

 Routex

 v1.1.0

 [image: Logo]

 Table of contents

 	The project

 	Overview

 	Included extensions

 	Guides

 	Getting started

 	Localized Routes

 	Localization vs Translation

 	Extra

 	Routex and Phoenix Router

 	Routing solutions compared

 	Troubleshooting

 	Changelog

 	Development

 	Extensions

 	

 	Modules

 	Routex

 	Routex.Attrs

 	Routex.Backend

 	Routex.Branching

 	Routex.Dev

 	Routex.Extension

 	Routex.Hooks

 	Routex.Matchable

 	Routex.Processing

 	Routex.Route

 	Routex.Router

 	Routex.Utils

 	Extensions

 	Routex.Extension.AlternativeGetters

 	Routex.Extension.Alternatives

 	Routex.Extension.Assigns

 	Routex.Extension.AttrGetters

 	Routex.Extension.Cldr

 	Routex.Extension.Cloak

 	Routex.Extension.Interpolation

 	Routex.Extension.RouteHelpers

 	Routex.Extension.Translations

 	Routex.Extension.VerifiedRoutes

 	Submodules

 	Routex.Extension.Interpolation.NonUniqError

 	Routex.Extension.Alternatives.Branch.Flat

 	Routex.Extension.Alternatives.Branch.Nested

 	Routex.Extension.Alternatives.Config

 	Routex.Extension.Alternatives.Exceptions

 	Routex.Extension.Alternatives.Exceptions.AttrsMismatchError

 	Routex.Extension.Alternatives.Exceptions.MissingRootSlugError

[image: Logo of Routex]
[image: Coveralls]
[image: Build Status]
[image: Last Updated]
[image: Hex.pm]
[image: Hex.pm]
Routex: Supercharge your Phoenix Router
This powerful library works together with Phoenix Router to provide the ultimate
routing solution. It simplifies route manipulation, giving you the control you
need to handle even the most demanding routing requirements.
Routex comes with extensions for internationalization (i18n), localization
(l10n), translated (multilingual) URLs, alternative routes generation and many
more. Its modern extensible architecture enables you to easily
build custom solutions that work harmoniously with other extensions.

 Top Features and Benefits

	No dependencies, no state: Routex is unique in not requiring any external dependency
and works by default without proces state.

	Powerful transformations: Routex supports advanced route transformations, including
everything needed for internationalization (i18n) and localization (l10n).

	Extension driven: Being extension driven, Routex can be adapted to your
specific needs. It's architecture allows you to write your own routing
features without having to worry about breaking existing functionality. Routex
ships with extensions covering a wide range of use cases.
Have a look at a summary of extensions.

	Optimized for performance: Built to fit between route configuration and
route compilation. Routex enhances Phoenix routing without adding runtime
overhead, ensuring that applications run as fast as ever.

	Detailed documentation: Comprehensive, well-organized documentation
provides clear guidance on installation, configuration, and best practices,
making Routex approachable for developers at all levels. For example: If you
are interested in internationalization (i18n) or localization (l10n) have a
look at the Localized Routes Guide.

 Installation and usage

Usage Guide - requirements and installation.
instructions.
Documentation - from step-by-step guides till in-depth explanations.

 Give it a try!

Online demo - have a look or get the
code.

 Articles

To help you understand where Routex fits in.

 How Routex and Phoenix Router Work Together

Understanding how Routex, its extensions, and Phoenix Router work together can
be tricky at first sight. To help you understand, we came up with an analogy.

 Routex compared to Phoenix Router and Cldr Routes

We published a comparison with the intended to help you understand
the differences, strengths, and tradeoffs when deciding which routing solution
best fits your needs.

Routex Extensions

Routex relies on extensions to provide features. Each extension provides a
single feature and should minimize hard dependencies on other extensions.
Instead, Routex advises to make use of Routex.Attrs to share attributes;
allowing extensions to work together without being coupled.
The documentation of each extension lists any provided or required
Routex.Attrs.

 Alternatives

Create alternative routes based on branches configured in a Routex backend
module. Branches can be nested and each branch can provide it's own attributes to
be shared with other extensions.
Alternatives Documentation

 Translations

This extension extracts segments of a routes' path to a routes.po file for
translation. At compile-time it combines the translated segments to translate
routes. As a result, users can enter URLs using localized terms which can
enhance user engagement and content relevance.
Translations Documentation

 Interpolation

With this extension enabled, any attribute assigned to a route can be used
for route interpolation. Most effective with an extension which enables
alternative routes generation (such as extension Alternatives).
/product/#{territory}/:id/#{language} => /product/europe/:id/nl
Interpolation Documentation

 Multilingual Routes

The Alternatives extension can be combined with the Translations and Interpolation
extension to create multilingual routes. The Alternatives extension can provide the :locale
attribute used by the Translations extension and other attributes to use with the Interpolation
extension.
Guide: Localized Routes with Routex
Original Step 1: Alternatives Step 2: Translations
 ⇒ /products/:id/edit ⇒ /products/:id/edit
/products/:id/edit ⇒ /eu/netherlands/products/:id/edit ⇒ /eu/nederland/producten/:id/bewerken
 ⇒ /eu/spain/products/:id/edit ⇒ /eu/espana/producto/:id/editar
 ⇒ /gb/products/:id/edit ⇒ /gb/products/:id/edit

 Alternative Getters

Creates a helper function alternatives/1 to get a list of alternative slugs
and their route attributes. The current route is also included and has attribute
current?: true. As Routex sets the @url assign you can simply
get all routes to the current page with alternatives(@url), use an attribute in the
route as button text and highlight the current active route button.
Alternative Getters Documentation

 Verified Routes

Routex is fully compatible with Verified Routes.
This extension creates a sigil (default: ~l) with the ability to branch based
on the current alternative branch of a user. It is able to verify routes even
when thy have been transformed by Routex extensions. Optionally this sigil can
be set to ~p (Phoenix' default) as it is a drop-in replacement.
It also provides branching variants of url/{2,3,4} and path/{2,3}.
Verified Routes Documentation

 Assigns

With this extension you can add (a subset of) attributes set by other extensions
to Phoenix' assigns making them available in components and controllers with the
@ assigns operator (optionally under a namespace)
@namespace.area => :eu_nl
@namespace.contact => "contact@example.com"
Assigns Documentation

 Attribute Getters

Creates a helper function attrs/1 to get all Routex.Attrs of a route. As
Routex sets the @url assign you can simply get all attributes for the
current page with attrs(@url).
The benefit over assigns is not loading the attributes into the process memory,
but stil be able to easily access them when needed.
Tip: use Assigns for attributes always required and Attribute Getters for
those that are conditionally.
Attribute Getters Documentation

 Cldr Adapter

Adapter for projects using :ex_cldr.
Cldr Adapter Documentation

 Route Helpers

Creates Phoenix Helpers that have the ability to branch based on the current
alternative branch of a user. Optionally these helpers can replace the original
Phoenix Route Helpers as they are drop-ins.
Route Helpers Documentation

 Cloak (show case)

Transforms routes to be unrecognizable. This extension is a show case and may
change at any given moment to generate other routes without prior notice.
In this example it numbers all routes starting at 01 and increments the counter
for each route. It also shifts the parameter to the left; causing a chaotic
route structure. Do note: this still works with the Verified Routes extension
while using the standard route (e.g. <.link navigate={~p"/products">) in
templates.
 Original Rewritten Result (product_id: 88, 89, 90)
 /products ⇒ /01 ⇒ /01
 /products/:id/edit ⇒ /:id/02 ⇒ /88/02, /89/02, /90/02 etc...
 /products/:id/show/edit ⇒ /:id/03 ⇒ /88/03, /89/03, /90/03 etc...
Cloak Documentation

Usage

 Requirements

	Elixir >=1.11
	Phoenix >= 1.6.0
	Phoenix LiveView >= 0.16 (optional)

 Installation

You can install this library by adding it to your list of dependencies in mix.exs. (use mix hex.info routex to find the latest version):
def deps do
 [
 ...other deps
+ {:routex, ">= 0.0.0"}
]
end
Modify the entrypoint of your web interface definition.
file: lib/example_web.ex

+ use Routex.Router # always before Phoenix Router
 use Phoenix.Router, helpers: false

in controller
 unquote(verified_routes())
+ unquote(routex_helpers())

in live_view
 unquote(html_helpers())
+ on_mount(unquote(__MODULE__).Router.RoutexHelpers)

in view_helpers or html_helpers
 unquote(verified_routes())
+ unquote(routex_helpers())

insert new private function
+ defp routex_helpers do
+ quote do
+ import unquote(__MODULE__).Router.RoutexHelpers, only: :macros
+ alias unquote(__MODULE__).Router.RoutexHelpers, as: Routes
+ end
+ end

 About the on_mount hook

The on_mount hook is generated by Routex in a module created during compilation.
It attaches a handle_param which in turn assigns a few (helper) values
to the connection and/or socket. This includes the current url and assigns added
by Routex Extensions.

