

 Scenic

 v0.11.2

 Table of contents

 	Upgrading to v0.11

 	Scenic

 	Install Dependencies

 	General Overview

 	Getting Started

 	Getting Started with Nerves

 	Structure of a Scene

 	Life-cycle of a Scene

 	Graph Overview

 	ViewPort Overview

 	Driver Overview

 	Styles Overview

 	Transforms Overview

 	Primitives Overview

 	Assets Overview

 	Contributor Code of Conduct

 	Contributing to Scenic

 	Modules

 	Scenic

 	Scenic.Color

 	Scenic.Components

 	Scenic.Driver

 	Scenic.Driver.KeyMap

 	Scenic.Graph

 	Scenic.Primitives

 	Scenic.PubSub

 	Scenic.Scene

 	Scenic.Script

 	Scenic.ViewPort

 	Scenic.ViewPort.Input

 	Scenic.Assets.Static

 	Scenic.Assets.Stream

 	Scenic.Assets.Stream.Bitmap

 	Scenic.Assets.Stream.Image

 	Scenic.Component

 	Scenic.Component.Button

 	Scenic.Component.Input.Caret

 	Scenic.Component.Input.Checkbox

 	Scenic.Component.Input.Dropdown

 	Scenic.Component.Input.RadioButton

 	Scenic.Component.Input.RadioGroup

 	Scenic.Component.Input.Slider

 	Scenic.Component.Input.TextField

 	Scenic.Component.Input.Toggle

 	Scenic.Primitive

 	Scenic.Primitive.Arc

 	Scenic.Primitive.Circle

 	Scenic.Primitive.Component

 	Scenic.Primitive.Ellipse

 	Scenic.Primitive.Group

 	Scenic.Primitive.Line

 	Scenic.Primitive.Path

 	Scenic.Primitive.Quad

 	Scenic.Primitive.Rectangle

 	Scenic.Primitive.RoundedRectangle

 	Scenic.Primitive.Script

 	Scenic.Primitive.Sector

 	Scenic.Primitive.Sprites

 	Scenic.Primitive.Text

 	Scenic.Primitive.Triangle

 	Scenic.Primitive.Style

 	Scenic.Primitive.Style.Cap

 	Scenic.Primitive.Style.Fill

 	Scenic.Primitive.Style.Font

 	Scenic.Primitive.Style.FontSize

 	Scenic.Primitive.Style.Hidden

 	Scenic.Primitive.Style.Input

 	Scenic.Primitive.Style.Join

 	Scenic.Primitive.Style.LineHeight

 	Scenic.Primitive.Style.MiterLimit

 	Scenic.Primitive.Style.Scissor

 	Scenic.Primitive.Style.Stroke

 	Scenic.Primitive.Style.TextAlign

 	Scenic.Primitive.Style.TextBase

 	Scenic.Primitive.Style.Theme

 	Scenic.Primitive.Style.Paint

 	Scenic.Primitive.Style.Paint.Color

 	Scenic.Primitive.Style.Paint.Image

 	Scenic.Primitive.Style.Paint.LinearGradient

 	Scenic.Primitive.Style.Paint.RadialGradient

 	Scenic.Primitive.Style.Paint.Stream

 	Scenic.Primitive.Transform

 	Scenic.Primitive.Transform.Matrix

 	Scenic.Primitive.Transform.Pin

 	Scenic.Primitive.Transform.Rotate

 	Scenic.Primitive.Transform.Scale

 	Scenic.Primitive.Transform.Translate

 	Scenic.Math

 	Scenic.Math.Line

 	Scenic.Math.Matrix

 	Scenic.Math.Matrix.Utils

 	Scenic.Math.Vector2

 	Scenic.Driver.Error

 	Mix Tasks

 	mix scenic.run

Upgrading to v0.11

Overview
Version v0.11 is a MAJOR overhaul from the top to the bottom. For the first time, Scenic feels like something approaching a 1.0 in design.
This guide is a good first pass. If you see things that need improving, please contribute!
	Scenic.Cache is gone. It is replaced by a much easier to use asset pipeline.
	push_graph is back. WHAT! Didn't it go away last time? Yes. I've been struggling with the way scene state is handled. Coupled with the scene state change (next in this list), it finally makes sense.
	State for a scene is now tracked similar to how you add state to a socket in a Phoenix Channel or a Plug conn. The state is always a %Scene{} object and you can assign() state into it.
	The driver engine is a complete re-write. Existing drivers that render will need to be re-written. Sorry. The good news is that they all pretty much did the same thing in generating a "script" of draw commands that was sent over to some renderer. This is now standardized and moved to the ViewPort layer. Drivers are MUCH simpler as a result and more portable.
	The ViewPort, and even the Scene engines themselves are also re-writes, but their API is very similar to the old version, so not much news there except for the way Scene state is tracked.
	There is an entirely new Script engine for generating draw scripts that can be sent to drivers. This is quite powerful
	There are numerous other additions to Scenic	The Component primitive is used to refer to, and start components.
	The Script primitive refers to arbitrary scripts that you can send to drivers.
	The :line_height style now sets the spacing between lines of text. Works like CSS.
	The :text_base style lets you align text vertically.
	There is a new Scenic.Asset.Stream type for dynamic textures.
	New Sprite Sheet support via the Sprites primitive
	Built-in mouse cursor support on Nerves (works, but is not optimized yet)

	There are multiple smaller deprecations. Notably	The :text_height style is replaced by :line_height, which works the same way line_height does in CSS.
	The Path primitive (which almost got cut, but survived) no longer has the solid and hole commands.
	The Box Gradient fill is gone.
	The :clear_color style (which was always weird) is gone. You can now set a theme on the viewport (in config), which sets the background color.
	The SceneRef primitive is gone, and replaced with a combination of Component and Script primitives.
	The :font_blur primitive is gone. Sorry. Didn't have a close enough analog in Canvas
	Input events are no longer implicitly requested for a scene. You can explicitly request the input events you want using Scene.request_input/2 or Scene.capture_input/2
	The format of the input messages have changed - see the docs
	The optional styles on some of the standard components (Button) have changed to be more consistent with the standard styles. See documentation.

Important
	:scenic_driver_local is the new standard renderer for Scenic. Both :scenic_driver_glfw and :scenic_drives_nerves_rpi are retired as of v0.11.

The options for the new local driver are NOT the same as they were for the glfw driver. Please read the docs for it. Please see the new driver overview.
I'm sure there's more. Feel free to add any notes if you find something that isn't covered.
Motivation
The primary motivation for Scenic has always been to provide control surface UI for devices that don't necessarily have a human nearby watching over them. This means IoT, Industrial Control, Critical Systems, Infrastructure, etc... It can be used for other thing (and has been!), but the design choices are more about devices than flash.
I like to say that there are 3 kinds of UI. Think of these as 3 layers, with highest fidelity and lowest latency requirements at the top, and lowest fidelity but best latency tolerance at the bottom.
	Category 1: At the top are games and anything else that uses all the available resources, renders to maximum fidelity. These applications are power hungry, run on local hardware due to latency sensitivity (although there is a lot of research going into cloud hosting) and they strive for the maximum in visual fidelity.
	Category 2: The middle layer is still UI that has latency sensitivity and is meant to be used by consumers in real-time, but the fidelity is dialed way back. Examples in this category are Flutter, QT, and most modern client-heavy web frameworks. When you see consumer appliances with a pretty interface that seems slightly sluggish, but is still trying to be pretty, that is in this layer. They walk the line between using the least expensive hardware they can, and still being pretty for everyday consumers.
	Category 3: The bottom layer knows it is running on inexpensive hardware and usually doesn't have a human using the actual device it runs on directly. It is designed up front to be latency tolerant, consume few resources, to be functional over flashy. Examples include old-school web 1.0 servers, X11 and... Scenic.

Scenic's prime target has always been devices that are deployed in the field. They may or may not have a screen / human interface directly attached (most often don't) and are operated remotely.
Category 3 devices do jobs that are more valuable than the device is. The small controller device that operates the solar farm is worth less than the farm or the electricity it produces. In contrast, our fancy Thermomix blender has a Category 2 UI, and is way more expensive than any of the meals it makes. Or even many meals put together.
The requirements for a category 3 UI on devcies are
	Must be highly robust. Or at least recover quickly and not affect the rest of the device.
	Must be conservative with resources.
	Must be remotable. (The UI can be displayed and used on a different device)
	Must be latency tolerant.

In versions 0.10 and early, Scenic did well on robustness and conservative resource use. It was designed to be latency tolerant, but that was never put to the test as it was not at all remotable. - yet.
Version 0.11 finally takes a crack at making Scenic remotable. Enough time and use has passed that usage patterns have become visible. Some things have worked well (the pattern of scene/primitives/styles/transforms/components) and some things have not (the driver model repeated the same basic complicated code in every driver and the static assets cache was a constant struggle).
Now that the Kry10 Operating System is operational (Scenic long awaited design target), it was time to fix the things that didn't work so well and properly build remoting. These are the sorts of changes that have ripples up the stack and create breaking changes. So best to get it all done in fell swoop.
Upgrading a v0.10 project to v0.11
	Update mix.exs

Delete your old scenic dependencies in mix.exs, they now look like this:
{:scenic, "~> 0.11.0"},
{:scenic_driver_local, "~> 0.11.0"},
You may need to use mix deps.clean --all and/or mix deps.unlock to get it to work.
	Change the incoming viewport options to be a keyword list

The main options for your Scenic app have changed from a map to a Keyword list. For example, if this was your old options map:
%{
 name: :main_viewport,
 size: {1200, 600},
 default_scene: {MyProject.RootScene, nil},
 drivers: [
 %{
 module: Scenic.Driver.Glfw,
 name: :glfw,
 opts: [resizeable: false, title: @title]
 }
]
}
It would now look like this:
[
 name: :main_viewport,
 size: {1200, 600},
 default_scene: {MyProject.RootScene, nil},
 drivers: [
 [
 module: Scenic.Driver.Local,
 name: :local
]
]
]
Finally, where you are adding Scenic to the supervision tree, you will probably have to wrap these options in another list, assuming you use the above config exactly as is:
children = [
 {Scenic, [default_viewport_config()]},
]
where default_viewport_config() resolves to the above config list.
	Change the driver module

Assuming you have already upgraded your dependencies in mix.exs, you just need to make sure that you're using the correct driver module in your config.
drivers: [
 [
 module: Scenic.Driver.Local,
 name: :local
]
]
Scene State
The most immediate change that you will need to be addressed is now state in a scene is stored and how scenes are started up.
In the old system, I was trying to hard to keep the developer focused on the functionality of their scene, and less with the mechanics of how it worked in the deeper layers. This created a state problem. Essentially, the scene developer needs to keep state for whatever the scene is supposed to be doing. But, the scene engine itself also needs to keep state in order track child components, its ViewPort, push graphs to the ViewPort, etc. I've tried various things to keep these states separate and clean. In end... it was all messy.
The only thing that really works is to adopt the same state model as sockets/conns from Phoenix and Plug. That is, there is no state kept under the covers. The state presented to a scene is always now a %Scenic.Scene{} struct. Just like Plug and Sockets, there is an :assigns map in the struct that the scene developer uses to store their state. Just like those others systems, assigns() helpers are provided.
This will require some porting work as you move to v0.11, but at least it feels like the right long-term solution.
Upgrade steps
	Upgrade init/2 to init/3

Previously init/2 accepted params, and a list of options. Now it also accepts a scene as the first parameter. This scene must be saved into the state, or set as the entire state of the scene. An example implementation is below.
@impl Scenic.Scene
def init(scene, _params, _opts) do
 # put your init logic here
 {:ok, scene}
end
	Update the scene to use push_graph/2

Previously in v0.10, graphs were pushed by including a push: graph option at the end of each callback:
def handle_cast(msg, state) do
 new_graph = calc_new_graph(state)
 {:noreply, %{state|graph: new_graph}, push: new_graph}
end
This has now been deprecated, in favour of the function push_graph/2
Example:
def handle_cast(msg, scene) do
 new_graph = calc_new_graph(scene, msg)
 new_scene =
 scene
 |> assign(graph: new_graph)
 |> push_graph(new_graph)
 {:noreply, new_scene}
end
Note that, in this example, we are holding the Scene variable inside the state. This scene is passed in as the new param to init/3 now, and we MUST use this scene when we perform a push_graph. We CANNOT simply construct a new scene and use that, it must be the orginal one.
Example
defmodule MyDevice.Scene.Example do
 use Scenic.Scene
 import Scenic.Primitives

 def init(scene, _param, _opts) do
 graph = Scenic.Graph.build(font: :roboto)
 |> text("This is an example", id: :text)

 scene =
 scene
 |> assign(some_state: 123, graph: graph)
 |> push_graph(graph)

 {:ok, scene }
 end

 # display any received events
 def handle_event(event, _, %{assigns: %{graph: graph}} = scene) do
 graph = Graph.modify(graph, :text, &text(&1, inspect(event)))

 scene =
 scene
 |> assign(graph: graph)
 |> push_graph(graph)

 {:noreply, scene}
 end

end
push_graph is back!
As part of my struggles to find the right scene state model, the push_graph function came, and went, and is now back again.
push_graph/2 is the way you send a graph from a scene to the scene's ViewPort for compilation and eventual display through the drivers. Now that all of the scene's state is stored in one place it is finally clear that push_graph can take a scene and a graph, and return a modified scene. It is important to track the scene that is returned, as that is how any components that the graph may spin up are accounted for.
 def init(scene, _param, _opts) do

 graph = Scenic.Graph.build(font: :roboto)
 |> button("Press Me", id: :press_me)

 scene = push_graph(scene, graph)

 {:ok, scene }
 end
end
In the above example, the scene/process that runs the button labeled :press_me is not started until it is pushed to the ViewPort. This function does quite a bit of work and can start or stop child component processes, tracks pids, compiles the graph for rendering, prepares any input records for input events and more. You can call it as often as you want, but be aware that you may end up causing work to no benefit as the drivers all update on their own heartbeat. In other words, you can push a graph 1000 times per second, but it will still only be drawn 30 times per second or less as as the driver sees fit.
handle_input signature has changed
This is another breaking changed. The old version of handle_input in a scene or component included the relevant id in the input message, which was mixing metaphors, and include a fairly opaque context object that was only there because of the way scene state was handled.
Now that scene state is completely explicit and passed through to the scene, this can be cleaned up. The new handle_input function takes three parameters and looks like this.
 def handle_input(input_event, hit_id, scene)
The input event is now just that. Nothing else is added to it. The hit id in your graph (if any) is passed as the second parameter. It is nil if there was nothing hit or if the input event didn't make sense for that sort of thing.
Here is an example from the Button control. In this case, update_color calls the push_graph function and returns the updated state.
 # pressed in the button
 @impl Scenic.Scene
 def handle_input({:cursor_button, {0, :press, _, _}}, :btn, scene) do
 :ok = capture_input(scene, :cursor_button)

 scene =
 scene
 |> update_color(true, true)
 |> assign(pressed: true)

 {:noreply, scene}
 end
Also notice that which mouse button was clicked is now a number instead of :left or :right. it was presumptive to assume that :left was the primary button. This is neutral and no longer handedness-biased.
Upgrading custom Scenic.Components
	Change verify/1 to validate/1

The name of the function which validates incoming parameters has changed, but the behaviour is essentially the same. An example implementation is below.
@impl Scenic.Component
def validate(data) when is_bitstring(data), do: {:ok, data}
def validate(_), do: {:error, "Descriptive error message goes here."}
The Static Asset Library
I, and everybody else, always struggled with the various attempts at the Scenic.Cache modules. It was close, but not quite right. The goal is to sensibly load and use static assets like images and fonts, while maintaining cryptographic hashes for security purposes. The old system worked, but required byzantine steps to get it running.
The new asset pipeline is designed to feel familiar to the Phoenix static asset system.
You create an "assets" directory in the root of your project, set up some config to point to it, and create your own Assets module to hold the data. (This part is more like NimblePublisher than Phoenix, but it works really well.)
Then you can just drop images or fonts into you assets folder and they show up and are usable.
Example directory structure
my_cool_project
 assets
 fonts
 roboto.ttf
 my_font.ttf
 images
 parrot.jpg
Example config
config :scenic, :assets, module: MyCoolProject.Assets
Example Assets Module
defmodule MyCoolProject.Assets do
 use Scenic.Assets.Static,
 otp_app: :my_cool_project,
 alias: [
 parrot: "images/parrot.jpg"
]
end

Example use in a Scene
Graph.build()
 |> text("Some Text", font: "fonts/my_font.ttf")
 |> rect({100, 200}, fill: {:image, "images/parrot.jpg"})
 |> rect({100, 200}, fill: {:image, :parrot}) # uses the alias set up in config
The Streaming Asset Pipeline
What used to be called the Scenic.Cache.Dynamic, is now Scenic.Assets.Stream and Scenic.Assets.Stream.Texture. This is for images that you generate on the fly (charts, bit rendered game screens, rotating colors, etc) or frames that you capture live from a camera.
The goal is to seperate the source of these images from the consumers (the drivers) in a way that is latency/bandwidth friendly and is easy to use.
The Scenic.Assets.Stream module is a process/api that manages an :ets table of streaming assets. This allows a camera to capture frames at whatever rate makes sense for it and to put them into the table when it sees fit. This data is then distributed to any listening drivers, who can do the right thing with it.
Example camera source - (from some camera source... tbd by developer...)
def handle_info({:camera_0, texture}, state) do
 :ok = Stream.put("camera_0", texture)
end
Example use in a Scene
Graph.build()
 |> rect({100, 200}, fill: {:stream, "camera_0"})
Texture API
The old Scenic.Utilities.Texture API has been improved and promoted to Scenic.Assets.Stream.Texture.
The changes center around the fact that the NIF behind the put and clear functions breaks the immutable assumptions of the Erlang and Elixir languages. In other words, they operate directly on the backing memory of the texture instead of making a new copy and then changing it. This is for performance reasons. It also create several very hard to track down bugs.
The new API fits better into the erlang world adding the mutable/1 and commit/1 function calls. When a texture is mutable, it is not usable by the Stream api. When it is commited, it is usable by Stream, but no longer editable.
 t = Texture.build(:rgb, 10, 20)
 |> Texture.clear(:blue)
 |> Texture.commit()

 :ok = Stream.put("example", t)
You can also specify new textures to be cleared with a specific color and/or committed as build options
 t = Texture.build(:rgb, 10, 20, clear: blue, commit: true)
 :ok = Stream.put("example", t)
Standard Driver
The new standard render driver for all Scenic apps is :scenic_driver_local.
Both :scenic_driver_glfw and :scenic_drives_nerves_rpi are retired.
This driver provides a single rendering code base for both hosted (Mac/PC/Linux) and Nerves environments. The seperate drivers were 95% the same anyway and it was getting difficult to keep fixes for them in sync.
Driver Model
Another big change to Scenic is the re-write of the driver model. If your work is all at the scene layer, then this shouldn't affect you. But if you have a custom driver that renders graphs, it will need to be re-written.
The old model sent graphs directly to the drivers. They would then traverse these graphs, translating them into some render specific linear list of commands, which were then, in turn, passed to the actual renderer. It was complicated, repeated the same difficult code in every driver, and was difficult to maintain.
The new model moves the traversal or "compilation" of the graphs into the ViewPort layer and standardizes the set of draw commands in the form of a linear script. This means the difficult part of all drivers has been done once in the ViewPort layer and drivers themselves have become much simpler.
Drivers are still in charge of how often to render, how to deal with latency, and can intercept/customize the serialization of these scripts into binary form.
See driver documentation for more details. (may not be complete yet...)
Scripts
As part of the driver re-write, the concept of Draw Scripts has been introduced. When you use push_graph/2 to send a graph to the ViewPort, it is being compiled into a standard draw script and that is what is actually stored for distribution to the drivers.
This script API is also exposed to scenes, so you can make your own scripts that go outside the confines of the primitives. In fact, that I almost cut the Path primitive as a custom script is almost always a better way to go, but it lives on as a way to insert a limited inline script.
Scripts can be created, and referred to in a graph as an easy to way to use them.
 alias Scenic.Script

 def init(scene, _param, _opts) do

 script = Script.start()
 |> Script.fill_color(:green)
 |> Script.draw_rect(100, 200, :fill)
 |> Script.finish()

 scene = push_graph(scene, graph)

 {:ok, scene }
 end
See the Scenic.Script module for the full API.
Scripts vs Scenes
An important point to call out is Scripts are top level objects at the ViewPort. This means that when a Scene creates a script and then refers to it in a graph, the graph and the script are tracked & send to drivers separately. This is a way of separating concerns. A script that is changing rapidly doesn't cause the potentially large and complex graph that references it to update, and vice versa.
In fact, Graphs are now just compiled into scripts. They are no longer stored directly on the ViewPort at all. It is scripts all the way down.

Scenic

Scenic is an application framework written directly on the Elixir/Erlang/OTP
stack. With it, you can build client-side applications that operate identically
across all supported operating systems, including MacOS, Ubuntu, Nerves/Linux,
and more.
Scenic is primarily aimed at fixed screen connected devices (IoT), but can also
be used to build portable applications.
IMPORTANT - Upgrading to v0.11
If you have used versions before v0.11, please see the Upgrading to v0.11 Guide.
How to get started?
If you are new to Scenic, then you should read the following guides.
	Install Dependencies
	General Overview
	Getting Started
	Getting Started with Nerves (IoT)
	Structure of a Scene
	Life-cycle of a Scene
	Graph Overview
	Primitives
	Standard Components
	Styles
	Transforms
	Contributing
	Code of Conduct

WIP
	ViewPort Overview
	Driver Overview
	Nerves

Install Dependencies

The design of Scenic goes to great lengths to minimize its dependencies to just
the minimum. Namely, it needs Erlang/Elixir and OpenGL.
Rendering your application into a window on your local computer (MacOS, Ubuntu
and others) is done by the
scenic_driver_local
driver. It uses the GLFW and GLEW libraries to connect to OpenGL.
The instructions below assume you have already installed Elixir/Erlang. If you
need to install Elixir/Erlang there are instructions on the elixir-lang
website.
On MacOS
The easiest way to install on MacOS is to use Homebrew. Just run the following
in a terminal:
brew update
brew install glfw3 glew pkg-config

Once these components have been installed, you should be able to build the
scenic_driver_local driver.
On Windows
Some initial setup is required for windows. You'll need windows services for
linux (WSL) and VcXsrv, Jeffrey Borchert's article details these
steps.
On Ubuntu 16
The easiest way to install on Ubuntu is to use apt-get. Just run the following:
sudo apt-get update
sudo apt-get install pkgconf libglfw3 libglfw3-dev libglew1.13 libglew-dev

Once these components have been installed, you should be able to build the
scenic_driver_glfw driver.
On Ubuntu 18
The easiest way to install on Ubuntu is to use apt-get. Just run the following:
sudo apt-get update
sudo apt-get install pkgconf libglfw3 libglfw3-dev libglew2.0 libglew-dev

Once these components have been installed, you should be able to build the
scenic_driver_glfw driver.
On Fedora
The easiest way to install on Fedora is to use dnf. Just run the following:
dnf install glfw glfw-devel pkgconf glew glew-devel

Once these components have been installed, you should be able to build the
scenic_driver_glfw driver.
On Archlinux
The easiest way to install on Archlinux is to use pacman. Just run the
following:
sudo pacman -S glfw-x11 glew

If you're using wayland, you'll probably need glfw-wayland instead of
glfw-x11 and glew-wayland instead of glew
What to read next?
Next, you should read about General Overview.

General Overview

Scenic is a client application framework written directly on the
Elixir/Erlang/OTP stack. With it, you can build applications that operate
identically across all supported operating systems, including MacOS, Ubuntu,
Nerves/Linux, and more.
Scenic is primarily aimed at fixed screen connected devices (IoT), but can also
be used to build portable applications.
Goals
	Available: Scenic takes full advantage of OTP supervision trees to create
applications that are fault-tolerant, self-healing, and highly available under
adverse conditions.

	Small and Fast: The only core dependencies are Erlang/OTP and OpenGL.

	Self Contained: "Never trust a device if you don't know where it keeps its
brain." The logic to run a device should be on the device and it should remain
operational even if the service it talks to becomes unavailable.

	Maintainable: Each device knows how to run itself. This lets teams focus
on new products and only updating the old ones as the business needs.

	Remotable: Scenic devices know how to run themselves, but can still be
accessed remotely. Remote traffic attempts to be as small so it can be used
over the Internet, cellular modems, Bluetooth, etc.

	Reusable: Collections of UI can be packaged up for reuse with, and across
applications. I expect to see Hex packages of controls, graphs, and more
available for Scenic applications.

	Flexible: Scenic uses matrices similar to game development to position
everything. This makes reuse, scale, positioning and more very flexible and
simple.

	Secure: Scenic is designed with an eye towards security. For now, the main
effort is to keep it simple. No browser, Javascript, and other complexity
presenting vulnerabilities. There will be much more to say about security
later.

Non-Goals
	Browser: Scenic is not a web browser. It is aimed at a fixed screen
devices and certain types of windowed apps. It knows nothing about HTML.

	3D: Scenic is a 2D UI framework. It uses techniques from game development
(such as transform matrices), but it does not support 3D drawing at this time.

	Immediate Mode: In graphics speak, Scenic is a retained mode system. If
you need immediate mode, then Scenic isn't for you. If you don't know what
retained and immediate modes are, then you are probably just fine. For
reference: HTML is a retained mode model.

