

 rustler_precompiled

 v0.7.1

 Table of contents

 	Precompilation guide

 	Changelog

 	Modules

 	RustlerPrecompiled

 	Mix Tasks

 	mix rustler_precompiled.download

Precompilation guide

Rustler provides an easy way to use safer NIFs in OTP applications. But in some
environments it's harder to use the benefits of the tool because every user
needs to install the Rust toolchain and compile the project,
which can take several minutes in some cases.
This changes with the help of the RustlerPrecompiled package. Now we can easily
use precompiled Rustler NIFs from an external source.
The precompilation happens in a CI server, always in a transparent way, and
the Hex package published should always include a checksum file to ensure
the NIFs stays the same, therefore avoiding supply chain attacks.
In this guide I will show you how to prepare your project to use this feature.

 Prepare for the build

Most of the work is done in the CI server. In this example we are going to use GitHub Actions.
The GH Actions service has the benefit of hosting artifacts for releases and make them
public available.

 Configure Github Actions

In order for the workflow to succeed, read and write permissions will need to be enabled for the
repository.
	Settings > Actions > General
	Workflow permissions
	Check the box "Read and write permissions"

 Configure Targets

Usually we want to build for the most popular targets and the minimum NIF version supported.
NIF versions are more stable than OTP versions because they usually change only after two major
releases of OTP. But older versions are compatible with newer versions if they have the same MAJOR
number. For example, the NIF 2.15 is compatible with 2.16 and 2.17. So you only need to
compile for 2.15 if you want to support these versions. But in case any new feature from the
newer versions is needed, then you can build for both versions as well.
In Rustler - starting from v0.29 -, it's possible to control which version of NIF is active by
configuring cargo features that have this format: nif_version_MAJOR_MINOR. So it's possible
to define features in your project that depends on Rustler features.
More details are in the "Additional configuration before build".
For this guide our targets will be the following:
	OS: Linux, Windows, macOS
	Architectures: x86_64, aarch64 (ARM 64 bits), arm
	NIF versions: 2.15, 2.16.

In summary the build matrix looks like this:
matrix:
 nif: ["2.16", "2.15"]
 job:
 - { target: arm-unknown-linux-gnueabihf , os: ubuntu-20.04 , use-cross: true }
 - { target: aarch64-unknown-linux-gnu , os: ubuntu-20.04 , use-cross: true }
 - { target: aarch64-apple-darwin , os: macos-11 }
 - { target: x86_64-apple-darwin , os: macos-11 }
 - { target: x86_64-unknown-linux-gnu , os: ubuntu-20.04 }
 - { target: x86_64-unknown-linux-musl , os: ubuntu-20.04 , use-cross: true }
 - { target: x86_64-pc-windows-gnu , os: windows-2019 }
 - { target: x86_64-pc-windows-msvc , os: windows-2019 }
A complete workflow example can be found in the rustler_precompilation_example project.
That workflow is using a GitHub Action especially made for our goal: philss/rustler-precompiled-action.
The GitHub Action will deal with the installation of cross and the build of the project, naming the files in the correct format.
Some targets are only supported by later versions of cross. For those, you might want to
install cross directly from GitHub. You can see an example in this
pipeline.

 Additional configuration before build

In our build we are going to cross compile our crate project (the Rust code for our NIF) using
a variety of targets, as we saw in the previous section. For this to work we need to guide the Rust
compiler in some cases by providing additional configuration in the .cargo/config file of our project.
Here is an example of that file:
[target.'cfg(target_os = "macos")']
rustflags = [
 "-C", "link-arg=-undefined",
 "-C", "link-arg=dynamic_lookup",
]

See https://github.com/rust-lang/rust/issues/59302
[target.x86_64-unknown-linux-musl]
rustflags = [
 "-C", "target-feature=-crt-static"
]