 Configuration

To use Routex, a module that calls use Routex.Backend (referred to below as a
"backend") has to be defined. It includes a list with extensions and
configuration of extensions.
defmodule ExampleWeb.RoutexBackend do
use Routex.Backend,
 extensions: [
 Routex.Extension.AttrGetters, # required
 # ...other extensions...
],
end

 Extensions

Routex is merely a framework and relies on extensions to provide features. Each
extension provides a single feature. The extensions have their own documentation
which specifies how to configure and use them.

 Preprocess routes with Routex

Routex will preprocess any route wrapped in a preprocess_using block; either
direct or indirect. It uses the backend passed as the first argument. This
allows the use of multiple backends (e.g. to use different extensions for admin
routes)
file: router.ex
 scope "/", ExampleWeb, host: "admin.", as: :admin do
 pipe_through :browser

+ preprocess_using ExampleWeb.RoutexBackendAdmin do
 # [...routes...]
+ end
 end

+ preprocess_using ExampleWeb.RoutexBackend do
 scope "/", ExampleWeb do
 pipe_through [:browser, :redirect_if_user_is_authenticated]
 # [...routes...]
 end

 scope "/", ExampleWeb do
 pipe_through [:browser, :require_authenticated_user]
 # [...routes...]
 end
+ end
When you run into issues, please have a look at the Troubleshooting

Localized Routes with Routex

A core feature of Routex is to enable Localized Routes in Phoenix. Optionally with
translated URLs, enhancing user engagement and content relevance.
In this tutorial we will explain how multiple extensions are combined to...
	have a product page with regional URL's
	(optional) use translated routes
	using automatically localized verified routes
	display links to other locales

All without changing a single route in your templates!
 ⇒ /products/:id/edit @loc.locale = "en_US"
/products/:id/edit ⇒ /eu/nederland/producten/:id/bewerken @loc.locale = "nl_NL"
 ⇒ /eu/espana/producto/:id/editar @loc.locale = "es_ES"
 ⇒ /gb/products/:id/edit @loc.locale = "en_GB"
This tutorial assumes you have followed the usage guide to setup
Routex.
If you encounter any issues with Routex or this tutorial, feel free to open a topic at Elixir
Forums or create an issue at GitHub.

 What we start with

This tutorial uses an example Router with multiple routes to the product page.
The route.ex file contains something like the example below.
 preprocess_using ExampleWeb.RoutexBackend do
 scope "/", ExampleWeb do
 pipe_through :browser

 live "/products", ProductLive.Index, :index
 live "/products/new", ProductLive.Index, :new
 live "/products/:id/edit", ProductLive.Index, :edit
 live "/products/:id", ProductLive.Show, :show
 live "/products/:id/show/edit", ProductLive.Show, :edit
 end
 end
When you run mix phx.routes you will see those routes as:
product_show_path GET /products/:id/show/edit ExampleWeb.ProductLive.Show :edit
product_show_path GET /products/:id ExampleWeb.ProductLive.Show :show
product_index_path GET /products/:id/edit ExampleWeb.ProductLive.Index :edit
product_index_path GET /products/new ExampleWeb.ProductLive.Index :new
product_index_path GET /products ExampleWeb.ProductLive.Index :index
You want these pages to be accessible from multiple (translated) URLs.

 Step 1: Generate alternative URLs

The Routex.Extension.Alternatives generates alternative routes. Add it to the list of extensions
and provide a minimal configuration.
use Routex.Backend,
extensions: [
 Routex.Extension.AttrGetters, # required
+ Routex.Extension.Alternatives,
],
+ alternatives: %{
+ "/" => %{
+ branches: %{
+ "/europe" => %{
+ branches: %{
+ "/nl" => %{},
+ "/be" => %{}
+ }
+ },
+ "/gb" => %{}
+ }
+ }
+ }
You can confirm it works by running mix phx.routes. It now shows a lot more
routes as alternatives are generated for each route within the
preprocess_using block. For example the route to /products/:id/show/edit has
multiple alternatives.
product_show_path GET /products/:id/show/edit ExampleWeb.ProductLive.Show :edit
product_show_europe_path GET /europe/products/:id/show/edit ExampleWeb.ProductLive.Show :edit
product_show_europe_be_path GET /europe/be/products/:id/show/edit ExampleWeb.ProductLive.Show :edit
product_show_europe_nl_path GET /europe/nl/products/:id/show/edit ExampleWeb.ProductLive.Show :edit
product_show_gb_path GET /gb/products/:id/show/edit ExampleWeb.ProductLive.Show :edit
As you can see the routes are still in the English language; we need another extension to
translate them

 (optional) Step 2: Translate the alternative routes

The Routex.Extension.Translation makes routes translatable by splitting the route
into segments (e.g. ["products", "show", "edit"]) and extracting these
segments to a routes.po file for translation. You might recognize the .po
extension from your Phoenix project; it's the extension used by Gettext. Gettext
is a standard for i18n in different communities, meaning there is a great set of
tooling for developers and translators. This also means your routes segments can be
translated with the same tooling as used for all other translations in Phoenix!
Add the extension and it's minimal configuration.
use Routex.Backend,
extensions: [
 Routex.Extension.AttrGetters, # required
 Routex.Extension.Alternatives,
+ Routex.Extension.Translations,
],
 alternatives: %{...},
+ translations_backend: ExampleWeb.Gettext,
As Routex need to know which translation to use for what route, we need to set
an attribute :locale or :language per alternative.
Luckily this is covered by Extension.Alternatives as it supports setting the
:attrs key per branch. Let's extend the alternatives configuration with by
setting the :locale attribute. While we are add it, we also give the branches
a :display_name attribute.
 alternatives: %{
 "/" => %{
+ attrs: %{locale: "en-150", display_name: "Global"},
 branches: %{
 "/europe" => %{
+ attrs: %{locale: "en-150", display_name: "Europe"},
 branches: %{
+ "/nl" => %{attrs: %{locale: "nl_NL", display_name: "The Netherlands"}},
+ "/be" => %{attrs: %{locale: "nl_BE", display_name: "Belgium"}}
 }
 },
+ "/gb" => %{attrs: %{locale: "en-150", display_name: "Great Britain"}}
 }
 }
 }
If this is the first time you add translations in your project, you need to
generate the folder structure which Gettext can use to detect languages to
translate to. We need two languages in this tutorial: 'en' and 'nl'. As 'en' is
the default for routes we only need to create translations for 'nl'.
mix gettext.extract
mix gettext.merge priv/gettext --locale nl
You should see a message that Gettext has generated new translation files which
can be found in the priv/gettext/nl folder
priv/
 gettext/
 nl/
 LC_MESSAGES/
 default.po # phoenix translations
 routes.po # routex translations
Now you can translate the segments by opening the routes.po file with your
favorite .po editor. Here are a few suggestions:
	GNU Emacs (with po-mode): Linux, MacOSX, and Windows.
	Lokalize: runs on KDE desktop for Linux (replacement for KBabel; formerly known as KAider)
	Poedit: Linux, MacOSX, and Windows
	OmegaT: Linux, MacOSX, and Windows
	Vim: Linux, MacOSX, and Windows with PO ftplugin for easier editing of GNU gettext PO files.
	gted plugin for Eclipse: (if you are already using Eclipse)
	gtranslator: Linux/Gnome
	Virtaal: Windows, Mac (Beta version)

Once you have translated the route segments, list all routes using mix phx.routes. You will see some routes have been translated. We are getting
there!
product_show_path GET /products/:id/show/edit
product_show_europe_path GET /europe/products/:id/show/edit
product_show_europe_be_path GET /europe/be/producten/:id/toon/bewerken
product_show_europe_nl_path GET /europe/nl/producten/:id/toon/bewerken
Now we have the routes it would be nice if users stay within their locale
while browsing pages.

 Step 3: Dynamic links in your application

When you start your app with mix phx.server and you visit a 'localized' page
such as /europe/nl/producten, you will notice that every link on the page will
bring you back to the non-locale route. In the code the path of the link is written
like ~p"/products". It would be nice if instead of always rendering a link to
/products, Phoenix would instead render a localized link. This is done by
Routex.Extension.VerifiedRoutes.
Note
In older Phoenix applications you might find something like
ExampleAppWeb.Router.Helpers.product_path(conn_or_endpoint, :show, "hello").
These are Phoenix Router Helpers and those are deprecated in favor of the
Verified Routes using ~p"/my_path". When you can't migrate, you can use
Routex.Extension.RouteHelpers instead of Routex.Extension.VerifiedRoutes.