Architecture
Scenic is built as a three-layer architectural cake.
Scene Layer
At the top is the Scene Layer, which encapsulates all
application business logic. The developer will do most of their Scenic work in
the Scene layer.
ViewPort Layer
In the middle is the ViewPort Layer, which acts as
a bridge between the Scenes and the Drivers. The ViewPort controls the scene
life-cycle (More on that in Scene Overview), sends graphs
down to the drivers, and routes user input up to the correct scene.
Driver layer
At the bottom is the Driver layer, which is where
knowledge of the graphics hardware and/or remote configuration lives. Drivers
draw everything on the screen and originate the raw user input. Developers can
write their own drivers, but that will be rare if at all. Dealing with Sensors
and other hardware is a different problem space.
Mental Model
Scenic is definitely not a browser and has nothing to do with HTML. However, its
design attempts to draw analogies to web design so that a developer with
experience building web pages will catch on very quickly.
The following terms include HTML analogies as appropriate…
Terms and Definitions
Scene
Scenes are sort of like a web page. Each scene is a GenServer process that
contains state and business logic to handle user input. As the device navigates
to different screens, it is moving between scenes.
Graph
A Graph is a sort of like the DOM. It is a hierarchical set of data that
describes things to draw on the screen. The Graph is immutable in the functional
coding sense and is manipulated through transform functions.
Primitive
Each node in a Graph is a Primitive. There is relatively small, fixed set of
primitives, but they can be combined to draw pretty much any UI you need.
Component
A component is a Scene, with added sugar so that it can be referenced/used by
other Scenes. This allows you to build libraries of reusable components and
isolates logic into sensible containers. Standard controls such as Button,
RadioGroup, Slider and more are written as components.
Style
Styles are sort of analogous to CSS styles. Styles are optional parameters you
can add to any primitive in a graph. They are inherited down the graph.
Transform
All positioning, rotation, scale and such is expressed by applying transform
matrices to nodes in a Graph. Transforms are inherited down the graph. You will
almost never interact directly with the matrices, as there are very easy helpers
that manage them for you.
ViewPort
A ViewPort is a sort of like a tab in your browser. It manages the scene
life-cycle, routes graphs to the drivers, and input back up to the scenes. If
you want two windows in your app, you need to start two ViewPorts.
Driver
Drivers know nothing about scenes but are able to render Graphs to a specific
device. That could be a graphics chip or the network… Drivers also collect raw
user input and route it back up to the ViewPort.
Input
There is a fixed set of user input data (mouse, keyboard, touch, etc.) that
drivers generate and hand up to the ViewPort. The ViewPort, in turn, sends the
input as a message to the appropriate Scene. Scenes handle raw user input via
the handle_input/3 callback.
Event
In response to user input (or timers or any other message), a component can
generate an event that it sends up to its parent scene. Unlike user input, if
the parent doesn't handle it, it is passed up again to that component's parent
until it reaches the root scene. Scenes handle events that are bubbling up to
the chain via the handle_event/3 callback. This is analogous to event bubbling
on a web page.
What to read next?
If you are new to Scenic, you should read and follow the exercise in Getting Started.
If you want to dig deeper into the structure of a Scene, then read the Scene Overview.

Getting Started

This guide will walk you through installing the new project generator, then
building your first Scenic application.
Install Dependencies
See Install Dependencies
Install scenic.new
The Scenic Archive is the home of the scenic.new mix task, which lays out a
starter application for you. This is the easiest way to set up a new Scenic
project.
Install the Scenic Archive like this
mix archive.install hex scenic_new

Build the Basic App
First, navigate the command-line to the directory where you want to create your
new Scenic app. Then run the following commands: (change my_app to the name
of your app...)
mix scenic.new my_app
cd my_app
mix do deps.get, scenic.run

If you want to explore the more full-on example, then follow the instructions below.
Build the Example App
First, navigate the command-line to the directory where you want to create your
new Scenic app. Then run the following commands: (change my_app to the name
of your app...)
mix scenic.new.example my_app
cd my_app
mix do deps.get, scenic.run

Configure Scenic
In order to start Scenic, you should first build a configuration for one or more
ViewPorts.
These configuration maps will be passed in to the main Scenic supervisor. These
configurations should live in your app's config.exs file.
import Config

Configure the main viewport for the Scenic application
config :my_app, :viewport, [
 name: :main_viewport,
 size: {700, 600},
 default_scene: MyApp.Scene.Example,
 drivers: [
 [
 module: Scenic.Driver.Local,
 name: :local,
 window: [resizeable: false, title: "Example Application"],
]
]
]
Then use that config to start your supervisor with the Scenic supervisor.
defmodule MyApp do
 # ...

 def start(_type, _args) do
 import Supervisor.Spec, warn: false

 # 1. Load the viewport configuration from config
 main_viewport_config = Application.get_env(:my_app, :viewport)

 # 2. Start the application with the viewport
 children = [
 # ...
 supervisor(Scenic, [viewports: [main_viewport_config]]),
]

 Supervisor.start_link(children, strategy: :one_for_one)
 end

end
In the ViewPort configuration you can do things like set a name for the ViewPort
process, its size, the default scene and start one or more drivers.
See the documentation for ViewPort Configuration
to learn more about how to set the options on a viewport.
Note that all the drivers are in separate Hex packages as you should choose the
correct one for your application. For example, the Scenic.Driver.Glfw driver
draws your scenes into a window under MacOS and Ubuntu. It should work on other
OS's as well, such as other flavors of Unix or Windows, but I haven't worked on
or tested those yet.
Running and Debugging
Once the app and its dependencies are set up, there are two main ways to run it.
If you want to run your app under IEx so that you can debug it, simply run
iex -S mix

This works just like any other Elixir application.
If you want to run your app outside of iex, you should start it like this:
mix scenic.run

The Starter App
The starter app created by the generator above shows the basics of building a
Scenic application. It has four scenes, two components, and a simulated sensor.
	Splash: The Splash scene is configured to run when the app is started in
the config/config.exs file. It runs a simple animation, then transitions to
the Sensor scene. It also shows how to intercept basic user input to exit the
scene early.

	Sensor: The Sensor scene depicts a simulated temperature sensor. The
sensor is always running and updates its data through the
Scenic.SensorPubSub server.

	Primitives: The Primitives scenes displays an overview of the basic
primitive types and some of the styles that can be applied to them.

	Components: The Components scene shows the basic components that come with
Scenic. The crash button will cause a match error that will crash the scene,
showing how the supervision tree restarts the scene. It also shows how to
receive events from components.

Components
	Nav: The nav bar at the top of the main scenes shows how to navigate
between scenes and how to construct a simple component and pass a parameter to
it. Note that it references a clock, creating a nested component. The clock is
positioned by dynamically querying the width of the ViewPort

	Notes: The notes section at the bottom of each scene is very simple and
also shows passing in custom data from the parent.

The simulated temperature sensor doesn't collect any actual data, but does show
how you would set up a real sensor and publish data from it into the
Scenic.SensorPubSub service.
What to read next?
Next, you should read about the structure of a scene.
This will explain the parts of a scene, how to send and receive messages and how
to push the graph to the ViewPort.

Getting Started with Nerves

Nerves is a tool chain that builds your application
into a minimal boot image that you can use to run on devices such as the Raspberry Pi,
BeagleBone Black, and many more.
Scenic has everything you need to run on in this environment. In fact, this is the
type of system that Scenic was made for! When built with Nerves, the boot-image (this
includes Linux, Erlang, Elixir, Scenic, several fonts, etc.) is on the order of 30Mb in
size, which is a welcome relief.
This guide assumes you have some familiarity with Nerves.
Install scenic.new
The Scenic Archive is the home of the scenic.new mix task, which lays out a
starter application for you. This is the easiest way to set up a new Scenic
project.
Install the Scenic Archive like this
mix archive.install hex scenic_new

Create the Basic Nerves App
First, navigate the command-line to the directory where you want to create your
new Scenic app. Then run the following commands: (change my_app to the name
of your app...)
mix scenic.new.nerves my_app
cd my_app

At this point you have a choice. Do you want to build it locally to run on your
dev machine (device specific things won't be there or need to be emulated), or
do you want to build a boot image
Build and Run on Your Dev Machine
The first time you build a nerves app, you need to set the MIX_TARGET, which tells
it where you intend to run your app. Then you can install the dependencies. Do that on the command line like this:
export MIX_TARGET=host
mix deps.get

Then you can run the app on your dev machine the same way you would a non-nerves app.
mix scenic.run

Build and Run on a Raspberry Pi 3
The first time you build a nerves app, you need to set the MIX_TARGET, which tells
it where you intend to run your app. Then you can install the dependencies. When targeting
an embedded device, you will also need to create a release file.
Do that on the command line like this:
export MIX_TARGET=rpi3
mix deps.get
mix compile
mix nerves.release.init

Then you can build the boot image and burn it to your micro-SD card.
mix firmware.burn

Supported Devices
At the moment, the only supported devices are Raspberry Pis. In fact, the only one I've really tested is the Raspberry Pi 3, although it should work on the others.
Support for the BeagleBone is coming, but isn't ready yet.
What to read next?
Next, you should read about the structure of a scene.
This will explain the parts of a scene, how to send and receive messages and how
to push the graph to the ViewPort.

Structure of a Scene

A Scenic.Scene is a GenServer process which creates and manages a Graph that gets drawn to the screen. Scenes also respond to user input and other events.
Scenes can reference each other, creating a logical hierarchy that lives above
the Graphs themselves. This allows scenes to be reusable, small, and simple. A
properly designed scene should do one job, and do it well. Then it can be reused
along with other simple scenes to create a complex screen of UI.
Scenes that are specifically meant to be reused are called components.
Components have sugar apis that make them very easy to use inside of a parent
scene.
For example, if you create a dashboard, it may have buttons, text input,
sliders, or other input controls in it. Each of those controls is a component
scene that is dynamically created when the dashboard scene is started. This
collection of scenes forms a graph, which can be quite deep (scenes using scenes
using scenes).
All these scenes communicate with each other by generating events and passing
them as messages. This is explained more below.
The life-cycle of scenes (when they start, stop, etc.) is explained in the
life-cycle of a scene guide.
The Graph
The most important state a Scene is responsible for is its Graph. The Graph
defines what is to be drawn to the screen, any referenced components, and the
overall draw order. When the Scene decides the graph is ready to be drawn to the
screen, it pushes it to the ViewPort.
In general, a graph is an immutable data structure that you manipulate through
transform functions. In the example below Graph.build() creates an empty
graph, which is piped into functions that add things to it. The text/3
function accepts a graph, adds some text to it, then applies a list of options
to the text.
The button/3 is similar to text/3. It accepts a graph, adds a button and
applies a list of options to.
Text is a Primitive, which can be drawn directly to
the screen. The text/3 helper function is imported from the
Scenic.Primitives module. Button is a component
whose helper function is imported from the Scenic.Components module.
 defmodule MyApp.Scene.Example do
 use Scenic.Scene
 alias Scenic.Graph
 import Scenic.Primitives
 import Scenic.Components

 @graph Graph.build()
 |> text("Hello World", font_size: 22, translate: {20, 80})
 |> button("Do Something", translate: {20, 180})

 def init(scene, _param, _opts) do
 scene = push_graph(scene, @graph)
 {:ok, scene}
 end

 ...

 end
If you can, build your graphs at compile time instead of at run time. This
both reduces load/power use on the device and surfaces any errors early instead
of when the device is in use. In the example above, the graph is built at
compile time by assigning it to the module attribute @graph. You can read more
about module attributes in Elixir's module attribute
documentation.
In the above example, the graph is pushed to the ViewPort during the init/2
callback function.
There is more detail on how to build and manipulate Graph data in the Graph
Overview.
Initialization
The only required callback a Scene must implement is init/3. This function is
called when the scene is started and is where you should initialize your state.
Pushing the graph here is optional, but recommended. If you wait too long to
build and push your first graph, the user will see a blank space or screen until
you are ready.
Note that a Scene's state is always a %Scenic.Scene{} struct. Just like Socket in
phoenix, it has an :assigns field that is used to store your state
def init(scene, _param, _opts) do
 graph = @graph

 scene =
 scene
 |> assign(graph: graph, my_value: 123)
 |> push_graph(graph)

 {:ok, scene}
end
The second argument, param, is any term that you pass to your scene when
you reference it or otherwise configure it in the ViewPort. Look at an example
configuration of a ViewPort from the config.exs file...
 import Config

 # Configure the main viewport for the Scenic application
 config :my_app, :viewport, [
 name: :main_viewport,
 size: {700, 600},
 default_scene: {MyApp.Scene.Example, :scene_init_data},
 drivers: [
 [
 module: Scenic.Driver.Local,
 name: :local,
 window: [resizeable: false, title: "Example Application"],
]
]
]
The line default_scene: {MyApp.Scene.Example, :scene_init_data}
configures the ViewPort to always start the scene defined by the
MyApp.Scene.Example module and to pass in :scene_init_data as the
param argument of its init/3 function.
That :scene_init_data term could be any data structure you want. It will be
passed to the scene's init/3 function unchanged.
The opts parameter is a Keyword list of contextual/optional data that
is generated by the ViewPort and passed to your scene. The main options are:
	option	description
	:id	If this scene is a component, then the id that was assigned to its reference in the parent's graph is passed in as the :id option. Typically, controls that generate and send events to its parent scene use this id to identify themselves. If this is the root scene, the id will not be set.

User Input
A Scene also responds to messages. The two types of messages Scenic will send to
the scene are user input and events.
Input is usually comes from the driver, such as mouse clicks and key presses, it
can be handled with Scenic.Scene.handle_input/3.
Messages are generally sent from child components (such as a button) and can be
handled with Scenic.Scene.handle_event/3.
Events
You are free to send your own messages to scenes just as you would with any
other GenServer process. You can use the handle_info/2, handle_cast/2 and
handle_call/3 callbacks as you would normally.
Components
Components are simply scenes with a little extra sugar added to make them easy
to use from within another scene. To make a component, call the
use Scenic.Component macro instead of the Scene version.
You will then need to add info/0 and verify/1 callbacks. The verify/1
accepts the scene_args parameter that will be passed to the init/2 function
and verifies that it is correctly formatted. If it is correct, return
{:ok, data}. If it is not ok, return :invalid_data.
In the event that verify/1 returns :invalid_data, then the info/1 callback
is called to get a bitstring describing useful information to the developer.
This will be included in the error that gets raised.
 defmodule MyApp.MyComponent do
 use Scenic.Component
 import Scenic.Primitives, only: [{:text, 3}, {:update_opts, 2}]

 def verify(text) when is_bitstring(text), do: {:ok, text}
 def verify(_), do: :invalid_data

 def init(scene, text, opts) do

 # modify the already built graph
 graph = Graph.build()
 |> text("", text_align: :center, translate: {100, 200}, id: :text)

 scene =
 scene
 |> assign(graph: graph, my_value: 123)
 |> push_graph(graph)

 {:ok, scene}
 end

 ...

 end
Other than verifying the incoming information, Components work the same as any
other scene.
Adding Components to a Parent Scene
You can add a component (like the one above) to a scene's graph via the
add_to_graph/3 public function that is added to your component via the use Scenic.Component macro.
 defmodule MyApp.Scene.ExampleScene do
 @graph Graph.build()
 |> MyApp.MyComponent.add_to_graph(:init_data, translate: {10, 20})
 ...
 end
The first time this graph is submitted to the ViewPort via push_graph/1, that
will trigger the life-cycle management of the
MyApp.MyComponent scene process.
If this is a component you intend to make available to other developers, then
you should also create a helper function to make this more compact. Look at the
source code for the Scenic.Components module for examples. This entire module
is a collection of helper functions whose job is to provide sugary access to the
basic components' add_to_graph/3 functions.
With helper functions, the above graph would be re-written like this:
 @graph Graph.build()
 |> my_component(:init_data, translate: {10, 20})
What to read next?
Next, you should read about the life-cycle of a scene.
This will explain how scenes get started, when they stop, and how they relate to
each other.

Life-cycle of a Scene

A very important part of Scenic is the Scene life-cycle management. Most scenes' life-cycles will be managed automatically by their ViewPort. The ViewPort determines when to start and stop these dynamic scenes.
In effect, when you create a graph and add components like button, checkbox and more, you are doing more than just saying, "Draw a button here". You are instructing the ViewPort how and when to start and stop the processes that drive those components.
The Root Scene
This process starts when you set a root scene into the ViewPort. This is first done when you configure your ViewPort in config.exs
 config :my_app, :viewport, %{
 name: :main_viewport,
 size: {700, 600},
 default_scene: {MyApp.Scene.MyFancyScene, :some_init_data},
 ...
 }
In the above configuration, when Scenic first starts up, it will start the configured ViewPort. This ViewPort will, in turn, start up the scene defined in the module MyApp.Scene.MyFancyScene and pass in :some_init_data as the first parameter to its init/2 function.
Afterwards, you can dynamically change the root scene by calling Scenic.ViewPort.set_root/3. Both ways of setting the root scene effectively do the same thing.
Dynamically Supervised Scenes
As MyApp.Scene.MyFancyScene initializes, it eventually calls its push_graph/1 function.
When a scene calls push_graph/1, the primitives in the graph are sent out for rendering and the components in the graph are started or stopped as needed.
To say it another way, when you reference components like button, checkbox and the others, you are programming the supervision tree for your scene.
Your scene has an internal DynamicSupervisor, which supervises these dynamic scenes that you asked for in your graph. Each of these can also have a dynamic supervisor and spin up more scenes in a nested tree.
At some point, depending on your target processor, you will start to have performance issues if you nest too many components too deeply.
The good news is that as you switch away to different root scenes, all the old components are automatically cleaned up for you.
What to read next?
If you are exploring Scenic, then you should read the Graph Overview next.

Graph Overview

The most important state a Scene is responsible for is its Graph. The Graph
defines what is to be drawn to the screen, any referenced components, and the
overall draw order. When a Scene decides the graph is ready to be drawn to the
screen, it pushes it to the ViewPort.
Graphs are made out of a handful of primitives, each of which knows how to draw
one thing. When multiple primitives are put together, almost any standard UI can be drawn.
For example, the graph below shows the words "Hello World" around them.
@graph Graph.build(font: :roboto, font_size: 24)
 |> text("Hello World", text_align: :center, translate: {300, 300})
 |> circle(100, stroke: {2, :green}, translate: {300, 300})
In the example above, the first line creates a new graph and assigns two font styles to its root. The next two lines form a pipeline that adds primitives to the root
node of the new graph. Each of these primitives also assigns styles.
Primitives
There is a fixed set of primitives that Scenic knows how to draw. These form the base set of things that you can do. While they seem simple, when combined you draw pretty much any 2D UI that you need.
Read more about the primitives here.
In general, each primitive renders one thing to the screen. The Group primitive is
sort of like a <div> tag in html in that it creates a new node in the graph hierarchy that more primitives can be organized beneath.
Each primitive can also be assigned styles and transforms, which affect how (or whether) they are drawn and where.
Styles
In addition to the fixed set of primitives, there is also a fixed set of primitive styles. (Some components support more styles, but they really get boiled down to the primitive styles when it is time to render)
Read more about the styles here.
Styles are inherited down the graph hierarchy. This means that if you set a style on the root of a graph, or in a group, then any primitives below that node inherit those styles without needing to explicitly set them on every single primitive.
For example, in the following graph, the font and font_size styles are set at the root. Both text primitives inherit those values, although the second one overrides the size with something bigger.
@graph Graph.build(font: :roboto, font_size: 24)
 |> text("Hello World", translate: {300, 300})
 |> text("Bigger Hello", font_size: 40, translate: {400, 300})
Transforms
The final type of primitive control is transforms. Unlike html, which uses auto-layout to position items on the screen, Scenic moves primitives around using matrix transforms. This is common in video games and provides powerful control of your primitives.
A matrix is an array of numbers that can be used to change the positions, rotations, scale and more of locations.
Don't worry! You will not need to look at any matrices unless you want to get fancy. In Scenic, you will rarely (if ever) create matrices on your own (you can if you know what you are doing!), and will instead use the transform helpers.
You can read about the transform types here.
Transforms are inherited down the graph hierarchy. This means that if you place a rotation transform at the root of a graph, then all the primitives will be rotated around a common point.
If you want to zoom in, scroll, or rotate a UI, or just pieces of the UI, you can do that very easily by applying transforms.
In the example below, the first text line is translated, and the second is scaled bigger, and the whole graph rotated 0.4 radians.
@graph Graph.build(font: :roboto, font_size: 24, rotate: 0.4)
 |> text("Hello World", translate: {300, 300})
 |> text("Bigger Hello", font_size: 40, scale: 1.5)
Modifying a graph
Scenic was written specifically for Erlang/Elixir, which is a functional programming model with immutable data.
As such, once you make a graph, it stays in memory unchanged - until you change it via Graph.modify/3. Technically you never change it (that's the immutable part), instead Graph.modify returns a new graph with different data in it.
Graph.modify/3 is the single Graph function that you will use the most.
For example, lets go back to our graph with the two text items in it.
@graph Graph.build(font: :roboto, font_size: 24, rotate: 0.4)
 |> text("Hello World", translate: {300, 300}, id: :small_text)
 |> text("Bigger Hello", font_size: 40, scale: 1.5, id: :big_text)
This time, we've assigned ids to both of the text primitives. This makes it easy to find and modify that primitive in the graph.
graph =
 @graph
 |> Graph.modify(:small_text, &text(&1, "Smaller Hello", font_size: 16))
 |> Graph.modify(:big_text, &text(&1, "Bigger Hello", font_size: 60))
Notice that the graph is modified multiple times in the pipeline.
What to read next?
If you are exploring Scenic, then you should read the Primitives Overview next.

ViewPort Overview

Give an overview of a viewport here
Coming soon

Driver Overview

Drivers live at the bottom of the scenic stack. Drivers know nothing about the scenes you are running. They receive compiled scripts and assets from the viewport and are responsible for rendering them into pretty pictures on the screen.
Drivers also receive input from the user and send that into the ViewPort for processing.
Scenic.Driver.Local
In Scenic v0.11 the main driver you use to render locally (meaning on a screen attached to the same computer your app is running on) is the :scenic_driver_local.
In older versions of Scenic, you used a glfw specific driver to render on a Mac/PC/Linux machine and a separate driver to render on Nerves. These drivers were 95% the same and only really differed in how it initialized the graphics sub systems.
This create a situation that was difficult to maintain and difficult to explain.
These drivers have been combined into a new driver that covers both scenarios. So you can use :scenic_driver_local on Mac, PC, Linux, and Nerves.
Configuration of Scenic.Driver.Local
The configuration options for :scenic_driver_local are similar to, but not the same as, those for the previous drivers. This is because as a unified driver, we can't make certain assumptions.
For example, the window title, or whether or not it is resizable has no meaning on an embedded device, but is still used on a PC.
Another example is that the actions it should take when the driver closes is different. An embedded device should always do its best to stay running, whereas closing the window on a Mac should probably cause it to stop the app.
You will need to make a few config tweaks.
There are a few new options that probably make more sense on an embedded device but are very cool... You can now rotate the UI, scale it to fit a screen, center it, etc, just by setting config options.
This is an example of a config (which is in turn part of a ViewPort config) that is oriented toward running on a Mac/PC/Linux machine.
[
 module: Scenic.Driver.Local,
 window: [title: "Local Window", resizeable: true],
 on_close: :stop_system
]
This is an example of a embedded style config.
[
 module: Scenic.Driver.Local,
 position: [scaled: true, centered: true, orientation: :normal]
],
Please see the docs for :scenic_driver_local for the full set of options.

Styles Overview

Styles are optional modifiers that you can put on any primitive. Each style does a specific thing and some only affect certain primitives.
There is a fixed list of primitive styles which are understood by the drivers. Some Components may introduce their own optional styles, but the only ones sent down to the drivers for rendering are contained in the list below.
In general, the primitive styles are each defined in their own module, but you apply them as options in a primitive's option list.
For example, to use the style defined in the module Scenic.Primitive.Style.Font you would define an option on a text primitive like this:
graph =
 Graph.build
 |> text("Styled Text", font: :roboto_mono)
 |> text("Custom Text", font: "fonts/my_font.ttf")
Primitive Styles
	Cap sets how to draw the end of a line.
	Fill fills in a primitive with a paint style.
	Font sets the font to use to draw text.
	FontSize sets the point size text.
	Hidden a flag that sets if a primitive is drawn at all.
	Input send cursor related input to your scene when the cursor is over the primitve.
	Join sets how to render the intersection of two lines. Works on the intersections of other primitives as well.
	LineHeight adjust the vertical distance between lines of text. Works similar to line height in css.
	MiterLimit sets whether or not to miter a joint if the intersection of two lines is very sharp.
	Scissor defines a rectangle that drawing will be clipped to.
	Stroke defines how to draw the edge of a primitive. Specifies both a width and a paint style.
	TextAlign sets the horizontal alignment of text relative to the starting point. Examples: :left, :center, or :right
	TextBase sets the vertical alignment of text relative to the starting point. Examples: :top, :middle, :alphabetic, or :bottom
	Theme a collection of default colors. Usually passed to components, telling them how to draw in your preferred color scheme.

Primitive Paint Styles
The Fill and Stroke styles accept a paint type. This describes what to fill or stroke the primitive with.
There is a fixed set of paint types that the drivers know how to render.
	Color fills a primitive with a solid color.
	Image fills a primitive with an image that is loaded into Scenic.Cache.
	LinearGradient fills a primitive with a linear gradient.
	RadialGradient fills a primitive with a radial gradient.
	Stream fills a primitive with a streaming image.

Specifying Paint
When you use either the Fill and Stroke you specify the paint in a tuple like this.
graph =
 Graph.build
 |> circle(100, fill: {:color, :green}, stroke: {2, {:color, :blue}})
Each paint type has specific values it expects in order to draw. See the documentation for that paint type for details.
Color Paint
Specifying a solid color to paint is very common, so has a shortcut. If you simply set a valid color as the paint type, it is assumed that you mean Color.
graph =
 Graph.build
 |> circle(100, fill: :green, stroke: {2, :blue}) # simple color
 |> rect({100, 200}, fill: {:green, 128}) # color with alpha
 |> rect({100, 100}, fill: {10, 20, 30, 40}) # red, green, blue, alpha
What to read next?
If you are exploring Scenic, then you should read the Transforms Overview next.

