
Examples
response
|> ReqLLM.Response.object_stream()
|> Stream.each(&IO.inspect/1)
|> Stream.run()

 ok?(response)

 @spec ok?(t()) :: boolean()

Check if the response completed successfully without errors.
Examples
iex> ReqLLM.Response.ok?(response)
true

 text(response)

 @spec text(t()) :: String.t()

Extract text content from the response message.
Returns the concatenated text from all content parts in the assistant message.
For streaming responses, this may be nil until the stream is joined.
Examples
iex> ReqLLM.Response.text(response)
"Hello! I'm Claude and I can help you with questions."

 text_stream(response)

 @spec text_stream(t()) :: Enumerable.t()

Create a stream of text content chunks from a streaming response.
Only yields content from :content type stream chunks, filtering out
metadata and other chunk types.
Examples
response
|> ReqLLM.Response.text_stream()
|> Stream.each(&IO.write/1)
|> Stream.run()

 tool_calls(response)

 @spec tool_calls(t()) :: [term()]

Extract tool calls from the response message.
Returns a list of tool calls if the message contains them, empty list otherwise.
Examples
iex> ReqLLM.Response.tool_calls(response)
[%{name: "get_weather", arguments: %{location: "San Francisco"}}]

 usage(response)

 @spec usage(t()) :: %{optional(atom()) => integer()} | nil

Get usage statistics for this response.
Examples
iex> ReqLLM.Response.usage(response)
%{input_tokens: 12, output_tokens: 8, total_tokens: 20}

ReqLLM.Response.Codec protocol

Protocol for decoding provider response data to canonical ReqLLM.Response.
Handles both tagged wrapper structs and direct raw data decoding, eliminating
wrap_response friction for simpler APIs.
Zero-Ceremony Direct Decoding
The protocol now supports direct decoding without requiring provider-specific
wrapper structs, using model information to dispatch to the correct provider:
Direct decoding from raw response data
ReqLLM.Response.Codec.decode(raw_anthropic_json, model)
#=> {:ok, %ReqLLM.Response{}}

Still supports tagged wrapper approach for internal use
wrapped_response |> ReqLLM.Response.Codec.decode()
#=> {:ok, %ReqLLM.Response{}}
Implementation
Each provider implements this protocol for their specific tagged wrapper struct
AND raw data types by implementing decode/1 and decode/2:
defimpl ReqLLM.Response.Codec, for: MyProvider.Response do
 def decode(%MyProvider.Response{data: raw_data, model: model}) do
 decode_raw_data(raw_data, model)
 end

 def decode(raw_data, model) when is_map(raw_data) do
 decode_raw_data(raw_data, model)
 end

 def encode(_), do: {:error, :not_implemented}
end

 Summary

 Types

 t()

 All the types that implement this protocol.

 Functions

 decode_response(data_or_tagged)

 Decode provider response to canonical ReqLLM.Response.

 decode_response(raw_data, model)

 Decode raw provider response data directly with model information.

 encode_request(tagged_response)

 Encode canonical response back to provider format (optional).

 Types

 t()

 @type t() :: term()

All the types that implement this protocol.

 Functions

 decode_response(data_or_tagged)

 @spec decode_response(t()) :: {:ok, ReqLLM.Response.t()} | {:error, term()}

Decode provider response to canonical ReqLLM.Response.
Accepts either tagged wrapper structs or raw response data with model.
Parameters
	data_or_tagged - Raw response data OR provider-tagged wrapper struct

Returns
	{:ok, %ReqLLM.Response{}} on successful decoding
	{:error, reason} if decoding fails

Examples
Tagged wrapper decoding (internal use)
raw_data
|> ReqLLM.Providers.Anthropic.Response.new(model)
|> ReqLLM.Response.Codec.decode_response()

 decode_response(raw_data, model)

 @spec decode_response(t(), ReqLLM.Model.t()) ::
 {:ok, ReqLLM.Response.t()} | {:error, term()}

Decode raw provider response data directly with model information.
This eliminates the need for wrap_response friction by allowing direct
decoding from raw response data using model information for provider dispatch.
Parameters
	raw_data - Raw provider response data (map, stream, etc.)
	model - Model struct containing provider information

Returns
	{:ok, %ReqLLM.Response{}} on successful decoding
	{:error, reason} if decoding fails

Examples
Direct decoding (zero-ceremony API)
ReqLLM.Response.Codec.decode_response(raw_anthropic_json, model)
#=> {:ok, %ReqLLM.Response{context: ctx, message: msg, ...}}

 encode_request(tagged_response)

 @spec encode_request(t()) :: term() | {:error, term()}

Encode canonical response back to provider format (optional).
Parameters
	tagged_response - A provider-specific tagged struct containing ReqLLM.Response

Returns
	Provider-specific response format
	{:error, :not_implemented} if encoding is not supported

ReqLLM.Schema

Single schema authority for NimbleOptions ↔ JSON Schema conversion.
This module consolidates all schema conversion logic, providing unified functions
for converting keyword schemas to both NimbleOptions compiled schemas and JSON Schema format.
Supports all common NimbleOptions types and handles nested schemas.
Core Functions
	compile/1 - Convert keyword schema to NimbleOptions compiled schema
	to_json/1 - Convert keyword schema to JSON Schema format