You might already have guessed it: we are gonna add the extension and some
configuration to the backend.
use Routex.Backend,
extensions: [
 Routex.Extension.AttrGetters, # required
 Routex.Extension.Alternatives,
 Routex.Extension.Translations,
+ Routex.Extension.VerifiedRoutes,
],
 alternatives: %{...},
 translations_backend: ExampleWeb.Gettext,
+ verified_sigil_routex: "~p",
+ verified_sigil_phoenix: "~o",
+ verified_url_routex: :url,
+ verified_path_routex: :path
By default the extension uses non-standard macro names. As we want to have
dynamic routes throughout our application, we choose to override the names used
by Phoenix in your application and rename the originals. This way you do not
need to modify all your templates. Convenient.
To not have duplicated imports, add this to your routex_helpers in example_web.ex
 def routex_helpers do
 quote do
+ import Phoenix.VerifiedRoutes,
+ except: [sigil_p: 2, url: 1, url: 2, url: 3, path: 2, path: 3]

 import unquote(__MODULE__).Router.RoutexHelpers, only: :macros
 alias unquote(__MODULE__).Router.RoutexHelpers, as: Routes
 end
 end
Now when you start your app with mix phx.server you will notice an explanation
is printed about the usage of Routex Verified Routes. This informs other
developers of the overrides.
Due to the configuration in module `ExampleWeb.RoutexBackend` one or multiple
Routex variants use the default name of their native Phoenix equivalents. The native
macro's, sigils or functions have been renamed.

 Native | Routex

 ~o | ~p
 url_phx | url
 path_phx | path

 Documentation: https://hexdocs.pm/routex/extensions/verified_routes.html
When you visit a 'localized' page such as /europe/nl/producten you will notice
that every link on the page will keep you within the localized environment
/europe/nl/. Keeping users in a localized environment is great, but giving
them an option to switch to another locale would be even better.
Let's empower our visitors!

 Step 4: Show alternative pages to the user

The Routex.Extension.AlternativeGetters generates function at compile time to
dynamically fetch alternative routes for the current url without overhead. Let's
once again add the extension.
use Routex.Backend,
extensions: [
 Routex.Extension.AttrGetters, # required
 Routex.Extension.Alternatives,
 Routex.Extension.Translations,
 Routex.Extension.VerifiedRoutes,
+ Routex.Extension.AlternativeGetters,
],
 alternatives: %{...},
 translations_backend: ExampleWeb.Gettext,
 verified_sigil_routex: "~p",
 verified_sigil_phoenix: "~o",
 verified_url_routex: :url,
 verified_path_routex: :path
All created functions pattern match on a given URL and return the alternatives
with a slug, the match? attribute which is true if the route pattern matches
the provided path, and attributes of the route.
iex> ExampleWeb.Router.RoutexHelpers.alternatives("https://example.com/products?search=bar#top")
[
 %Routex.Extension.AlternativeGetters{
 slug: "/products?search=bar#top",
 attrs: %{
 name: "Worldwide",
 locale: "en-US",
 [...]
 },
 match?: true
 },
 %Routex.Extension.AlternativeGetters{
 slug: "/europe/products?search=bar#top",
 attrs: %{
 name: "Europe",
 locale: "en-150",
 [...]
 },
 match?: false
 },
 %Routex.Extension.AlternativeGetters{
 slug: "/europe/be/producten?search=bar#top",
 attrs: %{
 name: "Belgium",
 locale: "nl-BE",
 [...]
 },
 match?: false
 },
 [...]
As Routex automatically assigns the current url to @url we have all
ingredients instantly available in our templates! It becomes a matter of looping
over the results to generate links.
 <!-- alternatives/1 is located in ExampleWeb.Router.RoutexHelpers which is aliased as Routes -->
 <.link
 :for={alternative <- Routes.alternatives(@url)}
 class="button"
 rel="alternate"
 hreflang={alternative.attrs.locale}
 patch={alternative.slug}
 >
 <.button class={(alternative.match? && "bg-[#FD4F00]") || ""}>
 <%= alternative.attrs.display_name %>
 </.button>
 </.link>

 Conclusion

In this tutorial you have learned how to create localized routes for your
Phoenix application using multiple extensions and how to add custom attributes
(such as :locale and :display_name) to these routes. There are a few more
extension you can add to the mix for extra flexibility and convenience, such as:
	Routex.Extension.Interpolation - Use any attribute to customize routes
(e.g. "/#{locale}/products/#{display_name}/:id/edit")
	Routex.Extension.Assigns - Use any attribute in your templates using @
notation.
	Routex.Extension.AttrGetters - Lazy load attributes

If you encounter any issues with Routex or this tutorial, feel free to open a topic at Elixir
Forums or create an issue at GitHub.
Have a nice day!

Localization vs. Translation: Why Your Website Should Keep Them Separate

When expanding a website for a global audience, businesses often confuse
translation with localization. While they are related, treating them as
the same process can lead to usability issues and a poor user experience.
Additionally, many websites make the mistake of assuming that a user's
preferred language matches their physical location, which can cause
frustration.
In this post, we’ll break down the differences between translation and
localization, why your website should separate them, and why language
preferences should not be tied to a user's location.

 The Problem: Conflating Location and Language

Many websites make the mistake of assuming that location dictates language.
While there's often a correlation, it's far from a perfect match. Think about
it:
	Multilingual Regions: Countries like Switzerland, Canada, and Belgium have
multiple official languages. A user in Switzerland might prefer to browse in
German, French, or Italian. Assuming their language based on their IP address
(which indicates location) would be inaccurate.

	Expatriates and Travelers: Someone living abroad might prefer to browse in
their native language, even if they're physically located in a different
country. A German expat in Spain might still want to see the website in
German.

	Language Learning: Some users might prefer to browse in a language they're
learning, regardless of their location.

	Shared Computers: In internet cafes, libraries, or shared family
computers, users might not have control over the browser's language settings.
Relying on these settings can lead to an incorrect language selection.

The Problem with Accept-Language HTTP Header:
Websites often use the Accept-Language HTTP header, sent by the browser, to
determine the user's preferred language. While this can be helpful, it's not
foolproof. As mentioned above, on shared computers, the Accept-Language header
might reflect the preferences of a previous user. Users might also not know how
to change this setting, or it might be locked by system administrators in
certain environments. Therefore, relying solely on this header can lead to a
frustrating experience.
Examples of What Not to Do:
	Automatic Redirection Based on IP: A user in Canada is automatically
redirected to the French version of the site, even though their browser and
system language are set to English. This is a classic example of location
overriding language preference.

	Flag Icons as Language Options: Using flag icons to represent language is
problematic. Flags represent countries, not languages. What about Spanish
speakers in the US? Or English speakers in India? This conflates nationality
with language.

	Hidden Language Settings: Language options are buried deep in the footer
or only appear after navigating through several pages. Users shouldn't have to
hunt for their preferred language.

	Sole Reliance on Accept-Language: The website assumes the browser's
language setting is the user's actual preference, ignoring the possibility of
shared computers or incorrect settings.

 The Solution: Always Give Users Control

The key is to treat location and language as distinct, yet related, pieces of
information and always give users explicit control over both. Here's how to do
it right:
	Explicit Language Selection: Provide clear and prominent language options,
ideally using the language name itself (e.g., "English," "Español," "Deutsch")
rather than flags. Place these options in a visible location, such as the
header or footer, on every page.

	Location as a Secondary Consideration: Use location data (IP address) to
suggest a default language and/or currency, but always allow the user to
override this suggestion. A simple popup or banner saying "We've detected
you're in [Location]. Would you like to view the site in [Suggested Language]?
[Yes/No]" is a good approach. Even if they click "yes," the language option
should still be readily available.

	User Profiles and Preferences: For returning users, store their language
and location preferences in their user profile. This ensures a consistent
experience across sessions.

	Content Localization, Not Just Translation: Consider cultural nuances and
adapt content accordingly. Simply translating text without considering
cultural context can be ineffective or even offensive. Dates, times, and units
of measurement should also be localized.

	Clear Location Settings: If location-specific content is crucial (e.g.,
store locator, shipping information), provide a separate and easy-to-use
location selection mechanism. This could be a dropdown menu or a map
interface.

