

 rhai_rustler

 v1.1.1

 Table of contents

 	rhai_rustler

 	NIF Bindings

 	LICENSE

 	

 	Modules

 	Rhai.AST

 	Rhai.Any

 	Rhai.Engine

 	Rhai.Error

 	Rhai.Package

 	Rhai.Scope

rhai_rustler

[image: CI]
[image: Rust CI]
[image: NIFs precompilation]
[image: Hex.pm]
[image: Hex Docs]
Elixir NIF bindings for Rhai, a tiny, simple and fast embedded scripting language for Rust that gives you a safe and easy way to add scripting to your applications.
Please refer to The Rhai Book for extended information about the language.

 Installation

Add :rhai_rustler to the list of dependencies in mix.exs:
def deps do
 [
 {:rhai_rustler, "~> 1.0.0"}
]
end

 Features

rhai_rustler exposes a subset of the Rhai API to Elixir:
	Engine - Rhai Book - docs.rs
	Scope - Rhai book - docs.rs
	AST - Rhai book - docs.rs

Note that not all the Rhai API features are supported. For instance, advanced and low-level APIs are not exposed.
If any usage patterns become apparent, they will be included in the future.
Please refer to NIF bindings to see the methods supported by the Elixir NIF.
The Elixir NIF provides a way to extend Rhai with external native Rust modules, see: Extending Rhai with external native Rust modules and rhai_dylib for more information.
To check the supported types conversion, see Type conversion table.

 Usage patterns

 "Hello Rhai"

engine = Rhai.Engine.new()

{:ok, "Hello Rhai!"} = Rhai.Engine.eval(engine, "\"Hello Rhai!\"")

 Eval

engine = Rhai.Engine.new()

Simple evaluation
{:ok, 2} = Rhai.Engine.eval(engine, "1 + 1")

Evaluation with scope
scope = Rhai.Scope.new() |> Rhai.Scope.push("a", 10) |> Rhai.Scope.push("b", 3)
{:ok, 30} = Rhai.Engine.eval_with_scope(engine, scope, "a * b")

 AST

engine = Rhai.Engine.new()
scope = Rhai.Scope.new() |> Rhai.Scope.push_constant("a", 10) |> Rhai.Scope.push_constant("b", 3)

{:ok, %Rhai.AST{} = ast} = Rhai.Engine.compile_with_scope(engine, scope, "a * b")
{:ok, 30} = Rhai.Engine.eval_ast(engine, ast)

AST can be shared between engines
task = Task.async(fn -> Rhai.Engine.eval_ast(Rhai.Engine.new(), ast) end)
{:ok, 30} = Task.await(task)

 Raw Engine

engine = Rhai.Engine.new_raw()

Returns an error since BasicArrayPackage is not registered
{:error, {:function_not_found, _}} = Rhai.Engine.eval(engine, "[1, 2, 3].find(|x| x > 2)")

Please refer to https://rhai.rs/book/rust/packages/builtin.html for more information about packages
engine = Rhai.Engine.register_package(engine, :basic_array)
{:ok, 3} = Rhai.Engine.eval(engine, "[1, 2, 3].find(|x| x > 2)")

 Extending rhai_rustler with external native Rust modules

rhai_rustler utilizes the [rhai_dylib](https://github.com/rhaiscript/rhai-dylib) library to expand the capabilities of Rhai by loading external native Rust modules. This allows users to introduce new functions, custom types, and operators.
test_dylib_module serves as an example of how to create a dylib module. A dummy rustler module is employed to trigger the compilation process. This same approach can be adopted in real-world projects, such as when distributing the dylib module as a Hex package.

 Type conversion table

Elixir Types are converted to Rhai types (and back) as follows:
	Elixir	Rhai
	integer()	Integer
	float()	Float
	float()	Decimal
	bool()	Boolean
	String.t()	String
	String.t()	Char
	list()	Array
	tuple()	Array
	%{ String.t() => Rhai.Any.t() }	Object map
	nil()	Empty
	pid()	Empty (not supported)
	ref()	Empty (not supported)
	fun()	Empty (not supported)
	map()	Empty (not supported)

 Rustler precompiled

By default, you don't need the Rust toolchain installed because the lib will try to download
a precompiled NIF file.
In case you want to force compilation set the
RHAI_RUSTLER_FORCE_BUILD environment variable to true or 1.
Precompiled NIFs are available for the following platforms:
	aarch64-apple-darwin
	x86_64-apple-darwin
	x86_64-unknown-linux-gnu
	x86_64-unknown-linux-musl
	arm-unknown-linux-gnueabihf
	aarch64-unknown-linux-gnu
	aarch64-unknown-linux-musl
	x86_64-pc-windows-msvc
	x86_64-pc-windows-gnu

 Release flow

Please follow this guide when releasing a new version of the library.

 License

This library is licensed under Apache 2.0 License. See LICENSE for details.

 Links

	rhai The Rust crate doing most of the dirty work.
	RustlerPrecompiled Use precompiled NIFs from trusted sources in your Elixir code.
	NimbleLZ4 Major inspiration for the RustlerPrecompiled GitHub actions workflow and general setup.