Provides a small build size, but takes more time to build.
[profile.release]
lto = true
In addition to that, we also use a tool called cross that
makes the build easier for some targets (the ones using use-cross: true in our example).
For projects using Rustler before v0.29, we need to tell cross to read an environment variable
from our "host machine", because cross uses containers to build our software.
So you need to create the file Cross.toml in the NIF directory with the following content:
[build.env]
passthrough = [
 "RUSTLER_NIF_VERSION"
]
Using features to control NIF version in Rustler v0.29 and above
Since Rustler v0.29, it's possible to control which NIF version is active by using cargo features.
This is a replacement for the RUSTLER_NIF_VERSION env var, that is deprecated in v0.30 of
Rustler.
If your project does not use anything special from newer NIF versions, then you can declare the
Rustler dependency like this:
[dependencies]
rustler = { version = "0.29", default-features = false, features = ["derive", "nif_version_2_15"] }
And in the workflow file, you would specify the nif-version: 2.15 as usual.
But in case you want to have newer features from more recent versions of NIF, you can create
features for your project that are used to activate rustler features. These features should
follow the same naming from Rustler, because the CI action is going to use that to activate
the right feature.
Here is an example of how your Cargo.toml would look like:
[dependencies]
rustler = { version = "0.29", default-features = false, features = ["derive"] }

And then, your features.
[features]
default = ["nif_version_2_15"]
nif_version_2_15 = ["rustler/nif_version_2_15"]
nif_version_2_16 = ["rustler/nif_version_2_16"]
nif_version_2_17 = ["rustler/nif_version_2_17"]
In your code, you would use these features - like nif_version_2_17 - to control how your
code is going to be compiled. You can hide some features behind these features.
Even if you don't have anything behind these features, you can still introduce them
if you want to activate an specific NIF version.
But again, normally it's enough to build for the lowest version supported by the OTP version
that you are targeting.
The available NIF versions are the following:
	2.14 - for OTP 21 and above.
	2.15 - for OTP 22 and above.
	2.16 - for OTP 24 and above.
	2.17 - for OTP 26 and above.

 The Rustler module

We need to tell RustlerPrecompiled where to find our NIF files, and we need to tell which version to use.
defmodule RustlerPrecompilationExample.Native do
 version = Mix.Project.config()[:version]

 use RustlerPrecompiled,
 otp_app: :rustler_precompilation_example,
 crate: "example",
 base_url:
 "https://github.com/philss/rustler_precompilation_example/releases/download/v#{version}",
 force_build: System.get_env("RUSTLER_PRECOMPILATION_EXAMPLE_BUILD") in ["1", "true"],
 version: version

 # When your NIF is loaded, it will override this function.
 def add(_a, _b), do: :erlang.nif_error(:nif_not_loaded)
end
This example was extracted from the rustler_precompilation_example project.
RustlerPrecompiled will try to figure out the target and download the correct file for us. This will happen in compile
time only.
Optionally it's possible to force the compilation by setting an env var, like the example suggests.
It's also possible to force the build by using a pre release version, like 0.1.0-dev. The only
requirement to force the build is to have Rustler declared as a dependency as well:
{:rustler, ">= 0.0.0", optional: true}.

 The release flow

 Generating a checksum file

In a scenario where you need to release a Hex package using precompiled NIFs, you first need to
build the release in the CI, wait for all artifacts to be available and then generate
the checksum file that is MANDATORY for your package to work.
This checksum file is generated by running the following command after the build is complete:
$ mix rustler_precompiled.download YourRustlerModule --all --print

With the module I used for this guide, the command would be:
$ mix rustler_precompiled.download RustlerPrecompilationExample.Native --all --print

The file generated will be named checksum-Elixir.RustlerPrecompilationExample.Native.exs and
it's extremely important that you include this file in your Hex package (by updating the files:
field in your mix.exs). Otherwise your package won't work. Your files: key at your
package configuration will look like this:
defp package do
 [
 files: [
 "lib",
 "native/example/.cargo",
 "native/example/src",
 "native/example/Cargo*",
 "checksum-*.exs",
 "mix.exs"
],
 # ...
]
end
Note: you don't need to track the checksum file in your version control system (git or other).
For an example, refer to the mix.exs file of the rustler precompilation example
or elixir-nx's explorer library.
Tip: use the mix hex.build --unpack command to confirm which files are being included (and if the package looks good before publishing).