Example of How to Do It Right:
	A user lands on a website and sees a small popup: "We've detected you're in
the UK. Would you like to view prices in GBP and the site in English?
[Yes/No]"

	Regardless of the user's choice in the popup, a language dropdown menu is
always visible in the header, offering options like "English," "Français,"
"Español," etc.

	The footer contains a link to "Change Location," where the user can specify
their country for location-specific content.

By implementing these best practices, websites can create a more inclusive and
user-friendly experience for their global audience. Respecting the distinction
between location and language, and always giving users the control to choose,
is not just good practice, it's essential for building trust and maximizing your
online reach.

 How Routex' approach helps

Routex's approach to localized routing reinforces the principle of keeping
language and location distinct. No implicit information is embedded in the
routes.
When dealing with region-based pages changing a user's region (and thus the
associated region-specific content) doesn't necessitate an automatic language
switch. And when dealing with language-based pages changing a user's
language doesn't necessitate an automatic region switch.
Imagine a scenario where a user is browsing a region-based site in English
but wants to see the pricing and product availability for the Indian market.
With Routex, they can navigate to the India region-specific page (e.g.,
/in/products) without being forced to switch to another language. The site can
maintain the user's preferred language (English in this case) while displaying
the relevant Indian content.
This is in stark contrast to systems where language and region are implicitly
linked. In such cases, switching regions might inadvertently trigger a language
change, leading to a confusing and frustrating user experience.

 Conclusion

Localization and translation serve different purposes and should be handled
separately to provide the best user experience. Similarly, a user's preferred
language should not be assumed based on their location. By keeping these
elements distinct, websites can ensure better usability, compliance, and
engagement for a global audience.
By adopting a user-first approach, where language is a choice and location
is used only for relevant regional settings, businesses can create a seamless,
accessible, and culturally appropriate experience for all users.

How Routex and Phoenix Router Work Together: A Blueprint for Understanding

 All code on this page is for illustration purpose only. It is incorrect and
 should not be used.How Routex, its extensions, and the Phoenix Router work together can be better
understood through an analogy. As the saying goes, "a picture is worth a
thousand words," this document also includes an illustrative blueprint.

 Analogy: the housing project

Imagine you're a real estate developer planning to build several houses. You
have a general vision for the houses (your route definitions in route.ex) and
some specific ideas about their style and features (your Routex configuration).
routes
/products
/products/:id

config
alternatives: %{
 "/fr" => %{name: "French"},
 "/es" => %{name: "Spanish"}
}
Routex is the architect. It takes your vision (route definitions) and
preferences (Routex config) and creates detailed blueprints.
Routex extensions are the architect's specialized tools. These tools allow the
architect to refine and customize the blueprints. Without them, the architect
could only create basic, unmodified plans.
input
[
%Route{path: "/products"}
%Route{path: "/products/:id"}
]

output after transformation by Alternatives extension
[
%Route{path: "/fr/products", metadata: %{name: "French"}},
%Route{path: "/fr/products/:id", metadata: %{name: "French"}},
%Route{path: "/es/products", metadata: %{name: "Spanish"}},
%Route{path: "/es/products/:id", metadata: %{name: "Spanish"}}
]
Once the blueprints are finalized, they're handed off to the construction
company: Phoenix Router. Phoenix Router builds the actual houses (your routes)
according to the architect's precise specifications. The blueprints are
perfectly formatted for Phoenix Router, ensuring a smooth construction process.
note: incorrect pseudo code

if match?("/fr/products"), do: ProductLive, :index, metadata: ["French"]
if match?("/fr/products/" <> id), do: ProductLive, :show, metadata: ["French"]
if match?("/es/products"), do: ProductLive, :index, metadata: ["Spanish"]
if match?("/es/products/" <> id), do: ProductLive, :show, metadata: ["Spanish"]
This explains the first key concept:
Routex generates blueprints from your route definitions and configuration,
ready for Phoenix Router to build the actual routes.

Because Routex is the architect, it has intimate knowledge of the house designs.
This allows it to create perfectly matching accessories, like custom-designed
sunshades or smart garage doors. These are additional features that enhance
the houses built by Phoenix Router, adding convenience and functionality.
generated convenient functions
defmodule Helpers do
 def alternatives("/products") do
 [
 %Route{path: "/fr/products", name: "French"},
 %Route{path: "/es/products", name: "Spanish"}
]
 end
end

your usage
This page is available in:
for alt <- Helpers.alternatives("/products") do
 <.link navigate={alt.path}>{alt.name}<./link>
end

output
This page is available in:
French
Spanish
This leads to the second key concept:
Routex also creates helpful accessory functions that you can use with the
houses (routes) built by Phoenix Router. These functions streamline common
tasks and improve the overall experience.

 Example blueprint

A picture paints a thousand words, or so they say. The blueprint clearly shows
how Routex is middleware, plugged between two stages of Phoenix route generation.
Also shown is the use two co-operating extensions: Translations uses the
:language attribute set by Alternatives.
flowchart TD
 subgraph subGraph1["Routex"]
 F["ExampleWeb.RoutexBackend.ex"]
 G["configure/2 callbacks"]
 H["Alternatives.transform/3 callback"]
 I["Translations.transform/3 callback"]
 J["create_helpers/3 callbacks"]
 K["ExampleWeb.Router.RoutexHelpers"]
 end
 subgraph subGraph0["Phoenix"]
 A["ExampleWeb.Router.ex"]
 B["Convert to Phoenix.Routes.Route structs"]
 C["Generate route functions"]
 D["ExampleWeb.Router"]
 end
 A -- "/products/:id" --> B
 B -- "%{path: /products/:id}" --> H
 F -- "extensions: [Alternatives, Translations]" --> G
 G --> H
 H -- "%{path: ..., attrs: %{lang: fr}}
 %{path: ..., attrs: %{lang: es}}" --> I
 I -- "%{path: /produit/:id, attrs: ...}
 %{path: /producto/:id, attrs: ...}" --> C

 Routing solutions compared - Routex v1.1.0

Routing Solutions for Phoenix: A Comparison of Key Differences

When working with the Phoenix framework, developers often seek solutions to
address their routing needs. These routing needs range from common requirements
such as internationalization and localization to more specialized needs such as
route obfuscation.
This comparison includes three notable routing solutions within the Phoenix
ecosystem. Each solution has a different scope—ranging from basic to virtually
endless—allowing you to select the one that best aligns with your application's
requirements.
We will delve into several aspects which differ significantly, including
functionality and extensibility, compatibility with existing codebases, runtime
features, and customization options.
By the end of this article, you will have a clear understanding of the strengths
and limitations of each library, enabling you to make an informed decision for
your Phoenix project.

 Phoenix Router, the basic buildin

The Phoenix Router is the built‐in routing system of the Phoenix framework. It
is the base other solutions build upon.
Since version 1.8, it supports runtime path prefixing which automatically
prefixes routes in templates with the result of one or multiple functions. This
feature enables the most basic, and common, route localization known for it's
language prefixes (e.g /en/products and /fr/products).

 Comparing Cldr Routes and Routex

 Cldr Routes and Routex aim to enhance the routing capabilities of
Phoenix, but they differ significantly in their approach and feature set. This
article will focus on their greatest differences to help developers make an
informed decision.

 Functionality and Extensibility

Features
Cldr Routes focuses on localization enabling users to enter URLs using
localized terms. Additionally, Cldr Routes generates localized path and URL
helpers, making it easier for developers to work with localized routes.
Routex is, in terms of features, a superset of Cldr Routes. It not only
matches the internationalization and localization features of Cldr Routes, but
adds support for a wider range of routing needs. It's open-ended design makes
the feature set virtually limitless.
Both
	Localized routes
	Translated route segments

Routex only
	Custom assigns per route
	Automated Liveview livecycle hooks and Plugs
	Alternative routes
	Reordered route segments
	Route obfuscation
	etc.

Architecture
Cldr Routes is designed to seamless extend the Cldr
library. It therefor requires the
integration and configuration of the Cldr and Gettext libraries. Depending
on your project this might require the addition of the Cldr dependency and
additional setup besides Cldr Routes itself.
The monolitic approach, in contrast to Routex, in combination with being part of
the Cldr-suite ensures a seamless integration and consistent API within the Cldr
ecosystem.
Routex is designed as an standalone, extensible framework. As a result
Routex has no hard dependency on other libraries. However, some extensions
may use other libraries such as Gettext or Cldr when enabled.
This modular approach provides developers with the flexibility to incorporate
only the features and dependencies necessary for their specific use case.
Customization
Cldr Routes' design may establish certain limitations when it comes to
adding new features or modifying existing behavior in Cldr Routes. Due to its
tight integration with the Cldr library new feature or change in behavior will
likely need to align with the overall structure and functionality of Cldr. To
implement a new feature or slightly different behavior downstream, developers
typically need to fork the project.
Routex, being a framework, tries to simplify the process of adding new
features or modifying existing behavior.
Developers can create custom extensions that integrate seamlessly with the core
library and other extensions. If only a slight modification to an existing
Routex extension is needed, developers can clone the relevant extension into
their project and adapt it accordingly. Developers van leverage utilities and
abstractions provided by Routex to simplify the process.
This approach ensures that developers can tailor Routex's functionality to their
unique requirements without deep understanding of it's codebase.