Basic Usage
Compile keyword schema to NimbleOptions
{:ok, compiled} = ReqLLM.Schema.compile([
 name: [type: :string, required: true, doc: "User name"],
 age: [type: :pos_integer, doc: "User age"]
])

Convert keyword schema to JSON Schema
json_schema = ReqLLM.Schema.to_json([
 name: [type: :string, required: true, doc: "User name"],
 age: [type: :pos_integer, doc: "User age"]
])
=> %{
"type" => "object",
"properties" => %{
"name" => %{"type" => "string", "description" => "User name"},
"age" => %{"type" => "integer", "minimum" => 1, "description" => "User age"}
},
"required" => ["name"]
}
Supported Types
All common NimbleOptions types are supported:
	:string - String type
	:integer - Integer type
	:pos_integer - Positive integer (adds minimum: 1 constraint)
	:float - Float/number type
	:number - Generic number type
	:boolean - Boolean type
	{:list, type} - Array of specified type
	:map - Object type
	Custom types fall back to string

Nested Schemas
Nested schemas are supported through recursive type handling:
schema = [
 user: [
 type: {:list, :map},
 doc: "List of user objects",
 properties: [
 name: [type: :string, required: true],
 email: [type: :string, required: true]
]
]
]

 Summary

 Functions

 compile(schema)

 Compiles a keyword schema to a NimbleOptions compiled schema.

 nimble_type_to_json_schema(type, opts)

 Converts a NimbleOptions type to JSON Schema property definition.

 to_anthropic_format(tool)

 Format a tool into Anthropic tool schema format.

 to_google_format(tool)

 Format a tool into Google tool schema format.

 to_json(schema)

 Converts a keyword schema to JSON Schema format.

 to_openai_format(tool)

 Format a tool into OpenAI tool schema format.

 Functions

 compile(schema)

 @spec compile(keyword() | any()) ::
 {:ok, NimbleOptions.t()} | {:error, ReqLLM.Error.t()}

Compiles a keyword schema to a NimbleOptions compiled schema.
Takes a keyword list representing a NimbleOptions schema and compiles it
into a validated NimbleOptions schema that can be used for validation.
Parameters
	schema - A keyword list representing a NimbleOptions schema

Returns
	{:ok, compiled_schema} - Successfully compiled NimbleOptions schema
	{:error, error} - Compilation error with details

Examples
iex> ReqLLM.Schema.compile([
...> name: [type: :string, required: true],
...> age: [type: :pos_integer, default: 0]
...>])
{:ok, compiled_schema}

iex> ReqLLM.Schema.compile("invalid")
{:error, %ReqLLM.Error.Invalid.Parameter{}}

 nimble_type_to_json_schema(type, opts)

 @spec nimble_type_to_json_schema(
 atom() | tuple(),
 keyword()
) :: map()

Converts a NimbleOptions type to JSON Schema property definition.
Takes a NimbleOptions type atom and options, converting them to the
corresponding JSON Schema property definition with proper type mapping.
Parameters
	type - The NimbleOptions type atom (e.g., :string, :integer, {:list, :string})
	opts - Additional options including :doc for description

Returns
A map representing the JSON Schema property definition.
Examples
iex> ReqLLM.Schema.nimble_type_to_json_schema(:string, doc: "A text field")
%{"type" => "string", "description" => "A text field"}

iex> ReqLLM.Schema.nimble_type_to_json_schema({:list, :integer}, [])
%{"type" => "array", "items" => %{"type" => "integer"}}

iex> ReqLLM.Schema.nimble_type_to_json_schema(:pos_integer, doc: "Positive number")
%{"type" => "integer", "minimum" => 1, "description" => "Positive number"}

 to_anthropic_format(tool)

 @spec to_anthropic_format(ReqLLM.Tool.t()) :: map()

Format a tool into Anthropic tool schema format.
Parameters
	tool - A ReqLLM.Tool.t() struct

Returns
A map containing the Anthropic tool schema format.
Examples
iex> tool = %ReqLLM.Tool{
...> name: "get_weather",
...> description: "Get current weather",
...> parameter_schema: [
...> location: [type: :string, required: true, doc: "City name"]
...>],
...> callback: fn _ -> {:ok, %{}} end
...> }
iex> ReqLLM.Schema.to_anthropic_format(tool)
%{
 "name" => "get_weather",
 "description" => "Get current weather",
 "input_schema" => %{
 "type" => "object",
 "properties" => %{
 "location" => %{"type" => "string", "description" => "City name"}
 },
 "required" => ["location"]
 }
}

 to_google_format(tool)

 @spec to_google_format(ReqLLM.Tool.t()) :: map()

Format a tool into Google tool schema format.
Parameters
	tool - A ReqLLM.Tool.t() struct

Returns
A map containing the Google tool schema format.
Examples
iex> tool = %ReqLLM.Tool{
...> name: "get_weather",
...> description: "Get current weather",
...> parameter_schema: [
...> location: [type: :string, required: true, doc: "City name"]
...>],
...> callback: fn _ -> {:ok, %{}} end
...> }
iex> ReqLLM.Schema.to_google_format(tool)
%{
 "name" => "get_weather",
 "description" => "Get current weather",
 "parameters" => %{
 "type" => "object",
 "properties" => %{
 "location" => %{"type" => "string", "description" => "City name"}
 },
 "required" => ["location"]
 }
}

 to_json(schema)

 @spec to_json(keyword()) :: map()

