

 Resource

 v1.0.1

 Table of contents

 	Resource

 	Modules

 	Resource

Resource

[image: Elixir CI]
An abstraction that provides a way to manage resources in a safe and deterministic manner.
Inspired by Bracket monad, it is used to ensure that resources are properly acquired and released,
even in the presence of exceptions or other errors.
It abstracts three phases:
	acquire: Takes no arguments and returns a value (acquired resource).
	use: Accepts a value of acquired resource type and runs computation atop of it.
	release: Accepts a value of acquired resource type and runs a "releasing procedure" on it.

The key feature of it, is that once acquire succeeded, release is guaranteed to be called under the hood
(right after use phase, no matter what it returns or even diverges).
So the abstraction ensures that the resource is properly acquired and released,
even in the presence of exceptions or other errors.
Elixir's kernel already has similar facility — Stream.resource/3.
However, it is biased toward resources of "stream-nature"
and does not have a facility to compose resources together
(e.g. when you have to perform computation on two acquired resources).
So the main goal of the library is to provide non-biased
and composable facility to work with resources in a safe manner.
To achieve the first goal the library provide a wrapper on top of Stream.resource/3.
To achieve the second one it utilizes Bindable.ForComprehension.
To do so it provides both Bindable.FlatMap and Bindable.Pure implementations for Resource out of the box.
So plug in the library, and you get a way to safely combine resources using for-comprehension:
import Bindable.ForComprehension
import Resource

summation =
 bindable for x <- create(acquire: fn -> IO.puts("Acquire x"); 40 end, release: fn _ -> IO.puts("Release x") end),
 y <- create(acquire: fn -> IO.puts("Acquire y"); 2 end, release: fn _ -> IO.puts("Release y") end),
 do: x + y

use!(summation, fn sum -> IO.puts("Use sum"); {sum} end)
Installation
The package can be installed by adding resource to your list of dependencies in mix.exs:
def deps do
 [
 {:resource, "~> 1.0.0"}
]
end
The docs can be found at https://hexdocs.pm/resource.

Resource

An abstraction that provides a way to manage resources in a safe and deterministic manner.
Inspired by Bracket monad, it is used to ensure that resources are properly acquired and released,
even in the presence of exceptions or other errors.
It abstracts three phases:
	acquire: Takes no arguments and returns a value (acquired resource).
	use: Accepts a value of acquired resource type and runs computation on it.
	release: Accepts a value of acquired resource type and runs a "releasing procedure" on it.

The key feature of it, is that once acquire succeeded, release is guaranteed to be called under the hood
(right after use phase, no matter what it returns or even diverges).
So the abstraction ensures that the resource is properly acquired and released,
even in the presence of exceptions or other errors.
Elixir's kernel already has similar facility — Stream.resource/3.
However, it is biased toward resources of "stream-nature"
(working with singleton streams is cumbersome and requires a lot of ceremonies)
and does not have a facility to compose resources together
(e.g. when you have to perform computation on two acquired at the same time resources).
So the main goal of the library is to provide non-biased
and composable facility to work with resources in a safe manner.
To achieve the first goal the library provide a wrapper on top of Stream.resource/3.
To achieve the second one it utilizes Bindable.ForComprehension.
To do so it provides both Bindable.FlatMap and Bindable.Pure implementations for Resource out of the box.
So plug in the library, and you get a way to safely combine resources using for-comprehension:
 iex> import ExUnit.CaptureIO, only: [capture_io: 1]
 ...> import Bindable.ForComprehension, only: [bindable: 1]
 ...> import Resource, only: [create: 1, use!: 2]
 ...>
 ...> summation =
 ...> bindable for x <- create(acquire: fn -> IO.puts("Acquire x"); 1 end, release: fn _ -> IO.puts("Release x") end),
 ...> y <- create(acquire: fn -> IO.puts("Acquire y"); 2 end, release: fn _ -> IO.puts("Release y") end),
 ...> do: x + y
 ...>
 ...> capture_io fn ->
 ...> assert_raise RuntimeError, "Boom", fn ->
 ...> use!(summation, fn _sum -> raise "Boom" end)
 ...> end
 ...> end
 "Acquire x\nAcquire y\nRelease y\nRelease x\n"

 Anchor for this section

 Summary

 Types

 t(a)

 Resource data type.

 Functions

 create(acquire_and_release_phases)

 Resource "data type constructor".

 use!(resource, computation)

 Eagerly runs the provided computation against the resource.

 Anchor for this section

Types

 Link to this type

 t(a)

 View Source

 @type t(a) :: %Resource{singleton_stream: singleton_stream(a)}

Resource data type.
Though :singleton_stream has to be treated as an implementation details,
it was selected in favour to :acquire and :release functions,
as it would be more secure in a some sense, due to Elixir does not have "private properties",
so in case of explicit :acquire and :release struct properties,
one can access :acquire function and "forget" to run :release.

 Anchor for this section

Functions

 Link to this function

 create(acquire_and_release_phases)

 View Source

 @spec create(acquire: (-> a), release: (a -> unit())) :: t(a) when a: var

Resource "data type constructor".

 Link to this function

 use!(resource, computation)

 View Source

 @spec use!(t(a), (a -> b)) :: b when a: var, b: var

Eagerly runs the provided computation against the resource.
If the computation raises, it also raises, but resource is properly released.

 OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