NIF Bindings

 Engine

	Rust	Elixir	Notes
	allow_anonymous_fn	allow_anonymous_fn/1	
	allow_if_expression	allow_if_expression/1	
	allow_loop_expressions	allow_loop_expressions/1	
	allow_looping	allow_looping/1	
	allow_shadowing	allow_shadowing/1	
	allow_statement_expression	allow_statement_expression/1	
	allow_switch_expression	allow_switch_expression/1	
	build_type	-	use dylib instead
	call_fn	call_fn/4	
	call_fn_dynamic	-	deprecated
	call_fn_raw	-	deprecated
	call_fn_with_options	-	advanced API
	compact_script	compact_script/2	
	compile	compile/2	
	compile_expression	compile_expression/2	
	compile_expression_with_scope	compile_expression_with_scope/2	
	compile_file	compile_file/2	
	compile_file_with_scope	compile_file_with_scope/3	
	compile_into_self_contained	compile_into_self_contained/3	
	compile_scripts_with_scope	compile_scripts_with_scope/3	
	compile_with_scope	compile_with_scope/3	
	const_empty_string	-	not implemented
	consume	-	deprecated, use run instead
	consume_ast	-	deprecated
	consume_ast_with_scope	-	deprecated
	consume_file	-	deprecated
	consume_file_with_scope	-	deprecated
	consume_with_scope	-	deprecated
	default_tag	-	not implemented
	default_tag_mut	-	not implemented
	definitions	-	internals
	definitions_with_scope	-	internals
	disable_symbol	-	
	ensure_data_size_within_limits	ensure_data_size_within_limits/2	
	eval	eval/2	
	eval_ast	eval_ast/2	
	eval_ast_with_scope	eval_ast_with_scope/3	
	eval_expression	eval_expression/2	
	eval_expression_with_scope	eval_expression_with_scope/3	
	eval_file	eval_file/2	
	eval_file_with_scope	eval_file_with_scope/3	
	eval_statements_raw	-	deprecated
	eval_with_scope	eval_with_scope/3	
	fail_on_invalid_map_property	fail_on_invalid_map_property/1	
	fast_operators	fast_operators/1	
	gen_fn_metadata_to_json	-	not implemented, metadata feature is not enabled
	gen_fn_metadata_with_ast_to_json	-	not implemented, metadata feature is not enabled
	gen_fn_signatures	-	not implemented, metadata feature is not enabled
	get_interned_string	-	internals
	lex	-	internals
	lex_with_map	-	internals
	map_type_name	-	not implemented
	max_array_size	max_array_size/1	
	max_call_levels	max_call_levels/1	
	max_expr_depth	max_expr_depth/1	
	max_function_expr_depth	max_function_expr_depth/1	
	max_map_size	max_map_size/1	
	max_modules	max_modules/1	
	max_operations	max_operations/1	
	max_string_size	max_string_size/1	
	new	new/0	
	new_raw	new_raw/0	
	optimization_level	optimization_level/1	
	optimize_ast	optimize_ast/4	
	register_custom_operator	register_custom_operator/3	use dylib instead
	register_global_module	register_global_module/2	
	register_indexer_get	-	use dylib instead
	register_custom_syntax	-	use dylib instead
	register_custom_syntax_raw	-	deprecated
	register_custom_syntax_with_state_raw	-	low level API
	register_debugger	-	unstable
	register_fn	-	use dylib instead
	register_get	-	use dylib instead
	register_get_result	-	deprecated
	register_get_set	-	use dylib instead
	run	run/2	
	run_ast	run_ast/2	
	run_ast_with_scope	run_ast_with_scope/3	
	run_file	run_file/2	
	run_file_with_scope	run_file_with_scope/3	
	run_with_scope	run_with_scope/3	
	set_allow_anonymous_fn	set_allow_anonymous_fn/2	
	set_allow_if_expression	set_allow_if_expression/2	
	set_allow_loop_expressions	set_allow_loop_expressions/2	
	set_allow_looping	set_allow_looping/2	
	set_allow_shadowing	set_allow_shadowing/2	
	set_allow_statement_expression	set_allow_statement_expression/2	
	set_allow_switch_expression	set_allow_switch_expression/2	
	set_default_tag	-	not implemented
	set_fail_on_invalid_map_property	set_fail_on_invalid_map_property/2	
	set_fast_operators	set_fast_operators/2	
	set_max_array_size	set_max_array_size/2	
	set_max_call_levels	set_max_call_levels/2	
	set_max_expr_depths	set_max_expr_depths/3	
	set_max_map_size	set_max_map_size/2	
	set_max_modules	set_max_modules/2	
	set_max_operations	set_max_operations/2	
	set_max_string_size	set_max_string_size/2	
	set_module_resolver	set_module_resolvers/2	sets a ModuleResolverCollection
	set_optimization_level	set_optimization_level/2	
	set_strict_variables	set_strict_variables/2	
	strict_variables	strict_variables/1	

 Scope

	Rust	Elixir	Notes
	clear	clear/1	
	clone_visible	clone_visible/1	
	contains	contains/2	
	get	-	not implemented, use get_value
	get_mut	-	not implemented, use get_value
	get_value	get_value/2	
	is_constant	is_constant/2	
	is_empty	is_empty/1	
	iter	-	note implemented, Scope implements the Enumerable protocol
	iter_raw	-	not implemented
	len	len/1	
	new	new/0	
	pop	pop/1	
	push	push/2	
	push_constant	push_constant/2	
	push_constant_dynamic	-	not implemented, use push_constant
	push_dynamic	-	not implemented, use push
	remove	remove/2	
	rewind	rewind/2	
	set_alias	set_alias/3	
	set_or_push	set_or_push/3	
	set_value	set_value/3	
	with_capacity	with_capacity/1	

 AST

	Rust	Elixir	Notes
	clear_doc	-	not implemented, metadata feature is not enabled
	clear_functions	clear_functions/1	
	clear_source	clear_source/1	
	clear_statements	clear_statements/1	
	clone_functions_only	clone_functions_only/1	
	clone_functions_only_filtered	-	calling an Elixir function is not supported at the moment
	clone_statements_only	clone_statements_only/1	
	combine	combine/2	
	combine_filtered	-	calling an Elixir function is not supported at the moment
	doc	-	not implemented, metadata feature is not enabled
	empty	empty/0	
	has_functions	has_functions/1	
	iter_fn_def	-	internals
	iter_functions	-	
	iter_literal_variables	-	
	lib	-	deprecated
	merge	merge/2	
	merge_filtered	-	calling an Elixir function is not supported at the moment
	new	-	internals
	new_with_source	-	internals
	resolver	-	internals
	retain_functions	-	calling an Elixir function is not supported at the moment
	set_source	set_source/2	
	shared_lib	-	internals
	source	source/0	
	statements	-	internals
	walk	-	internals

LICENSE

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

 END OF TERMS AND CONDITIONS

 APPENDIX: How to apply the Apache License to your work.

 To apply the Apache License to your work, attach the following
 boilerplate notice, with the fields enclosed by brackets "[]"
 replaced with your own identifying information. (Don't include
 the brackets!) The text should be enclosed in the appropriate
 comment syntax for the file format. We also recommend that a
 file or class name and description of purpose be included on the
 same "printed page" as the copyright notice for easier
 identification within third-party archives.

 Copyright [yyyy] [name of copyright owner]

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

Rhai.AST

Compiled AST (abstract syntax tree) of a Rhai script.