Converts a keyword schema to JSON Schema format.
Takes a keyword list of parameter definitions and converts them to
a JSON Schema object suitable for LLM tool definitions or structured data schemas.
Parameters
	schema - Keyword list of parameter definitions

Returns
A map representing the JSON Schema object with properties and required fields.
Examples
iex> ReqLLM.Schema.to_json([
...> name: [type: :string, required: true, doc: "User name"],
...> age: [type: :integer, doc: "User age"],
...> tags: [type: {:list, :string}, default: [], doc: "User tags"]
...>])
%{
 "type" => "object",
 "properties" => %{
 "name" => %{"type" => "string", "description" => "User name"},
 "age" => %{"type" => "integer", "description" => "User age"},
 "tags" => %{
 "type" => "array",
 "items" => %{"type" => "string"},
 "description" => "User tags"
 }
 },
 "required" => ["name"]
}

iex> ReqLLM.Schema.to_json([])
%{"type" => "object", "properties" => %{}}

 to_openai_format(tool)

 @spec to_openai_format(ReqLLM.Tool.t()) :: map()

Format a tool into OpenAI tool schema format.
Parameters
	tool - A ReqLLM.Tool.t() struct

Returns
A map containing the OpenAI tool schema format.
Examples
iex> tool = %ReqLLM.Tool{
...> name: "get_weather",
...> description: "Get current weather",
...> parameter_schema: [
...> location: [type: :string, required: true, doc: "City name"]
...>],
...> callback: fn _ -> {:ok, %{}} end
...> }
iex> ReqLLM.Schema.to_openai_format(tool)
%{
 "type" => "function",
 "function" => %{
 "name" => "get_weather",
 "description" => "Get current weather",
 "parameters" => %{
 "type" => "object",
 "properties" => %{
 "location" => %{"type" => "string", "description" => "City name"}
 },
 "required" => ["location"]
 }
 }
}

ReqLLM.Step.Error

Req step that integrates with Splode error handling.
This step converts HTTP error responses to structured ReqLLM.Error exceptions
and handles common API error patterns. It processes both regular HTTP errors
and API-specific error responses.
Usage
request
|> ReqLLM.Step.Error.attach()
The step handles various HTTP status codes and converts them to appropriate
ReqLLM.Error types:
	400: Bad Request → API.Request error
	401: Unauthorized → API.Request error with authentication context
	403: Forbidden → API.Request error with authorization context
	404: Not Found → API.Request error
	429: Rate Limited → API.Request error with rate limit context
	500+: Server Error → API.Request error with server context

Error Structure
All errors include:
	status - HTTP status code
	reason - Human-readable error description
	response_body - Raw API response (if available)
	request_body - Original request body (if available)
	cause - Underlying error cause (if available)

 Summary

 Types

 api_error()

 Functions

 attach(req)

 Attaches the Splode error handling step to a Req request struct.

 Types

 api_error()

 @type api_error() :: %ReqLLM.Error.API.Request{
 __exception__: true,
 bread_crumbs: term(),
 cause: term(),
 class: term(),
 path: term(),
 reason: term(),
 request_body: term(),
 response_body: term(),
 splode: term(),
 stacktrace: term(),
 status: term(),
 vars: term()
}

 Functions

 attach(req)

 @spec attach(Req.Request.t()) :: Req.Request.t()

Attaches the Splode error handling step to a Req request struct.
Parameters
	req - The Req request struct

Returns
	Updated Req request struct with the step attached

ReqLLM.Step.Stream

Req step for handling Server-Sent Events (SSE).
This step processes "text/event-stream" responses and converts them into
enumerable chunks for streaming AI responses. Non-streaming responses are
passed through unchanged.
Usage
request
|> ReqLLM.Step.Stream.attach()
The step automatically detects SSE responses by content type and processes
them into structured chunks. Each chunk contains:
	event - The event type (e.g., "delta", "done")
	data - The event data (JSON parsed if valid)
	id - Event ID (if present)
	retry - Retry interval (if present)

Examples
Streaming response
response = Req.get!(req, url: "https://api.example.com/stream")
response.body
#=> %Stream{} containing parsed SSE chunks

Non-streaming response
response = Req.get!(req, url: "https://api.example.com/chat")
response.body
#=> "Regular JSON response"

 Summary

 Functions

 attach(req)

 Attaches the SSE streaming step to a Req request struct.

 maybe_attach(req, arg2)

 Conditionally attaches the SSE streaming step to a Req request struct.

 Functions

 attach(req)

 @spec attach(Req.Request.t()) :: Req.Request.t()

Attaches the SSE streaming step to a Req request struct.
Parameters
	req - The Req request struct

Returns
	Updated Req request struct with the step attached

 maybe_attach(req, arg2)

 @spec maybe_attach(Req.Request.t(), boolean()) :: Req.Request.t()

Conditionally attaches the SSE streaming step to a Req request struct.
Parameters
	req - The Req request struct
	stream_enabled - Whether streaming is enabled

Returns
	Updated Req request struct with the step attached if streaming is enabled

Examples
Streaming enabled - step attached
request |> ReqLLM.Step.Stream.maybe_attach(true)

Streaming disabled - request unchanged
request |> ReqLLM.Step.Stream.maybe_attach(false)

ReqLLM.Step.Usage

Centralized Req step that extracts token usage from provider responses,
normalizes usage values across providers, computes costs, and emits telemetry.
This step:
	Extracts token usage numbers from provider responses
	Normalizes usage data across different provider formats
	Calculates costs using ReqLLM.Model cost metadata
	Stores usage data in response.private[:req_llm][:usage]
	Emits telemetry events for monitoring

Usage
request
|> ReqLLM.Step.Usage.attach(model)
Telemetry Events
Emits [:req_llm, :token_usage] events with:
	Measurements: %{tokens: %{input: 123, output: 456, reasoning: 64}, cost: 0.0123}
	Metadata: %{model: %ReqLLM.Model{}}

 Summary

 Functions

 attach(req, model \\ nil)

 Attaches the Usage step to a Req request.