 Recommended flow

To recap, the suggested flow is the following:
	release a new tag
	push the code to your repository with the new tag: git push origin main --tags
	wait for all NIFs to be built
	run the mix rustler_precompiled.download task (with the flag --all)
	release the package to Hex.pm (make sure your release includes the correct files).

 Conclusion

The ability to use precompiled NIFs written in Rust can increase the adoption of some packages,
because people won't need to have Rust installed. But this comes with some drawbacks and more
responsibilities to the maintainers, so use this feature carefully.

Changelog

All notable changes to this project will be documented in this file.
The format is based on Keep a Changelog,
and this project adheres to Semantic Versioning.

 Unreleased

 0.7.1 - 2023-11-30

 Fixed

	Fix the URL for variants on download.

 0.7.0 - 2023-09-22

 Added

	Add :max_retries option, to control how many times we should try
to download a NIF artifact. By default it is going to try 3 times.
To disable this feature, use the value 0.

	Add support for variants. This is a feature that enables building
for the same target with multiple configurations. It can support
different features or OS dependencies. The selection is done in
compile time.

 Changed

	Change default list of NIF versions to only include the version 2.15.
This is because most of the users won't need to activate newer versions,
unless they use features from those versions.
This is going to simplify and speed up the release process for most of the
projects.

 0.6.3 - 2023-08-28

 Fixed

	Make sure :nif_versions option is respected.
This is a small bug fix that was blocking the usage of a more
restrict list of "NIF versions". For example, if my system is
using NIF version 2.16, but I want to be compatible with only
version 2.15, this was being ignored, since the algorithm for
finding compatible versions was not taking into account this
restriction.

 0.6.2 - 2023-07-05

 Added

	Add support for FreeBSD as a target.

 Changed

	Remove :crypto from the extra applications list, because :ssl already includes it.

	Update the guide to mention the new way to select a NIF version in Rustler >= 0.29.

 0.6.1 - 2023-02-16

 Changed

	Depend on :ssl instead of :public_key application. Since :public_key is started
with :ssl, this shouldn't break. This change is needed in order to support the upcoming
Elixir 1.15.

 0.6.0 - 2023-01-27

 Added

	Add support for configuring the NIF versions that the project supports.
This can be done with the :nif_versions config.

	Add support for castore version ~> 1.0.

 Changed

	Add aarch64-unknown-linux-musl and riscv64gc-unknown-linux-gnu as default targets.
The first one is common for people running Linux containers that were built with Musl on Apple computers.
The second one is becoming popular for tiny computers, normally running Nerves.
The adoption of these targets can increase a little bit the compilation time, but
can affect a great number of users.
For package maintainers: please remember to add these targets to your CI workflow.
See an example workflow at: https://github.com/philss/rustler_precompilation_example/blob/main/.github/workflows/release.yml

	Change the depth of SSL peer verification to "3". This should be more compatible with servers.

	Remove version "2.14" from the default NIF versions. Like the change of default targets,
this should only have effect in the moment of release of a new package version.
Remember to update your workflow file.

 0.5.5 - 2022-12-10

 Fixed

	Add support for Suse Linux targets. This is a fix to the plataform resolution. Thanks @fabriziosestito.
	Fix validation of HTTP proxy. This makes the validation similar to the HTTPS proxy. Thanks @w0rd-driven.
	Map riscv64 to riscv64gc to match Rust naming. Thanks @fhunleth.

 0.5.4 - 2022-11-05

 Fixed

	Fix building metadata when "force build" is enabled and the target is not available.

 0.5.3 - 2022-10-19

 Fixed

	Always write the metadata file in compilation time, so mix tasks can work smoothly.