 Compatibility with Existing Codebases

Cldr Routes requires the use of the ~q sigil and url_q functions in
place of the standard URL functions for its version of Verified Routes.
Consequently, when utilizing Phoenix generators, developers must modify the
routes in their templates accordingly. The same goes for existing templates,
which may require adjustments to integrate Cldr Routes.
Routex, in contrast, allows users to select their preferred sigil and
function names, enabling configuration that maintains compatibility with
generated templates and existing codebases. This flexibility ensures that Routex
can be seamlessly integrated into existing projects without the need for
extensive modifications.

 Runtime Features

Cldr Routes requires an additional dependency and configuration to manage
locale settings, such as the excellent Cldr Plugs
Routex extensions can include callbacks for Plug and LiveView lifecycle
hooks to, for example, manage locale settings by invoking Gettext.put_locale
or Cldr.put_locale. These callbacks are automatically enabled upon adding the
extension without modifications to the codebase. This design choice streamlines
the integration process, reducing the need for extra dependencies and
codebase modifications.

 Comparison Table

	Feature	Routex	Cldr Routes	Phoenix Router
	Localized routes	Yes	Yes	Basic
	Translated routes	Yes	Yes	No
	Route modifications	Yes	No	No
	Drop-in Replacement	Yes	No	N/A
	Extensible	Yes	No	Basic
	Route Manipulation	Limitless	Tailored for localization needs	Basic
	Dependencies	None	Cldr, Gettext	None
	Code modifications	Minimal	Neutral	Nihil

	Generated code:			
	Helper functions	Many, provided by extensions	- Link headers - Route helpers - Verified routes	N/A
	Conn Plugs	Yes	No	No
	Liveview Hooks	Yes	No	No

Routex can be configured to shim original Phoenix functionality (for example: `~p` and `url/2`) or
mimic Cldr Routes using the [Cldr adapter extension](https://hexdocs.pm/routex/Routex.Extension.Cldr.html).

 Conclusion

In summary, each routing solution brings valuable capabilities to the table.
Phoenix Router offers a reliable, built-in option for standard routing
needs.
Cldr Routes is primarily designed to extend the capabilities of the Cldr
library, focusing on localization and internationalization. It provides
compile-time translations for route paths using Gettext, enabling users to
navigate applications using localized terms. However, the tight integration with
Cldr and Gettext libraries imposes certain limitations on customization and
flexibility.
Routex, on the other hand, offers a more flexible and extensible
architecture that not only matches the internationalization and localization
features of Cldr Routes but goes beyond. Routex includes all the features
provided by Cldr Routes and adds additional functionalities without the need for
workarounds. Its modular approach allows developers to incorporate only the
components necessary for their specific use case, making it a comprehensive
solution for advanced routing needs.

 Troubleshooting - Routex v1.1.0

Troubleshooting

 Where can I find ExampleWeb.Router.RoutexHelpers?

This module does not have a code file. It is generated during compile time
by Routex. You should be able to see a message in the output like the one below:
Completed: ExampleWeb.RoutexCldrBackend ⇒ Routex.Extension.VerifiedRoutes.create_helpers/3
Create or update helper module ExampleWeb.Router.RoutexHelpers
Once your project is compiled, you can access it in iex.
iex> exports ExampleWeb.Router.RoutexHelper
alternatives/1 attrs/1 on_mount/4
sigil_o/2 sigil_p/2 url/1
url/2 url/3 url_phx/1

iex> h ExampleWeb.Router.RoutexHelper.attrs

 def attrs(url)
Returns Routex attributes of given URL

 Compilation

If you run into compilation issues try these solutions first. If they
do not solve the issue or the issue re-appears, fell free to open an issue.

 Clearing your _build folder

Clearing your build folder might fix issues; especially when the
order of module compilation is the suspect.
rm -Rf _build && mix compile

 Debugging

When your application fails to compile you might find the cause by setting the
environment variable ROUTEX_DEBUG to true.
ROUTEX_DEBUG=true mix compile
Do note that this might show early compilation issues, but will make the final
compilation fail at all times.

 Changelog - Routex v1.1.0

Change Log

All notable changes to this project will be documented in this file.
See Conventional Commits for commit guidelines.

 v1.1.0 (2025-02-13)

 Features:

	provide assigns directly in conn

	core: add function to print critical messages

 Bug Fixes:

	match patterns fail on trailing slash

	undefined on_mount/4, silent missing attrs/1

 v1.0.0 (2025-02-03)

 Features:

	support Phoenix Liveview >= 1.0

 Bug Fixes:

	ci: upgrade artifact actions in workflow

	core: comp. error - cannot set :struct in struct definition

	incorrect typespecs

	cldr: use territory_from_locale for territory resolution

 v0.x

The CHANGELOG for v0.x releases can be found in the v0.x branch.

 Extensions - Routex v1.1.0

Routex Extensions

List of extensions
A list of included extensions can be found in the README.
Routex Extensions extend the functionality provided by Routex to transform
routes or generate new route based helper functions. Each extension is a module
which implements the Routex.Extension behaviour. It has to implement one or
multiple callbacks:
	configure/2
	transform/3
	post_transform/3
	create_helpers/3

Routex will call those callbacks at different stages before Routex handsoff the
result to Phoenix.Router for compilation.

 Callbacks and stages

 Stage 1: Configure

This stage enables extensions to preprocess backend options upfront.
The configure/2 callback is called with the options provided to
Routex.Backend and the name of the Routex backend. It is expected to return a
new list of options.
Routex collects all options in this stage for subsequent stages. Therefore,
extensions should add any fallback/default they might use themselves to the
options in this stage.
To aid in code completion, the final configuration is passed as a struct to
subsequent stages.

 Stage 2: Transform

This stage is meant to change the properties of routes, which are at that moment
Phoenix.Router.Route structs. The routes are grouped by Routex backend and
processed per group, allowing an extension to use accumulating values within one
iteration.
The transform/3 callback is called with a list of routes belonging to a
Routex backend, the name of the backend and the current environment. It is
expected to return a list of Phoenix.Router.Route structs.
Flattening option values
Extensions can make use of Routex.Attrs provided by Routex itself, Routex
backends and other extensions.
To make the availability of the attributes as predictable as possible, Routex
uses a flat structure which is stored in a routes' private.routex field.
However, using a flat structure might conflict with developer experience;
sometimes a nested structure to provide configuration options might be more
suitable.
One responsibility of the transform/3 callback is to flatten the structure of
attributes they use for each route they receive, so other extensions can use
attributes set by the current extension without knowledge of the configuration
structure.
Example
The Alternatives extension uses nested options and allows inheritance
of attributes from parent branches.
alternatives: %{
 "/" =>
 helper: nil,
 locale: "en_GB",
 branches: %{
 "nl" => %{
 helper: "nl",
 locale: "nl_NL"
 },
 "gb" => %{
 helper: "gb",
 }
 }
}
The Alternatives module is therefor responsible for flattening those for
(itself and) other extensions to use. To take the route responsible for the
"gb" branch as an example, the extension should add flattened attributes in the
Route struct. It can do so using the helper function Routex.Attrs.put/2.
Routex.Attrs.put(route, [locale: "en_GB", helper: "gb"])
Now the Translation extension can search for the option :locale in the
route's attributes, unaware of how that locale was initially configured.

 Stage 3: Post Transform

The post_transform stage is meant to set Routex.Attrs knowing all other
properties of a route are available.

 Stage 4: Create helpers

In this stage helper functions can be generated which will be added to
MyAppWeb.Router.RoutexHelpers.
The create_helpers/3 callback is called with a list of routes belonging to a
Routex backend, the name of the Routex backend and the current environment.
It is expected to return Elixir AST.
As a result the developer only has to import MyAppWeb.Router.RoutexHelpers
for all helpers generated by extensions to be included in the app.

 Guidelines

	make functions not defined by the Routex.Extension behaviour private.
	provide as many options as possible; other extensions might use the information.
	provide additional options as flat list(s) so other extensions don't have to guess structure.
	as other extensions might use options set by your extension, try to preserve any previously defined option.