 Functions

 attach(req, model \\ nil)

 @spec attach(Req.Request.t(), ReqLLM.Model.t() | nil) :: Req.Request.t()

Attaches the Usage step to a Req request.
Parameters
	req - The Req.Request struct
	model - Optional ReqLLM.Model struct for cost calculation

Examples
request
|> ReqLLM.Step.Usage.attach(model)

ReqLLM.StreamChunk

Represents a single chunk in a streaming response.
StreamChunk provides a unified format for streaming responses across different providers,
supporting text content, tool calls, thinking tokens, and metadata. This structure enables
consistent handling of streaming data regardless of the underlying provider's format.
Chunk Types
	:content - Text content chunks (the main response text)
	:thinking - Reasoning/thinking tokens (e.g., Claude's <thinking> tags)
	:tool_call - Function/tool call chunks with name and arguments
	:meta - Metadata chunks (usage, finish reasons, etc.)

Usage Examples
Simple text content
chunk = ReqLLM.StreamChunk.text("Hello world")
chunk.type #=> :content
chunk.text #=> "Hello world"

Thinking/reasoning content
chunk = ReqLLM.StreamChunk.thinking("Let me think about this...")
chunk.type #=> :thinking
chunk.text #=> "Let me think about this..."

Tool call chunk
chunk = ReqLLM.StreamChunk.tool_call("get_weather", %{location: "NYC"})
chunk.type #=> :tool_call
chunk.name #=> "get_weather"
chunk.arguments #=> %{location: "NYC"}

Metadata chunk
chunk = ReqLLM.StreamChunk.meta(%{finish_reason: "stop", tokens_used: 42})
chunk.type #=> :meta
chunk.metadata #=> %{finish_reason: "stop", tokens_used: 42}
Streaming Pattern
StreamChunk is designed to work with Elixir's Stream module:
{:ok, stream} = ReqLLM.stream_text("anthropic:claude-3-sonnet", "Tell a story")

stream
|> Stream.filter(&(&1.type == :content))
|> Stream.map(&(&1.text))
|> Stream.each(&IO.write/1)
|> Stream.run()
Provider Integration
Providers can use the constructor helpers to create consistent chunks:
In provider's parse_stream_chunk function
case event_type do
 "content_block_delta" ->
 ReqLLM.StreamChunk.text(event_data["text"])

 "content_block_start" when event_data["type"] == "tool_use" ->
 ReqLLM.StreamChunk.tool_call(event_data["name"], %{})

 "thinking_block_delta" ->
 ReqLLM.StreamChunk.thinking(event_data["text"])

 "message_stop" ->
 ReqLLM.StreamChunk.meta(%{finish_reason: "stop"})
end

 Summary

 Types

 chunk_type()

 Chunk type indicating the kind of content in this chunk.

 t()

 A single chunk of streaming response data

 Functions

 meta(data, extra_metadata \\ %{})

 Creates a metadata chunk containing response metadata.

 text(content, metadata \\ %{})

 Creates a content chunk containing text.

 thinking(content, metadata \\ %{})

 Creates a thinking chunk containing reasoning text.

 tool_call(name, arguments, metadata \\ %{})

 Creates a tool call chunk with function name and arguments.

 validate(chunk)

 Validates a StreamChunk struct according to its type.

 Types

 chunk_type()

 @type chunk_type() :: :content | :thinking | :tool_call | :meta

Chunk type indicating the kind of content in this chunk.

 t()

 @type t() :: %ReqLLM.StreamChunk{
 arguments: (map() | nil) | nil,
 metadata: map(),
 name: (String.t() | nil) | nil,
 text: (String.t() | nil) | nil,
 type: chunk_type()
}

A single chunk of streaming response data

 Functions

 meta(data, extra_metadata \\ %{})

 @spec meta(map(), map()) :: t()

Creates a metadata chunk containing response metadata.
Used for finish reasons, usage statistics, and other non-content information.
Parameters
	data - The metadata map
	extra_metadata - Optional additional metadata to merge (default: empty map)

Examples
chunk = ReqLLM.StreamChunk.meta(%{finish_reason: "stop"})
chunk.type #=> :meta
chunk.metadata #=> %{finish_reason: "stop"}

Usage information
chunk = ReqLLM.StreamChunk.meta(%{
 usage: %{input_tokens: 10, output_tokens: 25}
})

Multiple metadata fields
chunk = ReqLLM.StreamChunk.meta(%{
 finish_reason: "tool_use",
 model: "claude-3-sonnet"
})

 text(content, metadata \\ %{})

 @spec text(String.t(), map()) :: t()

Creates a content chunk containing text.
Parameters
	text - The text content for this chunk
	metadata - Optional additional metadata (default: empty map)