 0.5.2 - 2022-10-03

 Fixed

	Fix the target/0 function to use default targets a default argument. This makes the example
in the docs work again. Thanks @jackalcooper.
	Only use proxy if it is valid. Thanks @josevalim.
	Fix the support for PCs running RedHat Linux. Thanks @Benjamin-Philip.
	Improve some points in the docs. Thanks @whatyouhide and @fabriziosestito.

 0.5.1 - 2022-05-24

 Fixed

	Fix available targets naming to include the NIF version in the name. It was removed accidentally.
Thanks @adriankumpf.

 0.5.0 - 2022-05-24

 Added

	Now it's possible to configure the targets list, based in the Rust's Plataform Support
list. You can run rustc --print target-list to get the full list.
Thanks @adriankumpf.

 Changed

	The precompilation guide was improved with instructions and suggestions for the files key at
the project config.
Thanks @nbw.
	Now we raise with a different error if the NIF artifact cannot be written when downloading to create
the checksum file.

 0.4.1 - 2022-04-28

 Fixed

	Fix __using__ macro for when Rustler is not loaded.

 0.4.0 - 2022-04-28

 Changed

	Make Rustler an optional dependency. This makes installation faster for most of the users.

 0.3.0 - 2022-03-26

 Added

	Add the possibility to skip the download of unavailable NIFs when generating the
checksum file - thanks @fahchen

 0.2.0 - 2022-02-18

 Fixed

	Fix validation of URL in order to be compatible with Elixir ~> 1.11.
The previous implementation was restricted to Elixir ~> 1.13.

 Added

	Add :force_build option that fallback to Rustler. It passes all options
except the ones used by RustlerPrecompiled down to Rustler.
This option will be by default false, but if the project is using a pre-release,
then it will always be set to true.
With this change the project starts depending on Rustler.

 Changed

	Relax dependencies to the minor versions.

 0.1.0 - 2022-02-16

 Added

	Add basic features to download and use the precompiled NIFs in a safe way.

RustlerPrecompiled

Download and use precompiled NIFs safely with checksums.
Rustler Precompiled is a tool for library maintainers that rely on Rustler.
It helps by removing the need to have the Rust compiler installed in the
user's machine.
Check the Precompilation Guide for details.

 Example

defmodule MyApp.MyNative do
 use RustlerPrecompiled,
 otp_app: :my_app,
 crate: "my_app_nif",
 base_url: "https://github.com/me/my_project/releases/download/v0.1.0",
 version: "0.1.0"
end

 Options

	:otp_app - The OTP app name that the dynamic library will be loaded from.

	:crate - The name of Rust crate if different from the :otp_app. This is optional.

	:base_url - A valid URL that is used as base path for the NIF file.

	:version - The version of precompiled assets (it is part of the NIF filename).

	:force_build - Force the build with Rustler. This is false by default, but
if your :version is a pre-release (like "2.1.0-dev"), this option will always
be set true.
You can also configure this option by setting an application env like this:
config :rustler_precompiled, :force_build, your_otp_app: true
It is important to add the ":rustler" package to your dependencies in order to force
the build. To do that, just add it to your mix.exs file:
{:rustler, ">= 0.0.0", optional: true}

	:targets - A list of targets supported by
Rust for which
precompiled assets are available. By default the following targets are
configured:
	aarch64-apple-darwin
	aarch64-unknown-linux-gnu
	aarch64-unknown-linux-musl
	arm-unknown-linux-gnueabihf
	riscv64gc-unknown-linux-gnu
	x86_64-apple-darwin
	x86_64-pc-windows-gnu
	x86_64-pc-windows-msvc
	x86_64-unknown-linux-gnu
	x86_64-unknown-linux-musl

	:nif_versions - A list of OTP NIF versions for which precompiled assets are
available. A NIF version is usually compatible with two OTP minor versions, and an older
NIF is usually compatible with newer OTPs. The available versions are the following:
	2.14 - for OTP 21 and above.
	2.15 - for OTP 22 and above.
	2.16 - for OTP 24 and above.
	2.17 - for OTP 26 and above.