Transforms Overview

Unlike html, which uses auto-layout to position items on the screen, Scenic moves primitives around using matrix transforms. This is common in video games and provides powerful control of your primitives.
A matrix is an array of numbers that can be used to change the positions, rotations, scale and more of locations.
Don't worry! You will not need to look at any matrices unless you want to get fancy. In Scenic, you will rarely (if ever) create matrices on your own (you can if you know what you are doing!), and will instead use the transform helpers.
Multiple transforms can be applied to any primitive. Transforms combine down the graph to create a very flexible way to manage your scene.
There are a fixed set of transform helpers that create matrices for you.
	Matrix hand specify a matrix.
	Pin set a pin to rotate or scale around. Most primitives define a sensible default pin.
	Rotate rotate around the pin.
	Scale scale larger or smaller. Centered around the pin.
	Translate move/translate horizontally and vertically.

Specifying Transforms
You apply transforms to a primitive the same way you specify styles.
graph =
 Graph.build
 |> circle(100, fill: {:color, :green}, translate: {200, 200})
 |> ellipse({40, 60, fill: {:color, :red}, rotate: 0.4, translate: {100, 100})
Don't worry about the order you apply transforms to a single object. Scenic will multiply them together in the correct way when it comes time to render them.
What to read next?
If you are exploring Scenic, then you should read the ViewPort Overview next.

Primitives Overview

Primitives are the simplest thing that Scenic know how to draw to the screen. Everything that you see in a Scenic application is drawn by combining multiple primitives together to make complex UIs.
There is a fixed set of primitives. This simplifies the internals of Scenic, particularly when it comes to communicating to the drivers. New primitives may be added in the future, but those require serious thought and coordination.
	Arc draws an arc. This would be a line cut out of a part of the edge of a circle. If you want a shape that looks like a piece of pie, then you should use the Sector.
	Circle draws a circle.
	Component doesn't draw anything by itself. Instead starts a component (another scene) and tells it where to draw.
	Ellipse draws an ellipse.
	Group doesn't draw anything. Instead, it creates a node in the graph that you can insert more primitives into. Any styles or transforms you apply to the Group are inherited by all the primitives below it.
	Line draws a line.
	Path is sort of an escape valve for complex shapes not covered by the other primitives. You supply a list of instructions, such as :move_to, :line_to, :bezier_to, etc. to generate a complex shape.
	Quad draws polygon with four sides.
	Rectangle draws a rectangle.
	RoundedRectangle draws a rectangle with the corners rounded by a given radius.
	Script draws a pre-build script.
	Sector draws a shape that looks like a piece of pie. If you want to stroke just the curved edge, then combine it with an Arc.
	Sprites draws one or more sub-images from a single source image.
	Text draws a string of text.
	Triangle draws a triangle.

Using Primitives
The easiest way to insert primitives into your graph is to import the functions in Scenic.Primitives into your scene module. This adds a helper function for each primitive that you can use in a pipeline to build a graph.
 defmodule MyApp.Scene.Example do
 use Scenic.Scene
 alias Scenic.Graph
 import Scenic.Primitives

 @graph Graph.build(font: :roboto, font_size: 22)
 |> text("Hello World", text_align: :center, translate: {300, 350})
 |> circle(150, fill: :green, translate: {300, 350})

 ...

 end
In the example above, the scene calls import Scenic.Primitives, which imports helpers for all the primitives. Since the graph only uses text and circle, you could save a tiny bit of memory by just importing what you need.
 import Scenic.Primitives, only: [{:text,3}, {:circle, 3}]
Once the helpers are imported, you call each call appends a primitive to the graph.
Styles
In addition to the fixed set of primitives, there is also a fixed set of primitive styles. (Some components support more styles, but they really get boiled down to the primitive styles when it is time to render)
Read more about the styles here.
Styles are inherited down the graph hierarchy. This means that if you set a style on the root of a graph, or in a group, then any primitives below that node inherit those styles without needing to explicitly set them on every single primitive.
For example, in the following graph, the font and font_size styles are set at the root. Both text primitives inherit those values, although the second one overrides the size with something bigger.
@graph Graph.build(font: :roboto, font_size: 24)
 |> text("Hello World", translate: {300, 300})
 |> text("Bigger Hello", font_size: 40, translate: {400, 300})
Transforms
The final type of primitive control is transforms. Unlike html, which uses auto-layout to position items on the screen, Scenic moves primitives around using matrix based transforms. This is common in video games and provides powerful control of your primitives.
A matrix is an array of numbers that can be used to change the positions, rotations, scale and more of locations.
Don't worry! You will not need to look at any matrices unless you want to get fancy. In Scenic, you will rarely (if ever) create matrices on your own (you can if you know what you are doing!), and will instead use the transform helpers.
You can read about the transform types here.
Transforms are inherited down the graph hierarchy. This means that if you place a rotation transform at the root of a graph, then all the primitives will be rotated around a common point.
If you want to zoom in, scroll, or rotate a UI, or just pieces of the UI, you can do that very easily by applying transforms.
In the example below, the first text line is translated, and the second is scaled bigger, and the whole graph rotated 0.4 radians.
@graph Graph.build(font: :roboto, font_size: 24, rotate: 0.4)
 |> text("Hello World", translate: {300, 300})
 |> text("Bigger Hello", font_size: 40, scale: 1.5)
Modifying a Primitive
Scenic was written specifically for Erlang/Elixir, which is a functional programming model with immutable data.
As such, once you make a graph, it stays in memory unchanged - until you change it via Graph.modify/3. Technically you never change it (that's the immutable part), instead Graph.modify returns a new graph with different data in it.
@graph Graph.build(font: :roboto, font_size: 24, rotate: 0.4)
 |> text("Hello World", translate: {300, 300}, id: :small_text)
 |> text("Bigger Hello", font_size: 40, scale: 1.5, id: :big_text)
In the above graph, we've assigned :id values to both primitives. This makes it easy to find and modify that primitive in the graph. Graph.modify/3 is very fast at finding primitives marked with an :id. If you marked multiple primitives withe id: :small_text, then they would all be modified by the call to Graph.modify/3
graph =
 @graph
 |> Graph.modify(:small_text, &text(&1, "Smaller Hello", font_size: 16))
 |> Graph.modify(:big_text, &text(&1, "Bigger Hello", font_size: 60))
Notice that the graph is modified multiple times in the pipeline.
The last parameter to Graph.modify/3 is a pointer to a function that receives a primitive and returns the new primitive that should be inserted in its place.
The following is the same as one of the calls above, but in expanded form to make it easier to see what is going on
graph = Graph.modify(graph, :small_text, fn(primitive) ->
 text(primitive, "Smaller Hello", font_size: 16)
end)
What to read next?
If you are exploring Scenic, then you should read the Styles Overview next.

Assets Overview

The assets system has been completely overhauled as of Scenic v0.11.
Any good-looking UI is a combination of vector drawing via primitives and/or scripts and assets. Assets are the fonts, images, or other types of art that are displayed to the user. These tend to be standard formats, such as a .jpg, .png, or .ttf files.
We can split the world of assets into two categories. These are Static and Streaming assets. Static assets, as the name implies, are set up in advance and never change. They are cache-able, both in memory and via servers. Streaming assets, on the other hand, change over time. They are named, but not cache-able.
Static Assets
The new static asset pipeline is designed to feel familiar to the Phoenix static asset system. With a bit of configuration, you end up with an "assets" directory in your project directory. The supported files in this directory
are "built" during the compilation process and automatically end up as hashed files that can be loaded at run time.
The Static Assets Library consists of several parts
	An asset module that you create in your project. This is where the actual library is stored and built.
	A source directory that contains the assets you want to use in your project.
	A config.exs item that links Scenic to you Assets module.

Once those pieces are configured, then your assets are built when you compile your application. You can add more assets by simply dropping them into the assets directory. Note, they must be one of the supported types.
Example directory structure
my_cool_project
 assets
 fonts
 custom_font.ttf
 another_font.ttf
 images
 parrot.jpg
Example Assets Module
defmodule MyApplication.Assets do
 use Scenic.Assets.Static,
 otp_app: :my_application,
 alias: [
 parrot: "images/parrot.jpg"
]
end

Example config
config :scenic, :assets, module: MyApplication.Assets
Example use in a Scene
Graph.build()
 |> text("Some Text", font: "fonts/custom_font.ttf")
 |> rect({100, 200}, fill: {:image, "images/parrot.jpg"})
 |> rect({100, 200}, fill: {:image, :parrot}) # uses the alias set up in MyApplication.Assets
Both of the rectangles in the above example render the same image. One uses a string that gives the local path in your assets folder. The other uses an alias that is configured to point to the same image in the Assets Module.
Under the covers
Several things happen under the covers when you build your project
	The use Scenic.Assets.Static part of your Assets module, activates some code that scans your assets directory - looking for assets of known types.
	It computes a cryptographic hash for asset, parses out metadata, and builds a library of metadata and hashes.
	That library is stored as a term in Assets module.
	The contents of the assets file is copied into a new file in your build directory. The name of that file is the bin-hex of the computed hash.

If you want to see the contents of your asset library, you can get to it like this:
MyApplication.Assets.library()

or

Scenic.Assets.Static.library()
When you add new assets to your assets directory, you need to kick off this process by touching your assets module. Add a return or a space or something. Eventually, we will have a file watcher that does this for you.
Streaming Assets
What used to be called the Scenic.Cache.Dynamic, is now Scenic.Assets.Stream and Scenic.Assets.Stream.Texture. This is for images that you generate on the fly (charts, bit rendered game screens, rotating colors, etc...) or frames that you capture live from a camera.
The goal is to separate the source of these images from the consumers (the drivers) in a way that is latency/bandwidth friendly and is easy to use.
The Scenic.Assets.Stream module is a process/api that manages an :ets table of streaming assets. This allows a camera to capture frames at whatever rate makes sense for it and to put them into the table when it sees fit. This data is then distributed to any listening drivers, who can do the right thing with it.
Example camera source - (from some camera source... tbd by developer...)
def handle_info({:camera_0, texture}, state) do
 :ok = Stream.put("camera_0", texture)
end
Example use in a Scene
Graph.build()
 |> rect({100, 200}, fill: {:stream, "camera_0"})

Contributor Code of Conduct

As contributors and maintainers of this project, and in the interest of
fostering an open and welcoming community, we pledge to respect all people who
contribute through reporting issues, posting feature requests, updating
documentation, submitting pull requests or patches, and other activities.
We are committed to making participation in this project a harassment-free
experience for everyone, regardless of the level of experience, gender, gender
identity and expression, sexual orientation, disability, personal appearance,
body size, race, ethnicity, age, religion, or nationality.
Examples of unacceptable behavior by participants include:
	The use of sexualized language or imagery
	Personal attacks
	Trolling or insulting/derogatory comments
	Public or private harassment
	Publishing other's private information, such as physical or electronic
addresses, without explicit permission
	Other unethical or unprofessional conduct.

Project maintainers have the right and responsibility to remove, edit, or reject
comments, commits, code, wiki edits, issues, and other contributions that are
not aligned to this Code of Conduct. By adopting this Code of Conduct, project
maintainers commit themselves to fairly and consistently applying these
principles to every aspect of managing this project. Project maintainers who do
not follow or enforce the Code of Conduct may be permanently removed from the
project team.
This code of conduct applies both within project spaces and in public spaces
when an individual is representing the project or its community.
Instances of abusive, harassing or otherwise unacceptable behavior may be
reported by opening an issue or contacting one or more of the project
maintainers.
This Code of Conduct is adapted from the Contributor
Covenant, version 1.2.0, available at
http://contributor-covenant.org/version/1/2/0/

Contributing to Scenic

Please take a moment to review this document in order to make the contribution
process easy and effective for everyone involved! Also, make sure you read our
Code of Conduct that outlines our commitment towards an
open and welcoming environment.
Components
There are many components that could be written and shared with the community.
Only a few really core ones should be in the Scenic package itself. If you have
ideas for components, I would love the see the community supply optional
packages of them for developers to use.
Each component package should have the component models themselves, and a
"Components" module that contains helper functions to make adding the new
components very simple.
See the code for Scenic.Components for example helper functions.
Using the issue tracker
Use the issues tracker for:
	Bug Reports
	Submitting Pull Requests

Please do not use the issue tracker for personal support requests nor
feature requests. Support requests should be sent to:
Still working on this bit...
For now, please play around with it. I would gladly accept help documenting it.
Over the coming weeks, I'll set up discussion mailing lists and whatever. Simply
haven't gotten there yet.
We do our best to keep the issue tracker tidy and organized, making it useful
for everyone. For example, we classify open issues per perceived difficulty,
making it easier for developers to contribute to Scenic.
Bug reports
A bug is either a demonstrable problem that is caused by the code in the
repository or indicate missing, unclear, or misleading documentation. Good bug
reports are extremely helpful - thank you!
Guidelines for bug reports:
	Use the GitHub issue search — check if the issue has already been
reported.

	Check if the issue has been fixed — try to reproduce it using the
master branch in the repository.

	Isolate and report the problem — ideally, create a reduced test
case.

Please try to be as detailed as possible in your report. Include information
about your Operating System, as well as your Erlang, Elixir and Scenic versions.
Please provide steps to reproduce the issue as well as the outcome you were
expecting! All these details will help developers to fix any potential bugs.
Example:
Short and descriptive example bug report title

A summary of the issue and the environment in which it occurs. If suitable,
include the steps required to reproduce the bug.

1. This is the first step
2. This is the second step
3. Further steps, etc.

`<url>` - a link to the reduced test case (e.g. a GitHub Gist)

Any other information you want to share that is relevant to the issue being
reported. This might include the lines of code that you have identified as
causing the bug, and potential solutions (and your opinions on their merits).
Feature requests
Feature requests are welcome and should be currently be discussed as an issue
in github. This will change to either a topic in Elixir forum or a mail-list soon.
Before you make a request however, please take a moment to
find out whether your idea fits with the scope and aims of the project. It's up
to you to make a strong case to convince the community of the merits of this
feature. Please provide as much detail and context as possible.
Contributing Documentation
Code documentation (@doc, @moduledoc, @typedoc) has a special convention:
the first paragraph is considered to be a short summary.
For functions, macros and callbacks say what it will do. For example write,
something like:
@doc """
Marks the given value as HTML safe.
"""
def safe({:safe, value}), do: {:safe, value}
For modules, protocols and types say what it is. For example, write something
like:
defmodule MyModule.HTML do
 @moduledoc """
 Conveniences for working HTML strings and templates.
 ...
 """
Keep in mind that the first paragraph might show up in a summary somewhere, long
texts in the first paragraph create very ugly summaries. As a rule of thumb,
anything longer than 80 characters is too long.
Try to keep unnecessary details out of the first paragraph, it's only there to
give a user a quick idea of what the documented "thing" does/is. The rest of the
documentation string can contain the details, for example when a value and when
nil is returned.
If possible include examples, preferably in a form that works with doctests.
This makes it easy to test the examples so that they don't go stale and examples
are often a great help in explaining what a function does.
Pull requests
Good pull requests - patches, improvements, new features - are a fantastic help.
They should remain focused in scope and avoid containing unrelated commits.
IMPORTANT: By submitting a patch, you agree that your work will be licensed
under the license used by the project.

If you have any large pull request in mind (e.g. implementing features,
refactoring code, etc.), please ask first otherwise you risk spending a lot
of time working on something that the project's developers might not want to
merge into the project.
Please adhere to the coding conventions in the project (indentation, accurate
comments, etc.) and don't forget to add your own tests and documentation. When
working with git, we recommend the following process in order to craft an
excellent pull request:
	Fork the project, clone your
fork, and configure the remotes:
Clone your fork of the repo into the current directory
git clone https://github.com/<your-username>/scenic
Navigate to the newly cloned directory
cd scenic
Assign the original repo to a remote called "upstream"
git remote add upstream https://github.com/ScenicFramework/scenic

	If you cloned a while ago, get the latest changes from upstream, and update
your fork:
git checkout master
git pull upstream master
git push

	Create a new topic branch (off of master) to contain your feature, change,
or fix.
IMPORTANT: Making changes in master is discouraged. You should always
keep your local master in sync with upstream master and make your
changes in topic branches.
git checkout -b <topic-branch-name>

	Commit your changes in logical chunks. Keep your commit messages organized,
with a short description in the first line and more detailed information on
the following lines. Feel free to use Git's interactive
rebase feature to tidy
up your commits before making them public.

	Make sure all the tests are still passing.
mix test

	Push your topic branch up to your fork:
git push origin <topic-branch-name>

	Open a Pull Request
 with a clear title and description.

	If you haven't updated your pull request for a while, you should consider
rebasing on master and resolving any conflicts.
IMPORTANT: Never ever merge upstream master into your branches. You
should always git rebase on master to bring your changes up to date when
necessary.
git checkout master
git pull upstream master
git checkout <your-topic-branch>
git rebase master

Thank you for your contributions!
Guides
These Guides aim to be inclusive. We use "we" and "our" instead of "you" and
"your" to foster this sense of inclusion.
Ideally, there is something for everybody in each guide, from beginner to expert.
This is hard, maybe impossible. When we need to compromise, we do so on behalf
of beginning users because expert users have more tools at their disposal to
help themselves.
The general pattern we use for presenting information is to first introduce a
small, discreet topic, then write a small amount of code to demonstrate the
concept, then verifies that the code worked.
In this way, we build from small, easily digestible concepts into more complex
ones. The shorter this cycle is, as long as the information is still clear and
complete, the better.
For formatting the guides:
	We use the "elixir" code fence for all module code.
	We use the "console" code fence for iex and shell commands.
	We use backticks for filenames and directory paths.
	We use backticks for module names, function names, and variable names.

This contribution guide is adapted from the Phoenix contribution
guide.

Scenic

The Scenic module itself is a supervisor that manages all the machinery that
makes the Scenes, ViewPorts,
and Drivers run.
In order to run any Scenic application, you will need to start the Scenic
supervisor in your supervision tree.
Load a configuration for one or more ViewPorts, then add Scenic to your root
supervisor.
defmodule MyApp do

 def start(_type, _args) do
 import Supervisor.Spec, warn: false

 # load the viewport configuration from config
 main_viewport_config = Application.get_env(:my_app :viewport)

 # start the application with the viewport
 children = [
 supervisor(Scenic, [viewports: [main_viewport_config]]),
]
 Supervisor.start_link(children, strategy: :one_for_one)
 end

end
Note that you can start the Scenic supervisor without any ViewPort
Configurations. In that case, you are responsible for supervising
the ViewPorts yourself. This is not recommended for devices
as Scenic should know how to restart the main ViewPort in the event
of an error.

 Anchor for this section

 Summary

 Functions

 version()

 Return the current version of scenic

 Anchor for this section

Functions

 Link to this function

 version()

 View Source

Return the current version of scenic

Scenic.Color

APIs to create and work with colors.
Colors are used in multiple places in Scenic. Fills and Strokes of a
single color are quite common.
Data Format
There are multiple ways to define colors.
The native format of color on modern computers is RGBA. This is four channels
including Red, Green, Blue, and Alpha. Alpha indicates transparency, and is
used to blend the color being applied at any given location with the color
that is already there.
Most of the time, you will use one of the pre-defined named colors from the
Named Colors table. However, there are times when you want to work with
other color formats ranging from simple grayscale to rgb to hsl.
The following formats are all supported by the Scenic.Color module.
The values of r, g, b, and a are integers between 0 and 255.
For HSL and HSV, h is a float between 0 and 360, while the s, v and l values
are floats between 0 and 100.
	Format	Implicit	Explicit
	Named Color	na	See the Named Color Table
	Grayscale	g	{:color_g, g}
	Gray, Alpha	{g, a}	{:color_ga, {g, a}}
	Red, Green, Blue	{r, g, b}	{:color_rgb, {r, g, b}}
	Red, Green, Blue, Alpha	{r, g, b, a}	{:color_rgba, {r, g, b, a}}
	Hue, Saturation, Value	na	{:color_hsv, {h, s, v}}
	Hue, Saturation, Lightness	na	{:color_hsl, {h, s, l}}

Named Colors
The simplest is to used a named color (see the table below). Named colors are simply
referred to by an atom, which is their name. Named colors are opaque by default.
I failed to figure out how to show a table with colored cells in exdoc. So this is
a list of all the color names. I'll eventually add a link to a page that shows them
visually.
[:alice_blue, :antique_white, :aqua, :aquamarine, :azure, :beige, :bisque,
 :black, :blanched_almond, :blue, :blue_violet, :brown, :burly_wood,
 :cadet_blue, :chartreuse, :chocolate, :coral, :cornflower_blue, :cornsilk,
 :crimson, :cyan, :dark_blue, :dark_cyan, :dark_golden_rod, :dark_gray,
 :dark_green, :dark_grey, :dark_khaki, :dark_magenta, :dark_olive_green,
 :dark_orange, :dark_orchid, :dark_red, :dark_salmon, :dark_sea_green,
 :dark_slate_blue, :dark_slate_gray, :dark_slate_grey, :dark_turquoise,
 :dark_violet, :deep_pink, :deep_sky_blue, :dim_gray, :dim_grey, :dodger_blue,
 :fire_brick, :floral_white, :forest_green, :fuchsia, :gainsboro, :ghost_white,
 :gold, :golden_rod, :gray, :green, :green_yellow, :grey, :honey_dew, :hot_pink,
 :indian_red, :indigo, :ivory, :khaki, :lavender, :lavender_blush, :lawn_green,
 :lemon_chiffon, :light_blue, :light_coral, :light_cyan, :light_golden_rod,
 :light_golden_rod_yellow, :light_gray, :light_green, :light_grey, :light_pink,
 :light_salmon, :light_sea_green, :light_sky_blue, :light_slate_gray,
 :light_slate_grey, :light_steel_blue, :light_yellow, :lime, :lime_green,
 :linen, :magenta, :maroon, :medium_aqua_marine, :medium_blue, :medium_orchid,
 :medium_purple, :medium_sea_green, :medium_slate_blue, :medium_spring_green,
 :medium_turquoise, :medium_violet_red, :midnight_blue, :mint_cream,
 :misty_rose, :moccasin, :navajo_white, :navy, :old_lace, :olive, :olive_drab,
 :orange, :orange_red, :orchid, :pale_golden_rod, :pale_green, :pale_turquoise,
 :pale_violet_red, :papaya_whip, :peach_puff, :peru, :pink, :plum, :powder_blue,
 :purple, :rebecca_purple, :red, :rosy_brown, :royal_blue, :saddle_brown,
 :salmon, :sandy_brown, :sea_green, :sea_shell, :sienna, :silver, :sky_blue,
 :slate_blue, :slate_gray, :slate_grey, :snow, :spring_green, :steel_blue, :tan,
 :teal, :thistle, :tomato, :turquoise, :violet, :wheat, :white, :white_smoke,
 :yellow, :yellow_green]
Additional Named Colors
	Name	Value
	:clear	{0x80, 0x80, 0x80, 0x00}
	:transparent	{0x80, 0x80, 0x80, 0x00}

Converting Between Color Formats
By using the functions to_g/1, to_ga/1, to_rgb/1, to_rgb/1,
to_hsl/1, and to_hsv/1 you can convert between any implicit or explicit
color type to any explicit color type.

 Anchor for this section

 Summary

 Types

 explicit()

 g()

 ga()

 hsl()

 hsv()

 implicit()

 rgb()

 rgba()

 t()

 Functions

 named()

 Return map of all named colors and their values

 to_g(g)

 Convert a specified color to G format (just grayscale)

 to_ga(g)

 Convert a specified color to GA format

 to_hsl(color)

 Convert a color to the HSL color space

 to_hsv(color)

 Convert a color to the HSV color space

 to_rgb(g)

 Convert a specified color to RGB format

 to_rgba(g)

 Convert a specified color to RGBA format

 Anchor for this section

Types

 Link to this type

 explicit()

 View Source

 @type explicit() :: g() | ga() | rgb() | rgba() | hsl() | hsv()

 Link to this type

 g()

 View Source

 @type g() :: {:color_g, grey :: integer()}

 Link to this type

 ga()

 View Source

 @type ga() :: {:color_ga, {grey :: integer(), alpha :: integer()}}

 Link to this type

 hsl()

 View Source

 @type hsl() ::
 {:color_hsl, {hue :: number(), saturation :: number(), lightness :: number()}}

 Link to this type

 hsv()

 View Source

 @type hsv() ::
 {:color_hsv, {hue :: number(), saturation :: number(), value :: number()}}

 Link to this type

 implicit()

 View Source

 @type implicit() ::
 atom()
 | {name :: atom(), a :: integer()}
 | (gray :: integer())
 | {gray :: integer(), alpha :: integer()}
 | {red :: integer(), green :: integer(), blue :: integer()}
 | {red :: integer(), green :: integer(), blue :: integer(),
 alpha :: integer()}

 Link to this type

 rgb()

 View Source

 @type rgb() :: {:color_rgb, {red :: integer(), green :: integer(), blue :: integer()}}

 Link to this type

 rgba()

 View Source

 @type rgba() ::
 {:color_rgba,
 {red :: integer(), green :: integer(), blue :: integer(), alpha :: integer()}}

 Link to this type

 t()

 View Source

 @type t() :: implicit() | explicit()

 Anchor for this section

Functions

 Link to this function

 named()

 View Source

Return map of all named colors and their values

 Link to this function

 to_g(g)

 View Source

 @spec to_g(color :: t()) :: g()

Convert a specified color to G format (just grayscale)
This is a lossy conversion and will lose any color information other than the gray level.

 Link to this function

 to_ga(g)

 View Source

 @spec to_ga(color :: t()) :: ga()

Convert a specified color to GA format

 Link to this function

 to_hsl(color)

 View Source

 @spec to_hsl(color :: t()) :: hsl()

Convert a color to the HSL color space

 Link to this function

 to_hsv(color)

 View Source

 @spec to_hsv(color :: t()) :: hsv()

Convert a color to the HSV color space

 Link to this function

 to_rgb(g)

 View Source

 @spec to_rgb(color :: t()) :: rgb()

Convert a specified color to RGB format

 Link to this function

 to_rgba(g)

 View Source

 @spec to_rgba(color :: t()) :: rgba()

Convert a specified color to RGBA format

Scenic.Components

About Components
Components are small scenes that are managed, by another scene.
They are useful for reusing bits of UI and containing the logic that
runs them.
Helper Functions
This module contains a set of helper functions to make it easy to add, or
modify, the standard components.
In general, each helper function is of the form:
def name_of_component(graph, data, options \\ [])
Unlike primitives, components are scenes in themselves. Each component is
run by a GenServer and adding a basic component does two things.
	A new component GenServer is started and supervised by the owning scene's
dynamic scene supervisor.
	A reference to the new scene is added to the graph.