Examples
chunk = ReqLLM.StreamChunk.text("Hello")
chunk.type #=> :content
chunk.text #=> "Hello"

With metadata
chunk = ReqLLM.StreamChunk.text("Hello", %{token_count: 1})
chunk.metadata #=> %{token_count: 1}

 thinking(content, metadata \\ %{})

 @spec thinking(String.t(), map()) :: t()

Creates a thinking chunk containing reasoning text.
Used for providers that support reasoning/thinking tokens (like Claude's <thinking> tags).
Parameters
	content - The thinking/reasoning text
	metadata - Optional additional metadata (default: empty map)

Examples
chunk = ReqLLM.StreamChunk.thinking("Let me consider...")
chunk.type #=> :thinking
chunk.text #=> "Let me consider..."

 tool_call(name, arguments, metadata \\ %{})

 @spec tool_call(String.t(), map(), map()) :: t()

Creates a tool call chunk with function name and arguments.
Parameters
	name - The tool/function name being called
	arguments - The arguments map for the tool call
	metadata - Optional additional metadata (default: empty map)

Examples
chunk = ReqLLM.StreamChunk.tool_call("get_weather", %{city: "NYC"})
chunk.type #=> :tool_call
chunk.name #=> "get_weather"
chunk.arguments #=> %{city: "NYC"}

Partial tool call (streaming arguments)
chunk = ReqLLM.StreamChunk.tool_call("search", %{query: "par"})
chunk.arguments #=> %{query: "par"}

 validate(chunk)

 @spec validate(t()) :: {:ok, t()} | {:error, String.t()}

Validates a StreamChunk struct according to its type.
Ensures that required fields are present based on the chunk type:
	:content and :thinking chunks must have non-nil text
	:tool_call chunks must have non-nil name and arguments
	:meta chunks must have a non-empty metadata map

Parameters
	chunk - The StreamChunk struct to validate

Returns
	{:ok, chunk} - Valid chunk
	{:error, reason} - Validation error with description

Examples
chunk = ReqLLM.StreamChunk.text("Hello")
ReqLLM.StreamChunk.validate(chunk)
#=> {:ok, %ReqLLM.StreamChunk{...}}

invalid_chunk = %ReqLLM.StreamChunk{type: :content, text: nil}
ReqLLM.StreamChunk.validate(invalid_chunk)
#=> {:error, "Content chunks must have non-nil text"}

ReqLLM.Tool

Simplified tool definition for AI model function calling.
Tools enable AI models to call external functions, perform actions, and retrieve information.
Each tool has a name, description, parameters schema, and a callback function to execute.
Basic Usage
Create a simple tool
{:ok, tool} = ReqLLM.Tool.new(
 name: "get_weather",
 description: "Get current weather for a location",
 parameter_schema: [
 location: [type: :string, required: true, doc: "City name"]
],
 callback: {WeatherService, :get_current_weather}
)

Execute the tool
{:ok, result} = ReqLLM.Tool.execute(tool, %{location: "San Francisco"})

Get provider-specific schema
anthropic_schema = ReqLLM.Tool.to_schema(tool, :anthropic)
Parameters Schema
Parameters are defined using NimbleOptions-compatible keyword lists:
parameter_schema: [
 location: [type: :string, required: true, doc: "City name"],
 units: [type: :string, default: "celsius", doc: "Temperature units"]
]
Callback Formats
Multiple callback formats are supported:
Module and function (args passed as single argument)
callback: {MyModule, :my_function}

Module, function, and additional args (prepended to input)
callback: {MyModule, :my_function, [:extra, :args]}

Anonymous function
callback: fn args -> {:ok, "result"} end
Provider Schema Formats
Tools can be converted to provider-specific formats:
Anthropic tool format
anthropic_schema = ReqLLM.Tool.to_schema(tool, :anthropic)

 Summary

 Types

 callback()

 callback_fun()

 callback_mfa()

 t()

 A tool definition for AI model function calling

 tool_opts()

 Functions

 execute(tool, input)

 Executes a tool with the given input parameters.

 new(opts)

 Creates a new Tool from the given options.

 new!(opts)

 Creates a new Tool from the given options, raising on error.

 to_json_schema(tool)

 Converts a Tool to JSON Schema format for LLM integration.

 to_schema(tool, provider \\ :openai)

 Converts a Tool to provider-specific schema format.

 valid_name?(name)

 Validates a tool name for compliance with function calling standards.

 Types

 callback()

 @type callback() :: callback_mfa() | callback_fun()

 callback_fun()

 @type callback_fun() :: (map() -> {:ok, term()} | {:error, term()})

 callback_mfa()

 @type callback_mfa() :: {module(), atom()} | {module(), atom(), list()}

 t()

 @type t() :: %ReqLLM.Tool{
 callback: callback(),
 compiled: term() | nil,
 description: String.t(),
 name: String.t(),
 parameter_schema: keyword()
}

A tool definition for AI model function calling

 tool_opts()

 @type tool_opts() :: [
 name: String.t(),
 description: String.t(),
 parameter_schema: keyword(),
 callback: callback()
]

 Functions

 execute(tool, input)

 @spec execute(t(), map()) :: {:ok, term()} | {:error, term()}

Executes a tool with the given input parameters.
Validates input parameters against the tool's schema and calls the callback function.
The callback is expected to return {:ok, result} or {:error, reason}.
Parameters
	tool - Tool struct
	input - Input parameters as map