 Summary

 Types

 t()

 Functions

 clear_functions(ast)

 Clear all function definitions in the AST.

 clear_source(ast)

 Clear the source.

 clear_statements(ast)

 Clear all statements in the AST, leaving only function definitions.

 clone_functions_only(ast)

 Clone the AST’s functions into a new AST. No statements are cloned.

 combine(ast1, ast2)

 Combine one AST with another. The second AST is consumed.

 empty()

 Create an empty AST.

 has_functions?(ast)

 Does this AST contain script-defined functions?

 merge(ast1, ast2)

 Merge two AST into one. Both AST’s are untouched and a new, merged, version is returned.

 set_source(ast, source)

 Set the source.

 source(ast)

 Get the source if any.

 Types

 Link to this type

 t()

 @type t() :: %Rhai.AST{reference: term(), resource: term()}

 Functions

 Link to this function

 clear_functions(ast)

 @spec clear_functions(t()) :: t()

Clear all function definitions in the AST.

 Link to this function

 clear_source(ast)

 @spec clear_source(t()) :: t()

Clear the source.

 Link to this function

 clear_statements(ast)

 @spec clear_statements(t()) :: t()

Clear all statements in the AST, leaving only function definitions.

 Link to this function

 clone_functions_only(ast)

 @spec clone_functions_only(t()) :: t()

Clone the AST’s functions into a new AST. No statements are cloned.

 Link to this function

 combine(ast1, ast2)

 @spec combine(t(), t()) :: t()

Combine one AST with another. The second AST is consumed.
Statements in the second AST are simply appended to the end of the first without any processing.
Thus, the return value of the first AST (if using expression-statement syntax) is buried.
Of course, if the first AST uses a return statement at the end, then the second AST will essentially be dead code.
All script-defined functions in the second AST overwrite similarly-named functions in the first AST with the same number of parameters.
See example in the Rhai documentation.

 Link to this function

 empty()

Create an empty AST.

 Link to this function

 has_functions?(ast)

 @spec has_functions?(t()) :: bool()

Does this AST contain script-defined functions?

 Link to this function

 merge(ast1, ast2)

 @spec merge(t(), t()) :: t()

Merge two AST into one. Both AST’s are untouched and a new, merged, version is returned.
Statements in the second AST are simply appended to the end of the first without any processing.
Thus, the return value of the first AST (if using expression-statement syntax) is buried.
Of course, if the first AST uses a return statement at the end, then the second AST will essentially be dead code.
All script-defined functions in the second AST overwrite similarly-named functions in the first AST with the same number of parameters.
See example in the Rhai documentation.

 Link to this function

 set_source(ast, source)

 @spec set_source(t(), String.t()) :: t()

Set the source.

 Link to this function

 source(ast)

 @spec source(t()) :: String.t() | nil

Get the source if any.

Rhai.Any

Rhai types

 Summary

 Types

 t()

 Types

 Link to this type

 t()

 @type t() ::
 number()
 | boolean()
 | String.t()
 | nil
 | [t()]
 | %{required(String.t()) => t()}

Rhai.Engine

Rhai main scripting engine.

 Summary

 Types

 t()

 Functions

 allow_anonymous_fn?(engine)

 Is anonymous function allowed? Default is true.

 allow_if_expression?(engine)

 Is if-expression allowed? Default is true.

 allow_loop_expressions?(engine)

 Are loop-expression allowed? Default is true.

 allow_looping?(engine)

 Is looping allowed? Default is true.

 allow_shadowing?(engine)

 Is shadowing allowed? Default is true.

 allow_statement_expression?(engine)

 Is statement_expression allowed? Default is true.

 allow_switch_expression?(engine)

 Is switch expression allowed? Default is true.

 call_fn(engine, scope, ast, name, args)

 Call a script function defined in an AST with multiple arguments.

 compact_script(engine, script)

 Compact a script to eliminate insignificant whitespaces and comments.
This is useful to prepare a script for further compressing.
The output script is semantically identical to the input script, except smaller in size.
Unlike other uglifiers and minifiers, this method does not rename variables nor perform any optimization on the input script.

 compile(engine, script)

 Compile a string into an AST, which can be used later for evaluation.

 compile_expression(engine, script)

 Compile a string containing an expression into an AST, which can be used later for evaluation.

 compile_expression_with_scope(engine, scope, script)

 Compile a string containing an expression into an AST using own scope, which can be used later for evaluation.

 compile_file(engine, path)

 Compile a script file into an AST, which can be used later for evaluation.

 compile_file_with_scope(engine, scope, script)

 Compile a script file into an AST using own scope, which can be used later for evaluation.

 compile_into_self_contained(engine, scope, script)

 Compile a string into an AST using own scope, which can be used later for evaluation, embedding all imported modules.
Modules referred by import statements containing literal string paths are eagerly resolved via the current module resolver and embedded into the resultant AST. When it is evaluated later, import statement directly recall pre-resolved modules and the resolution process is not performed again.

 compile_scripts_with_scope(engine, scope, script)

 When passed a list of strings, first join the strings into one large script, and then compile them into an AST using own scope, which can be used later for evaluation.

 compile_with_scope(engine, scope, script)

 Compile a string into an AST using own scope, which can be used later for evaluation.

 disable_symbol(engine, symbol)

 Disable a particular keyword or operator in the language.

 ensure_data_size_within_limits(engine, value)

 Return an error if the size of a Dynamic is out of limits (if any).

 eval(engine, script)

 Evaluate a string as a script, returning the result value or an error.

 eval_ast(engine, ast)

 Evaluate an AST, returning the result value or an error.

 eval_ast_with_scope(engine, scope, ast)

 Evaluate an AST with own scope, returning the result value or an error.

 eval_expression(engine, script)

 Evaluate a string containing an expression, returning the result value or an error.

 eval_expression_with_scope(engine, scope, script)

 Evaluate a string containing an expression with own scope, returning the result value or an error.

 eval_file(engine, path)

 Evaluate a script file, returning the result value or an error.

 eval_file_with_scope(engine, scope, path)

 Evaluate a script file with own scope, returning the result value or an error.

 eval_with_scope(engine, scope, script)

 Evaluate a string as a script with own scope, returning the result value or an error.

 fail_on_invalid_map_property?(engine)