This doesn't happen all at once. These helper functions simply add a
reference to a to-be-started component to your graph. When you push a graph,
the ViewPort then manages the life cycle of the components.
When adding components to a graph, each helper function accepts a graph as
the first parameter and returns the transformed graph. This makes is very
easy to build a complex graph by piping helper functions together.
@graph Graph.build()
|> button("Press Me", id: :sample_button)
When modifying a graph, you can again use the helpers by passing in the
component to be modified. The transformed component will be returned.
Graph.modify(graph, :sample_button, fn(p) ->
 button(p, "Continue")
end)

or, more compactly...

Graph.modify(graph, :sample_button, &button(&1, "Continue"))
In each case, the second parameter is a data term that is specific to the
component being acted on. See the documentation below. If you pass in invalid
data for the second parameter an error will be thrown along with some
explanation of what it expected.
The third parameter is a keyword list of options that are to be applied to
the component. This includes setting the id, styles, transforms and such.
@graph Graph.build()
|> button("Press Me", id: :sample_button, rotate: 0.4)

 Anchor for this section

 Summary

 Functions

 button(graph, title, options \\ [])

 Add a Button to a graph

 button_spec(data, options)

 Generate an uninstantiated button spec, parallel to the concept of
primitive specs. This allows buttons to be treated as data.

 checkbox(graph, data, options \\ [])

 Add a Checkbox to a graph

 checkbox_spec(data, options)

 Generate an uninstantiated checkbox spec, parallel to the concept of
primitive specs. See Components.checkbox for data and options values.

 dropdown(graph, data, options \\ [])

 Add a Dropdown to a graph

 dropdown_spec(data, options)

 Generate an uninstantiated dropdown spec, parallel to the concept of
primitive specs. See Components.dropdown for data and options values.

 radio_group(graph, data, options \\ [])

 Add a RadioGroup to a graph

 radio_group_spec(data, options)

 Generate an uninstantiated radio_group spec, parallel to the concept of
primitive specs. See Components.radio_group for data and options values.

 slider(graph, data, options \\ [])

 Add a Slider to a graph

 slider_spec(data, options)

 Generate an uninstantiated slider spec, parallel to the concept of
primitive specs. See Components.slider for data and options values.

 text_field(graph, data, options \\ [])

 Add a TextField input to a graph

 text_field_spec(data, options)

 Generate an uninstantiated text_field spec, parallel to the concept of
primitive specs. See Components.text_field for data and options values.

 toggle(graph, data, options \\ [])

 Add Toggle to a Scenic graph.

 toggle_spec(data, options)

 Generate an uninstantiated toggle spec, parallel to the concept of
primitive specs. See Components.toggle for data and options values.

 Anchor for this section

Functions

 Link to this function

 button(graph, title, options \\ [])

 View Source

 @spec button(
 source :: Scenic.Graph.t() | Scenic.Primitive.t(),
 title :: String.t(),
 options :: list()
) :: Scenic.Graph.t() | Scenic.Primitive.t()

Add a Button to a graph
A button is a small scene that is pretty much just some text drawn over a
rounded rectangle. The button scene contains logic to detect when the button
is pressed, tracks it as the pointer moves around, and when it is released.

 data

 Data

title
	title - a bitstring describing the text to show in the button

 messages

 Messages

If a button press is successful, it sends an event message to the host scene
in the form of:
{:click, id}

 styles

 Styles

Buttons honor the following standard styles
	:hidden - If false the component is rendered. If true, it is skipped.
The default is false.
	:theme - The color set used to draw. See below. The default is :primary

 additional-styles

 Additional Styles

Buttons honor the following list of additional styles.
	:width - pass in a number to set the width of the button.
	:height - pass in a number to set the height of the button.
	:radius - pass in a number to set the radius of the button's rounded
rectangle.
	:alignment - set the alignment of the text inside the button. Can be one
of :left, :right, :center. The default is :center.
	:button_font_size - the size of the font in the button

Buttons do not use the inherited :font_size style as they should look
consistent regardless of what size the surrounding text is.

 theme

 Theme

Buttons work well with the following predefined themes:
:primary, :secondary, :success, :danger, :warning, :info,
:text, :light, :dark
To pass in a custom theme, supply a map with at least the following entries:
	:text - the color of the text in the button
	:background - the normal background of the button
	:active - the background while the button is pressed

 examples

 Examples

The following example creates a simple button and positions it on the screen.
graph
|> button("Example", id: :button_id, translate: {20, 20})
The next example makes the same button as before, but colors it as a warning
button. See the options list above for more details.
graph
|> button("Example", id: :button_id, translate: {20, 20}, theme: :warning)

 Link to this function

 button_spec(data, options)

 View Source

Generate an uninstantiated button spec, parallel to the concept of
primitive specs. This allows buttons to be treated as data.

 Link to this function

 checkbox(graph, data, options \\ [])

 View Source

 @spec checkbox(
 source :: Scenic.Graph.t() | Scenic.Primitive.t(),
 data :: {String.t(), boolean()},
 options :: list()
) :: Scenic.Graph.t() | Scenic.Primitive.t()

Add a Checkbox to a graph

 data

 Data

{text, checked?}
	text - must be a bitstring
	checked? - must be a boolean and indicates if the checkbox is set.

 messages

 Messages

When the state of the checkbox changes, it sends an event message to the
parent scene in the form of:
{:value_changed, id, checked?}

 styles

 Styles

Buttons honor the following standard styles
	:hidden - If false the component is rendered. If true, it is skipped.
The default is false.
	:theme - The color set used to draw. See below. The default is :dark

 theme

 Theme

Checkboxes work well with the following predefined themes: :light, :dark
To pass in a custom theme, supply a map with at least the following entries:
	:text - the color of the text in the button
	:background - the background of the box
	:border - the border of the box
	:active - the border of the box while the button is pressed
	:thumb - the color of the check mark itself

 examples

 Examples

The following example creates a checkbox and positions it on the screen.
graph
|> checkbox({"Example", true}, id: :checkbox_id, translate: {20, 20})

 Link to this function

 checkbox_spec(data, options)

 View Source

Generate an uninstantiated checkbox spec, parallel to the concept of
primitive specs. See Components.checkbox for data and options values.

 Link to this function

 dropdown(graph, data, options \\ [])

 View Source

 @spec dropdown(
 source :: Scenic.Graph.t() | Scenic.Primitive.t(),
 data :: {[{String.t(), any()}], any()},
 options :: list()
) :: Scenic.Graph.t() | Scenic.Primitive.t()

Add a Dropdown to a graph

 data

 Data

{items, initial_id}
	items - must be a list of items, each of which is: {text, id}. See below...
	initial_item - the id of the initial selected item. It can be any term
you want, however it must be an item_id in the items list. See below.

Per item data:
{text, item_id}
	text - a string that will be shown in the dropdown.
	item_id - any term you want. It will identify the item that is
currently selected in the dropdown and will be passed back to you during
event messages.

 messages

 Messages

When the state of the Dropdown changes, it sends an event message to the host scene
in the form of:
{:value_changed, id, selected_item_id}

 options

 Options

Dropdown honors the following list of options.

 styles

 Styles

Buttons honor the following styles
	:hidden - If false the component is rendered. If true, it is skipped.
The default is false.
	:theme - The color set used to draw. See below. The default is :dark

 additional-styles

 Additional Styles

Buttons honor the following list of additional styles.
	:width - pass in a number to set the width of the button.
	:height - pass in a number to set the height of the button.
	:direction - what direction should the menu drop. Can be either :down
or :up. The default is :down.

 theme

 Theme

Dropdowns work well with the following predefined themes: :light, :dark
To pass in a custom theme, supply a map with at least the following entries:
	:text - the color of the text
	:background - the background of the component
	:border - the border of the component
	:active - the background of selected item in the dropdown list
	:thumb - the color of the item being hovered over

 examples

 Examples

The following example creates a dropdown and positions it on the screen.
graph
|> dropdown({[
 {"Dashboard", :dashboard},
 {"Controls", :controls},
 {"Primitives", :primitives}
], :controls}, id: :dropdown_id, translate: {20, 20})

 Link to this function

 dropdown_spec(data, options)

 View Source

Generate an uninstantiated dropdown spec, parallel to the concept of
primitive specs. See Components.dropdown for data and options values.

 Link to this function

 radio_group(graph, data, options \\ [])

 View Source

 @spec radio_group(
 source :: Scenic.Graph.t() | Scenic.Primitive.t(),
 data :: [{String.t(), any()} | {String.t(), any(), boolean()}],
 options :: list()
) :: Scenic.Graph.t() | Scenic.Primitive.t()

Add a RadioGroup to a graph

 data

 Data

{radio_buttons, selected_id}
	radio_buttons must be a list of radio button data. See below.

Radio button data:
{text, radio_id}
	text - must be a bitstring
	radio_id - can be any term you want. It will be passed back to you as the
group's value.

 messages

 Messages

When the state of the radio group changes, it sends an event message to the
host scene in the form of:
{:value_changed, id, radio_id}

 options

 Options

Radio Buttons honor the following list of options.
	:theme - This sets the color scheme of the button. This can be one of
pre-defined button schemes :light, :dark, or it can be a completely custom
scheme like this: {text_color, box_background, border_color, pressed_color, checkmark_color}.

 styles

 Styles

Radio Buttons honor the following styles
	:hidden - If false the component is rendered. If true, it is skipped.
The default is false.
	:theme - The color set used to draw. See below. The default is :dark

 theme

 Theme

Radio buttons work well with the following predefined themes: :light,
:dark
To pass in a custom theme, supply a map with at least the following entries:
	:text - the color of the text
	:background - the background of the component
	:border - the border of the component
	:active - the background of the circle while the button is pressed
	:thumb - the color of inner selected-mark

 examples

 Examples

The following example creates a radio group and positions it on the screen.
graph
|> radio_group([{
 {"Radio A", :radio_a},
 {"Radio B", :radio_b},
 {"Radio C", :radio_c},
], :radio_b}, id: :radio_group, translate: {20, 20})

 Link to this function

 radio_group_spec(data, options)

 View Source

Generate an uninstantiated radio_group spec, parallel to the concept of
primitive specs. See Components.radio_group for data and options values.

 Link to this function

 slider(graph, data, options \\ [])

 View Source

 @spec slider(
 source :: Scenic.Graph.t() | Scenic.Primitive.t(),
 data :: {{number(), number()}, number()} | list(),
 options :: list()
) :: Scenic.Graph.t() | Scenic.Primitive.t()

Add a Slider to a graph

 data

 Data

{ extents, initial_value}
	extents gives the range of values. It can take several forms...	{min, max} If min and max are integers, then the slider value will
be an integer.
	{min, max} If min and max are floats, then the slider value will be
an float.
	[a, b, c] A list of terms. The value will be one of the terms

	initial_value Sets the initial value (and position) of the slider. It
must make sense with the extents you passed in.

 messages

 Messages

When the state of the slider changes, it sends an event message to the host
scene in the form of:
{:value_changed, id, value}

 options

 Options

Sliders honor the following list of options.

 styles

 Styles

Sliders honor the following styles
	:hidden - If false the component is rendered. If true, it is skipped.
The default is false.
	:theme - The color set used to draw. See below. The default is :dark

 theme

 Theme

Sliders work well with the following predefined themes: :light, :dark
To pass in a custom theme, supply a map with at least the following entries:
	:border - the color of the slider line
	:thumb - the color of slider thumb

 examples

 Examples

The following example creates a numeric slider and positions it on the screen.
graph
|> slider({{0,100}, 0}, id: :num_slider, translate: {20,20})
The following example creates a list slider and positions it on the screen.
graph
|> slider({[
 :white,
 :cornflower_blue,
 :green,
 :chartreuse
], :cornflower_blue}, id: :slider_id, translate: {20,20})

 Link to this function

 slider_spec(data, options)

 View Source

Generate an uninstantiated slider spec, parallel to the concept of
primitive specs. See Components.slider for data and options values.

 Link to this function

 text_field(graph, data, options \\ [])

 View Source

 @spec text_field(
 source :: Scenic.Graph.t() | Scenic.Primitive.t(),
 data :: String.t(),
 options :: list()
) :: Scenic.Graph.t() | Scenic.Primitive.t()

Add a TextField input to a graph

 data

 Data

initial_value
	initial_value - is the string that will be the starting value

 messages

 Messages

When the text in the field changes, it sends an event message to the host
scene in the form of:
{:value_changed, id, value}

 styles

 Styles

Text fields honor the following styles
	:hidden - If false the component is rendered. If true, it is skipped.
The default is false.
	:theme - The color set used to draw. See below. The default is :dark

 additional-styles

 Additional Styles

Text fields honor the following list of additional styles.
	:filter - Adding a filter option restricts which characters can be
entered into the text_field component. The value of filter can be one of:	:all - Accept all characters. This is the default
	:number - Any characters from "0123456789.,"
	"filter_string" - Pass in a string containing all the characters you
will accept
	function/1 - Pass in an anonymous function. The single parameter will
be the character to be filtered. Return true or false to keep or reject
it.

	:hint - A string that will be shown (greyed out) when the entered value
of the component is empty.
	:type - Can be one of the following options:	:all - Show all characters. This is the default.
	:password - Display a string of '*' characters instead of the value.

	:width - set the width of the control.

 theme

 Theme

Text fields work well with the following predefined themes: :light, :dark
To pass in a custom theme, supply a map with at least the following entries:
	:text - the color of the text
	:background - the background of the component
	:border - the border of the component
	:focus - the border while the component has focus

 examples

 Examples

graph
|> text_field("Sample Text", id: :text_id, translate: {20,20})

graph
|> text_field(
 "", id: :pass_id, type: :password, hint: "Enter password", translate: {20,20}
)

 Link to this function

 text_field_spec(data, options)

 View Source

Generate an uninstantiated text_field spec, parallel to the concept of
primitive specs. See Components.text_field for data and options values.

 Link to this function

 toggle(graph, data, options \\ [])

 View Source

 @spec toggle(Scenic.Graph.t() | Scenic.Primitive.t(), boolean(), Keyword.t() | nil) ::
 Scenic.Graph.t()

Add Toggle to a Scenic graph.

 data

 Data

on?
	on? - true if the toggle is on, pass false if not.

 styles

 Styles

Toggles honor the following styles. The :light and :dark styles look nice. The other bundled themes...not so much. You can also supply your own theme.
	:hidden - If false the toggle is rendered. If true, it is skipped. The default
is false.
	:theme - The color set used to draw. See below. The default is :dark

 additional-styles

 Additional Styles

Toggles also honor the following additional styles.
	:border_width - the border width. Defaults to 2.
	:padding - the space between the border and the thumb. Defaults to 2
	:thumb_radius - the radius of the thumb. This determines the size of the entire toggle. Defaults to 10.

 theme

 Theme

To pass in a custom theme, supply a map with at least the following entries:
	:border - the color of the border around the toggle
	:background - the color of the track when the toggle is off.
	:text - the color of the thumb.
	:thumb - the color of the track when the toggle is on.

Optionally, you can supply the following entries:
	:thumb_pressed - the color of the thumb when pressed. Defaults to :gainsboro.

 examples

 Examples

The following example creates a toggle.
graph
|> toggle(true, translate: {20, 20})
The next example makes a larger toggle.
graph
|> toggle(true, translate: {20, 20}, thumb_radius: 14)

 Link to this function

 toggle_spec(data, options)

 View Source

Generate an uninstantiated toggle spec, parallel to the concept of
primitive specs. See Components.toggle for data and options values.

Scenic.Driver behaviour

The main module for drawing and user input.
Note: The driver model has completely changed in v0.11.
Drivers make up the bottom layer of the Scenic architectural stack. They draw
everything on the screen and originate the raw user input. In general, different
drawing targets will need different drivers.
The driver interface provides a great deal of flexibility, but is more
advanced than writing scenes. You can write drivers that only provide user input,
only draw scripts, or do both. There is no assumption at all as to what the
output target or user source is.
Starting Drivers
Drivers are always managed by a ViewPort that hosts them.
The most common way to instantiate a driver is set it up in the config of
a ViewPort when it starts up.
config :my_app, :viewport,
 size: {800, 600},
 name: :main_viewport,
 theme: :dark,
 default_scene: MyApp.Scene.MainScene,
 drivers: [
 [
 module: Scenic.Driver.Local,
 name: :local_driver,
 window: [title: "My Application", resizeable: false]
],
 [
 module: MyApp.Driver.MyDriver,
 my_param: "abc"
],
]
In the example above, two drivers are configured to be started when the
:main_viewport starts up. Both drivers drivers will be running at the
same time and will receive the same messages from the ViewPort.
Drivers can be dynamically started on a ViewPort using
Scenic.ViewPort.start_driver/2. They can be dynamically stopped on
a ViewPort using Scenic.ViewPort.stop_driver/2.
Drivers can also define their own configuration options. See the
documentation for the driver you are interested in starting to see the
available options.
Messages from the ViewPort
The way a ViewPort communicates with it's drivers is by sending them a
set of well-known messages. These are picked up by the Driver module and
sent to your driver through callbacks.
	Callback	Description
	reset_scene/1	The ViewPort context has been reset. The driver can clean up all scripts and cached media
	request_input/2	The ViewPort is requesting user inputs from the keys list
	update_scene/2	The scripts identified by ids have been update and should be processed
	del_scripts/2	The script identified by id has been deleted and can be cleaned up
	clear_color/2	The background clear color has been updated

Handling Updates
The main drawing related task of a Driver is to receive the update_scene/2
callback and then draw the updated scripts to the screen, or whatever output medium the
driver supports.
In a very simple example, it would look something like this.
def update_scene(ids, driver) do
 Enum.each(ids, fn(id) ->
 with {:ok, script} <- ViewPort.get_script_by_id(vp, id) do
 script
 |> Scenic.Script.serialize()
 |> my_render_script(driver)
 end
 end)
 {:ok, driver}
end
The above example is overly simple and just there to get you started. Note that only
the ids of the scripts are sent. You still need to fish them out of the ViewPort
User Input
User input events are created whenever a driver has events to share. The request_input/2
callback indicates to you which input events are currently being listened to. This is a guide
that you can use or not. You can send any valid input event at any time, the ViewPort will
simply ignore those that aren't being listened to.
In this example, there is some source of user input that casts messages to our driver.
def handle_cast({:my_cursor_press, button, xy}, driver) do
 send_input(driver, {:cursor_button, {button, 1, [], xy}})
 { :noreply, driver }
end
No matter what type of input you are sending, it will be checked to
make sure it conforms the known input types.
Updated Input Formats
There are several changes to the input formats in version v0.11.
Button indicators are now atoms that conform to standard linux-like buttons. This
allows for more buttons on a mouse like device. Do not assume these are the only
buttons that can be sent in a :cursor_button message.
	New Button	Old Button
	:btn_left	:left
	:btn_right	:right

Press and Release messages were atoms and are now numbers. This is to support
multi-state buttons and joysticks and the like. Turns out that some buttons
are pressure sensitive and can have a range of values.
	New Action	Old Action
	0	:release
	1	:press

Modifier keys were previously a number and you would have had to dig into the GLFW
documentation to see how to interpret it. That was both unintuitive and I wanted to
make it more source independent. So now it is a list of atoms. If the atom you
are interested is in the list, then it is pressed.
[:ctrl, :shift, :alt, :meta]
Test if a modifier key is pressed using the Enum.member?/2 function.
mods = [:ctrl, :shift]
Enum.member?(mods, :shift)

 Anchor for this section

 Summary

 Types

 response_opts()

 t()

 Callbacks

 clear_color(color, driver)

 Called when the background color has changed.

 del_scripts(script_ids, driver)

 Called when a script has been deleted and can be cleaned up.

 init(driver, opts)

 Initialize a driver process.

 request_input(input, driver)

 Called when requested input types have changed.

 reset_scene(driver)

 Called when the scene has been reset.

 update_scene(script_ids, driver)

 Called when the scene has been updated.

 validate_opts(opts)

 Validate the options passed to a Driver.

 Functions

 assign(driver, key_list)

 Convenience function to assign a list of values into a driver struct.

 assign(driver, key, value)

 Convenience function to assign a value into a driver struct.

 assign_new(driver, key_list)

 Convenience function to assign a list or map of new values into a driver struct.

 assign_new(driver, key, value)

 Convenience function to assign a new values into a driver struct.

 fetch(driver, key)

 Convenience function to fetch an assigned value out of a driver struct.

 get(driver, key, default \\ nil)

 Convenience function to get an assigned value out of a driver struct.

 request_update(driver)

 Request a scene_updated call.

 send_input(drvr, input)

 Send input from the driver.

 set_busy(driver, flag)

 Set or clear the busy flag.

 terminate(reason, driver)

 validate(drivers)

 Validate driver configuration

 Anchor for this section

Types

 Link to this type

 response_opts()

 View Source

 @type response_opts() :: [timeout() | :hibernate | {:continue, term()}]

 Link to this type

 t()

 View Source

 @type t() :: %Scenic.Driver{
 assigns: map(),
 busy: boolean(),
 clear_color: Scenic.Color.rgba(),
 dirty_ids: list(),
 gated: boolean(),
 input_buffer: %{
 required(Scenic.ViewPort.Input.class()) => Scenic.ViewPort.Input.t()
 },
 input_limited: boolean(),
 limit_ms: integer(),
 module: atom(),
 pid: pid(),
 requested_inputs: [Scenic.ViewPort.Input.class()],
 update_ready: boolean(),
 update_requested: boolean(),
 viewport: Scenic.ViewPort.t()
}

 Anchor for this section

Callbacks

 Link to this callback

 clear_color(color, driver)

 View Source

 (optional)

 @callback clear_color(
 color :: Scenic.Color.t(),
 driver :: t()
) :: {:ok, t()}

Called when the background color has changed.
The color is provided.
This callback is optional.

 Link to this callback

 del_scripts(script_ids, driver)

 View Source

 (optional)

 @callback del_scripts(
 script_ids :: [Scenic.Script.id()],
 driver :: t()
) :: {:ok, t()}

Called when a script has been deleted and can be cleaned up.
The deleted id is provided.
This callback is optional.

 Link to this callback

 init(driver, opts)

 View Source

 @callback init(
 driver :: t(),
 opts :: Keyword.t()
) :: {:ok, t()}

Initialize a driver process.
The ViewPort and an options list for the driver are passed in. Just like
initializing any GenServer process, it should return {:ok, state}

 Link to this callback

 request_input(input, driver)

 View Source

 (optional)

 @callback request_input(
 input :: [Scenic.ViewPort.Input.class()],
 driver :: t()
) :: {:ok, t()}

Called when requested input types have changed.
This informs your driver that the requested input types for the application
have changed. This is useful if you want to reduce the amount of data being transferred
between your input source (which might be expensive...) and the driver.
This callback is optional. If you ignore it and send all input
events, then only the ones being listened to will be processed.

 Link to this callback

 reset_scene(driver)

 View Source

 (optional)

 @callback reset_scene(driver :: t()) :: {:ok, t()}

Called when the scene has been reset.
This is an opportunity for your driver to clear state that may no longer
be relevant. This is typically scripts, inputs, media, etc.

 Link to this callback

 update_scene(script_ids, driver)

 View Source

 (optional)

 @callback update_scene(
 script_ids :: [Scenic.Script.id()],
 driver :: t()
) :: {:ok, t()}

Called when the scene has been updated.
The list of ids is the set of script ids that have changed and should be updated.
Note that the list may be empty if you have requested an update via the
request_update/1 function.
This callback is optional.

 Link to this callback

 validate_opts(opts)

 View Source

 @callback validate_opts(opts :: Keyword.t()) ::
 {:ok, any()}
 | {:error, String.t()}
 | {:error, NimbleOptions.ValidationError.t()}

Validate the options passed to a Driver.
The list of options for a driver are passed in as opts. If you decide then are
good, return them, or a transformed set of them as {:ok, opts}
If they are invalid, return either one of:
	{:error, String.t()}
	{:error, NimbleOptions.ValidationError.t()}

Scenic uses NimbleOptions internally for options validation, so NimbleOptions
errors are supported.

 Anchor for this section

Functions

 Link to this function

 assign(driver, key_list)

 View Source

 @spec assign(driver :: t(), key_list :: Keyword.t() | map()) :: t()

Convenience function to assign a list of values into a driver struct.

 Link to this function

 assign(driver, key, value)

 View Source

 @spec assign(driver :: t(), key :: any(), value :: any()) :: t()

Convenience function to assign a value into a driver struct.

 Link to this function

 assign_new(driver, key_list)

 View Source

 @spec assign_new(driver :: t(), key_list :: Keyword.t() | map()) :: t()

Convenience function to assign a list or map of new values into a driver struct.
Only values that do not already exist will be assigned

 Link to this function

 assign_new(driver, key, value)

 View Source

 @spec assign_new(driver :: t(), key :: any(), value :: any()) :: t()

Convenience function to assign a new values into a driver struct.
The value will only be assigned if it does not already exist in the struct.

 Link to this function

 fetch(driver, key)

 View Source

 @spec fetch(driver :: t(), key :: any()) :: {:ok, any()} | :error

Convenience function to fetch an assigned value out of a driver struct.

 Link to this function

 get(driver, key, default \\ nil)

 View Source

 @spec get(driver :: t(), key :: any(), default :: any()) :: any()

Convenience function to get an assigned value out of a driver struct.

 Link to this function

 request_update(driver)

 View Source

Request a scene_updated call.
This is used when scripts are updated. Some drivers use it to batch updates
into a single atomic operation. This call is rate limited by limit_ms.

 Link to this function

 send_input(drvr, input)

 View Source

 @spec send_input(driver :: t(), input :: Scenic.ViewPort.Input.t()) :: t()

Send input from the driver.
Send input from the driver to its ViewPort. :cursor_pos and :cursor_scroll
input will be buffered/rate limited according the driver's :limit_ms setting.