Examples
{:ok, result} = ReqLLM.Tool.execute(tool, %{location: "San Francisco"})
#=> {:ok, %{temperature: 72, conditions: "sunny"}}

{:error, reason} = ReqLLM.Tool.execute(tool, %{invalid: "params"})
#=> {:error, %ReqLLM.Error.Validation.Error{...}}

 new(opts)

 @spec new(tool_opts()) :: {:ok, t()} | {:error, term()}

Creates a new Tool from the given options.
Parameters
	opts - Tool options as keyword list

Options
	:name - Tool name (required, must be valid identifier)
	:description - Tool description for AI model (required)
	:parameter_schema - Parameter schema as NimbleOptions keyword list (optional)
	:callback - Callback function or MFA tuple (required)

Examples
{:ok, tool} = ReqLLM.Tool.new(
 name: "get_weather",
 description: "Get current weather",
 parameter_schema: [
 location: [type: :string, required: true]
],
 callback: {WeatherService, :get_weather}
)

 new!(opts)

 @spec new!(tool_opts()) :: t() | no_return()

Creates a new Tool from the given options, raising on error.
See new/1 for details.
Examples
tool = ReqLLM.Tool.new!(
 name: "get_weather",
 description: "Get current weather",
 callback: {WeatherService, :get_weather}
)

 to_json_schema(tool)

 @spec to_json_schema(t()) :: map()

Converts a Tool to JSON Schema format for LLM integration.
Backward compatibility function that defaults to OpenAI format.
Use to_schema/2 for explicit provider selection.
Examples
json_schema = ReqLLM.Tool.to_json_schema(tool)
Equivalent to: ReqLLM.Tool.to_schema(tool, :openai)

 to_schema(tool, provider \\ :openai)

 @spec to_schema(t(), atom()) :: map()

Converts a Tool to provider-specific schema format.
Returns a map containing the provider's expected tool format with
tool name, description, and parameter definitions.
Parameters
	tool - Tool struct
	provider - Provider atom (:anthropic)

Examples
Anthropic tool format
anthropic_schema = ReqLLM.Tool.to_schema(tool, :anthropic)
#=> %{
"name" => "get_weather",
"description" => "Get current weather",
"input_schema" => %{...}
}

 valid_name?(name)

 @spec valid_name?(String.t()) :: boolean()

Validates a tool name for compliance with function calling standards.
Tool names must be valid identifiers (alphanumeric + underscores, start with letter/underscore).
Examples
ReqLLM.Tool.valid_name?("get_weather")
#=> true

ReqLLM.Tool.valid_name?("123invalid")
#=> false

ReqLLM.Error.API exception

Error class for API-related failures and HTTP errors.

 Summary

 Functions

 exception(args)

 Create an Elixir.ReqLLM.Error.API without raising it.

 message(map)

 Callback implementation for Exception.message/1.

 Functions

 exception(args)

 @spec exception(opts :: Keyword.t()) :: %ReqLLM.Error.API{
 __exception__: true,
 bread_crumbs: term(),
 class: term(),
 errors: term(),
 path: term(),
 splode: term(),
 stacktrace: term(),
 vars: term()
}

Create an Elixir.ReqLLM.Error.API without raising it.
Keys
	:errors

 message(map)

Callback implementation for Exception.message/1.

ReqLLM.Error.API.JSONDecode exception

Error for when we can't parse the JSON response.

 Summary

 Functions

 exception(msg)

 Create an Elixir.ReqLLM.Error.API.JSONDecode without raising it.

 Functions

 exception(msg)

 @spec exception(opts :: Keyword.t()) :: %ReqLLM.Error.API.JSONDecode{
 __exception__: true,
 bread_crumbs: term(),
 class: term(),
 message: term(),
 partial: term(),
 path: term(),
 position: term(),
 raw_response: term(),
 splode: term(),
 stacktrace: term(),
 vars: term()
}

Create an Elixir.ReqLLM.Error.API.JSONDecode without raising it.
Keys
	:message
	:partial
	:raw_response
	:position

ReqLLM.Error.API.Request exception

Error for API request failures, HTTP errors, and network issues.

 Summary

 Functions

 exception(args)

 Create an Elixir.ReqLLM.Error.API.Request without raising it.

 Functions

 exception(args)

 @spec exception(opts :: Keyword.t()) :: %ReqLLM.Error.API.Request{
 __exception__: true,
 bread_crumbs: term(),
 cause: term(),
 class: term(),
 path: term(),
 reason: term(),
 request_body: term(),
 response_body: term(),
 splode: term(),
 stacktrace: term(),
 status: term(),
 vars: term()
}

Create an Elixir.ReqLLM.Error.API.Request without raising it.
Keys
	:reason
	:status
	:response_body
	:request_body
	:cause

ReqLLM.Error.API.Response exception

Error for provider response parsing failures and unexpected response formats.

 Summary

 Functions

 exception(args)

 Create an Elixir.ReqLLM.Error.API.Response without raising it.

 Functions

 exception(args)

 @spec exception(opts :: Keyword.t()) :: %ReqLLM.Error.API.Response{
 __exception__: true,
 bread_crumbs: term(),
 class: term(),
 path: term(),
 reason: term(),
 response_body: term(),
 splode: term(),
 stacktrace: term(),
 status: term(),
 vars: term()
}

Create an Elixir.ReqLLM.Error.API.Response without raising it.
Keys
	:reason
	:response_body
	:status

ReqLLM.Error.API.SchemaValidation exception

Error for when generated objects don't match the expected schema.