 Documentation

@moduledoc """
Summary of feature provided.

Options
- `name` - description

Example configuration
```diff
# file /lib/example_web/routex_backend.ex
defmodule ExampleWeb.RoutexBackend do
  use Routex.Backend,
  extensions: [
+   Routex.Extension.Name
    Routex.Extension.Attrs
],
+ name_config: [name_opt: "value"]
```

Pseudo result
 /products/:id/edit ⇒ /products/:id/edit

`Routex.Attrs`
Requires
- none

Sets
- none

Helpers
function_name(arg1 :: type) :: type
"""

 Routex.Attrs - Routex v1.1.0

Routex.Attrs

Provides an interface to access and update Routex attributes.
Extensions can make use of Routex.Attrs values provided by Routex itself,
Routex backends and other extensions. As those values are attributes to a
route, extension B can use values attributed to a route by extension A.
In combination with...
Other extensions set Routex.Attrs. The attributes an extension sets is listed in it's documentation.
To define custom attributes for routes have a look at Routex.Extension.Alternatives
	To make the availability of the attributes as predictable as possible, Routex
uses a flat structure.
	Extension developers are encouraged to put as much information into the attributes
as possible.
	Extensions should add any fallback/default they might use themselves to the
attributes.

 Summary

 Functions

 Routex.Backend - Routex v1.1.0

Routex.Backend

use Routex.Backend
When use'd this module generates a Routex backend module and
a configuration struct using the configure/2 callbacks of
the extensions provided in opts.
See also: Routex Extensions.
Example
 iex> defmodule MyApp.RtxBackend do
 ...> use Routex.Backend,
 ...> extensions: [
 ...> Routex.Extension.VerifiedRoutes,
 ...> Routex.Extension.AttrGetters,
 ...>],
 ...> extension_x_config: [key: "value"]
 ...> end
 iex> IO.inspect(%MyApp.RtxBackend{})
 %MyApp.RtxBackend{
 extension_x_config: [key: "value"],
 extensions: [Routex.Extension.VerifiedRoutes, Routex.Extension.AttrGetters],
 verified_sigil_routex: "~l",
 verified_sigil_original: "~o"
 }
Values in the configuration can be overridden by providing an override map to the :private option of a scope or route.
Example
live /products, MyApp.Web.ProductIndexLive, :index, private: %{rtx: %{overridden_key: value}}

 Summary

 Types

 Routex.Branching - Routex v1.1.0

Routex.Branching

 Provides a function to build branched variants of macro's

 Summary

 Functions

 Routex.Dev - Routex v1.1.0

Routex.Dev

Provides functions to aid during development

 Summary

 Functions

 Routex.Extension - Routex v1.1.0

Routex.Extension behaviour

Specification for composable Routex extensions.
Optional callbacks:
	configure
	transform
	post_transform
	create_helpers

See also: Routex Extensions

 Summary

 Types

 Routex.Hooks - Routex v1.1.0

Routex.Hooks

 Summary

 Functions

 Routex.Matchable - Routex v1.1.0

Routex.Matchable

Matchables are an essential part of Routex. They are used to match run time
routes with compile time routes and enable reordered route segments.
This module provides functions to create Matchables, convert them to match
pattern AST as well as function head AST, and check if the routing values
of two Matchable records match.

 Summary

 Functions

 Routex.Processing - Routex v1.1.0

Routex.Processing

This module provides everything needed to process Phoenix routes. It executes
the transform callbacks from extensions to transform Phoenix.Router.Route
structs and create_helpers callbacks to create one unified Helper module.
Powerful but thin
Although Routex is able to influence the routes in Phoenix applications in profound
ways, the framework and it's extensions are a suprisingly lightweight piece
of compile-time middleware. This is made possible by the way router modules
are pre-processed by Phoenix.Router itself.
Prior to compilation of a router module, Phoenix Router registers all routes
defined in the router module using the attribute @phoenix_routes. Each
route is at that stage a Phoenix.Router.Route struct.
Any route enclosed in a preprocess_using block has received a :private
field in which Routex has put which Routex backend to use for that
particular route. By enumerating the routes, we can process each route using
the properties of this configuration and set struct values accordingly. This
processing is nothing more than (re)mapping the Route structs' values.
After the processing by Routex is finished, the @phoenix_routes attribute
in the router is erased and re-populated with the list of mapped
Phoenix.Router.Route structs.
Once the router module enters the compilation stage, Routex is already out of
the picture and route code generation is performed by Phoenix Router.

 Summary

 Types

 Routex.Route - Routex v1.1.0

Routex.Route

Function for working with Routex augmented Phoenix Routes

 Summary

 Functions

 Routex.Router - Routex v1.1.0

Routex.Router

Provides macro (callbacks) to alter route definition before
compilation.
use Routex.Router
When you use Routex.Router, the Routex.Router module will
plug Routex.Processing between the definition of routes and the
compilation of the router module. It also imports the preprocess_using
macro which can be used to mark routes for Routex preprocessing using the
Routex backend provided as first argument.

 Summary

 Functions

 Routex.Utils - Routex v1.1.0

Routex.Utils

Provides an interface to functions which can be used in extensions.

 Summary

 Functions

 Routex.Extension.AlternativeGetters - Routex v1.1.0

Routex.Extension.AlternativeGetters

Creates helper functions to get a list of maps alternative slugs and their Routex.Attrs
by providing a binary url. Sets match?: true for the url matching record.

 Configuration

file /lib/example_web/routex_backend.ex
defmodule ExampleWeb.RoutexBackend do
 use Routex.Backend,
 extensions: [
 Routex.Extension.AttrGetters, # required
 Routex.Extension.Alternatives,
+ Routex.Extension.AlternativeGetters
],

 Usage example

<!-- @url is made available by Routex -->
<!-- alternatives/1 is located in ExampleWeb.Router.RoutexHelpers aliased as Routes -->
<.link
 :for={alternative <- Routes.alternatives(@url)}
 class="button"
 rel="alternate"
 hreflang={alternative.attrs.locale}
 patch={alternative.slug}
 >
 <.button class={(alternative.match? && "highlighted") || ""}>
 <%= alternative.attrs.display_name %>
 </.button>
 </.link>

 Pseudo result

iex> ExampleWeb.Router.RoutexHelpers.alternatives("/products/12?foo=baz")
[%Routex.Extension.AlternativeGetters{
 slug: "products/12/?foo=baz",
 match?: true,
 attrs: %{
 __branch__: [0, 12, 0],
 __origin__: "/products/:id",
 [...attributes set by other extensions...]
 }},
 %Routex.Extension.AlternativeGetters{
 slug: "/europe/products/12/?foo=baz",
 match?: false,
 attrs: %{
 __branch__: [0, 12, 1],
 __origin__: "/products/:id",
 [...attributes set by other extensions...]
 }},
 %Routex.Extension.AlternativeGetters{
 slug: "/asia/products/12/?foo=baz",
 match?: false,
 attrs: %{
 __branch__: [0, 12, 1],
 __origin__: "/products/:id",
 [...attributes set by other extensions...]
 }},
]

 Routex.Attrs

Requires
	none

Sets
	none

 Helpers

	alternatives(url :: String.t()) :: struct()

 Routex.Extension.Alternatives - Routex v1.1.0

Routex.Extension.Alternatives

Creates alternative routes based on branches configured in a Routex backend
module. Branches can be nested and each branch can provide Routex.Attrs to be shared
with other extensions.
In combination with...
How to combine this extension for localization is written in de Localization Guide

 Configuration

file /lib/example_web/routex_backend.ex
This example uses a `Struct` for custom attributes, so there is no attribute inheritance;
only struct defaults. When using maps, nested branches will inherit attributes from their parent.