 Link to this function

 set_busy(driver, flag)

 View Source

 @spec set_busy(driver :: t(), flag :: boolean()) :: t()

Set or clear the busy flag.
When the busy flag is set, put_script messages will be consolidated until cleared.

 Link to this function

 terminate(reason, driver)

 View Source

 Link to this function

 validate(drivers)

 View Source

Validate driver configuration
Used primarily for dynamic view port creation

Scenic.Driver.KeyMap behaviour

Behaviour and support functions for mapping physical keys to characters.
This module is meant to be implemented elsewhere and provided to a driver
in order to localize key presses into the correct characters.
The :scenic_driver_local driver comes with a USEnglish key map, which it
uses by default. Look at that one as an example on how to make a custom
key mapping.

 Anchor for this section

 Summary

 Types

 keys()

 mod_keys()

 Callbacks

 map_key(key, value, keys, state)

 Translate a key to a codepoint, which is really just a string.

 Functions

 alt?(keys)

 Is any alt key pressed?

 caps_lock?(keys)

 Is the caps lock enabled?

 ctrl?(keys)

 Is any ctrl key pressed?

 meta?(keys)

 Is any meta key pressed? This is usually the command button.

 mods(keys)

 Generate the list of pressed modifier keys

 num_lock?(keys)

 Is the num lock enabled?

 scroll_lock?(keys)

 Is the scroll lock enabled?

 shift?(keys)

 Is the current set of keys shifted?

 Anchor for this section

Types

 Link to this type

 keys()

 View Source

 @type keys() :: %{required(atom()) => integer()}

 Link to this type

 mod_keys()

 View Source

 @type mod_keys() :: [
 :meta | :alt | :ctrl | :shift | :caps_lock | :num_lock | :scroll_lock
]

 Anchor for this section

Callbacks

 Link to this callback

 map_key(key, value, keys, state)

 View Source

 @callback map_key(key :: atom(), value :: integer(), keys :: keys(), state :: any()) ::
 {:ok, nil, state :: any()}
 | {:ok, codepoint :: String.t(), state :: any()}
 | {:error, msg :: String.t(), state :: any()}

Translate a key to a codepoint, which is really just a string.
The first time this is called, state is nil. After that you can return
any state that makes sense and it will be passed back on the next call.
If the mapping is successful, i.e. the key press results in a valid character,
Then this function should return { :ok, codepoint, state }. The returned
codepoint will be sent on to the ViewPort as a codepoint input event.
If the key press does not map to a string (this is common), then the function
should return { :ok, nil, state }. This will not result in a codepoint input
being sent to the ViewPort.
If the data makes no sense at all, then you can return { :error, error_msg, state }.
This will not send a codepoint input, but will log the error message, which should
be a string.

 Anchor for this section

Functions

 Link to this function

 alt?(keys)

 View Source

 @spec alt?(keys :: keys()) :: boolean()

Is any alt key pressed?

 Link to this function

 caps_lock?(keys)

 View Source

 @spec caps_lock?(keys :: keys()) :: boolean()

Is the caps lock enabled?
Returns true if any shift key or the caps lock is pressed or active.

 Link to this function

 ctrl?(keys)

 View Source

 @spec ctrl?(keys :: keys()) :: boolean()

Is any ctrl key pressed?

 Link to this function

 meta?(keys)

 View Source

 @spec meta?(keys :: keys()) :: boolean()

Is any meta key pressed? This is usually the command button.

 Link to this function

 mods(keys)

 View Source

 @spec mods(keys :: keys()) :: mod_keys()

Generate the list of pressed modifier keys

 Link to this function

 num_lock?(keys)

 View Source

 @spec num_lock?(keys :: keys()) :: boolean()

Is the num lock enabled?
Returns true if num lock is pressed or active.

 Link to this function

 scroll_lock?(keys)

 View Source

 @spec scroll_lock?(keys :: keys()) :: boolean()

Is the scroll lock enabled?
Returns true if scroll lock is pressed or active.

 Link to this function

 shift?(keys)

 View Source

 @spec shift?(keys :: keys()) :: boolean()

Is the current set of keys shifted?
Returns true if any shift key or the caps lock is pressed or active.

Scenic.Graph

Please see Graph Overview for a high-level description.
What is a Graph
There are many types of graphs in the field of Computer Science. There are graphs that
show data to a user. There are graphs that give access to databases. Graphs that link
people to a social network.
In Scenic, a Graph is a graph in same way that the DOM in HTML is a graph. It is a
hierarchical tree of data that describes a set of things to draw on the screen.
You build a graph by appending primitives (individual things to draw) to the current
node in the tree. Nodes are represented by Scenic.Primitive.Group.
The following example builds a simple graph that displays some text, creates a group,
then adds more text and a rounded rectangle to it.
@graph Scenic.Graph.build()
|> text("This is some text", translate: {20, 20})
|> group(fn(graph) ->
 graph
 |> text("This text is in a group", translate: {200, 24})
 |> rounded_rectangle({400, 30}, stroke: {2, :blue})
end, translate: {20, 100}, text_align: :center)
There is a fair amount going on in the example above. The first line builds an empty
graph with only one group as the root node.
@graph Scenic.Graph.build()
By assigning it to the
compile directive @group, we know that this group will be built once at compile
time and will be very fast to access later during runtime. You could also do this
at runtime, in your init function for example.
The empty graph that is returned from build() is then passed to
|> text("This is some text", translate: {20, 20})
This adds a text primitive to the root group. The graph returned from that call is then
passed again into
|> group(fn(graph) ->
 graph
 |> text("This text is in a group", translate: {200, 24})
 |> rounded_rectangle({400, 30}, stroke: {2, :blue})
end, translate: {20, 100}, text_align: :center)
This creates a new group which is filled with several other primitives.
Notice that the anonymous group "builder" function receives a graph as its only parameter.
This is the same graph that we are building, except that it has a marker indicating
that new primitives added to it are inserted into the new group instead of the
root of the graph.
Finally, when the group is finished, a translation matrix and a :text_align
style (see Scenic.Primitive.Style.TextAlign) are added to it. These
properties are inherited by the primitives in the group.
Inheritance
An important concept to understand is that both styles and
transforms are inherited down the graph. This means that if
you apply a style or transform to any group (including the root), then all primitives
contained by that group will have those properties applied to them too. This is true
even if the primitive is nested in several groups at the same time.
@graph Scenic.Graph.build(font: :roboto_mono)
|> text("This text inherits the font", translate: {20, 20})
|> group(fn(graph) ->
 graph
 |> text("This text also inherits the font", translate: {200, 24})
 |> text("This text overrides the font", font: :roboto)
end, translate: {20, 100}, text_align: :center)
Transforms, such as translate, rotate, scale, also inherit down the graph, but do
so slightly differently than the styles. With a style, when you set a specific value
on a primitive, that overrides the inherited value of the same type.
With a transform, the values multiply together. This allows you to position items
within a group relative to the origin {0,0}, then move the group as a whole, keeping
the interior positions unchanged.
Styles, however, are NOT inherited by components even though transforms are.
Modifying a Graph
Scenic was written specifically for Erlang/Elixir, which is a functional programming
model with immutable data.
As such, once you make a graph, it stays in memory unchanged - until you transform it
via Graph.modify/3. Technically you never change it (that's the immutable part),
instead Graph.modify returns a new graph with different data in it.
Graph.modify/3 is the single Graph function that you
will use the most.
For example, lets go back to our graph with the two text items in it.
@graph Graph.build(font: :roboto, font_size: 24, rotate: 0.4)
 |> text("Hello World", translate: {300, 300}, id: :small_text)
 |> text("Bigger Hello", font_size: 40, scale: 1.5, id: :big_text)
This time, we've assigned ids to both of the text primitives. This makes it easy to
find and modify that primitive in the graph.
graph =
 @graph
 |> Graph.modify(:small_text, &text(&1, "Smaller Hello", font_size: 16))
 |> Graph.modify(:big_text, &text(&1, "Bigger Hello", font_size: 60))
Notice that the graph is modified multiple times in the pipeline. The push_graph/1
function is relatively heavy when the graph references other scenes. The recommended
pattern is to make multiple changes to the graph .
Accessing Primitives
When using a Graph, it is extremely common to access and modify primitives. The way
you do this is by putting an id on the primitives you care about in a graph.
@graph Graph.build()
 |> text("small text", id: :small_text)
 |> text("bit text", id: :big_text)
When you get primitives, or modify a graph, you specify them by id. This happens
quickly, but at a cost of using a little memory. If you aren't going to access
a primitive, then don't assign an id to them.
One interesting note: There is nothing saying you have to use an atom as the id.
In fact you can use any Erlang term you want. This can be very powerful, especially
when used to identify components...

 Anchor for this section

 Summary

 Types

 bounds()

 deferred()

 t()

 Functions

 add(graph, primitive)

 Add a pre-built primitive to the current group in the graph.

 add(graph, primitive_module, primitive_data, opts \\ [])

 Build and add a primitive to the current group in the graph.

 add_to(graph, id, builder)

 Add to a specified group in a graph.

 bounds(graph)

 Compute the bounding box that contains the graph.

 build(opts \\ [])

 Builds and returns an empty graph.

 compile(graph)

 Compile a graph into a script.

 count(graph)

 Returns a count of all the primitives in a graph.

 count(graph, id)

 Returns a count of all the primitives in a graph with a specific id.

 delete(graph, id)

 Permanently delete a primitive from a group by id.

 find(graph, finder)

 Find one or more primitives in a graph via a filter function.

 get(graph, id)

 Returns a list of primitives from a graph with a specific id.

 get!(graph, id)

 Returns a single primitive from a graph with a specific id.

 map(graph, action)

 Map all primitives in a graph into a new graph.

 map(graph, id, action)

 Map all primitives in a graph that match a specified id into a new graph.

 modify(graph, id, action)

 Modify one or more primitives in a graph.

 reduce(graph, acc, action)

 Invokes action for each primitive in the graph with the accumulator.

 reduce(graph, id, acc, action)

 Invokes action for each primitive that matches an id in the graph with the accumulator.

 Anchor for this section

Types

 Link to this type

 bounds()

 View Source

 @type bounds() ::
 {left :: number(), top :: number(), right :: number(), bottom :: number()}

 Link to this type

 deferred()

 View Source

 @type deferred() :: (t() -> t())

 Link to this type

 t()

 View Source

 @type t() :: %Scenic.Graph{
 add_to: non_neg_integer(),
 animations: term(),
 ids: map(),
 next_uid: pos_integer(),
 primitives: map()
}

 Anchor for this section

Functions

 Link to this function

 add(graph, primitive)

 View Source

 @spec add(graph :: t(), primitive :: Scenic.Primitive.t()) :: t()

Add a pre-built primitive to the current group in the graph.
This is usually called during graph construction. When a new Group primitive
is added to a Graph, it marks the new group as the current one before calling the group's
builder function. This is what allows you to add primitives to the correct place
in the new Group.
Note: All primitives added to a group are appended to the draw order.

 Link to this function

 add(graph, primitive_module, primitive_data, opts \\ [])

 View Source

 @spec add(graph :: t(), module :: atom(), data :: any(), opts :: keyword()) :: t()

Build and add a primitive to the current group in the graph.
This is usually called during graph construction. When a new Group primitive
is added to a Graph, it marks the new group as the current one before calling the group's
builder function. This is what allows you to add primitives to the correct place
in the new Group.
Note: All primitives added to a group are appended to the draw order.

 Link to this function

 add_to(graph, id, builder)

 View Source

Add to a specified group in a graph.
Similar to adding a group during graph construction, the add_to function accepts
a builder function that adds to a graph under the identified group.
Primitives with the id that are not groups are ignored.
If multiple groups have the given id, then the builder is run against each of them.

 Link to this function

 bounds(graph)

 View Source

 @spec bounds(graph :: t()) :: bounds() | nil

Compute the bounding box that contains the graph.
Returns {left, top, right, bottom} or nil if the graph is empty.

 Link to this function

 build(opts \\ [])

 View Source

 @spec build(opts :: keyword()) :: t()

Builds and returns an empty graph.
Just like any primitive, you can pass in an option list of styles and transforms.
These will be applied to the otherwise empty root group in the new graph.

 Link to this function

 compile(graph)

 View Source

 @spec compile(graph :: t()) :: {:ok, Scenic.Script.t()}

Compile a graph into a script.

 Link to this function

 count(graph)

 View Source

 @spec count(graph :: t()) :: integer()

Returns a count of all the primitives in a graph.
The root Group counts as a primitive, so an empty graph should have a count
of 1.

 Link to this function

 count(graph, id)

 View Source

 @spec count(graph :: t(), id :: any()) :: integer()

Returns a count of all the primitives in a graph with a specific id.

 Link to this function

 delete(graph, id)

 View Source

 @spec delete(graph :: t(), id :: any()) :: t()

Permanently delete a primitive from a group by id.
This will remove a primitive (or many if they have the same id) from a graph. It
then returns the modified graph.
If you delete a group from a graph, then all primitives contained by that
group are deleted as well.

 Link to this function

 find(graph, finder)

 View Source

 @spec find(graph :: t(), (any() -> as_boolean(term()))) :: [Scenic.Primitive.t()]

Find one or more primitives in a graph via a filter function.
Pass in a function that accepts a primitive and returns a boolean.
Returns a list of primitives.
Warning: This function crawls the entire graph and is thus slower than
accessing items via a fully-specified id.

 Link to this function

 get(graph, id)

 View Source

 @spec get(graph :: t(), id :: any()) :: [Scenic.Primitive.t()]

Returns a list of primitives from a graph with a specific id.

 Link to this function

 get!(graph, id)

 View Source

 @spec get!(graph :: t(), id :: any()) :: Scenic.Primitive.t()

Returns a single primitive from a graph with a specific id.
This will raise an error if either none or multiple primitives are found with
the specified id.

 Link to this function

 map(graph, action)

 View Source

 @spec map(graph :: t(), action :: function()) :: t()

Map all primitives in a graph into a new graph.
Crawls through the entire graph, passing each primitive to the callback function.
The result of the callback replaces that primitive in the graph. The updated
graph is returned.

 Link to this function

 map(graph, id, action)

 View Source

 @spec map(graph :: t(), id :: any(), action :: function()) :: t()

Map all primitives in a graph that match a specified id into a new graph.
Crawls through the entire graph, passing each primitive to the callback function.
The result of the callback replaces that primitive in the graph. The updated
graph is returned.
This is so similar to the modify function that it may be deprecated in the future.
For now I recommend you use Graph.modify/3 instead of this.

 Link to this function

 modify(graph, id, action)

 View Source

 @spec modify(
 graph :: t(),
 id :: any() | (any() -> as_boolean(term())),
 action :: (any() -> Scenic.Primitive.t())
) :: t()

Modify one or more primitives in a graph.
Retrieves the primitive (or primitives) specified by id and passes them to
a callback function. The result of the callback function is stored as the new
version of that primitive in the graph.
If multiple primitives match the specified id, then each is passed, in turn,
to the callback function.
The id can be either
	a term to match against (fast)
	a filter function that returns a boolean (slower)

Examples:
graph
|> Graph.modify(:explicit_id, &text("Updated Text 1"))
|> Graph.modify({:id, 123}, &text("Updated Text 2"))
|> Graph.modify(&match?({:id,_},&1), &text("Updated Text 3"))

 Link to this function

 reduce(graph, acc, action)

 View Source

 @spec reduce(graph :: t(), acc :: any(), action :: function()) :: any()

Invokes action for each primitive in the graph with the accumulator.
Iterates over all primitives in a graph, passing each into the callback function
with an accumulator. The return value of the callback is the new accumulator.
This is extremely similar in behaviour to Elixir's Enum.reduce function, except
that it understands how to navigate the tree structure of a Graph.

 Link to this function

 reduce(graph, id, acc, action)

 View Source

 @spec reduce(graph :: t(), id :: any(), acc :: any(), action :: function()) :: any()

Invokes action for each primitive that matches an id in the graph with the accumulator.
Iterates over all primitives that match a specified id, passing each into the callback
function with an accumulator.
This is extremely similar in behaviour to Elixir's Enum.reduce function, except
that it understands how to navigate the tree structure of a Graph.

Scenic.Primitives

A set of helper functions to make it easy to add to, or modify,
a graph.
In general, each helper function is of the form
def name_of_primitive(graph, data, opts \\ [])
or
def name_of_primitive_spec(data, opts \\ [])
The first form builds the primitive immediately and adds it to the
graph that is passed in. The second form creates a specification for
the primitive (basically, a data structure describing how to draw it).
You then add this to a graph at some later time.
Let's start by looking at the immediate versions.
Immediate Primitive Helpers
When adding primitives to a graph, each helper function accepts a
graph as the first parameter and returns the transformed graph. This
makes it very easy to build a complex graph by piping helper functions
together.
@graph Graph.build()
 |> text("Hello World")
 |> rectangle({100, 200})
 |> line({{10,20}, {100, 20}})
When modifying a graph, you can again use the helpers by passing
in the primitive to be modified. The transformed primitive will
be returned.
Graph.modify(graph, :rect, fn(p) ->
 rectangle(p, {200, 300})
end)

or, more compactly...
Graph.modify(graph, :rect, &rectangle(&1, {200, 300}))
In each case, the second parameter is a data term that is specific
to the primitive being acted on. See the documentation below. If you
pass in invalid data for the second parameter, an error will be
thrown, along with some explanation of what it expected.
The third parameter is a keyword list of options that are to be
applied to the primitive. This includes setting the id, styles,
transforms and such.
@graph Graph.build()
 |> text("Hello World", id: :hello, font_size: 24, rotate: 0.4)
 |> rectangle({100, 200}, translate: {10, 30}, fill: :yellow)
 |> line({{10,20}, {100, 20}}, id: :a_line, stroke: {4, :green})
Deferred Primitive Helpers
Each immediate primitive helper has a corresponding deferred helper.
The deferred variant does not add the primitive to a graph. Instead,
the deferred helper returns a function. You can then call that
function, passing it a graph, and the primitive will be added to that
graph.
text = text_spec("Hello World")
rect = rectangle_spec({100, 200})
line = line_spec({{10,20}, {100, 20}})

g = Graph.build()
g = text.(g)
g = rect.(g)
g = line.(g)
Written like this, the deferred helpers aren't compelling. But we
could also write
items = [
 text_spec("Hello World"),
 rectangle_spec({100, 200}),
 line_spec({{10,20}, {100, 20}}),
]

g = items
 |> Enum.reduce(Graph.build(), fn item, g -> item.(g) end)
Deferred helpers let us express primitives as data. This
makes it easier to define display graphs at compile time, particularly
when we use the group_spec/2 helper to express the grouping of
components:
@line {{0, 0}, {60, 60}}

@lines [
 line_spec(@line, stroke: {4, :red}),
 line_spec(@line, stroke: {20, :green}, cap: :butt, t: {60, 0}),
 line_spec(@line, stroke: {20, :yellow}, cap: :round, t: {120, 0}),
]

@text [
 text_spec("Hello", translate: {0, 40}),
 text_spec("World", translate: {90, 40}, fill: :yellow),
]

@drawing Graph.build() |> add_specs_to_graph([@lines, @text])
If you wanted to put the lines into one group and the text into
another, simply interpose the group_spec/2 helper:
@drawing Graph.build()
 |> add_specs_to_graph([
 group_spec(@lines, t: [100, 50]),
 group_spec(@text, t: [150, 50])
])
If you have a smaller graph or just like to see everything in one
place, you might prefer using group_spec_r/2:
@line {{0, 0}, {60, 60}}

@drawing Graph.build()
 |> add_specs_to_graph([
 group_spec_r([t: {100, 50}], [
 line_spec(@line, stroke: {4, :red}),
 line_spec(@line, stroke: {20, :green}, cap: :butt, t: {60, 0}),
 line_spec(@line, stroke: {20, :yellow}, cap: :round, t: {120, 0})
]),
 group_spec_r([t: {150, 50}], [
 text_spec("Hello", translate: {0, 40}),
 text_spec("World", translate: {90, 40}, fill: :yellow),
])
])
These examples use add_specs_to_graph/2, a simple helper that
converts specs into primitives and adds them to a graph.
Style options
Style options affect the way primitives are drawn. They include options such
as :fill, :stroke, :font and many more. See the Scenic.Primitive.Style documentation
for the full list. Style options are inherited down the graph. In other words,
if you set a style on the root of the graph like this:
Graph.build(font_size: 24), then all text items in all groups will be
rendered with a point size of 24 unless they set a different size.
Not every primitive accepts every style. For example, it doesn't make much
sense to apply a font to a rectangle. If you try, the rectangle will ignore
that value. See the documentation for each primitive for a list of what styles
they pay attention to.
Transforms that are applied to a Group are inherited by all primitives in
that group's branch of the tree. Note that style inheritance does not
cross SceneRef boundaries.
Transform options
Transform options affect the size, position and rotation of elements in the
graph. Any transform you can express as a 4x4 matrix of floats, you can apply
to any primitive in the graph, including groups and SceneRefs.
Transform options are applied on the element they are specified on. If
you specify a transform on a group, then it is applied to everything
rendered in that branch of the graph tree.
This is done mathematically as a "stack" of transforms. As the renderer
traverses up and down the graph, transforms are pushed and popped from the
matrix stack as appropriate. Transform inheritance does cross SceneRef
boundaries.
Draw Order
Primitives will be drawn in the order you add them to the graph.
For example, the graph below draws text on top of a filled rectangle. If the order
of the text and rectangle were reversed, they would both still be rendered, but
the text would not be visible because the rectangle would cover it up.
@graph Graph.build(font: {:roboto, 20})
|> rect({100, 200}, color: :blue)
|> text("Hello World", id: :hello, translate: {10, 10})

 Anchor for this section

 Summary

 Functions

 add_specs_to_graph(g, list)

 Given a graph and a list of deferred primitive specifications,
run the specs in order, adding the primitives to the graph.

 add_specs_to_graph(g, list, options)

 arc(graph_or_primitive, arc, opts \\ [])

 Add an arc to a graph

 arc_spec(arc_params, opts \\ [])

 Create the specification that adds an arc to a graph.

 circle(graph_or_primitive, radius, opts \\ [])

 Add a Circle to a graph.

 circle_spec(radius, opts \\ [])

 Create the specification that adds a circle to a graph.

 ellipse(graph_or_primitive, radii, opts \\ [])

 Add an Ellipse to a graph.

 ellipse_spec(radii, opts \\ [])

 Create the specification that adds an ellipse to a graph.

 group(graph, builder, opts \\ [])

 Create a new branch in a Graph.

 group_spec(list, opts)

 Bundle a list of specifications together, and return a function that,
when called, will add those specs as a group to a graph.

 group_spec_r(opts, list)

 Bundle a list of specifications together, and return a function that,
when called, will add those specs as a group to a graph.

 line(graph_or_primitive, line, opts \\ [])

 Add a line to a graph.

 line_spec(line_params, opts \\ [])

 Create the specification that adds a line to a graph.

 path(graph_or_primitive, elements, opts \\ [])

 Add custom, complex shape to a graph.

 path_spec(elements, opts \\ [])

 Create the specification that adds a path to a graph.

 quad(graph_or_primitive, quad, opts \\ [])

 Add a Quadrilateral (quad) to a graph.

 quad_spec(corners, opts \\ [])

 Create the specification that adds a quad to a graph.

 rect(graph_or_primitive, rect, opts \\ [])

 Shortcut to the rectangle/3 function.

 rect_spec(dims, opts \\ [])

 Create the specification that adds a rectangle to a graph.

 rectangle(graph_or_primitive, rectangle, opts \\ [])

 Add a rectangle to a graph.

 rectangle_spec(dims, opts \\ [])

 Create the specification that adds a rectangle to a graph.

 rounded_rectangle(graph_or_primitive, rounded_rectangle, opts \\ [])

 Add a rounded rectangle to a graph.

 rounded_rectangle_spec(dims, opts \\ [])

 Create the specification that adds a rounded rectangle to a graph.

 rrect(graph_or_primitive, rrect, opts \\ [])

 Shortcut to the rounded_rectangle/3 function.

 rrect_spec(dims, opts \\ [])

 Create the specification that adds a rounded rectangle to a graph.

 script(graph_or_primitive, name, opts \\ [])

 Add a named script to a graph.

 script_spec(name, opts \\ [])

 Create the specification that adds a script to a graph.

 sector(graph_or_primitive, sector, opts \\ [])

 Add a sector to a graph

 sector_spec(params, opts \\ [])

 Create the specification that adds a sector ref to a graph.

 sprites(graph_or_primitive, sprites, opts \\ [])

 Add a sprites list a graph.

 sprites_spec(sprites, opts \\ [])

 Create the specification that adds a sprites list to a graph.

 text(graph_or_primitive, text, opts \\ [])

 Adds text to a graph.

 text_spec(string, opts \\ [])

 Create the specification that adds text to a graph.

 triangle(graph_or_primitive, triangle, opts \\ [])

 Add a Triangle to a graph.

 triangle_spec(corners, opts \\ [])

 Create the specification that adds a triangle to a graph.

 update_opts(p, opts)

 Update the options of a primitive without changing its data.