 Set whether to raise error if an object map property does not exist.

 fast_operators?(engine)

 Is fast operators mode enabled? Default is false.

 max_array_size(engine)

 The maximum length of arrays (0 for unlimited).

 max_call_levels(engine)

 Is fast operators mode enabled? Default is false.

 max_expr_depth(engine)

 The depth limit for expressions (0 for unlimited).

 max_function_expr_depth(engine)

 The depth limit for expressions in functions (0 for unlimited).

 max_map_size(engine)

 The maximum size of object maps (0 for unlimited).

 max_modules(engine)

 The maximum number of imported modules allowed for a script.

 max_operations(engine)

 The maximum number of operations allowed for a script to run (0 for unlimited).

 max_string_size(engine)

 The maximum length, in bytes, of strings (0 for unlimited).

 new()

 Create a new Engine

 new_raw()

 Create a new Engine with minimal built-in functions.

 optimization_level(engine)

 The current optimization level. It controls whether and how the Engine will optimize an AST after compilation.

 optimize_ast(engine, scope, ast, optimization_level)

 Optimize the AST with constants defined in an external Scope.
An optimized copy of the AST is returned while the original AST is consumed.

 register_custom_operator(engine, operator, precedence)

 Register a custom operator with a precedence into the language.

 register_custom_operator!(engine, operator, precedence)

 Register a custom operator with a precedence into the language.

 register_global_module(engine, path)

 Register a shared dylib Module into the global namespace of Engine.

 register_global_module!(engine, path)

 Register a shared dylib Module into the global namespace of Engine.

 register_package(engine, package)

 Register the package with an Engine.

 register_static_module(engine, namespace, path)

 Register a shared Module into the namespace of Engine.

 register_static_module!(engine, namespace, path)

 Register a shared Module into the namespace of Engine.

 run(engine, script)

 Evaluate a string as script.

 run_ast(engine, ast)

 Evaluate an AST.

 run_ast_with_scope(engine, scope, ast)

 Evaluate an AST with own scope.

 run_file(engine, path)

 Evaluate a file.

 run_file_with_scope(engine, scope, path)

 Evaluate a file with own scope.

 run_with_scope(engine, scope, script)

 Evaluate a string as script with own scope.

 set_allow_anonymous_fn(engine, enable)

 Set whether anonymous function is allowed.

 set_allow_if_expression(engine, enable)

 Set whether if-expression is allowed.

 set_allow_loop_expressions(engine, enable)

 Set whether loop expressions are allowed.

 set_allow_looping(engine, enable)

 Set whether looping is allowed.

 set_allow_shadowing(engine, enable)

 Set whether shadowing is allowed.

 set_allow_statement_expression(engine, enable)

 Set whether statement_expression is allowed.

 set_allow_switch_expression(engine, enable)

 Set whether switch expression is allowed.

 set_fail_on_invalid_map_property(engine, enable)

 Set whether to raise error if an object map property does not exist.

 set_fast_operators(engine, enable)

 Set whether fast operators mode is enabled.

 set_max_array_size(engine, max_size)

 Set the maximum length of arrays (0 for unlimited).

 set_max_call_levels(engine, levels)

 Set the maximum levels of function calls allowed for a script in order to avoid infinite recursion and stack overflows.

 set_max_expr_depths(engine, max_expr_depth, max_function_expr_depth)

 Set the depth limits for expressions (0 for unlimited).

 set_max_map_size(engine, size)

 Set the maximum size of object maps (0 for unlimited).

 set_max_modules(engine, modules)

 Set the maximum number of imported modules allowed for a script.

 set_max_operations(engine, operations)

 Set the maximum number of operations allowed for a script to run to avoid consuming too much resources (0 for unlimited).

 set_max_string_size(engine, string_size)

 Set the maximum length, in bytes, of strings (0 for unlimited).

 set_module_resolvers(engine, module_resolvers)

 Set the module resolution services used by the Engine.

 set_optimization_level(engine, optimization_level)

 Control whether and how the Engine will optimize an AST after compilation.

 set_strict_variables(engine, enable)

 Set whether strict variables mode is enabled.

 strict_variables?(engine)

 Is strict variables mode enabled? Default is false.

 Types

 Link to this type

 t()

 @type t() :: %Rhai.Engine{reference: term(), resource: term()}

 Functions

 Link to this function

 allow_anonymous_fn?(engine)

 @spec allow_anonymous_fn?(t()) :: boolean()

Is anonymous function allowed? Default is true.
Not available under no_function.

 Link to this function

 allow_if_expression?(engine)

 @spec allow_if_expression?(t()) :: boolean()

Is if-expression allowed? Default is true.

 Link to this function

 allow_loop_expressions?(engine)

 @spec allow_loop_expressions?(t()) :: boolean()

Are loop-expression allowed? Default is true.

 Link to this function

 allow_looping?(engine)

 @spec allow_looping?(t()) :: boolean()

Is looping allowed? Default is true.

 Link to this function

 allow_shadowing?(engine)

 @spec allow_shadowing?(t()) :: boolean()

Is shadowing allowed? Default is true.

 Link to this function

 allow_statement_expression?(engine)

 @spec allow_statement_expression?(t()) :: boolean()

Is statement_expression allowed? Default is true.

 Link to this function

 allow_switch_expression?(engine)

 @spec allow_switch_expression?(t()) :: boolean()

Is switch expression allowed? Default is true.

 Link to this function

 call_fn(engine, scope, ast, name, args)

 @spec call_fn(t(), Rhai.Scope.t(), Rhai.AST.t(), String.t(), list()) ::
 {:ok, Rhai.Any.t()} | {:error, Rhai.Error.t()}

Call a script function defined in an AST with multiple arguments.

 Link to this function

 compact_script(engine, script)

 @spec compact_script(t(), String.t()) :: String.t()

Compact a script to eliminate insignificant whitespaces and comments.
This is useful to prepare a script for further compressing.
The output script is semantically identical to the input script, except smaller in size.
Unlike other uglifiers and minifiers, this method does not rename variables nor perform any optimization on the input script.

 Link to this function

 compile(engine, script)

 @spec compile(t(), String.t()) :: {:ok, Rhai.AST.t()} | {:error, Rhai.Error.t()}

Compile a string into an AST, which can be used later for evaluation.