+ defmodule ExampleWeb.RoutexBackend.AltAttrs do
+ @moduledoc false
+ defstruct [:contact, locale: "en"]
+ end

defmodule ExampleWeb.RoutexBackend do
+ alias ExampleWeb.RoutexBackend.AltAttrs

use Routex.Backend,
extensions: [
 Routex.Extension.AttrGetters, # required
+ Routex.Extension.Alternatives,
Routex.Extension.AttrGetters
],
+ alternatives: %{
+ "/" => %{
+ attrs: %AltAttrs{contact: "root@example.com"},
+ branches: %{
+ "/europe" => %{
+ attrs: %AltAttrs{contact: "europe@example.com"},
+ branches: %{
+ "/nl" => %{attrs: %AltAttrs{locale: "nl", contact: "verkoop@example.nl"}},
+ "/be" => %{attrs: %AltAttrs{locale: "nl", contact: "handel@example.be"}}
+ }
+ },
+ "/gb" => %{attrs: %AltAttrs{contact: "sales@example.com"}
+ }
+ },
+ alternatives_prefix: false # whether to automatically prefix routes, defaults to true

 Pseudo result

 Router Generated Attributes
 ⇒ /products/:id/edit locale: "en", contact: "rootexample.com"
 /products/:id/edit ⇒ /europe/nl/products/:id/edit locale: "nl", contact: "verkoop@example.nl"
 ⇒ /europe/be/products/:id/edit locale: "nl", contact: "handel@example.be"
 ⇒ /gb/products/:id/edit locale: "en", contact: "sales@example.com"

 Routex.Attrs

Requires
	none

Sets
	any key/value in :attrs
	branch_helper
	branch_alias
	branch_prefix
	branch_opts
	alternatives (list of Phoenix.Route.Route)

 Routex.Extension.Assigns - Routex v1.1.0

Routex.Extension.Assigns

Extracts Routex.Attrs from a route and makes them available in components
and controllers with the assigns operator @ (optionally under a namespace).
In combination with...
Other extensions set Routex.Attrs. The attributes an extension sets is listed in it's documentation.
To define custom attributes for routes have a look at Routex.Extension.Alternatives

 Options

	namespace: when set creates a named collection of Routex.Attrs
	attrs: when set defines keys of Routex.Attrs to make available

 Configuration

file /lib/example_web/routex_backend.ex
defmodule ExampleWeb.RoutexBackend do
 use Routex.Backend,
 extensions: [
 Routex.Extension.AttrGetters, # required
+ Routex.Extension.Assigns
],
+ assigns: %{namespace: :rtx, attrs: [:branch_helper, :locale, :contact, :name]}

 Pseudo result

in (h)eex template
@rtx.branch_helper ⇒ "eu_nl"
@rtx.locale ⇒ "nl"
@rtx.contact ⇒ "verkoop@example.nl"
@rtx.name ⇒ "The Netherlands"

 Routex.Attrs

Requires
	none

Sets
	assigns

 Example use case

Combine with Routex.Extension.Alternatives to make compile time, branch
bound assigns available to components and controllers.

 Routex.Extension.AttrGetters - Routex v1.1.0

Routex.Extension.AttrGetters

Creates helper functions to get the Routex.Attrs given a binary url or a
list of path segments. Use this to lazy load attributes instead of adding them
upfront to assigns.
This extension provides the required attrs/1 helper function, used by
Routex to assign helper attributes in the generated on_mount/4 callback.
In combination with...
Other extensions set Routex.Attrs. The attributes an extension sets is listed in it's documentation.
To define custom attributes for routes have a look at Routex.Extension.Alternatives

 Configuration

file /lib/example_web/routex_backend.ex
defmodule ExampleWeb.RoutexBackend do
 use Routex.Backend,
 extensions: [
+ Routex.Extension.AttrGetters, # required
],

 Pseudo result

iex> ExampleWeb.Router.RoutexHelpers.attrs("/europe/nl/producten/?foo=baz")
%{
 __branch__: [0, 9, 3],
 __origin__: "/products",
 backend: ExampleWeb.LocalizedRoutes,
 contact: "verkoop@example.nl",
 locale: "nl",
 branch_name: "The Netherlands",
 branch_helper: "europe_nl",
}

 Routex.Attrs

Requires
	none

Sets
	none

 Helpers

	attrs(url :: binary) :: map()
	attrs(segments :: list) :: map()

 Routex.Extension.Cldr - Routex v1.1.0

Routex.Extension.Cldr

Adapter for projects using :ex_cldr. It generates the configuration
for Routex.Extension.Alternatives.
Ejecting the CLDR extension
Using the Cldr adapter provides the advantage of keeping your localized routes
in sync with the configuration of Cldr. The disadvantage is a lack of flexibility.
If you ever need more flexibility, you can eject the Cldr extension.

 Interpolating Locale Data

Interpolation is provided by Routex.Extension.Interpolation, which
is able to use any Routex.Attr for interpolation into your routes.
See it's documentation for additional options.
When using this Cldr extension, the following interpolations are supported as they
are set as Routex.Attr:
	locale will interpolate the Cldr locale name
	locale_display will interpolate the Cldr locale display name
	language will interpolate the Cldr language name
	territory will interpolate the Cldr territory code

Some examples:
preprocess_using ExampleWeb.RoutexBackend do
 scope "/#{territory}/territory/" do
 get "/locale/pages/:page/#{locale}/", PageController, :show
 get "/language/#{language}/pages/:page", PageController, :show
 end
end

 Configuration

defmodule ExampleWeb.RoutexBackend do
use Routex.Backend,
extensions: [
 Routex.Extension.AttrGetters, # required
+ Routex.Extension.Cldr,
+ Routex.Extension.Alternatives,
+ Routex.Extension.Interpolation, # when using routes with interpolation
+ Routex.Extension.Translations, # when using translated routes
+ Routex.Extension.VerifiedRoutes
],
+ cldr_backend: MyApp.Cldr,
+ translations_backend: MyApp.Gettext, # when using translated routes
+ translations_domain: "routes", # when using translated routes
+ alternatives_prefix: false, # when using routes with interpolation
+ verified_sigil_routex: "~q", # consider using ~p, see `Routex.Extension.VerifiedRoutes`
defmodule ExampleWeb.Router
require your Cldr backend module before `use`ing the router.
+ require ExampleWeb.Cldr

use ExampleWeb, :router

import ExampleWeb.UserAuth
When your application does not compile after adding this extension, force a
recompile using mix compile --force.

 Pseudo result

 This extension injects :alternatives into your configuration.
 See the documentation of Routex.Extension.Alternatives to see
 more options and the pseudo result.

 Eject the Cldr adapter

This extension abstracts away the configuration of Routex.Extension.Alternatives. You may want
to customize things beyond what Routex.Extension.Cldr provides. When you eject, you copy
the generated configuration into the Routex backend.
In other words, instead of relying on the preconfigured “black box” provided by this extension, you
now have full access to—and responsibility for—the configuration of Routex.Extension.Alternatives.
Copy the generated configuration into your Routex backend**
Call the config/0 function on you backend (e.g. ExampleWeb.RoutexBackend.config())
in IEX. Copy the alternatives: %{...} section to your Routex backend.
defmodule ExampleWeb.RoutexBackend do
use Routex.Backend,
extensions: [...],
+ alternatives: %{...}
Remove references to Cldr
defmodule ExampleWeb.RoutexBackend do
use Routex.Backend,
extensions: [
- Routex.Extension.Cldr,
],
- cldr_backend: MyApp.Cldr,
defmodule ExampleWeb.Router
- require ExampleWeb.Cldr

use ExampleWeb, :router

import ExampleWeb.UserAuth

 Routex.Attrs

Requires
	none

Sets
	language
	locale
	locale_display
	territory

 Summary

 Functions

 Routex.Extension.Cloak - Routex v1.1.0

Routex.Extension.Cloak

Transforms routes to be unrecognizable.
Warning
This extension is intended for testing and demonstration. It may change at
any given moment to generate other routes without prior notice.
The Cloak extension demonstrates how Routex enables extensions to transform
routes beyond recognition without breaking Phoenix' native and Routex' routing
features.
Currently it numbers all routes. Starting at 1 and incremening the counter for
each route. It also shifts the parameter to the left; causing a chaotic route
structure.
Do note: this still works with the Verified Routes extension. You can use the
original, non transformed, routes in templates (e.g. ~p"/products/%{product}")
and still be sure the transformed routes rendered at runtime (e.g. /88/2 when product.id = 88)
are valid routes.

 Do (not) try this at home

	Try this extension with a route generating extension like
Routex.Extension.Alternatives for even more chaos.

	Adapt this extension to use character repetition instead of numbers. Can you
guess where /90/** leads to?

 Configuration

file /lib/example_web/routex_backend.ex
defmodule ExampleWeb.RoutexBackend do
 use Routex.Backend,
 extensions: [
 Routex.Extension.AttrGetters, # required
+ Routex.Extension.Cloak
],

 Pseudo result

Original Rewritten Result (product_id: 88, 89, 90)
/products ⇒ /1 ⇒ /1
/products/:id/edit ⇒ /:id/2 ⇒ /88/2, /89/2, /90/2 etc...
/products/:id/show/edit ⇒ /:id/3 ⇒ /88/3, /89/3, /90/3 etc...