 Anchor for this section

Functions

 Link to this function

 add_specs_to_graph(g, list)

 View Source

 @spec add_specs_to_graph(Scenic.Graph.t(), [Scenic.Graph.deferred(), ...]) ::
 Scenic.Graph.t()

Given a graph and a list of deferred primitive specifications,
run the specs in order, adding the primitives to the graph.
Example:
items = [
 text_spec("hello "),
 text_spec("world")
]

graph = graph |> add_specs_to_graph(items)
If given a third parameter, the specs are wrapped in a group, and that
parameter is used as the group's options.
graph = graph |> add_specs_to_graph(items, t: {100,100})

 Link to this function

 add_specs_to_graph(g, list, options)

 View Source

 @spec add_specs_to_graph(Scenic.Graph.t(), [Scenic.Graph.deferred(), ...], keyword()) ::
 Scenic.Graph.t()

 Link to this function

 arc(graph_or_primitive, arc, opts \\ [])

 View Source

 @spec arc(
 source :: Scenic.Graph.t() | Scenic.Primitive.t(),
 arc :: {radius :: number(), angle :: number()},
 options :: list()
) :: Scenic.Graph.t() | Scenic.Primitive.t()

Add an arc to a graph
An arc is the outer edge of a part of a circle or ellipse. It
is the sort of thing you would use a compass to draw on a piece
of paper. It has a radius, and angle that defines how much of
the arc to sweep through. The angle is specified in radians.
Data:
{radius, angle}
If you want something that looks like a piece of pie (maybe for a
pie chart??), then you want a Sector, not an Arc.
To create an arc of an ellipse, create a normal arc, and apply
a :scale transform with unequal x and y sizing.
The following example will draw a simple arc with a radius of 100,
starting straight out to the right, then going down 0.4 radians.
graph
|> arc({100, 0.6})

 note

 Note

The format for Arc has changed since v0.10. It used to be
{radius, start_angle, end_angle}. You can achieve the same effect in the
new, simpler format by using the same radius and the new angle is the
difference between the old end_angle and start_angle. Then you can apply
a rotation transform to get it in the right position.

 styles

 Styles

Arcs honor the following styles
	:hidden - If true, the outline is rendered. If false, it is skipped.
Default: false.
	:fill - Fills in the interior with the specified paint. If not set, the
default is to not draw anything in the interior. This is similar to specifying
fill: :clear, but optimized.
	:stroke - Draws the outline with the specified width and paint. The default
if not set is {1, :white}.

Example:
graph
|> arc({100, 0.4}, stroke: {4, :blue})

 Link to this function

 arc_spec(arc_params, opts \\ [])

 View Source

 @spec arc_spec(
 arc :: {radius :: number(), angle :: number()},
 options :: list()
) :: Scenic.Graph.deferred()

Create the specification that adds an arc to a graph.
See the documentation for arc/3 for details.
Example:
arc = arc_spec({100, 0, 0.4}, stroke: {4, :blue})
graph = arc.(graph)

 note

 Note

The format for Arc has changed since v0.10. It used to be
{radius, start_angle, end_angle}. You can achieve the same effect in the
new, simpler format by using the same radius and the new angle is the
difference between the old end_angle and start_angle. Then you can apply
a rotation transform to get it in the right position.

 Link to this function

 circle(graph_or_primitive, radius, opts \\ [])

 View Source

 @spec circle(
 source :: Scenic.Graph.t() | Scenic.Primitive.t(),
 radius :: number(),
 options :: list()
) :: Scenic.Graph.t() | Scenic.Primitive.t()

Add a Circle to a graph.
Circles are defined by a radius.
The following example will draw circle with radius 100.
graph
|> circle(100)

 styles

 Styles

Circles honor the following styles
	:hidden - If true, the outline is rendered. If false, it is skipped.
Default: false.
	:fill - Fills in the interior with the specified paint. If not set, the
default is to not draw anything in the interior. This is similar to specifying
fill: :clear, but more optimized.
	:stroke - The width and paint to draw the outline with. If the stroke is not
specified, the default stroke is {1, :white}.

Example:
graph
|> circle(40, fill: :red, stroke: {3, :blue}, translate: {100, 200})
While you could apply a :rotate transform to a circle, it wouldn't do
anything visible unless you also add a uneven :scale transform to make it
into an ellipse.

 Link to this function

 circle_spec(radius, opts \\ [])

 View Source

 @spec circle_spec(
 radius :: number(),
 options :: list()
) :: Scenic.Graph.deferred()

Create the specification that adds a circle to a graph.
See the documentation for circle/3 for details.
Example:
circle = circle_spec(40, stroke: {4, :blue})
graph = circle.(graph)

 Link to this function

 ellipse(graph_or_primitive, radii, opts \\ [])

 View Source

 @spec ellipse(
 source :: Scenic.Graph.t() | Scenic.Primitive.t(),
 radii :: Scenic.Math.vector_2(),
 options :: list()
) :: Scenic.Graph.t() | Scenic.Primitive.t()

Add an Ellipse to a graph.
Ellipses are defined by two radii.
The following example will draw an ellipse.
graph
|> ellipse({100, 140})
If you want the ellipse to be on an angle, apply a :rotate transform.

 styles

 Styles

Ellipses honor the following styles
	:hidden - If true, the outline is rendered. If false, it is skipped.
Default: false.
	:fill - Fills in the interior with the specified paint. If not set, the
default is to not draw anything in the interior. This is similar to specifying
fill: :clear, but optimized.
	:stroke - The width and paint to draw the outline with. If the stroke is not
specified, the default stroke is {1, :white}

Example:
graph
|> ellipse({40, 60}, fill: :red, stroke: {3, :blue}, rotate: 0.4)

 Link to this function

 ellipse_spec(radii, opts \\ [])

 View Source

 @spec ellipse_spec(
 radii :: Scenic.Math.vector_2(),
 options :: list()
) :: Scenic.Graph.deferred()

Create the specification that adds an ellipse to a graph.
See the documentation for ellipse/3 for details.
Example:
ellipse = ellipse_spec({ 40, 60 }, stroke: {4, :blue})
graph = ellipse.(graph)

 Link to this function

 group(graph, builder, opts \\ [])

 View Source

 @spec group(
 source :: Scenic.Graph.t(),
 builder :: function(),
 options :: list()
) :: Scenic.Graph.t()

Create a new branch in a Graph.
The Group primitive creates a new branch in the Graph's tree. The data field
you pass in is a function callback, which allows you to add more
primitives inside the new group.
The single parameter to your anonymous callback is a transformed graph that
knows to add new primitives to the right branch in the tree.
@graph Graph.build()
|> text("Hello World")
|> group(fn(g) ->
 g
 |> text("I'm in the Group")
end, translate: {40,200})
NOTE: Unlike other primitives, group/3 currently only takes a graph and not
an existing group primitive.

 styles

 Styles

Groups will accept all styles. They don't use the styles directly, but
any styles you set on a group become the new defaults for all primitives
you add to that group's branch in the graph.
The :hidden style is particularly effective when applied to a group as it
causes that entire branch to be drawn, or not.

 transforms

 Transforms

Any transforms you apply to a group are added into the render matrix stack and
are applied to all items in that branch, including crossing SceneRefs.

 Link to this function

 group_spec(list, opts)

 View Source

 @spec group_spec(
 items :: Scenic.Graph.deferred() | [Scenic.Graph.deferred(), ...],
 options :: list()
) :: Scenic.Graph.deferred()

Bundle a list of specifications together, and return a function that,
when called, will add those specs as a group to a graph.
The options are the same as for group/3
Example:
line = {{0, 0}, {60, 60}}

lines = [
 line_spec(@line, stroke: {4, :red}),
 line_spec(@line, stroke: {20, :green}, cap: :butt, t: {60, 0}),
 line_spec(@line, stroke: {20, :yellow}, cap: :round, t: {120, 0}),
]

line_group = group_spec(lines, t: [100, 100])

graph = line_group.(graph)
You can also pass in a single primitive spec:
line = line_spec({{0, 0}, {60, 60}}, stroke: {4, :red}),
line_group = group_spec(line, t: [100, 100])

graph = line_group.(graph)

 Link to this function

 group_spec_r(opts, list)

 View Source

 @spec group_spec_r(
 options :: list(),
 items :: Scenic.Graph.deferred() | [Scenic.Graph.deferred(), ...]
) :: Scenic.Graph.deferred()

Bundle a list of specifications together, and return a function that,
when called, will add those specs as a group to a graph.
The options are the same as for group_spec/2, but reversed, making
it suitable to use when declaring graph specs as big literals due to
the increased readability.
Example:
line = {{0, 0}, {60, 60}}

line_group = group_spec_r([t: {100, 100}], [
 line_spec(@line, stroke: {4, :red}),
 line_spec(@line, stroke: {20, :green}, cap: :butt, t: {60, 0}),
 line_spec(@line, stroke: {20, :yellow}, cap: :round, t: {120, 0}),
])

graph = line_group.(graph)
You can also pass in a single primitive spec:
line = line_spec({{0, 0}, {60, 60}}, stroke: {4, :red}),
line_group = group_spec_r([t: {100, 100}], line)

graph = line_group.(graph)

 Link to this function

 line(graph_or_primitive, line, opts \\ [])

 View Source

 @spec line(
 source :: Scenic.Graph.t() | Scenic.Primitive.t(),
 line :: Scenic.Math.line(),
 options :: list()
) :: Scenic.Graph.t() | Scenic.Primitive.t()

Add a line to a graph.
Lines are pretty simple. They start at one point and go to another.
Data:
{ {from_x, from_y}, {to_x,to_y} }
The following example will draw a diagonal line from the upper left
corner {0,0} to the point {100,200}, which is down and to the right.
graph
|> line({{0,0}, {100,200}})

 styles

 Styles

Lines honor the following styles
	:hidden - If true, the line is skipped. If false, the line is rendered.
Default: false.
	:stroke - The width and paint to draw the line with. If the stroke is not
specified, the default stroke is {1, :white}.
	:cap - Specifies the shape of the ends of the line. Can be one of :round,
:butt, or :square. If cap is not specified, then the default is :butt.

Example:
graph
|> line({{0,0}, {100,200}}, stroke: {4, :blue}, cap: :round)

 Link to this function

 line_spec(line_params, opts \\ [])

 View Source

 @spec line_spec(
 line :: Scenic.Math.line(),
 options :: list()
) :: Scenic.Graph.deferred()

Create the specification that adds a line to a graph.
See the documentation for line/3 for details.
Example:
line = line_spec({{0,0}, {100,200}, stroke: {4, :blue})
graph = line.(graph)

 Link to this function

 path(graph_or_primitive, elements, opts \\ [])

 View Source

 @spec path(
 source :: Scenic.Graph.t() | Scenic.Primitive.t(),
 elements :: list(),
 options :: list()
) :: Scenic.Graph.t() | Scenic.Primitive.t()

Add custom, complex shape to a graph.
A custom path is defined by a list of actions that the renderer
can follow. This is about as close as Scenic gets to immediate
mode rendering.
See Scenic.Primitive.Path for details.
graph
|> path([
 :begin,
 {:move_to, 10, 20},
 {:line_to, 30, 40},
 {:bezier_to, 10, 11, 20, 21, 30, 40},
 {:quadratic_to, 10, 11, 50, 60},
 {:arc_to, 70, 80, 90, 100, 20},
 :close_path,
],
 stroke: {4, :blue}, cap: :round
)

 Link to this function

 path_spec(elements, opts \\ [])

 View Source

 @spec path_spec(
 elements :: list(),
 options :: list()
) :: Scenic.Graph.deferred()

Create the specification that adds a path to a graph.
See the documentation for path/3 for details.
Example:
path = path_spec([
 :begin,
 {:move_to, 10, 20},
 {:line_to, 30, 40},
 {:bezier_to, 10, 11, 20, 21, 30, 40},
 {:quadratic_to, 10, 11, 50, 60},
 {:arc_to, 70, 80, 90, 100, 20},
 :close_path,
],
 stroke: {4, :blue}, cap: :round
)

graph = path.(graph)

 Link to this function

 quad(graph_or_primitive, quad, opts \\ [])

 View Source

 @spec quad(
 source :: Scenic.Graph.t() | Scenic.Primitive.t(),
 quad :: Scenic.Math.quad(),
 options :: list()
) :: Scenic.Graph.t() | Scenic.Primitive.t()

Add a Quadrilateral (quad) to a graph.
Quads are defined by four points on the screen.
Data:
{ {x0,y0}, {x1,y1}, {x2,y2}, {x3,y3} }
The following example will draw a quad.
graph
|> quad({{10,20}, {100,20}, {90, 120}, {15, 70}})

 styles

 Styles

Quads honor the following styles
	:hidden - If true, the outline is rendered. If false, it is skipped.
Default: false.
	:fill - Fills in the interior with the specified paint. If not set, the
default is to not draw anything in the interior. This is similar to specifying
fill: :clear, except optimized out to do nothing.
	:stroke - The width and paint to draw the outline with. If the stroke is not
specified then the default stroke is {1, :white}
	:join - Specifies how the lines are joined together where they meet. Can be
one of :miter, :round, or :bevel. If join is not specified, then
the default is :miter
	:miter_limit - Apply an optional miter limit to the joints. If the angle
is very shallow, the pointy bit might extend out far beyond the joint.
Specifying :miter_limit puts a limit on the joint and bevels it if
it goes out too far.

Example:
graph
|> quad({{10,20}, {100,20}, {90, 120}, {15, 70}},
 fill: :red, stroke: {3, :blue}, join: :round)

 Link to this function

 quad_spec(corners, opts \\ [])

 View Source

 @spec quad_spec(
 corners :: Scenic.Math.quad(),
 options :: list()
) :: Scenic.Graph.deferred()

Create the specification that adds a quad to a graph.
See the documentation for quad/3 for details.
Example:
quad = quad_spec(
 {{10,20}, {100,20}, {90, 120}, {15, 70}},
 fill: :red, stroke: {3, :blue}, join: :round
)

graph = quad.(graph)

 Link to this function

 rect(graph_or_primitive, rect, opts \\ [])

 View Source

 @spec rect(
 source :: Scenic.Graph.t() | Scenic.Primitive.t(),
 rect :: width_and_height(),
 options :: list()
) :: Scenic.Graph.t() | Scenic.Primitive.t()

Shortcut to the rectangle/3 function.
rect/3 is the same as calling rectangle/3

 Link to this function

 rect_spec(dims, opts \\ [])

 View Source

 @spec rect_spec(
 dims :: width_and_height(),
 options :: list()
) :: Scenic.Graph.deferred()

Create the specification that adds a rectangle to a graph.
See the documentation for rectangle/3 for details.
Example:
rect = rect_spec(
 {{10,20}, {100,20}},
 fill: :red, stroke: {3, :blue}, join: :round
)

graph = rect.(graph)

 Link to this function

 rectangle(graph_or_primitive, rectangle, opts \\ [])

 View Source

 @spec rectangle(
 source :: Scenic.Graph.t() | Scenic.Primitive.t(),
 rectangle :: {width :: number(), height :: number()},
 options :: list()
) :: Scenic.Graph.t() | Scenic.Primitive.t()

Add a rectangle to a graph.
Rectangles are defined by a width and height.
Data:
{ width, height }
The following example will draw a rectangle.
graph
|> rectangle({100, 200})

 styles

 Styles

Rectangles honor the following styles
	:hidden - If true, the outline is rendered. If false, it is skipped.
Default: false.
	:fill - Fills in the interior with the specified paint. If not set, the
default is to not draw anything in the interior. This is similar to specifying
fill: :clear, except optimized out to do nothing.
	:stroke - The width and paint to draw the outline with. If the stroke is not
specified then the default stroke is {1, :white}
	:join - Specifies how the lines are joined together where they meet. Can be
one of :miter, :round, or :bevel. If join is not specified, then
the default is :miter
	:miter_limit - Apply an optional miter limit to the joints. If the angle
is very shallow, the pointy bit might extend out far beyond the joint.
Specifying :miter_limit puts a limit on the joint and bevels it if
it goes out too far.

Example:
graph
|> rectangle({100, 200},
 fill: :red, stroke: {3, :blue}, join: :round)

 Link to this function

 rectangle_spec(dims, opts \\ [])

 View Source

 @spec rectangle_spec(
 dims :: width_and_height(),
 options :: list()
) :: Scenic.Graph.deferred()

Create the specification that adds a rectangle to a graph.
See the documentation for rectangle/3 for details.
Example:
rect = rectangle_spec(
 {{10,20}, {100,20}},
 fill: :red, stroke: {3, :blue}, join: :round
)

graph = rect.(graph)

 Link to this function

 rounded_rectangle(graph_or_primitive, rounded_rectangle, opts \\ [])

 View Source

 @spec rounded_rectangle(
 source :: Scenic.Graph.t() | Scenic.Primitive.t(),
 rounded_rectangle ::
 {width :: number(), height :: number(), radius :: number()},
 options :: list()
) :: Scenic.Graph.t() | Scenic.Primitive.t()

Add a rounded rectangle to a graph.
Rounded rectangles are defined by a width, height, and radius.
Data:
{ width, height, radius }
The following example will draw a rounded rectangle.
graph
|> rounded_rectangle({100, 200, 8})

 styles

 Styles

Rounded rectangles honor the following styles
	:hidden - If true, the outline is rendered. If false, it is skipped.
Default: false.
	:fill - Fills in the interior with the specified paint. If not set, the
default is to not draw anything in the interior. This is similar to specifying
fill: :clear, except optimized out to do nothing.
	:stroke - The width and paint to draw the outline with. If the stroke is not
specified then the default stroke is {1, :white}

Example:
graph
|> rounded_rectangle({100, 200, 8},
 fill: :red, stroke: {3, :blue})

 Link to this function

 rounded_rectangle_spec(dims, opts \\ [])

 View Source

 @spec rounded_rectangle_spec(
 dims :: width_height_and_radius(),
 options :: list()
) :: Scenic.Graph.deferred()

Create the specification that adds a rounded rectangle to a graph.
See the documentation for rounded_rectangle/3 for details.
Example:
rect = rounded_rectangle_spec(
 {{10,20}, {100,20}},
 fill: :red, stroke: {3, :blue}, join: :round
)

graph = rect.(graph)

 Link to this function

 rrect(graph_or_primitive, rrect, opts \\ [])

 View Source

 @spec rrect(
 source :: Scenic.Graph.t() | Scenic.Primitive.t(),
 rrect :: width_height_and_radius(),
 options :: list()
) :: Scenic.Graph.t() | Scenic.Primitive.t()

Shortcut to the rounded_rectangle/3 function.
rrect/3 is the same as calling rounded_rectangle/3

 Link to this function

 rrect_spec(dims, opts \\ [])

 View Source

 @spec rrect_spec(
 dims :: width_height_and_radius(),
 options :: list()
) :: Scenic.Graph.deferred()

Create the specification that adds a rounded rectangle to a graph.
See the documentation for rounded_rectangle/3 for details.
Example:
rect = rrect_spec(
 {{10,20}, {100,20}},
 fill: :red, stroke: {3, :blue}, join: :round
)

graph = rect.(graph)

 Link to this function

 script(graph_or_primitive, name, opts \\ [])

 View Source

 @spec script(
 source :: Scenic.Graph.t() | Scenic.Primitive.t(),
 name :: atom() | String.t() | pid() | reference(),
 options :: list()
) :: Scenic.Graph.t() | Scenic.Primitive.t()

Add a named script to a graph.
Scripts are defined by a name, which can be an atom, string, pid or reference.
NOTE: this doesn't add the script itself. Only places a reference to it in
the graph. You still need to add the script to the ViewPort via
Scenic.ViewPort.put_script/4.
Data:
name

 styles

 Styles

Setting styles on a script is similar to setting styles on a group
Example:
graph
|> script(:my_script)

 Link to this function

 script_spec(name, opts \\ [])

 View Source

 @spec script_spec(
 name :: any(),
 options :: list()
) :: Scenic.Graph.deferred()

Create the specification that adds a script to a graph.
See the documentation for script/3 for details.
Example:
script = script_spec("script_name", translate: {20,30})

 Link to this function

 sector(graph_or_primitive, sector, opts \\ [])

 View Source

 @spec sector(
 source :: Scenic.Graph.t() | Scenic.Primitive.t(),
 sector :: sector(),
 options :: list()
) :: Scenic.Graph.t() | Scenic.Primitive.t()

Add a sector to a graph
A sector looks like a piece of pie. It is wedge shaped with a pointy
bit on one side and a rounded bit on the other. It has a radius, and angle that
defines how much of the arc to sweep through. The angle is specified in radians.
Data:
{radius, angle}
To create a sector of an ellipse, create a normal sector, and apply
a :scale transform with unequal x and y sizing.
The following example will draw a sector with a radius of 100,
starting straight out to the right, then going down 0.4 radians.
|> sector({100, 0.4})

 note

 Note

The format for Sector has changed since v0.10. It used to be
{radius, start_angle, end_angle}. You can achieve the same effect in the
new, simpler format by using the same radius and the new angle is the
difference between the old end_angle and start_angle. Then you can apply
a rotation transform to get it in the right position.

 styles

 Styles

Sectors honor the following styles
	:hidden - If true, the outline is rendered. If false, it is skipped.
Default: false.
	:fill - Fills in the interior with the specified paint. If not set, the
default is to not draw anything in the interior. This is similar to specifying
fill: :clear, except optimized out to do nothing.
	:stroke - Draws the outline with the specified width and paint. The default
if not set is {1, :white}

When you apply a stroke to a sector, it goes around the whole piece
of pie. If you only want to stroke the curvy part, which is common
in pie charts, overlay an Arc on top of the sector and stroke that.
If you also put both the sector and the arc together in a Group, you can
then apply transforms to the group to position both the primitives as a single
unit.
Example:
graph
|> group(fn(g) ->
 g
 |> sector({100, 0, 0.4}, fill: :red)
 |> arc({100, 0, 0.4}, stroke: {4, :blue})
end, translate: {30, 40})

 Link to this function

 sector_spec(params, opts \\ [])

 View Source

 @spec sector_spec(
 params :: sector(),
 options :: list()
) :: Scenic.Graph.deferred()

Create the specification that adds a sector ref to a graph.
See the documentation for sector/3 for details.
Example:
sector = sector_spec({100, 0.4}, fill: :red)
graph = sector.(graph)

 note

 Note

The format for Sector has changed since v0.10. It used to be
{radius, start_angle, end_angle}. You can achieve the same effect in the
new, simpler format by using the same radius and the new angle is the
difference between the old end_angle and start_angle. Then you can apply
a rotation transform to get it in the right position.

 Link to this function

 sprites(graph_or_primitive, sprites, opts \\ [])

 View Source

 @spec sprites(
 source :: Scenic.Graph.t() | Scenic.Primitive.t(),
 Scenic.Primitive.Sprites.t(),
 options :: list()
) :: Scenic.Graph.t() | Scenic.Primitive.t()

Add a sprites list a graph.

 Link to this function

 sprites_spec(sprites, opts \\ [])

 View Source

 @spec sprites_spec(
 sprites :: Scenic.Primitive.Sprites.t(),
 options :: list()
) :: Scenic.Graph.deferred()

Create the specification that adds a sprites list to a graph.
See the documentation for sprites/3 for details.
Example:
sprites = sprites_spec({:static, "source_texure"}, translate: {20,30})

 Link to this function

 text(graph_or_primitive, text, opts \\ [])

 View Source

 @spec text(
 source :: Scenic.Graph.t() | Scenic.Primitive.t(),
 text :: String.t(),
 options :: list()
) :: Scenic.Graph.t() | Scenic.Primitive.t()

Adds text to a graph.
Text is pretty simple. Specify the string you would like drawn.
The following example will draw some text on the screen.
graph
|> text("Hello World", translate: {20, 20})

 styles

 Styles

Text honors the following styles
	:hidden - If true, the outline is rendered. If false, it is skipped.
Default: false.
	:fill - The paint to color the text with. If not specified, the default
is :white. Note: Text can only be filled with solid colors at this time.
	:font - Specifies font family to draw the text with. The built-in system
fonts are :roboto and :roboto_mono. If not specified, the
default is :roboto. You can also load your own font into the Scenic.Cache,
then specify its key for the font.
	:font_blur - Draw the text with a blur effect. If you draw text with blur,
then draw it again without blur, slightly offset, you get a nice drop shadow
effect. The default is to draw with no blur.
	:text_align - Specify the alignment of the text you are drawing. You will
usually specify one of: :left, :center, or :right. See
Scenic.Primitive.Style.TextAlign for details.
	:text_height - Specify the vertical spacing between rows of text.

Example:
graph
|> text("Hello World", fill: :yellow, font: :roboto_mono
 font_blur: 2.0, text_align: :center)

 Link to this function

 text_spec(string, opts \\ [])

 View Source

 @spec text_spec(
 string :: String.t(),
 options :: list()
) :: Scenic.Graph.deferred()

Create the specification that adds text to a graph.
See the documentation for text/3 for details.
Example:
text = text_spec("a wombat is a marsupial", fill: :red)
graph = text.(graph)

 Link to this function

 triangle(graph_or_primitive, triangle, opts \\ [])

 View Source

 @spec triangle(
 source :: Scenic.Graph.t() | Scenic.Primitive.t(),
 triangle :: Scenic.Math.triangle(),
 options :: list()
) :: Scenic.Graph.t() | Scenic.Primitive.t()

Add a Triangle to a graph.
Triangles are defined by three points on the screen.
Data:
{ {x0,y0}, {x1,y1}, {x2,y2} }
The following example will draw a triangle.
graph
|> triangle({{10,20}, {100,20}, {50, 120}})

 styles

 Styles

Triangles honor the following styles
	:hidden - If true, the outline is rendered. If false, it is skipped.
Default: false.
	:fill - Fills in the interior with the specified paint. If not set, the
default is to not draw anything in the interior. This is similar to specifying
fill: :clear, but optimized.
	:stroke - The width and paint to draw the outline with. If the stroke is not
specified, the default stroke is {1, :white}.
	:join - Specifies how the lines are joined together where they meet. Can be
one of :miter, :round, or :bevel. If join is not specified, then
the default is :miter.
	:miter_limit - Apply an optional miter limit to the joints. If the angle
is very shallow, the pointy bit might extend out far beyond the joint.
Specifying :miter_limit puts a limit on the joint and bevels it if
it goes out too far.