 Summary

 Functions

 exception(msg)

 Create an Elixir.ReqLLM.Error.API.SchemaValidation without raising it.

 Functions

 exception(msg)

 @spec exception(opts :: Keyword.t()) :: %ReqLLM.Error.API.SchemaValidation{
 __exception__: true,
 bread_crumbs: term(),
 class: term(),
 errors: term(),
 json_path: term(),
 message: term(),
 path: term(),
 splode: term(),
 stacktrace: term(),
 value: term(),
 vars: term()
}

Create an Elixir.ReqLLM.Error.API.SchemaValidation without raising it.
Keys
	:message
	:errors
	:json_path
	:value

ReqLLM.Error.Invalid exception

Error class for invalid input parameters and configurations.

 Summary

 Functions

 exception(args)

 Create an Elixir.ReqLLM.Error.Invalid without raising it.

 message(map)

 Callback implementation for Exception.message/1.

 Functions

 exception(args)

 @spec exception(opts :: Keyword.t()) :: %ReqLLM.Error.Invalid{
 __exception__: true,
 bread_crumbs: term(),
 class: term(),
 errors: term(),
 path: term(),
 splode: term(),
 stacktrace: term(),
 vars: term()
}

Create an Elixir.ReqLLM.Error.Invalid without raising it.
Keys
	:errors

 message(map)

Callback implementation for Exception.message/1.

ReqLLM.Error.Invalid.Content exception

Error for invalid message content.

 Summary

 Functions

 exception(args)

 Create an Elixir.ReqLLM.Error.Invalid.Content without raising it.

 Functions

 exception(args)

 @spec exception(opts :: Keyword.t()) :: %ReqLLM.Error.Invalid.Content{
 __exception__: true,
 bread_crumbs: term(),
 class: term(),
 path: term(),
 reason: term(),
 received: term(),
 splode: term(),
 stacktrace: term(),
 vars: term()
}

Create an Elixir.ReqLLM.Error.Invalid.Content without raising it.
Keys
	:reason
	:received

ReqLLM.Error.Invalid.Message exception

Error for invalid message structures or validation failures.

 Summary

 Functions

 exception(args)

 Create an Elixir.ReqLLM.Error.Invalid.Message without raising it.

 Functions

 exception(args)

 @spec exception(opts :: Keyword.t()) :: %ReqLLM.Error.Invalid.Message{
 __exception__: true,
 bread_crumbs: term(),
 class: term(),
 index: term(),
 path: term(),
 reason: term(),
 splode: term(),
 stacktrace: term(),
 vars: term()
}

Create an Elixir.ReqLLM.Error.Invalid.Message without raising it.
Keys
	:reason
	:index

ReqLLM.Error.Invalid.MessageList exception

Error for invalid message list structures.

 Summary

 Functions

 exception(args)

 Create an Elixir.ReqLLM.Error.Invalid.MessageList without raising it.

 Functions

 exception(args)

 @spec exception(opts :: Keyword.t()) :: %ReqLLM.Error.Invalid.MessageList{
 __exception__: true,
 bread_crumbs: term(),
 class: term(),
 path: term(),
 reason: term(),
 received: term(),
 splode: term(),
 stacktrace: term(),
 vars: term()
}

Create an Elixir.ReqLLM.Error.Invalid.MessageList without raising it.
Keys
	:reason
	:received

ReqLLM.Error.Invalid.NotImplemented exception

Error for unimplemented functionality.

 Summary

 Functions

 exception(args)

 Create an Elixir.ReqLLM.Error.Invalid.NotImplemented without raising it.

 Functions

 exception(args)

 @spec exception(opts :: Keyword.t()) :: %ReqLLM.Error.Invalid.NotImplemented{
 __exception__: true,
 bread_crumbs: term(),
 class: term(),
 feature: term(),
 path: term(),
 splode: term(),
 stacktrace: term(),
 vars: term()
}

Create an Elixir.ReqLLM.Error.Invalid.NotImplemented without raising it.
Keys
	:feature

ReqLLM.Error.Invalid.Parameter exception

Error for invalid or missing parameters.

 Summary

 Functions

 exception(args)

 Create an Elixir.ReqLLM.Error.Invalid.Parameter without raising it.

 Functions

 exception(args)

 @spec exception(opts :: Keyword.t()) :: %ReqLLM.Error.Invalid.Parameter{
 __exception__: true,
 bread_crumbs: term(),
 class: term(),
 parameter: term(),
 path: term(),
 splode: term(),
 stacktrace: term(),
 vars: term()
}

Create an Elixir.ReqLLM.Error.Invalid.Parameter without raising it.
Keys
	:parameter

ReqLLM.Error.Invalid.Provider exception

Error for unknown or unsupported providers.

 Summary

 Functions

 exception(args)

 Create an Elixir.ReqLLM.Error.Invalid.Provider without raising it.

 Functions

 exception(args)

 @spec exception(opts :: Keyword.t()) :: %ReqLLM.Error.Invalid.Provider{
 __exception__: true,
 bread_crumbs: term(),
 class: term(),
 path: term(),
 provider: term(),
 splode: term(),
 stacktrace: term(),
 vars: term()
}

Create an Elixir.ReqLLM.Error.Invalid.Provider without raising it.
Keys
	:provider

ReqLLM.Error.Invalid.Role exception

Error for invalid message roles.