 Link to this function

 compile_expression(engine, script)

 @spec compile_expression(t(), String.t()) ::
 {:ok, Rhai.AST.t()} | {:error, Rhai.Error.t()}

Compile a string containing an expression into an AST, which can be used later for evaluation.

 Link to this function

 compile_expression_with_scope(engine, scope, script)

 @spec compile_expression_with_scope(t(), Rhai.Scope.t(), String.t()) ::
 {:ok, Rhai.AST.t()} | {:error, Rhai.Error.t()}

Compile a string containing an expression into an AST using own scope, which can be used later for evaluation.

 Link to this function

 compile_file(engine, path)

 @spec compile_file(t(), String.t()) :: {:ok, Rhai.AST.t()} | {:error, Rhai.Error.t()}

Compile a script file into an AST, which can be used later for evaluation.

 Link to this function

 compile_file_with_scope(engine, scope, script)

 @spec compile_file_with_scope(t(), Rhai.Scope.t(), String.t()) ::
 {:ok, Rhai.AST.t()} | {:error, Rhai.Error.t()}

Compile a script file into an AST using own scope, which can be used later for evaluation.

 Link to this function

 compile_into_self_contained(engine, scope, script)

 @spec compile_into_self_contained(t(), Rhai.Scope.t(), String.t()) ::
 {:ok, Rhai.AST.t()} | {:error, Rhai.Error.t()}

Compile a string into an AST using own scope, which can be used later for evaluation, embedding all imported modules.
Modules referred by import statements containing literal string paths are eagerly resolved via the current module resolver and embedded into the resultant AST. When it is evaluated later, import statement directly recall pre-resolved modules and the resolution process is not performed again.

 Link to this function

 compile_scripts_with_scope(engine, scope, script)

 @spec compile_scripts_with_scope(t(), Rhai.Scope.t(), [String.t()]) ::
 {:ok, Rhai.AST.t()} | {:error, Rhai.Error.t()}

When passed a list of strings, first join the strings into one large script, and then compile them into an AST using own scope, which can be used later for evaluation.
The scope is useful for passing constants into the script for optimization when using :full optimization level.

 Link to this function

 compile_with_scope(engine, scope, script)

 @spec compile_with_scope(t(), Rhai.Scope.t(), String.t()) ::
 {:ok, Rhai.AST.t()} | {:error, Rhai.Error.t()}

Compile a string into an AST using own scope, which can be used later for evaluation.
Constants Propagation:
If not optimization_level = :none, constants defined within the scope are propagated throughout the script including functions.
This allows functions to be optimized based on dynamic global constants.

 Link to this function

 disable_symbol(engine, symbol)

 @spec disable_symbol(t(), String.t()) :: t()

Disable a particular keyword or operator in the language.

 Link to this function

 ensure_data_size_within_limits(engine, value)

 @spec ensure_data_size_within_limits(t(), Rhai.Any.t()) :: :ok | Rhai.Error.t()

Return an error if the size of a Dynamic is out of limits (if any).

 Link to this function

 eval(engine, script)

 @spec eval(t(), String.t()) :: {:ok, Rhai.Any.t()} | {:error, Rhai.Error.t()}

Evaluate a string as a script, returning the result value or an error.

 Link to this function

 eval_ast(engine, ast)

 @spec eval_ast(t(), Rhai.AST.t()) :: {:ok, Rhai.Any.t()} | {:error, Rhai.Error.t()}

Evaluate an AST, returning the result value or an error.

 Link to this function

 eval_ast_with_scope(engine, scope, ast)

 @spec eval_ast_with_scope(t(), Rhai.Scope.t(), Rhai.AST.t()) ::
 {:ok, Rhai.Any.t()} | {:error, Rhai.Error.t()}

Evaluate an AST with own scope, returning the result value or an error.

 Link to this function

 eval_expression(engine, script)

 @spec eval_expression(t(), String.t()) ::
 {:ok, Rhai.Any.t()} | {:error, Rhai.Error.t()}

Evaluate a string containing an expression, returning the result value or an error.

 Link to this function

 eval_expression_with_scope(engine, scope, script)

 @spec eval_expression_with_scope(t(), Rhai.Scope.t(), String.t()) ::
 {:ok, Rhai.Any.t()} | {:error, Rhai.Error.t()}

Evaluate a string containing an expression with own scope, returning the result value or an error.

 Link to this function

 eval_file(engine, path)

 @spec eval_file(t(), String.t()) :: {:ok, Rhai.Any.t()} | {:error, Rhai.Error.t()}

Evaluate a script file, returning the result value or an error.

 Link to this function

 eval_file_with_scope(engine, scope, path)

 @spec eval_file_with_scope(t(), Rhai.Scope.t(), String.t()) ::
 {:ok, Rhai.Any.t()} | {:error, Rhai.Error.t()}

Evaluate a script file with own scope, returning the result value or an error.

 Link to this function

 eval_with_scope(engine, scope, script)

 @spec eval_with_scope(t(), Rhai.Scope.t(), String.t()) ::
 {:ok, Rhai.Any.t()} | {:error, Rhai.Error.t()}

Evaluate a string as a script with own scope, returning the result value or an error.

 Link to this function

 fail_on_invalid_map_property?(engine)

 @spec fail_on_invalid_map_property?(t()) :: boolean()

Set whether to raise error if an object map property does not exist.

 Link to this function

 fast_operators?(engine)

 @spec fast_operators?(t()) :: boolean()

Is fast operators mode enabled? Default is false.

 Link to this function

 max_array_size(engine)

 @spec max_array_size(t()) :: integer()

The maximum length of arrays (0 for unlimited).
Zero under no_index.

 Link to this function

 max_call_levels(engine)

 @spec max_call_levels(t()) :: non_neg_integer()

Is fast operators mode enabled? Default is false.

 Link to this function

 max_expr_depth(engine)

 @spec max_expr_depth(t()) :: non_neg_integer()

The depth limit for expressions (0 for unlimited).

 Link to this function

 max_function_expr_depth(engine)

 @spec max_function_expr_depth(t()) :: non_neg_integer()

The depth limit for expressions in functions (0 for unlimited).
Zero under no_function.

 Link to this function

 max_map_size(engine)

 @spec max_map_size(t()) :: non_neg_integer()

The maximum size of object maps (0 for unlimited).
Zero under no_object.