Example:
graph
|> triangle({{10,20}, {100,20}, {50, 120}}, fill: :red,
 stroke: {3, :blue}, join: :round)

 Link to this function

 triangle_spec(corners, opts \\ [])

 View Source

 @spec triangle_spec(
 corners :: Scenic.Math.triangle(),
 options :: list()
) :: Scenic.Graph.deferred()

Create the specification that adds a triangle to a graph.
See the documentation for triangle/3 for details.
Example:
triangle = triangle_spec({{10,20}, {100,20}, {50, 120}}, fill: :red)
graph = triangle.(graph)

 Link to this function

 update_opts(p, opts)

 View Source

 @spec update_opts(
 Scenic.Primitive.t(),
 options :: list()
) :: Scenic.Primitive.t()

Update the options of a primitive without changing its data.
This is not used during graph creation - only when modifying it later.
All the primitive-specific helpers require you to specify the
data for the primitive. If you only want to modify a transform
or add a style, then use this function.
Example:
Graph.modify(graph, :rect, fn(p) ->
 update_opts(p, rotate: 0.5)
end)

or, more compactly...

Graph.modify(graph, :rect, &update_opts(&1, rotate: 0.5))

Scenic.PubSub

Scenic.PubSub is a combination pub/sub server and data cache.
It is intended to be the interface between sensors (or other data sources) and Scenic scenes.
Why Scenic.PubSub
Sensors (or other data sources) and scenes often need to communicate, but tend to operate on different timelines.
Some sensors update fairly slowly or don't behave well when asked to get data at random times by multiple clients.
Scenic.PubSub is backed by a GenServer that collects data from a data source in a well-behaved manner,
yet is able to serve that data on demand or by subscription to many clients.
Global Scope
It is important to note that Scenic.PubSub is global in scope. In other words, anything published
into Scenic.PubSub is visible to all ViewPorts and Scenes.
Registering Data Sources
Before a process can start publishing data from a source, it must register a source id with Scenic.PubSub.
This source id should be an atom. This prevents other processes from stepping on that data and alerts any
subscribing processes that the data is coming online.
 Scenic.PubSub.register(source_id)
The source_id parameter must be an atom that names the sensor. Subscribers will use this id to request
data or subscriptions to the source.
You can can also unregister data sources if they are no longer available.
 Scenic.PubSub.unregister(source_id)
Simply exiting the data source process does also cleans up its registration.
Publishing Data
When a sensor process publishes data, two things happen. First, that data is cached in an :ets table so
that future requests for that data from scenes happen quickly and don't need to bother the data
source process. Second, any processes that have subscribed to that source are sent a message containing the new data.
 Scenic.PubSub.publish(source_id, value)
The source_id parameter must be the atom that was previously registered.
The value parameter can be anything that makes sense for the data source.
Subscribing to a Data Source
Scenes (or any other process) can subscribe to a data source. They will receive messages when the source updates its data, comes online, or goes away.
 Scenic.PubSub.subscribe(source_id)
The source_id parameter is the atom registered for the data source. Note that the name source does NOT
need to be registered when a listening process subscribes to it. When the source process eventually registers and
starts publishing data, the listening subscribers will be notified.
The subscribing process will then start receiving messages that can be handled with handle_info/2
	event	message sent to subscribers
	data published	{{Scenic.PubSub, :data}, {source_id, value, timestamp}}
	source registered	{{Scenic.PubSub, :registered}, {source_id, opts}}
	source unregistered	{{Scenic.PubSub, :unregistered}, source_id}

Scenes can also unsubscribe if they are no longer interested in updates.
 Scenic.PubSub.unsubscribe(source_id)
Other functions
Any process can get data from a source on demand, whether or not it is a subscriber.
 Scenic.PubSub.get(source_id)
 >> {:ok, data}
Any process can list the currently registered data sources.
 Scenic.PubSub.list()
 >> [{source_id, opts, pid}]

 Anchor for this section

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 fetch(source_id)

 Retrieve the cached data for a named data source.

 get(source_id)

 Retrieve the cached data value for a named data source.

 get!(source_id)

 Retrieve the cached data value for a named data source.

 list()

 List the registered data sources.

 publish(source_id, data)

 Publish a data point from a data source.

 query(source_id)

 Retrieve the full cached data for a named data source.

 register(source_id, opts \\ [])

 Register the calling process as a data source for the named id.

 subscribe(source_id)

 Subscribe the calling process to receive events about a data source.

 unregister(source_id)

 Unregister the calling process as a data source for a data source.

 unsubscribe(source_id)

 Unsubscribe the calling process from receive events about a data source.

 Anchor for this section

Functions

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 fetch(source_id)

 View Source

 @spec fetch(source_id :: atom()) :: {:ok, any()} | {:error, :not_found}

Retrieve the cached data for a named data source.
This data is pulled from an :ets table and does not put load on the data source itself.

 parameters

 Parameters

	source_id an atom that is registered to a data source.

 return-value

 Return Value

 {:ok, {source_id, data, timestamp}}
	source_id is the atom representing the data source.
	data source_id whatever data the data source last published.
	timestamp is the time - from :os.system_time(:micro_seconds) - the last data was published.

If the data source is either not registered, or has not yet published any data, get returns
 {:error, :no_data}

 Link to this function

 get(source_id)

 View Source

 @spec get(source_id :: atom()) :: any() | nil

Retrieve the cached data value for a named data source.
This data is pulled from an :ets table and does not put load on the data source itself.

 parameters

 Parameters

	source_id an atom that is registered to a data source.

 return-value

 Return Value

 data
If the data source is either not registered, or has not yet published any data, get returns
 nil

 Link to this function

 get!(source_id)

 View Source

 @spec get!(source_id :: atom()) :: any()

Retrieve the cached data value for a named data source.
Raises an error if the value is not registered
This data is pulled from an :ets table and does not put load on the data source itself.

 parameters

 Parameters

	source_id an atom that is registered to a data source.

 return-value

 Return Value

 data
If the data source is either not registered, or has not yet published any data, get returns
 nil

 Link to this function

 list()

 View Source

 @spec list() :: [{atom(), Keyword.t(), pid()}]

List the registered data sources.

 return-value

 Return Value

list/0 returns a list of registered data sources
 [{source_id, version, description, pid}]
	source_id is the atom representing the data source.
	opts options list of metadata about the data source.	:version is the version string supplied by the data source during registration.
	:description is the description string supplied by the data source during registration.
	:registered_at The system time the data source was registered at.

	pid is the pid of the data source's process.

 Link to this function

 publish(source_id, data)

 View Source

 @spec publish(source_id :: atom(), data :: any()) :: :ok

Publish a data point from a data source.
When a data source uses publish/2 to publish data, that data is recorded in the
cache and a
 {{Scenic.PubSub, :data}, {source_id, my_value, timestamp}}
message is sent to each subscriber. The timestamp is the current time in microseconds as returned
from :os.system_time(:micro_seconds).

 parameters

 Parameters

	source_id an atom that is registered to a data source.
	data the data to publish.

 return-value

 Return Value

On success, returns :ok
It returns {:error, :not_registered} if the caller is not the
registered process for the data source.

 Link to this function

 query(source_id)

 View Source

 @spec query(source_id :: atom()) :: {:ok, any()} | {:error, :not_found}

Retrieve the full cached data for a named data source.
This data is pulled from an :ets table and does not put load on the data source itself.

 parameters

 Parameters

	source_id an atom that is registered to a data source.

 return-value

 Return Value

 {:ok, {source_id, data, timestamp}}
	source_id is the atom representing the data source.
	data source_id whatever data the data source last published.
	timestamp is the time - from :os.system_time(:micro_seconds) - the last data was published.

If the data source is either not registered, or has not yet published any data, get returns
 {:error, :not_found}

 Link to this function

 register(source_id, opts \\ [])

 View Source

 @spec register(source_id :: atom(), opts :: Keyword.t()) ::
 {:ok, atom()} | {:error, :already_registered}

Register the calling process as a data source for the named id.

 parameters

 Parameters

	source_id the data source being registered.
	opts optional information about the data source.

Supported options:
	:version (String.t/0) - Data format version

	:description (String.t/0) - Your appropriate description

 return-value

 Return Value

On success, returns {:ok, source_id}
If source_id is already registered to another process, it returns
{:error, :already_registered}

 Link to this function

 subscribe(source_id)

 View Source

 @spec subscribe(source_id :: atom()) :: :ok

Subscribe the calling process to receive events about a data source.
The messages the subscriber will start receiving about a data source are:
	event	message sent to subscribers
	data published	{{Scenic.PubSub, :data}, {source_id, value, timestamp}}
	source registered	{{Scenic.PubSub, :registered}, {source_id, opts}}
	source unregistered	{{Scenic.PubSub, :unregistered}, source_id}

 parameters

 Parameters

	source_id an atom that is registered to a data source.

 return-value

 Return Value

On success, returns :ok

 Link to this function

 unregister(source_id)

 View Source

 @spec unregister(source_id :: atom()) :: :ok

Unregister the calling process as a data source for a data source.

 parameters

 Parameters

	source_id the data source being registered.

 return-value

 Return Value

Returns :ok

 Link to this function

 unsubscribe(source_id)

 View Source

 @spec unsubscribe(source_id :: atom()) :: :ok

Unsubscribe the calling process from receive events about a data source.
The caller will stop receiving events about a data source

 parameters

 Parameters

	source_id an atom that is registered to a data source.

 return-value

 Return Value

Returns :ok

Scenic.Scene behaviour

Overview
Scenes are the core of the UI model.
A Scene is a type of GenServer that maintains state, handles input,
events and other messages, and plays a role managing the supervision of
components/controls such as buttons and other input.
A brief aside
Before saying anything else I want to emphasize that the rest of your
application, meaning device control logic, sensor reading / writing,
services, whatever, does not need to have anything to do with Scenes.
In many cases I recommend treating those as separate GenServers in their
own supervision trees that you maintain. Then your Scenes would query or send
information to/from them via cast or call messages.
Part of the point of using Elixir/Erlang/OTP is separating this sort of
logic into independent trees. That way, an error in one part of your
application does not mean the rest of it will fail.
Scenes
Scenes are the core of the UI model. A scene consists of one or more
graphs, and a set of event handlers and filters to deal with user input
and other messages.
Think of a scene as being a little like an HTML page. HTML pages have:
	Structure (the DOM)
	Logic (Javascript)
	Links to other pages.

A Scene has:
	Structure (graphs),
	Logic (event handlers and filters)
	Transitions to other scenes. Well... it can request the ViewPort
to go to a different scene.

Your application is a collection of scenes that are in use at different times. There
is only ever one scene showing in a ViewPort at a given
time. However, scenes can instantiate components, effectively embedding their graphs
inside the main one. More on that below.
Graphs
Each scene should maintain at least one graph. You can build graphs
at compile time, or dynamically while your scene is running. Building
them at compile time has two advantages
	Performance: It is clearly faster to build the graph once during
build time than to build it repeatedly during runtime.
	Error checking: If your graph has an error in it, it is much
better to have it stop compilation than cause an error during runtime.

Example of building a graph during compile time:
@graph Scenic.Graph.build(font_size: 24)
 |> button({"Press Me", :button_id}, translate: {20, 20})
Rather than having a single scene maintain a massive graph of UI,
graphs can reference graphs in other scenes.
On a typical screen of UI, there is one scene
that is the root. Each control, is its own scene process with
its own state. These child scenes can in turn contain other
child scenes. This allows for strong code reuse, isolates knowledge
and logic to just the pieces that need it, and keeps the size of any
given graph to a reasonable size. For example, the
handlers of a check-box scene don't need to know anything about
how a slider works, even though they are both used in the same
parent scene. At best, they only need to know that they
both conform to the Component.Input behavior, and can thus
query or set each others value. Though it is usually
the parent scene that does that.
The application developer is responsible for building and
maintaining the scene's graph. It only enters the world of the
ViewPort when you call push_graph. Once you have called
push_graph, that graph is sent to the drivers and is out of your
immediate control. You update that graph by calling push_graph
again.
Scene Structure
The overall structure of a scene has several parts. It is a GenServer, which means you
have an input function and can implement the GenServer callbacks such as
handle_info/2, handle_cast/2, handle_call/3 and any others. The terms
you return from those callbacks is pretty much what you expect with the requirement that
the state is always a scene structure.
The init/3 callback takes 3 parameters. They are the scene structure (state), params that
the parent scene set up, and opts, which includes things like the id, theme, and some styles
that were set on the scene.
There are several additional callbacks that your scene can support. The main ones are
handle_input/2, and handle_event/3. If you are making a Component (a reusable scene), then
there are additional callbacks that allow it to play nicely with others.
Scene Example
This example shows a simple scene that contains a button. When the button is clicked, the
scene increments a counter and displays the number of clicks it has received.
defmodule MySimpleScene do
 use Scenic.Scene

 alias Scenic.Graph
 import Scenic.Primitives
 import Scenic.Components

 @initial_count 0

 # This graph is built at compile time so it doesn't do any work at runtime.
 # It could also be built in the init function (or any other) if you want
 # it to be dynamic based on the params or whatever.
 @graph Graph.build()
 |> group(fn graph ->
 graph
 |> text("Count: " <> inspect(@initial_count), id: :count)
 |> button("Click Me", id: :btn, translate: {0, 30})
 end,
 translate: {100, 100}
)

 # Simple function to return @graph.
 # @graph is built at compile time and stored directly in the BEAM file every
 # time it is used. A simple accessor function will cause it to be stored only once.
 # Do this when you build graphs at compile time to save space in your file.
 defp graph(), do: @graph

 # The Scenic.Scene init function
 @impl Scenic.Scene
 def init(scene, _params, _opts) do
 scene =
 scene
 |> assign(count: @initial_count)
 |> push_graph(graph())
 {:ok, scene}
 end

 @impl Scenic.Scene
 def handle_event({:click, :btn}, _, %{assigns: %{count: count}} = scene) do
 count = count + 1

 # modify the graph to show the current click count
 graph =
 graph()
 |> Graph.modify(:count, &text(&1, "Count: " <> inspect(count)))

 # update the count and push the modified graph
 scene =
 scene
 |> assign(count: count)
 |> push_graph(graph)

 # return the updated scene
 { :noreply, scene }
 end

end
Scene State
Scenes are just a specialized form of GenServer. This means they can react to messages
and can have state. However, scene state is a bit like socket state in Phoenix in that
It has a strict format, but you can add anything you want into its :assigns map.
Multiple Graphs
Any given scene can maintain multiple graphs and multiple draw scripts.
They are identified from each other with an id that you attach.
Normally when you use push_graph, you don't attach an ID. In that case
the scene's id is used as the graph id.
The act of pushing a graph to the ViewPort causes it to be compiled into
a script, which is stored in an ETS table so that the drivers can quickly
access it. To use a second, or third, graph that you scene has pushed, refer
to it using a Scenic.Primitive.Script primitive.
def init(scene, param, opts) do
 second_graph = Scenic.Graph.build()
 |> text("Text in the second graph")

 main_graph = Scenic.Graph.build()
 |> script("my_fancy_id")

 scene =
 scene
 |> push_graph(main_graph)
 |> push_graph(second_graph, "my_fancy_id")

 { :ok, scene }
end
Note that it doesn't matter which graph you push first. They will link to each other
via the string id that you supply.
Communications
Scenes are specialized GenServers. As such, they communicate with each other
(and the rest of your application) through messages. You can receive
messages with the standard handle_info, handle_cast, handle_call callbacks just
like any other scene.
Scenes have two new event handling callbacks that you can optionally implement. These
are about user input vs UI events.
Input vs. Events
Input is data generated by the drivers and sent up to the scenes
through Scenic.ViewPort. There is a limited set of input types and
they are standardized so that the drivers can be built independently
of the scenes. Input follows certain rules about which scene receives them.
Events are messages that one scene generates for consumption
by other scenes. For example, a Scenic.Component.Button scene would
generate a {:click, msg} event that is sent to its parent
scene.
You can generate any message you want, however, the standard
component libraries follow certain patterns to keep things sensible.
Input Handling
You handle incoming input events by adding handle_input/3 callback
functions to your scene. Each handle_input/3 call passes in the input
message itself, an input context struct, and your scene's state. You can then
take the appropriate actions, including generating events (below) in response.
Under normal operation, input that is not position dependent
(keys, window events, more...) is sent to the root scene. Input
that does have a screen position (cursor_pos, cursor button
presses, etc.) is sent to the scene that contains the
graph that was hit.
Your scene can "capture" all input of a given type so that
it is sent to itself instead of the default scene for that type.
this is how a text input field receives the key input. First,
the user selects that field by clicking on it. In response
to the cursor input, the text field captures text input (and
maybe transforms its graph to show that it is selected).
Captured input types should be released when no longer
needed so that normal operation can resume.
The input messages are passed on to a scene's parent if
not processed.
Event Filtering
In response to input, (or anything else... a timer perhaps?),
a scene can generate an event (any term), which is sent backwards
up the tree of scenes that make up the current aggregate graph.
In this way, a Scenic.Component.Button scene can generate a {:click, msg}
event that is sent to its parent. If the parent doesn't
handle it, it is sent to that scene's parent. And so on until the
event reaches the root scene. If the root scene also doesn't handle
it then the event is dropped.
To handle events, you add handle_event/3 functions to your scene.
This function handles the event, and stops its progress backwards
up the graph. It can handle it and allow it to continue up the
graph. Or it can transform the event and pass the transformed
version up the graph.
You choose the behavior by returning either
{:cont, msg, state}
or
{:halt, state}
Parameters passed in to handle_event/3 are the event itself, a
reference to the originating scene (which you can to communicate
back to it), and your scene's state.
A pattern I'm using is to handle an event at the filter and stop
its progression. It also generates and sends a new event to its
parent. I do this instead of transforming and continuing when
I want to change the originating scene.
No children
There is an optimization you can use. If you know for certain that your component
will not attempt to use any components, you can set has_children to false like this.
use Scenic.Component, has_children: false
Setting has_children to false means the scene won't create
a dynamic supervisor for this scene, which saves some resources and imporoves startup
time.
For example, the Button component sets has_children to false.

 Anchor for this section

 Summary

 Types

 response_opts()

 t()

 Callbacks

 handle_event(event, from, scene)

 Invoked when the Scene receives an event from another scene.

 handle_fetch(from, scene)

 Retrieve the current data associated with the scene and return it to the caller.

 handle_get(from, scene)

 Get the current "value" associated with the scene and return it to the caller.

 handle_input(input, id, scene)

 Invoked when the Scene receives input from a driver.

 handle_put(value, scene)

 Put the current "value" associated with the scene .

 handle_update(data, opts, scene)

 Update the data and options of a scene. Usually implemented by Components.

 init(scene, args, options)

 Invoked when the Scene is started.

 Functions

 assign(scene, assigns)

 Convenience function to assign a list or map of values into a scene struct.

 assign(scene, key, value)

 Convenience function to assign a value into a scene struct.

 assign_new(scene, key_list)

 Convenience function to assign a list of new values into a scene struct.

 assign_new(scene, key, value)

 Convenience function to assign a new values into a scene struct.

 capture_input(scene, input_class)

 Request one or more types of input that a scene would otherwise not
receive if not captured. This is rarely used by scenes and even then
mostly for things like key events outside of a text field.

 cast_children(scene, msg)

 cast_parent(scene, msg)

 Cast a message to a scene's parent

 child(scene, id)

 Get the pid of the child with the specified id.

 children(scene)

 Get a list of {id, pid} pairs for all the scene's children.

 fetch(scene, key)

 Convenience function to fetch an assigned value out of a scene struct.

 fetch_captures(scene)

 Fetch a list of input captured by the given scene.

 fetch_child(scene, id)

 Fetch the "data" of the child with the specified id.

 fetch_requests(scene)

 Fetch a list of input requested by the given scene.

 fetch_transform(scene)

 Fetch the "parent" matrix that positions this scene.

 get(scene, key, default \\ nil)

 Convenience function to get an assigned value out of a scene struct.

 get_child(scene, id)

 Get the "value" of the child with the specified id.

 get_transform(scene)

 Get the "parent" matrix that positions this scene.

 global_to_local(scene, arg)

 Convert a point in global coordinates to scene local coordinates.

 handle_call(msg, from, scene)

 local_to_global(scene, arg)

 Convert a point in scene local coordinates to global coordinates.

 parent(scene)

 Get the pid of the scene's parent.

 push_graph(scene, graph, id \\ nil)

 Push a graph to the scene's ViewPort.

 push_script(scene, script, name, opts \\ [])

 Push a named script to the scene's ViewPort.

 put_child(scene, id, value)

 Put the "value" of the child with the specified id.

 release_input(scene, input_class \\ :all)

 release all currently requested input.

 request_input(scene, input_class)

 Request one or more types of input that a scene would otherwise not
receive if not captured. This is rarely used by scenes and even then
mostly for things like key events outside of a text field.

 send_children(scene, msg)

 Cast a message to a scene's children

 send_event(pid, event_msg)

 Send an event message to a specific scene

 send_parent(scene, msg)

 Send a message to a scene's parent

 send_parent_event(scene, event_msg)

 Send an event message to a scene's parent

 stop(scene)

 Cleanly stop a scene from running

 terminate(reason, scene)

 unrequest_input(scene, input_class \\ :all)

 release all currently requested input.

 update_child(scene, id, value, opts \\ [])

 Update the "data" of the child with the specified id.

 Anchor for this section

Types

 Link to this type

 response_opts()

 View Source

 @type response_opts() :: [timeout() | :hibernate | {:continue, term()}]

 Link to this type

 t()

 View Source

 @type t() :: %Scenic.Scene{
 assigns: map(),
 child_supervisor: nil | map(),
 children: nil | map(),
 id: any(),
 module: atom(),
 parent: pid(),
 pid: pid(),
 stop_pid: pid(),
 supervisor: pid(),
 theme: atom() | map(),
 viewport: Scenic.ViewPort.t()
}

 Anchor for this section

Callbacks

 Link to this callback

 handle_event(event, from, scene)

 View Source

 (optional)

 @callback handle_event(event :: term(), from :: pid(), scene :: t()) ::
 {:noreply, scene}
 | {:noreply, scene}
 | {:noreply, scene, timeout()}
 | {:noreply, scene, :hibernate}
 | {:noreply, scene, opts :: response_opts()}
 | {:halt, scene}
 | {:halt, scene, timeout()}
 | {:halt, scene, :hibernate}
 | {:halt, scene, opts :: response_opts()}
 | {:cont, event, scene}
 | {:cont, event, scene, timeout()}
 | {:cont, event, scene, :hibernate}
 | {:cont, event, scene, opts :: response_opts()}
 | {:stop, reason, scene}
when scene: t(), reason: term(), event: term()

Invoked when the Scene receives an event from another scene.
Events are messages generated by a scene, that are passed backwards up the ViewPort's
scene supervision tree. This is opposed to "input", which comes directly from the drivers.
When an event arrives at a scene, you can consume it, or pass it along to the scene above
you in the ViewPort's supervision structure.
To consume the input and have processing stop afterward, return either a {:halt, ...} or
{:noreply, ...} value. They are effectively the same thing.
To allow the scene's parent to process the input, return {:cont, event, state, ...}. Note
that you can pass along the event unchanged or transform it in the process if you wish.
The callback supports all the return values of the
init
callback in Genserver.
In addition to the normal return values defined by GenServer, a Scene can
add an optional {push: graph} term, which pushes the graph to the viewport.
This has replaced push_graph() as the preferred way to push a graph.

 Link to this callback

 handle_fetch(from, scene)

 View Source

 (optional)

 @callback handle_fetch(from :: GenServer.from(), scene :: t()) ::
 {:reply, reply, scene}
 | {:reply, reply, scene, timeout() | :hibernate | {:continue, term()}}
when reply: term(), scene: t()

Retrieve the current data associated with the scene and return it to the caller.
If this callback is not implemented, the caller with get an {:error, :not_implemented}.

 Link to this callback

 handle_get(from, scene)

 View Source

 (optional)

 @callback handle_get(from :: GenServer.from(), scene :: t()) ::
 {:reply, reply, scene}
 | {:reply, reply, scene, timeout() | :hibernate | {:continue, term()}}
when reply: term(), scene: t()

Get the current "value" associated with the scene and return it to the caller.
If this callback is not implemented, the caller with receive nil.

 Link to this callback

 handle_input(input, id, scene)

 View Source

 (optional)

 @callback handle_input(input :: Scenic.ViewPort.Input.t(), id :: any(), scene :: t()) ::
 {:noreply, scene}
 | {:noreply, scene}
 | {:noreply, scene, timeout()}
 | {:noreply, scene, :hibernate}
 | {:noreply, scene, opts :: response_opts()}
 | {:halt, scene}
 | {:halt, scene, timeout()}
 | {:halt, scene, :hibernate}
 | {:halt, scene, opts :: response_opts()}
 | {:cont, input, scene}
 | {:cont, input, scene, timeout()}
 | {:cont, input, scene, :hibernate}
 | {:cont, input, scene, opts :: response_opts()}
 | {:stop, reason, scene}
when scene: t(), reason: term(), input: term()

Invoked when the Scene receives input from a driver.
Input is messages sent directly from a driver, usually based on some action by the user.
This is opposed to "events", which are generated by other scenes.
When input arrives at a scene, you can consume it, or pass it along to the scene above
you in the ViewPort's supervision structure.
To consume the input and have processing stop afterward, return either a {:halt, ...} or
{:noreply, ...} value. They are effectively the same thing.
To allow the scene's parent to process the input, return {:cont, input, state, ...}. Note
that you can pass along the input unchanged or transform it in the process if you wish.
The callback supports all the return values of the
init
callback in Genserver.
In addition to the normal return values defined by GenServer, a Scene can
add an optional {push: graph} term, which pushes the graph to the viewport.
This has replaced push_graph() as the preferred way to push a graph.

 Link to this callback

 handle_put(value, scene)

 View Source

 (optional)

 @callback handle_put(value :: any(), scene :: t()) ::
 {:noreply, scene}
 | {:noreply, scene, timeout() | :hibernate | {:continue, term()}}
when scene: t()

Put the current "value" associated with the scene .
Does nothing if this callback is not implemented.

 Link to this callback

 handle_update(data, opts, scene)

 View Source

 (optional)

 @callback handle_update(data :: any(), opts :: Keyword.t(), scene :: t()) ::
 {:noreply, scene}
 | {:noreply, scene, timeout() | :hibernate | {:continue, term()}}
when scene: t()

Update the data and options of a scene. Usually implemented by Components.
If this callback is not implemented, then changes to the component in the parent's
graph will have no affect.