By default the following NIF versions are configured:
	2.15

Check the compatibiliy table between Elixir and OTP in:
https://hexdocs.pm/elixir/compatibility-and-deprecations.html#compatibility-between-elixir-and-erlang-otp

	:max_retries - The maximum of retries before giving up. Defaults to 3.
Retries can be disabled with 0.

	:variants - A map with alternative versions of a given target. This is useful to
support specific versions of dependencies, such as an old glibc version, or to support
restrict CPU features, like AVX on x86_64.
The order of variants matters, because the first one that returns true is going to be
selected. Example:
%{"x86_64-unknown-linux-gnu" => [old_glibc: fn _config -> has_old_glibc?() end]}

In case "force build" is used, all options except the ones use by RustlerPrecompiled
are going to be passed down to Rustler.
So if you need to configure the build, check the Rustler options.

 Environment variables

This project reads some system environment variables. They are all optional, but they
can change the behaviour of this library at compile time of your project.
They are:
	HTTP_PROXY or http_proxy - Sets the HTTP proxy configuration.

	HTTPS_PROXY or https_proxy - Sets the HTTPS proxy configuration.

	MIX_XDG - If present, sets the OS as :linux for the :filename.basedir/3 when getting
an user cache dir.

	TARGET_ARCH - The CPU target architecture. This is useful for when building your Nerves
project, where your host CPU is different from your target CPU.
Note that Nerves sets this value automatically when building your project.
Examples: arm, aarch64, x86_64, riscv64.

	TARGET_ABI - The target ABI (e.g., gnueabihf, musl). This is set by Nerves as well.

	TARGET_VENDOR - The target vendor (e.g., unknown, apple, pc). This is not set by Nerves.
If any of the TARGET_ env vars is set, but TARGET_VENDOR is empty, then we change the
target vendor to unknown that is the default value for Linux systems.

	TARGET_OS - The target operational system. This is always linux for Nerves.

For more details about Nerves env vars, see https://hexdocs.pm/nerves/environment-variables.html

 Summary

 Functions

 available_nif_urls(nif_module)

 Returns URLs for NIFs based on its module name.

 current_target_nif_urls(nif_module)

 Returns the file URLs to be downloaded for current target.

 target(config \\ target_config(), available_targets \\ Config.default_targets(), available_nif_versions \\ Config.available_nif_versions())

 Returns the target triple for download or compile and load.

Functions

 Link to this function

 available_nif_urls(nif_module)

 View Source

Returns URLs for NIFs based on its module name.
The module name is the one that defined the NIF and this information
is stored in a metadata file.

 Link to this function

 current_target_nif_urls(nif_module)

 View Source

Returns the file URLs to be downloaded for current target.
It is in the plural because a target may have some variants for it.
It receives the NIF module.

 Link to this function

 target(config \\ target_config(), available_targets \\ Config.default_targets(), available_nif_versions \\ Config.available_nif_versions())

 View Source

Returns the target triple for download or compile and load.
This function is translating and adding more info to the system
architecture returned by Elixir/Erlang to one used by Rust.
The returned string has the following format:
"nif-NIF_VERSION-ARCHITECTURE-VENDOR-OS-ABI"

 Examples

iex> RustlerPrecompiled.target()
{:ok, "nif-2.16-x86_64-unknown-linux-gnu"}

iex> RustlerPrecompiled.target()
{:ok, "nif-2.15-aarch64-apple-darwin"}

mix rustler_precompiled.download

A task responsible for downloading the precompiled NIFs for a given module.
This task must only be used by package creators who want to ship the
precompiled NIFs. The goal is to download the precompiled packages and
generate a checksum to check-in alongside the project in the the Hex repository.
This is done by passing the --all flag.
You can also use the --only-local flag to download only the precompiled
package for use during development.
You can use the --ignore-unavailable flag to ignore any NIFs that are not available.
This is useful when you are developing a new NIF that does not support all platforms.
This task also accept the --print flag to print the checksums.

 OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