 Link to this function

 max_modules(engine)

 @spec max_modules(t()) :: non_neg_integer()

The maximum number of imported modules allowed for a script.
Zero under no_module.

 Link to this function

 max_operations(engine)

 @spec max_operations(t()) :: non_neg_integer()

The maximum number of operations allowed for a script to run (0 for unlimited).
Not available under unchecked.

 Link to this function

 max_string_size(engine)

 @spec max_string_size(t()) :: non_neg_integer()

The maximum length, in bytes, of strings (0 for unlimited).

 Link to this function

 new()

 @spec new() :: t()

Create a new Engine

 Link to this function

 new_raw()

 @spec new_raw() :: t()

Create a new Engine with minimal built-in functions.

 Link to this function

 optimization_level(engine)

 @spec optimization_level(t()) :: :none | :simple | :full

The current optimization level. It controls whether and how the Engine will optimize an AST after compilation.

 Link to this function

 optimize_ast(engine, scope, ast, optimization_level)

 @spec optimize_ast(t(), Rhai.Scope.t(), Rhai.AST.t(), :none | :simple | :full) ::
 Rhai.AST.t()

Optimize the AST with constants defined in an external Scope.
An optimized copy of the AST is returned while the original AST is consumed.
Although optimization is performed by default during compilation, sometimes it is necessary to re-optimize an AST.
For example, when working with constants that are passed in via an external scope,
it will be more efficient to optimize the AST once again to take advantage of the new constants.
With this method, it is no longer necessary to recompile a large script. The script AST can be compiled just once.
Before evaluation, constants are passed into the Engine via an external scope (i.e. with Rhai.Scope.push_constant/2).
Then, the AST is cloned and the copy re-optimized before running.

 Link to this function

 register_custom_operator(engine, operator, precedence)

 @spec register_custom_operator(t(), String.t(), non_neg_integer()) ::
 {:ok, t()} | {:error, {:custom_operator, String.t()}}

Register a custom operator with a precedence into the language.
The operator can be a valid identifier, a reserved symbol, a disabled operator or a disabled keyword.
The precedence cannot be zero.

 Link to this function

 register_custom_operator!(engine, operator, precedence)

 @spec register_custom_operator!(t(), String.t(), non_neg_integer()) :: t()

Register a custom operator with a precedence into the language.
The operator can be a valid identifier, a reserved symbol, a disabled operator or a disabled keyword.
The precedence cannot be zero.
Raises if the operator cannot be registered.

 Link to this function

 register_global_module(engine, path)

 @spec register_global_module(t(), String.t()) ::
 {:ok, t()} | {:error, {:runtime, String.t()}}

Register a shared dylib Module into the global namespace of Engine.
All functions and type iterators are automatically available to scripts without namespace qualifications.
Sub-modules and variables are ignored.
When searching for functions, modules loaded later are preferred. In other words, loaded modules are searched in reverse order.
Returns an error if the module cannot be loaded.

 Link to this function

 register_global_module!(engine, path)

 @spec register_global_module!(t(), String.t()) :: t()

Register a shared dylib Module into the global namespace of Engine.
All functions and type iterators are automatically available to scripts without namespace qualifications.
Sub-modules and variables are ignored.
When searching for functions, modules loaded later are preferred. In other words, loaded modules are searched in reverse order.
Raises an error if the module cannot be loaded.

 Link to this function

 register_package(engine, package)

 @spec register_package(t(), Rhai.Package.t()) :: t()

Register the package with an Engine.

 Link to this function

 register_static_module(engine, namespace, path)

 @spec register_static_module(t(), String.t(), String.t()) ::
 {:ok, t()} | {:error, {:runtime, String.t()}}

Register a shared Module into the namespace of Engine.
Returns an error if the module cannot be loaded.

 Link to this function

 register_static_module!(engine, namespace, path)

 @spec register_static_module!(t(), String.t(), String.t()) :: t()

Register a shared Module into the namespace of Engine.
Raises an error if the module cannot be loaded.

 Link to this function

 run(engine, script)

 @spec run(t(), String.t()) :: :ok | {:error, Rhai.Error.t()}

Evaluate a string as script.

 Link to this function

 run_ast(engine, ast)

 @spec run_ast(t(), Rhai.AST.t()) :: :ok | {:error, Rhai.Error.t()}

Evaluate an AST.

 Link to this function

 run_ast_with_scope(engine, scope, ast)

 @spec run_ast_with_scope(t(), Rhai.Scope.t(), Rhai.AST.t()) ::
 :ok | {:error, Rhai.Error.t()}

Evaluate an AST with own scope.

 Link to this function

 run_file(engine, path)

 @spec run_file(t(), String.t()) :: :ok | {:error, Rhai.Error.t()}

Evaluate a file.

 Link to this function

 run_file_with_scope(engine, scope, path)

 @spec run_file_with_scope(t(), Rhai.Scope.t(), String.t()) ::
 :ok | {:error, Rhai.Error.t()}

Evaluate a file with own scope.
Constants Propagation
If the optimization_level is not :none constants defined within the scope are propagated throughout the script including functions.
This allows functions to be optimized based on dynamic global constants.

 Link to this function

 run_with_scope(engine, scope, script)

 @spec run_with_scope(t(), Rhai.Scope.t(), String.t()) ::
 :ok | {:error, Rhai.Error.t()}

Evaluate a string as script with own scope.
Constants Propagation
If the optimization_level is not :none constants defined within the scope are propagated throughout the script including functions.
This allows functions to be optimized based on dynamic global constants.

 Link to this function

 set_allow_anonymous_fn(engine, enable)

 @spec set_allow_anonymous_fn(t(), boolean()) :: t()

Set whether anonymous function is allowed.
Not available under no_function.

 Link to this function

 set_allow_if_expression(engine, enable)

 @spec set_allow_if_expression(t(), boolean()) :: t()

Set whether if-expression is allowed.

 Link to this function

 set_allow_loop_expressions(engine, enable)

 @spec set_allow_loop_expressions(t(), boolean()) :: t()

Set whether loop expressions are allowed.

 Link to this function

 set_allow_looping(engine, enable)

 @spec set_allow_looping(t(), boolean()) :: t()

Set whether looping is allowed.