 Routex.Attrs

Requires
	none

Sets
	none

 Routex.Extension.Interpolation - Routex v1.1.0

Routex.Extension.Interpolation

A route may be defined with a routes Routex.Attrs interpolated
into it. These interpolations are specified using the usual #{variable}
interpolation syntax. Unlike some other routing solutions, interpolation
is not restricted to the beginning of routes.
In combination with...
Other extensions set Routex.Attrs. The attributes an extension sets is listed in it's documentation.
To define custom attributes for routes have a look at Routex.Extension.Alternatives
When using Routex.Extension.Alternatives you might
want to disable auto prefixing for the whole Routex backend (see
Routex.Extension.Alternatives) or per route (see Routex).
Bare base route
The route as specified in the Router will be stripped from any
interpolation syntax. This allows you to use routes without interpolation
syntax in your templates (e.g. ~p"/products") and have them verified by
Verified Routes. The routes will be rendered with interpolated attributes
at run time.

 Configuration

none

 Usage

file /lib/example_web/routes.ex
live "/products/#{locale}/:id", ProductLive.Index, :index

 Pseudo result

 # in combination with Routex.Extension.Alternatives with auto prefix
 # disabled and 3 branches. It splits the routes and sets the :locale
 # attribute which is used for interpolation.

 Route Generated
 ⇒ /products/en/:id
 /products/#{locale}/:id/ ⇒ /products/fr/:id
 ⇒ /products/fr/:id
Routex.Attrs
Requires
- none
Sets
- none

 Routex.Extension.RouteHelpers - Routex v1.1.0

Routex.Extension.RouteHelpers

Provides route helpers with support for automatic selecting alternatives
routes. The helpers can be used to override Phoenix' defaults as they are
a drop-in replacements.
Only use this extension when you make use of extensions generating alternative
routes, as otherwise the result will be the same as the official helpers.

 Configuration

file /lib/example_web/routex_backend.ex
defmodule ExampleWeb.RoutexBackend do
 use Routex.Backend,
 extensions: [
 Routex.Extension.AttrGetters, # required
+ Routex.Extension.RouteHelpers
],
Phoenix < 1.7 created an alias Routes by default. You can either replace it
or add an alias for RoutexHelpers. Phoenix >= 1.7 deprecated the helpers
in favor of Verified Routes.
In the example below we 'override' the default Routes alias to use
Routex' Route Helpers as a drop-in replacement, but keep the original helpers
functions available by using alias OriginalRoutes.
file /lib/example_web.ex
defp routex_helpers do

+ alias ExampleWeb.Router.Helpers, as: OriginalRoutes
+ alias ExampleWeb.Router.RoutexHelpers, as: Routes

end

 Pseudo result

When alternatives are created it uses auto-selection to keep the user 'in branch'.

in (h)eex template
Product #1

is replaced during during compilation with:
case alternative do
 nil ⇒ "/products/#{product}"
 "en" ⇒ "/products/#{product}"
 "nl" ⇒ "/europe/nl/products/#{product}"
 "be" ⇒ "/europe/be/products/#{product}"
end

 Routex.Attrs

Requires
	none

Sets
	none

 Summary

 Functions

 Routex.Extension.Translations - Routex v1.1.0

Routex.Extension.Translations

Enables users to enter URLs using localized terms which can enhance user engagement
and content relevance.
Extracts segments of a routes' path to a translations domain file (default: routes.po)
for translation. At compile-time it combines the translated segments to transform routes.
This extension expects either a :language attribute or a :locale attribute. When only
:locale is provided it will try to extract the language from the locale tag. This algorithm
covers Alpha-2 and Alpha-3 codes (see:
ISO)
In combination with...
How to combine this extension for localization is written in de Localization Guide

 Configuration

defmodule ExampleWeb.RoutexBackend do
use Routex.Backend,
extensions: [
 Routex.Extension.AttrGetters, # required
+ Routex.Extension.Translations
]
+ translations_backend: MyApp.Gettext,
+ translations_domain: "routes",

 Pseudo result

when translated to Spanish in the .po file
- products: producto
- edit: editar

/products/:id/edit ⇒ /producto/:id/editar

 Routex.Attrs

Requires
	language || locale

Sets
	none

 Use case(s)

This extension can be combined with Routex.Extension.Alternatives to create
multilingual routes.
Use Alternatives to create new branches and provide a :language or :locale per branch and
Translations to translate the alternative routes.
 ⇒ /products/:id/edit language: "en"
/products/:id/edit ⇒ /nederland/producten/:id/bewerken language: "nl"
 ⇒ /espana/producto/:id/editar language: "es"

 Routex.Extension.VerifiedRoutes - Routex v1.1.0

Routex.Extension.VerifiedRoutes

Supports the use of original route paths in controllers and templates while rendering
transformed route paths at runtime without performance impact.
Implementation summary
Each sigil and function eventualy delegates to the official
Phoenix.VerifiedRoutes. If a non-branching route is provided it will
simply delegate to the official Phoenix function. If a branching route is
provided, it will use a branching mechanism before delegating.
Alternative Verified Route sigil
Provides a sigil (default: ~l) to verify transformed and/or branching routes.
The sigil to use can be set to ~p to override the default of Phoenix as
it is a drop-in replacement. If you choose to override the default Phoenix sigil,
it is renamed (default: ~o) and can be used when unaltered behavior is required.
Variants of url/{2,3,4} and path/{2,3}
Provides branching variants of (and delegates to) macro's provided by
Phoenix.VerifiedRoutes. Both new macro's detect whether branching should be
applied.

 Options

	verified_sigil_routex: Sigil to use for Routex verified routes (default "~l")
	verified_sigil_phoenix: Replacement for the native (original) sigil when verified_sigil_routex
is set to "~p". (default: "~o")
	verified_url_routex: Function name to use for Routex verified routes powered url. (default: :rtx_url)
	verified_url_phoenix: Replacement for the native url function when verified_url_routex
is set to :url. (default: :phx_url)
	verified_path_routex: Function name to use for Routex verified routes powered path (default :rtx_path)
	verified_path_phoenix: Replacement for the native path function when verified_path_routex
is set to :path. (default: :phx_path)

When verified_sigil_routex is set to "~p" an additional change must be made.
file /lib/example_web.ex
defp routex_helpers do
+ import Phoenix.VerifiedRoutes,
+ except: [sigil_p: 2, url: 1, url: 2, url: 3, path: 2, path: 3]

 import unquote(__MODULE__).Router.RoutexHelpers, only: :macros
 alias unquote(__MODULE__).Router.RoutexHelpers, as: Routes
end

 Configuration

file /lib/example_web/routex_backend.ex
defmodule ExampleWeb.RoutexBackend do
 use Routex.Backend,
 extensions: [
 Routex.Extension.AttrGetters, # required
 Routex.Extension.Alternatives,
 [...]
+ Routex.Extension.VerifiedRoutes
],
+ verified_sigil_routex: "~p",
+ verified_sigil_phoenix: "~o",
+ verified_url_routex: :url,
+ verified_url_phoenix: :url_native,
+ verified_path_routex: :path,
+ verified_path_phoenix: :path_native,

 Pseudo result

given Routex behavior is assigned ~l
given the default behavior is assigned ~o
given the official macro of Phoenix is assigned ~p

given another extension has transformed the route
~o"/products/#{product}" ⇒ ~p"/products/#{products}"
~l"/products/#{product}" ⇒ ~p"/transformed/products/#{product}"

given another extension has generated branches / alternative routes
~o"/products/#{product}" ⇒ ~p"/products/#{products}"
~l"/products/#{product}" ⇒
 case current_branch do
 nil ⇒ ~p"/products/#{product}"
 "en" ⇒ ~p"/products/en/#{product}"
 "eu_nl" ⇒ ~p"/europe/nl/products/#{product}"
 "eu_be" ⇒ ~p"/europe/be/products/#{product}"
 end

 Routex.Attrs

Requires
	none

Sets
	none

 Routex.Extension.Interpolation.NonUniqError - Routex v1.1.0

Routex.Extension.Interpolation.NonUniqError exception

Raised when a list of routes contains routes with the same path and verb.
[%Route{
 path: "/foo"
 verb: :get},
%Route{
 path: "/foo"
 verb: :post}, # <-- different
%Route{
 path: "/foo"
 verb: :get} # <-- duplicate
]
Solution: use a combination of interpolated attributes that form a unique set.

 Routex.Extension.Alternatives.Branch.Flat - Routex v1.1.0

Routex.Extension.Alternatives.Branch.Flat

Struct for flattened branch

 Summary

 Types

 Routex.Extension.Alternatives.Branch.Nested - Routex v1.1.0

Routex.Extension.Alternatives.Branch.Nested

Struct for branch with optionally nested branches