 Summary

 Functions

 exception(args)

 Create an Elixir.ReqLLM.Error.Invalid.Role without raising it.

 Functions

 exception(args)

 @spec exception(opts :: Keyword.t()) :: %ReqLLM.Error.Invalid.Role{
 __exception__: true,
 bread_crumbs: term(),
 class: term(),
 path: term(),
 role: term(),
 splode: term(),
 stacktrace: term(),
 vars: term()
}

Create an Elixir.ReqLLM.Error.Invalid.Role without raising it.
Keys
	:role

ReqLLM.Error.Invalid.Schema exception

Error for invalid schema definitions.

 Summary

 Functions

 exception(args)

 Create an Elixir.ReqLLM.Error.Invalid.Schema without raising it.

 Functions

 exception(args)

 @spec exception(opts :: Keyword.t()) :: %ReqLLM.Error.Invalid.Schema{
 __exception__: true,
 bread_crumbs: term(),
 class: term(),
 path: term(),
 reason: term(),
 splode: term(),
 stacktrace: term(),
 vars: term()
}

Create an Elixir.ReqLLM.Error.Invalid.Schema without raising it.
Keys
	:reason

ReqLLM.Error.Unknown exception

Error class for unexpected or unhandled errors.

 Summary

 Functions

 exception(args)

 Create an Elixir.ReqLLM.Error.Unknown without raising it.

 message(map)

 Callback implementation for Exception.message/1.

 Functions

 exception(args)

 @spec exception(opts :: Keyword.t()) :: %ReqLLM.Error.Unknown{
 __exception__: true,
 bread_crumbs: term(),
 class: term(),
 errors: term(),
 path: term(),
 splode: term(),
 stacktrace: term(),
 vars: term()
}

Create an Elixir.ReqLLM.Error.Unknown without raising it.
Keys
	:errors

 message(map)

Callback implementation for Exception.message/1.

ReqLLM.Error.Unknown.Unknown exception

Error for unexpected or unhandled errors.

 Summary

 Functions

 exception(args)

 Create an Elixir.ReqLLM.Error.Unknown.Unknown without raising it.

 Functions

 exception(args)

 @spec exception(opts :: Keyword.t()) :: %ReqLLM.Error.Unknown.Unknown{
 __exception__: true,
 bread_crumbs: term(),
 class: term(),
 error: term(),
 path: term(),
 splode: term(),
 stacktrace: term(),
 vars: term()
}

Create an Elixir.ReqLLM.Error.Unknown.Unknown without raising it.
Keys
	:error

ReqLLM.Error.Validation exception

Error class for validation failures and parameter errors.

 Summary

 Functions

 exception(args)

 Create an Elixir.ReqLLM.Error.Validation without raising it.

 message(map)

 Callback implementation for Exception.message/1.

 Functions

 exception(args)

 @spec exception(opts :: Keyword.t()) :: %ReqLLM.Error.Validation{
 __exception__: true,
 bread_crumbs: term(),
 class: term(),
 errors: term(),
 path: term(),
 splode: term(),
 stacktrace: term(),
 vars: term()
}

Create an Elixir.ReqLLM.Error.Validation without raising it.
Keys
	:errors

 message(map)

Callback implementation for Exception.message/1.

ReqLLM.Error.Validation.Error exception

Error for parameter validation failures.

 Summary

 Types

 t()

 Validation error returned by ReqLLM

 Functions

 exception(args)

 Create an Elixir.ReqLLM.Error.Validation.Error without raising it.

 Types

 t()

 @type t() :: %ReqLLM.Error.Validation.Error{
 __exception__: true,
 bread_crumbs: term(),
 class: term(),
 context: keyword(),
 path: term(),
 reason: String.t(),
 splode: term(),
 stacktrace: term(),
 tag: atom(),
 vars: term()
}

Validation error returned by ReqLLM

 Functions

 exception(args)

 @spec exception(opts :: Keyword.t()) :: %ReqLLM.Error.Validation.Error{
 __exception__: true,
 bread_crumbs: term(),
 class: term(),
 context: term(),
 path: term(),
 reason: term(),
 splode: term(),
 stacktrace: term(),
 tag: term(),
 vars: term()
}

Create an Elixir.ReqLLM.Error.Validation.Error without raising it.
Keys
	:tag
	:reason
	:context

mix req.llm.stream_text

Mix task for streaming text generation from AI models.
Provides real-time streaming text generation with basic metrics.

mix req_llm.model_sync

Simplified model synchronization task.
This task fetches model data from models.dev API (which now includes cost data)
and saves provider JSON files to the /priv directory.
Usage
Sync models from models.dev
mix req_llm.model_sync

Verbose output
mix req_llm.model_sync --verbose
Output Structure
priv/models_dev/providers/
├── anthropic.json # Anthropic models with cost data
├── openai.json # OpenAI models with cost data
├── google.json # Google models with cost data
└── ... # All other providers

 Summary

 Functions

 execute_sync(verbose? \\ false)

 Execute the synchronization process.

 Functions

 execute_sync(verbose? \\ false)

 @spec execute_sync(boolean()) :: :ok | {:error, term()}

Execute the synchronization process.

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