 Link to this function

 set_allow_shadowing(engine, enable)

 @spec set_allow_shadowing(t(), boolean()) :: t()

Set whether shadowing is allowed.

 Link to this function

 set_allow_statement_expression(engine, enable)

 @spec set_allow_statement_expression(t(), boolean()) :: t()

Set whether statement_expression is allowed.

 Link to this function

 set_allow_switch_expression(engine, enable)

 @spec set_allow_switch_expression(t(), boolean()) :: t()

Set whether switch expression is allowed.

 Link to this function

 set_fail_on_invalid_map_property(engine, enable)

 @spec set_fail_on_invalid_map_property(t(), boolean()) :: t()

Set whether to raise error if an object map property does not exist.

 Link to this function

 set_fast_operators(engine, enable)

 @spec set_fast_operators(t(), boolean()) :: t()

Set whether fast operators mode is enabled.

 Link to this function

 set_max_array_size(engine, max_size)

 @spec set_max_array_size(t(), integer()) :: t()

Set the maximum length of arrays (0 for unlimited).
Not available under unchecked or no_index.

 Link to this function

 set_max_call_levels(engine, levels)

 @spec set_max_call_levels(t(), non_neg_integer()) :: t()

Set the maximum levels of function calls allowed for a script in order to avoid infinite recursion and stack overflows.
Not available under unchecked or no_function.

 Link to this function

 set_max_expr_depths(engine, max_expr_depth, max_function_expr_depth)

 @spec set_max_expr_depths(t(), non_neg_integer(), non_neg_integer()) :: t()

Set the depth limits for expressions (0 for unlimited).
Not available under unchecked.

 Link to this function

 set_max_map_size(engine, size)

 @spec set_max_map_size(t(), non_neg_integer()) :: t()

Set the maximum size of object maps (0 for unlimited).
Not available under unchecked or no_object.

 Link to this function

 set_max_modules(engine, modules)

 @spec set_max_modules(t(), non_neg_integer()) :: t()

Set the maximum number of imported modules allowed for a script.
Not available under unchecked or no_module.

 Link to this function

 set_max_operations(engine, operations)

 @spec set_max_operations(t(), non_neg_integer()) :: t()

Set the maximum number of operations allowed for a script to run to avoid consuming too much resources (0 for unlimited).
Not available under unchecked.

 Link to this function

 set_max_string_size(engine, string_size)

 @spec set_max_string_size(t(), non_neg_integer()) :: t()

Set the maximum length, in bytes, of strings (0 for unlimited).
Not available under unchecked.

 Link to this function

 set_module_resolvers(engine, module_resolvers)

 @spec set_module_resolvers(t(), [:file | :dylib]) :: t()

Set the module resolution services used by the Engine.
This library supports :file and :dylib module resolvers.

 Link to this function

 set_optimization_level(engine, optimization_level)

 @spec set_optimization_level(t(), :none | :simple | :full) :: t()

Control whether and how the Engine will optimize an AST after compilation.

 Link to this function

 set_strict_variables(engine, enable)

 @spec set_strict_variables(t(), boolean()) :: t()

Set whether strict variables mode is enabled.

 Link to this function

 strict_variables?(engine)

 @spec strict_variables?(t()) :: boolean()

Is strict variables mode enabled? Default is false.

Rhai.Error

Rhai error types

 Summary

 Types

 error()

 t()

 Types

 Link to this type

 error()

 @type error() ::
 :system
 | :parsing
 | :variable_exists
 | :forbidden_variable
 | :variable_not_found
 | :property_not_found
 | :index_not_found
 | :function_not_found
 | :module_not_found
 | :in_function_call
 | :in_module
 | :unbound_this
 | :mismatch_data_type
 | :mismatch_output_type
 | :indexing_type
 | :array_bounds
 | :string_bounds
 | :bit_field_bounds
 | :for_atom
 | :data_race
 | :assignment_to_constant
 | :dot_expr
 | :arithmetic
 | :too_many_operations
 | :too_many_modules
 | :stack_overflow
 | :data_too_large
 | :terminated
 | :custom_syntax
 | :runtime
 | :non_pure_method_call_on_constant
 | :scope_is_empty
 | :cannot_update_value_of_constant
 | :custom_operator

 Link to this type

 t()

 @type t() :: {error(), String.t()}

Rhai.Package

Rhai package types

 Summary

 Types

 t()

 Types

 Link to this type

 t()

 @type t() ::
 :arithmetic
 | :basic_array
 | :basic_blob
 | :basic_fn
 | :basic_iterator
 | :basic_math
 | :basic_string
 | :basic_time
 | :bit_field
 | :core
 | :language_core
 | :logic
 | :more_string
 | :standard

Rhai.Scope

Type containing information about the current scope. Useful for keeping state between Engine evaluation runs.
Scope implements the https://hexdocs.pm/elixir/1.12/Enumerable.html protocol.

 Summary

 Types

 t()

 Functions

 clear(scope)

 Empty the Scope.

 clone_visible(scope)

 Clone the Scope, keeping only the last instances of each variable name. Shadowed variables are omitted in the copy.

 constant?(scope, name)

 Check if the named entry in the Scope is constant.
Search starts backwards from the last, stopping at the first entry matching the specified name.
Returns nil if no entry matching the specified name is found.

 contains?(scope, name)

 Does the Scope contain the entry?

 empty?(scope)

 Returns true if this Scope contains no variables.

 get_value(scope, name)

 Get the value of an entry in the Scope, starting from the last.

 len(scope)

 Get the number of entries inside the Scope.

 new()

 Create a new Scope

 pop(scope)

 Remove the last entry from the Scope.

 pop!(scope)

 Remove the last entry from the Scope.

 push(scope, name, value)

 Add (push) a new entry to the Scope.

 push_constant(scope, name, value)

 Add (push) a new constant to the Scope.

 remove(scope, name)

 Remove the last entry in the Scope by the specified name and return its value.

 rewind(scope, size)

 Truncate (rewind) the Scope to a previous size.

 set_or_push(scope, name, value)

 Update the value of the named entry in the Scope if it already exists and is not constant.
Push a new entry with the value into the Scope if the name doesn’t exist or if the existing entry is constant.

 set_value(scope, name, value)

 Update the value of the named entry in the Scope.

 set_value!(scope, name, value)

 Update the value of the named entry in the Scope.

 with_capacity(capacity)

 Create a new Scope with a particular capacity.

