

 sanity_webhook_plug

 v0.1.4

 Table of contents

 	Changelog

 	LICENSE

 	Modules

 	SanityWebhookPlug

 	SanityWebhookPlug.Handler

 	SanityWebhookPlug.Signature

Changelog

0.1.4 (2023-03-24)
	Update project URLs

0.1.3 (2023-01-25)
	Correct documentation

0.1.2 (2023-01-23)
	Skip halted conns
	Add make_header/3 function

0.1.1 (2023-01-09)
	Halt conn after successful event

0.1.0 (2023-01-06)
	Initial release :tada:

LICENSE

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

 END OF TERMS AND CONDITIONS

 APPENDIX: How to apply the Apache License to your work.

 To apply the Apache License to your work, attach the following
 boilerplate notice, with the fields enclosed by brackets "[]"
 replaced with your own identifying information. (Don't include
 the brackets!) The text should be enclosed in the appropriate
 comment syntax for the file format. We also recommend that a
 file or class name and description of purpose be included on the
 same "printed page" as the copyright notice for easier
 identification within third-party archives.

 Copyright [yyyy] [name of copyright owner]

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

SanityWebhookPlug

SanityWebhookPlug is a Plug that verifies Sanity webhooks for your Elixir Plug
application. Designed to work with Sanity GROQ-powered
webhooks
Installation
def deps do
 [
 {:sanity_webhook_plug, "~> 0.1.4"}
]
end
Usage
Use this plug in your endpoint:
If using Plug or Phoenix, place before `plug Plug.Parsers`
For Phoenix apps, in lib/my_app_web/endpoint.ex:
plug SanityWebhookPlug,
 at: "/webhooks/sanity",
 handler: MyAppWeb.SanityWebhookHandler
You may alternatively configure the secret in config, which will be read during
runtime:
in config/runtime.exs
config :sanity_webhook_plug,
 webhook_secret: System.get_env("SANITY_WEBHOOK_SECRET")
Define a handler to handle webhooks:
defmodule MyAppWeb.SanityWebhookHandler do
 @behaviour SanityWebhookPlug.Handler
 alias Plug.Conn

 # see below for an example using Phoenix

 @impl SanityWebhookPlug.Handler
 def handle_event(conn, params) do
 # Process and return the conn

 conn
 |> Conn.put_resp_header("content-type", "application/json")
 |> Conn.send_resp(200, Jason.encode!(%{success: "yay!"}))
 end

 @impl SanityWebhookPlug.Handler
 def handle_error(conn, error) do
 # Process and return the conn

 conn
 |> Conn.put_resp_header("content-type", "application/json")
 |> Conn.send_resp(500, Jason.encode!(%{error: "uh oh!"}))
 end
end
Options:
	:at (required): The request path to match against. eg, "/webhooks/sanity"
	:handler (required): The controller-like module that responds to
 handle_event/2 that is passed the conn and the params, and
 handle_error/2 that is passed the conn and the error. The error may be an
 exception or a string.
	:secret: The Sanity webhook secret. eg: 123abc. Supplying an MFA tuple will
 be called at runtime, otherwise it will be compiled. If not set, it will
 obtain via Application.get_env(:sanity_webhook_plug, :webhook_secret).
 If supplying an MFA or function reference, it must return {:ok, my_secret}
 or a string.
	:json_decoder: JSON encoding library. When not supplied, it will use choose
 Phoenix's configured library, Jason, or Poison. Sanity requires
 JSON-encoded responses.

Options forwarded to Plug.Conn.read_body/2:
	:length - sets the number of bytes to read from the request at a time.
	:read_length - sets the amount of bytes to read at one time from the
 underlying socket to fill the chunk.
	:read_timeout - sets the timeout for each socket read.

Verifying the signature requires reading the body, but its best to do this
before interpreting the body into JSON or other parsed formats. Plug can
protect your system by limiting how much of body to read to prevent exhaustion.
Ideally, any of these settings you have for Plug.Parsers in your endpoint, you
should also have for SanityWebhookPlug.
The body and query params will be merged and given to your handler, which
matches Phoenix behavior.
Example
An example using Phoenix
In lib/my_app_web/endpoint.ex

place before Plug.Parsers
defmodule MyAppWeb.Endpoint do
 use Phoenix.Endpoint, otp_app: :my_app

 # ...

 plug SanityWebhookPlug,
 at: "/webhooks/sanity",
 handler: MyAppWeb.SanityWebhookHandler