 Types

 Link to this type

 t()

 @type t() :: %Rhai.Scope{reference: term(), resource: term()}

 Functions

 Link to this function

 clear(scope)

 @spec clear(t()) :: t()

Empty the Scope.

 Link to this function

 clone_visible(scope)

 @spec clone_visible(t()) :: t()

Clone the Scope, keeping only the last instances of each variable name. Shadowed variables are omitted in the copy.

 Link to this function

 constant?(scope, name)

 @spec constant?(t(), String.t()) :: nil | bool()

Check if the named entry in the Scope is constant.
Search starts backwards from the last, stopping at the first entry matching the specified name.
Returns nil if no entry matching the specified name is found.

 Link to this function

 contains?(scope, name)

 @spec contains?(t(), String.t()) :: bool()

Does the Scope contain the entry?

 Link to this function

 empty?(scope)

 @spec empty?(t()) :: bool()

Returns true if this Scope contains no variables.

 Link to this function

 get_value(scope, name)

 @spec get_value(t(), String.t()) :: nil | Rhai.Any.t()

Get the value of an entry in the Scope, starting from the last.

 Link to this function

 len(scope)

 @spec len(t()) :: non_neg_integer()

Get the number of entries inside the Scope.

 Link to this function

 new()

 @spec new() :: t()

Create a new Scope

 Link to this function

 pop(scope)

 @spec pop(t()) :: {:ok, t()} | {:error, {:scope_is_empty, String.t()}}

Remove the last entry from the Scope.
Returns an error if the Scope is empty.

 Link to this function

 pop!(scope)

 @spec pop!(t()) :: t()

Remove the last entry from the Scope.
Raises if the Scope is empty.

 Link to this function

 push(scope, name, value)

 @spec push(t(), String.t(), Rhai.Any.t()) :: t()

Add (push) a new entry to the Scope.

 Link to this function

 push_constant(scope, name, value)

 @spec push_constant(t(), String.t(), Rhai.Any.t()) :: t()

Add (push) a new constant to the Scope.
Constants are immutable and cannot be assigned to. Their values never change.
Constants propagation is a technique used to optimize an AST.

 Link to this function

 remove(scope, name)

 @spec remove(t(), String.t()) :: nil | Rhai.Any.t()

Remove the last entry in the Scope by the specified name and return its value.
If the entry by the specified name is not found, None is returned.

 Link to this function

 rewind(scope, size)

 @spec rewind(t(), non_neg_integer()) :: t()

Truncate (rewind) the Scope to a previous size.

 Link to this function

 set_or_push(scope, name, value)

 @spec set_or_push(t(), String.t(), Rhai.Any.t()) :: t()

Update the value of the named entry in the Scope if it already exists and is not constant.
Push a new entry with the value into the Scope if the name doesn’t exist or if the existing entry is constant.
Search starts backwards from the last, and only the first entry matching the specified name is updated.

 Link to this function

 set_value(scope, name, value)

 @spec set_value(t(), String.t(), Rhai.Any.t()) ::
 {:ok, t()} | {:error, {:cannot_update_value_of_constant, String.t()}}

Update the value of the named entry in the Scope.
Search starts backwards from the last, and only the first entry matching the specified name is updated.
If no entry matching the specified name is found, a new one is added.
Returns an error when trying to update the value of a constant.

 Link to this function

 set_value!(scope, name, value)

 @spec set_value!(t(), String.t(), Rhai.Any.t()) :: t()

Update the value of the named entry in the Scope.
Search starts backwards from the last, and only the first entry matching the specified name is updated.
If no entry matching the specified name is found, a new one is added.
Raises when trying to update the value of a constant.

 Link to this function

 with_capacity(capacity)

 @spec with_capacity(non_neg_integer()) :: t()

Create a new Scope with a particular capacity.

 OEBPS/dist/epub-RKEUJJI5.js
(()=>{var u=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var c="ex_doc:settings",d={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=d,this._loadSettings()}get(){return this._settings}update(t){let e=this._settings;this._settings={...this._settings,...t},this._subscribers.forEach(n=>n(this._settings,e)),this._storeSettings()}getAndSubscribe(t){this._subscribers.push(t),t(this._settings)}_loadSettings(){try{let t=localStorage.getItem(c);if(t){let e=JSON.parse(t);this._settings={...this._settings,...e}}this._loadSettingsLegacy()}catch(t){console.error(`Failed to load settings: ${t}`)}}_storeSettings(){try{this._storeSettingsLegacy(),localStorage.setItem(c,JSON.stringify(this._settings))}catch(t){console.error(`Failed to persist settings: ${t}`)}}_loadSettingsLegacy(){localStorage.getItem("tooltipsDisabled")!==null&&(this._settings={...this._settings,tooltips:!1}),localStorage.getItem("night-mode")==="true"&&(this._settings={...this._settings,nightMode:!0}),this._settings.nightMode===!0&&(this._settings={...this._settings,theme:"dark"})}_storeSettingsLegacy(){this._settings.tooltips?localStorage.removeItem("tooltipsDisabled"):localStorage.setItem("tooltipsDisabled","true"),this._settings.nightMode!==null?localStorage.setItem("night-mode",this._settings.nightMode===!0?"true":"false"):localStorage.removeItem("night-mode"),this._settings.theme!==null?(localStorage.setItem("night-mode",this._settings.theme==="dark"?"true":"false"),this._settings.nightMode=this._settings.theme==="dark"):(delete this._settings.nightMode,localStorage.removeItem("night-mode"))}},h=new s;function a(){["warning","info","error","neutral","tip"].forEach(t=>{i(`blockquote h3.${t}, blockquote h4.${t}`).forEach(e=>{e.closest("blockquote").classList.add(t)})})}var m="hll";function g(){p()}function p(){i("[data-group-id]").forEach(t=>{let e=t.getAttribute("data-group-id");t.addEventListener("mouseenter",n=>{l(e,!0)}),t.addEventListener("mouseleave",n=>{l(e,!1)})})}function l(o,t){i(`[data-group-id="${o}"]`).forEach(n=>{n.classList.toggle(m,t)})}r(()=>{g(),a()});})();