 # Plug.Parsers down here somewhere
end

in lib/my_app_web/controllers/sanity_webhook_handler.ex
def MyAppWeb.SanityWebhookHandler do
 use MyAppWeb, :controller
 require Logger
 @behaviour SanityWebhookPlug.Handler

 # handle known events
 def handle_event(conn, %{"_type" => type, "_id" => id}) do
 # do something
 json(conn, %{success: "Did the thing!"})
 end

 def handle_event(conn, params) do
 Logger.warn("SanityWebhook: unhandled webhook: #{inspect(params)}")

 conn
 |> put_status(500)
 |> json(%{error: "unhandled webhook"})
 end

 def handle_error(conn, error) do
 debug = SanityWebhookPlug.get_debug(conn)
 Logger.error("SanityWebhook error: #{inspect(debug)}")

 conn
 |> put_status(400)
 |> json(%{error: inspect(error)})
 end
end

 Anchor for this section

 Summary

 Types

 t()

 Functions

 call(conn, opts)

 Process the conn for a Sanity Webhook and verify its authenticity.

 get_debug(conn)

 Get the Sanity Webhook debug information from the conn.

 header()

 The expected request header that contains the Sanity webhook signature and timestamp

 init(opts)

 Initialize SanityWebhookPlug options.

 make_header(timestamp, payload, secret)

 Generate a request header tuple compatible with Sanity webhook systems.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %SanityWebhookPlug{
 body: binary() | nil,
 computed: String.t(),
 error: String.t() | false,
 hash: String.t(),
 secret: String.t(),
 ts: pos_integer()
}

 Anchor for this section

Functions

 Link to this function

 call(conn, opts)

 View Source

Process the conn for a Sanity Webhook and verify its authenticity.

 Link to this function

 get_debug(conn)

 View Source

 @spec get_debug(Plug.Conn.t()) :: t()

Get the Sanity Webhook debug information from the conn.

 Link to this function

 header()

 View Source

 @spec header() :: String.t()

The expected request header that contains the Sanity webhook signature and timestamp

 Link to this function

 init(opts)

 View Source

Initialize SanityWebhookPlug options.

 Link to this function

 make_header(timestamp, payload, secret)

 View Source

 @spec make_header(DateTime.t() | pos_integer(), binary(), String.t()) ::
 {String.t(), String.t()} | {:error, String.t(), nil}

Generate a request header tuple compatible with Sanity webhook systems.
Timestamp can be either a %DateTime{} or a unix timestamp in milliseconds.
{"sanity-webhook-signature", "ts=123,v1=abc123signature"}

SanityWebhookPlug.Handler behaviour

Behaviour for handling webhooks from SanityWebhookPlug

 Anchor for this section

 Summary

 Types

 error()

 params()

 Callbacks

 handle_error(t, error)

 Handle inauthentic or erroneous webhooks

 handle_event(t, params)

 Handle authenticity-validated webhooks

 Anchor for this section

Types

 Link to this type

 error()

 View Source

 @type error() :: String.t() | term()

 Link to this type

 params()

 View Source

 @type params() :: map()

 Anchor for this section

Callbacks

 Link to this callback

 handle_error(t, error)

 View Source

 @callback handle_error(Plug.Conn.t(), error()) :: Plug.Conn.t()

Handle inauthentic or erroneous webhooks

 Link to this callback

 handle_event(t, params)

 View Source

 @callback handle_event(Plug.Conn.t(), params()) :: Plug.Conn.t()

Handle authenticity-validated webhooks

SanityWebhookPlug.Signature

Compute and verify signatures from Sanity webhooks

 Anchor for this section

 Summary

 Types

 secret()

 Functions

 base64url_decode(payload)

 base64url_encode(payload)

 compute(ts, payload, secret)

 Compute the signature for Sanity webhooks

 verify(hash, ts, payload, secret)

 Verify a payload, timestamp, and secret against a computed signature

 Anchor for this section

Types

 Link to this type

 secret()

 View Source

 @type secret() :: mfa() | (() -> String.t() | {:ok, String.t()}) | String.t()

 Anchor for this section

Functions

 Link to this function

 base64url_decode(payload)

 View Source

 Link to this function

 base64url_encode(payload)

 View Source

 Link to this function

 compute(ts, payload, secret)

 View Source

 @spec compute(pos_integer(), binary(), String.t()) ::
 {:ok, String.t()} | {:error, String.t(), nil}

Compute the signature for Sanity webhooks

 Link to this function

 verify(hash, ts, payload, secret)

 View Source

 @spec verify(String.t(), pos_integer(), binary(), secret()) ::
 :ok | {:error, String.t(), String.t()}

Verify a payload, timestamp, and secret against a computed signature

 OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