 Link to this callback

 init(scene, args, options)

 View Source

 @callback init(scene :: t(), args :: term(), options :: Keyword.t()) ::
 {:ok, scene}
 | {:ok, scene, timeout :: non_neg_integer()}
 | {:ok, scene, :hibernate}
 | {:ok, scene, opts :: response_opts()}
 | :ignore
 | {:stop, reason}
when scene: t(), reason: term()

Invoked when the Scene is started.
args is the argument term you passed in via config or ViewPort.set_root.
options is a list of information giving you context about the environment
the scene is running in. If an option is not in the list, then it should be
treated as nil.
	:viewport - This is the pid of the ViewPort that is managing this dynamic scene.
It will be not set, or nil, if you are managing the Scene in a static
supervisor yourself.
	:styles - This is the map of styles that your scene can choose to inherit
(or not) from its parent scene. This is typically used by a child control that
wants to visually fit into its parent's look.
	:id - This is the :id term that the parent set a component when it was invoked.

The callback supports all the return values of the
init
callback in Genserver.
In addition to the normal return values defined by GenServer, a Scene can
return two new ones that push a graph to the viewport
Returning {:ok, state, push: graph} will push the indicated graph
to the ViewPort. This is preferable to the old push_graph() function.

 Anchor for this section

Functions

 Link to this function

 assign(scene, assigns)

 View Source

 @spec assign(scene :: t(), assigns :: Keyword.t() | map()) :: t()

Convenience function to assign a list or map of values into a scene struct.

 Link to this function

 assign(scene, key, value)

 View Source

 @spec assign(scene :: t(), key :: any(), value :: any()) :: t()

Convenience function to assign a value into a scene struct.

 Link to this function

 assign_new(scene, key_list)

 View Source

 @spec assign_new(scene :: t(), key_list :: Keyword.t() | map()) :: t()

Convenience function to assign a list of new values into a scene struct.
Only values that do not already exist will be assigned

 Link to this function

 assign_new(scene, key, value)

 View Source

 @spec assign_new(scene :: t(), key :: any(), value :: any()) :: t()

Convenience function to assign a new values into a scene struct.
The value will only be assigned if it does not already exist in the struct.

 Link to this function

 capture_input(scene, input_class)

 View Source

 @spec capture_input(
 scene :: t(),
 input_class :: Scenic.ViewPort.Input.class() | [Scenic.ViewPort.Input.class()]
) :: :ok | {:error, atom()}

Request one or more types of input that a scene would otherwise not
receive if not captured. This is rarely used by scenes and even then
mostly for things like key events outside of a text field.
Any input types that were previously requested that are no longer in the
request list are dropped. Request [] to cancel all input requests.
returns :ok or an error
This is intended be called by a Scene process, but doesn't need to be.

 Link to this function

 cast_children(scene, msg)

 View Source

 @spec cast_children(scene :: t(), msg :: any()) :: :ok | {:error, :no_children}

 Link to this function

 cast_parent(scene, msg)

 View Source

 @spec cast_parent(scene :: t(), msg :: any()) :: :ok

Cast a message to a scene's parent

 Link to this function

 child(scene, id)

 View Source

 @spec child(scene :: t(), id :: any()) ::
 {:ok, [child_pid :: pid()]} | {:error, :no_children}

Get the pid of the child with the specified id.
You can specify the same ID to more than one child. This is why the
return is a list.

 Link to this function

 children(scene)

 View Source

 @spec children(scene :: t()) ::
 {:ok, [{id :: any(), child_pid :: pid()}]} | {:error, :no_children}

Get a list of {id, pid} pairs for all the scene's children.

 Link to this function

 fetch(scene, key)

 View Source

 @spec fetch(scene :: t(), key :: any()) :: {:ok, any()} | :error

Convenience function to fetch an assigned value out of a scene struct.

 Link to this function

 fetch_captures(scene)

 View Source

 @spec fetch_captures(scene :: t()) ::
 {:ok, [Scenic.ViewPort.Input.class()]} | {:error, atom()}

Fetch a list of input captured by the given scene.
This is intended be called by a Scene process, but doesn't need to be.

 Link to this function

 fetch_child(scene, id)

 View Source

 @spec fetch_child(scene :: t(), id :: any()) ::
 {:ok, [child_pid :: pid()]} | {:error, :no_children}

Fetch the "data" of the child with the specified id.
This function is intended to be used to query the current data of a component.
The component must have implemented the Scenic.Scene.handle_fetch/2 callback.
All of the built-in components support this.
Unlike get_child, fetch_child returns the full data associated with
component, not just the current value. For example a checkbox component
might fetch the value {"My Checkbox", true}
You can specify the same ID to more than one child. This is why the
return is a list.

 Link to this function

 fetch_requests(scene)

 View Source

 @spec fetch_requests(scene :: t()) ::
 {:ok, [Scenic.ViewPort.Input.class()]} | {:error, atom()}

Fetch a list of input requested by the given scene.
This is intended be called by a Scene process, but doesn't need to be.

 Link to this function

 fetch_transform(scene)

 View Source

 @spec fetch_transform(scene :: t()) ::
 {:ok, Scenic.Math.matrix()} | {:error, :not_found}

Fetch the "parent" matrix that positions this scene.
This matrix can be used to move from scene "local" coordinates to global
coordinates.

 Link to this function

 get(scene, key, default \\ nil)

 View Source

 @spec get(scene :: t(), key :: any(), default :: any()) :: any()

Convenience function to get an assigned value out of a scene struct.

 Link to this function

 get_child(scene, id)

 View Source

 @spec get_child(scene :: t(), id :: any()) ::
 {:ok, [child_pid :: pid()]} | {:error, :no_children}

Get the "value" of the child with the specified id.
This function is intended to be used to query the current value of a component.
The component must have implemented the Scenic.Scene.handle_get/2 callback.
All of the built-in components support this.
For example, you could use this to query the current value of a checkbox.
You can specify the same ID to more than one child. This is why the
return is a list.

 Link to this function

 get_transform(scene)

 View Source

 @spec get_transform(scene :: t()) :: Scenic.Math.matrix()

Get the "parent" matrix that positions this scene.
This matrix can be used to move from scene "local" coordinates to global
coordinates.

 Link to this function

 global_to_local(scene, arg)

 View Source

 @spec global_to_local(scene :: t(), Scenic.Math.point()) :: Scenic.Math.point()

Convert a point in global coordinates to scene local coordinates.

 Link to this function

 handle_call(msg, from, scene)

 View Source

 Link to this function

 local_to_global(scene, arg)

 View Source

 @spec local_to_global(scene :: t(), Scenic.Math.point()) :: Scenic.Math.point()

Convert a point in scene local coordinates to global coordinates.

 Link to this function

 parent(scene)

 View Source

 @spec parent(scene :: t()) :: {:ok, parent :: pid()}

Get the pid of the scene's parent.

 Link to this function

 push_graph(scene, graph, id \\ nil)

 View Source

 @spec push_graph(scene :: t(), graph :: Scenic.Graph.t(), name :: String.t() | nil) ::
 t()

Push a graph to the scene's ViewPort.
This function compiles a graph into a script, registers any requested inputs and stores
it all in the ViewPort's ETS tables.
Any components that are created or removed from the scene are
started/stopped/updated as appropriate.

 Link to this function

 push_script(scene, script, name, opts \\ [])

 View Source

 @spec push_script(
 scene :: t(),
 script :: Scenic.Script.t(),
 name :: String.t(),
 opts :: Keyword.t()
) :: t()

Push a named script to the scene's ViewPort.

 Link to this function

 put_child(scene, id, value)

 View Source

 @spec put_child(scene :: t(), id :: any(), value :: any()) ::
 :ok | {:error, :no_children}

Put the "value" of the child with the specified id.
This function is intended to be used to change the current value of a component.
The component must have implemented the Scenic.Scene.handle_put/2 callback.
All of the built-in components support this.
For example, you could use this to change the current value of a checkbox.
In this case, the returned value would be true or false.
You can specify the same ID to more than one child. This will cause all the
components with that id to receive the handle_put call.

 Link to this function

 release_input(scene, input_class \\ :all)

 View Source

 @spec release_input(
 scene :: t(),
 input_class ::
 Scenic.ViewPort.Input.class() | [Scenic.ViewPort.Input.class()] | :all
) :: :ok | {:error, atom()}

release all currently requested input.
This is intended be called by a Scene process, but doesn't need to be.

 Link to this function

 request_input(scene, input_class)

 View Source

 @spec request_input(
 scene :: t(),
 input_class :: Scenic.ViewPort.Input.class() | [Scenic.ViewPort.Input.class()]
) :: :ok | {:error, atom()}

Request one or more types of input that a scene would otherwise not
receive if not captured. This is rarely used by scenes and even then
mostly for things like key events outside of a text field.
Any input types that were previously requested that are no longer in the
request list are dropped. Request [] to cancel all input requests.
returns :ok or an error
This is intended be called by a Scene process, but doesn't need to be.

 Link to this function

 send_children(scene, msg)

 View Source

 @spec send_children(scene :: t(), msg :: any()) :: :ok | {:error, :no_children}

Cast a message to a scene's children

 Link to this function

 send_event(pid, event_msg)

 View Source

 @spec send_event(pid :: pid(), event :: any()) :: :ok

Send an event message to a specific scene

 Link to this function

 send_parent(scene, msg)

 View Source

 @spec send_parent(scene :: t(), msg :: any()) :: :ok

Send a message to a scene's parent

 Link to this function

 send_parent_event(scene, event_msg)

 View Source

 @spec send_parent_event(scene :: t(), event :: any()) :: :ok

Send an event message to a scene's parent

 Link to this function

 stop(scene)

 View Source

 @spec stop(scene :: t()) :: :ok

Cleanly stop a scene from running

 Link to this function

 terminate(reason, scene)

 View Source

 Link to this function

 unrequest_input(scene, input_class \\ :all)

 View Source

 @spec unrequest_input(
 scene :: t(),
 input_class ::
 Scenic.ViewPort.Input.class() | [Scenic.ViewPort.Input.class()] | :all
) :: :ok | {:error, atom()}

release all currently requested input.
This is intended be called by a Scene process, but doesn't need to be.

 Link to this function

 update_child(scene, id, value, opts \\ [])

 View Source

 @spec update_child(scene :: t(), id :: any(), value :: any(), opts :: Keyword.t()) ::
 t()

Update the "data" of the child with the specified id.
This function is intended to be used to update the current data of a component.
The component must have implemented the Scenic.Scene.handle_update/3 callback.
All of the built-in components support this.
Unlike put_child, update_child effectively re-initializes the component with the
new data. This would be the same data format you have provided when you created the
component in the first place. For example, you might update a checkbox component
with the value {"New Label", true}
You can specify the same ID to more than one child. This will cause all the
components with that id to receive the handle_put call.

Scenic.Script

Overview
Scenic.Script is the fundamental "rendering" data structure for Scenic.
Prior to v0.11, drivers received Graphs from the ViewPort and were responsible
for transforming them into a list of drawing commands that would ultimately draw
the actual picture that is displayed as the Scenic UI.
After some experience, it became apparent that this was a common task for almost
all drivers and has been moved into the ViewPort and formalized in Scenic.Script.
Simply put, Scenic.Script produces a list of static drawing commands that are
sent, unmodified, to the drivers through the ViewPort. These scripts are
generated for you when you use Scenic.Scene.push_graph/3, or you can create
them yourself by using this api.
If you use Scenic.Script directly, you can create more complicated and/or
reusable graphics than you could by using Graphs alone.
Update Isolation
Another way to use scripts is to separate large static bits of a graph from
that which changes frequently. When a graph is pushed to the ViewPort, the
entire thing is compiled into a script, which is sent as a whole to the Drivers.
However if that graph references a script, only the reference to the script is
sent, not the contents of the script. This means you can modify the graph
frequently without sending the contents of the scripts.
The opposite is also true. You can generate and push the scripts frequently
without causing the graphs that reference them to be recompiled or resent.
An example of this might be a graph that implements a chart of some sort. The
contents of the chart could be a script that is updated as new data comes in
without needing all the chrome around it to be recompiled or sent for every
update.
API Patterns
This is a large module with many functions. Most of them are very small, however and simply
add individual commands to the script.
The general pattern is that you start by calling Scenic.Script.start(). This simply returns
an empty list. Each drawing api adds an element to the head of the list. Then you end with
Scenic.Script.finsh(), which reverses the list and performs some optimizations on it.
alias Scenic.Script

my_script =
 Script.start()
 |> Script.text("A very simple script")
 |> Script.finish()
After the script is generated, you publish it to the ViewPort through either your
scene's helper api Scenic.Scene.push_script/4 or directly throught the ViewPort api
Scenic.ViewPort.put_script/4
Finally, to get the script to draw, you need to reference it from a graph.
my_graph =
 Graph.build()
 |> script("my_script_name")
It doesn't matter if you push the script before or after you push the graph that references it.
scene =
 scene
 |> push_script(my_script, "my_script_name")
 |> push_graph(my_graph)
Example: the Checkbox check mark
The canonical example is the checkmark symbol used in the Checkbox component.
This is two lines, with rounded endpoints and rounded joint between them.
It could be described using a Path primitive, but there is no need to
send its instructions every time it is shown or hidden since its shape
doesn't actually change.
The Checkbox component creates and publishes this script using something very
similar to the following example.
alias Scenic.Script

build the checkmark script
chx_script =
 Script.start()
 |> Script.push_state()
 |> Script.join(:round)
 |> Script.stroke_width(@border_width + 1)
 |> Script.stroke_color(theme.thumb)
 |> Script.begin_path()
 |> Script.move_to(0, 8)
 |> Script.line_to(5, 13)
 |> Script.line_to(12, 1)
 |> Script.stroke_path()
 |> Script.pop_state()
 |> Script.finish()

chx_id = scene.id <> "_chk"
scene = push_script(scene, chx_script, chx_id)
Building and using a custom script happens in three parts. First, the script itself
is created using the Scenic.Script api.
Then the script is published to the ViewPort using Scenic.Scene.push_script/4 with a
unique name.
Later, the graph for the checkbox references this script, which is what triggers it to be drawn.
graph =
 Graph.build()
 |> script(chx_id, id: :chx, hidden: !checked?)
Script State
The underlying rendering engine that consumes these scripts and draws the actual
pictures maintains a set of current drawing state, which can be pushed and popped
from a stack via the push_state/1, pop_state/1, and pop_push_state/1 apis.
These functions are analogous to the state
save/restore APIs in Canvas.
Transforms
Transforms are applied to the running script by multiplying matrices together. This is very
similar to how games position elements of UI. It takes a little getting used to, but is
very powerful.
If you want to unroll the most recent applied transform, you should push then pop the state
to get back to the previous transform stack.
Binary Format
The serialize/3 and deserialize/1 go back and forth from the list format to a binary
representation of the script. The serialize/3 function produces an IO list, and deserialize
goes back into a list of instructions.
There is a standard format to the binary, but that needs to be independently documented. You
can dig into the code behind serialize/3 to see it in action.
Drivers, which normally do the serialization call, can intercept/override any command if they
need something specific.

 Anchor for this section

 Summary

 Types

 fill_stroke()

 id()

 script_op()

 t()

 Functions

 arc_to(ops, x1, y1, x2, y2, radius)

 Add an arc segment to the path using the control points and radius.

 begin_path(ops)

 Begin a new path.

 bezier_to(ops, cp1x, cp1y, cp2x, cp2y, x, y)

 Add a bezier curve segment to the path using the control points.

 cap(ops, atom)

 Set the current end cap style.

 circle(ops, radius)

 Add a circle to the current path.

 clear(ops, color)

 Erase the entire drawing field output.

 close_path(ops)

 Close the current path.

 deserialize(bin)

 Transform a binary or io list into a readable script list.

 draw_arc(ops, radius, radians, flag)

 Draw an arc defined by radius and an angle. Can be filled or stroked.

 draw_circle(ops, radius, flag)

 Draw a circle defined by a radius. Can be filled or stroked.

 draw_ellipse(ops, radius0, radius1, flag)

 Draw an ellipse defined by two radii. Can be filled or stroked.

 draw_flag(arg1)

 draw_flag is a helper function to choose the appropriate fill and/or stroke flag
given a map of styles.

 draw_line(ops, x0, y0, x1, y1, atom)

 Draw a line from a start point to a finish point. Can only be stroked.

 draw_quad(ops, x0, y0, x1, y1, x2, y2, x3, y3, flag)

 Draw a quad defined by four points. Can be filled or stroked.

 draw_rectangle(ops, width, height, flag)

 Draw a rectangle defined by height and width. Can be filled or stroked.

 draw_rounded_rectangle(ops, width, height, radius, flag)

 Draw a rounded rectangle defined by height, width, and radius. Can be filled or stroked.

 draw_sector(ops, radius, radians, flag)

 Draw a sector defined by radius and an angle. Can be filled or stroked.

 draw_sprites(ops, src_id, cmds)

 Draw a collection of sprites.

 draw_text(ops, utf8_string)

 Draw a a block of text. Can be filled.

 draw_text(ops, utf8_text, line_height)

 Draw a a block of text with automatic new lines. Can be filled.

 draw_triangle(ops, x0, y0, x1, y1, x2, y2, flag)

 Draw a triangle defined by three points. Can be filled or stroked.

 ellipse(ops, radius0, radius1)

 Add an ellipse to the current path.

 fill_color(ops, color)

 Set the current fill to an single color.

 fill_image(ops, id)

 Set the current fill to an image from the Static asset library.

 fill_linear(ops, start_x, start_y, end_x, end_y, color_start, color_end)

 Set the current fill to linear gradient that goes between two colors.

 fill_path(ops)

 Fill the current path with the currently selected fill paint.

 fill_radial(ops, center_x, center_y, inner_radius, outer_radius, color_start, color_end)

 Set the current fill to radial gradient that goes between two colors.

 fill_stream(ops, id)

 Set the current fill to an image from an asset stream.

 finish(ops)

 Finish a script, preparing it to be sent to the ViewPort.

 font(ops, id)

 Set the current font. Must be a valid reference into your static assets library.

 font_size(ops, px)

 Set the current font size.

 join(ops, atom)

 Set the current line joint style.

 line_to(ops, x, y)

 Add a new line segment from the current position to a specified location.

 media(script)

 Extract a map of all the media (both static assets and streams) used in a script.

 miter_limit(ops, limit)

 Set the current miter limit for joints.

 move_to(ops, x, y)

 Move the current draw position without adding a line segment.

 pop_push_state(ops)

 Reverts the style/transform state of the script then immediately pushes it again.

 pop_state(ops)

 Reverts the style/transform state of the script to the most recently pushed state.

 push_state(ops)

 Saves the current style/transform state of the script as it is running.

 quad(ops, x0, y0, x1, y1, x2, y2, x3, y3)

 Add a quad to the current path.

 quadratic_to(ops, cpx, cpy, x, y)

 Add a quadratic curve segment to the path using the control points.

 rectangle(ops, width, height)

 Add a rectangle to the current path.

 render_script(ops, id)

 Recursively draw a script by reference.

 rotate(ops, radians)

 Apply a rotation transform to the current transform stack.

 rounded_rectangle(ops, width, height, radius)

 Add a rounded rectangle to the current path.

 scale(ops, x, y)

 Apply a scale transform to the current transform stack.

 scissor(ops, w, h)

 Set the current scissor rect.

 sector(ops, radius, radians)

 Add a sector to the current path.

 serialize(script)

 Transform a script list into a binary IO list.

 serialize(script, intercept_fn)

 Transform a script list into a binary IO list with a map like interceptor function.

 serialize(script, acc, intercept_fn)

 Transform a script list into a binary IO list with a map_reduce like interceptor function.

 start()

 Create a new Script.

 stroke_color(ops, color)

 Set the current stroke to an single color.

 stroke_image(ops, id)

 Set the current stroke to an image from the Static asset library.

 stroke_linear(ops, start_x, start_y, end_x, end_y, color_start, color_end)

 Set the current stroke to linear gradient that goes between two colors.

 stroke_path(ops)

 Stroke the current path with the currently selected stroke width/paint.

 stroke_radial(ops, center_x, center_y, inner_radius, outer_radius, color_start, color_end)

 Set the current stroke to radial gradient that goes between two colors.

 stroke_stream(ops, id)

 Set the current stroke to an image from an asset stream.

 stroke_width(ops, width)

 Set the current stroke width.

 text_align(ops, atom)

 Set the current horizontal text alignment.

 text_base(ops, atom)

 Set the current vertical text alignment.

 transform(ops, a, b, c, d, e, f)

 Apply an arbitrary transform to the current transform stack.

 translate(ops, x, y)

 Apply a translation transform to the current transform stack.

 triangle(ops, x0, y0, x1, y1, x2, y2)

 Add a triangle to the current path.

 Anchor for this section

Types

 Link to this type

 fill_stroke()

 View Source

 @type fill_stroke() :: :fill | :stroke | :fill_stroke

 Link to this type

 id()

 View Source

 @type id() :: atom() | String.t() | reference() | pid()

 Link to this type

 script_op()

 View Source

 @type script_op() ::
 :push_state
 | :pop_state
 | :pop_push_state
 | {:clear, color :: Scenic.Color.t()}
 | {:draw_line,
 {x0 :: number(), y0 :: number(), x1 :: number(), y1 :: number(), :stroke}}
 | {:draw_quad,
 {x0 :: number(), y0 :: number(), x1 :: number(), y1 :: number(),
 x2 :: number(), y2 :: number(), x3 :: number(), y3 :: number(),
 fill_stroke()}}
 | {:draw_rect, {width :: number(), height :: number(), fill_stroke()}}
 | {:draw_rrect,
 {width :: number(), height :: number(), radius :: number(), fill_stroke()}}
 | {:draw_sector, {radius :: number(), radians :: number(), fill_stroke()}}
 | {:draw_arc, {radius :: number(), radians :: number(), fill_stroke()}}
 | {:draw_circle, {radius :: number(), fill_stroke()}}
 | {:draw_ellipse, {radius0 :: number(), radius1 :: number(), fill_stroke()}}
 | {:draw_sprites,
 {src_id :: Scenic.Assets.Static.id(),
 cmds :: Scenic.Primitive.Sprites.draw_cmds()}}
 | {:draw_text, utf8_string :: String.t()}
 | {:draw_triangle,
 {x0 :: number(), y0 :: number(), x1 :: number(), y1 :: number(),
 x2 :: number(), y2 :: number(), fill_stroke()}}
 | {:script, id :: pos_integer()}
 | :begin_path
 | :close_path
 | :fill_path
 | :stroke_path
 | {:move_to, {x :: number(), y :: number()}}
 | {:line_to, {x :: number(), y :: number()}}
 | {:arc_to,
 {x1 :: number(), y1 :: number(), x2 :: number(), y2 :: number(),
 radius :: number()}}
 | {:bezier_to,
 {cp1x :: number(), cp1y :: number(), cp2x :: number(), cp2y :: number(),
 x :: number(), y :: number()}}
 | {:quadratic_to,
 {cpx :: number(), cpy :: number(), x :: number(), y :: number()}}
 | {:quad,
 {x0 :: number(), y0 :: number(), x1 :: number(), y1 :: number(),
 x2 :: number(), y2 :: number(), x3 :: number(), y3 :: number()}}
 | {:rect, {width :: number(), height :: number()}}
 | {:rrect, {width :: number(), height :: number(), radius :: number()}}
 | {:sector, {radius :: number(), radians :: number()}}
 | {:circle, {radius :: number()}}
 | {:ellipse, {radius0 :: number(), radius1 :: number()}}
 | {:triangle,
 {x0 :: number(), y0 :: number(), x1 :: number(), y1 :: number(),
 x2 :: number(), y2 :: number()}}
 | {:scale, {x :: number(), y :: number()}}
 | {:rotate, radians :: number()}
 | {:translate, {x :: number(), y :: number()}}
 | {:transform,
 {a :: number(), b :: number(), c :: number(), d :: number(), e :: number(),
 f :: number()}}
 | {:fill_color, color :: Scenic.Color.t()}
 | {:fill_linear,
 {start_x :: number(), start_y :: number(), end_x :: number(),
 end_y :: number(), color_start :: Scenic.Color.t(),
 color_end :: Scenic.Color.t()}}
 | {:fill_radial,
 {center_x :: number(), center_y :: number(), inner_radius :: number(),
 outer_radius :: number(), color_start :: Scenic.Color.t(),
 color_end :: Scenic.Color.t()}}
 | {:fill_image, image :: Scenic.Assets.Static.id()}
 | {:fill_stream, id :: Scenic.Assets.Stream.id()}
 | {:stroke_color, color :: Scenic.Color.t()}
 | {:stroke_linear,
 {start_x :: number(), start_y :: number(), end_x :: number(),
 end_y :: number(), color_start :: Scenic.Color.t(),
 color_end :: Scenic.Color.t()}}
 | {:stroke_radial,
 {center_x :: number(), center_y :: number(), inner_radius :: number(),
 outer_radius :: number(), color_start :: Scenic.Color.t(),
 color_end :: Scenic.Color.t()}}
 | {:stroke_image, image :: Scenic.Assets.Static.id()}
 | {:stroke_stream, id :: Scenic.Assets.Stream.id()}
 | {:stroke_width, width :: number()}
 | {:cap, :butt}
 | {:cap, :round}
 | {:cap, :square}
 | {:join, :bevel}
 | {:join, :round}
 | {:join, :miter}
 | {:miter_limit, limit :: number()}
 | {:scissor, {width :: number(), height :: number()}}
 | {:font, id :: Scenic.Assets.Static.id()}
 | {:font_size, size :: number()}
 | {:text_align, :left}
 | {:text_align, :center}
 | {:text_align, :right}
 | {:text_base, :top}
 | {:text_base, :middle}
 | {:text_base, :alphabetic}
 | {:text_base, :bottom}

 Link to this type

 t()

 View Source

 @type t() :: [script_op()]

 Anchor for this section

Functions

 Link to this function

 arc_to(ops, x1, y1, x2, y2, radius)

 View Source

 @spec arc_to(
 ops :: t(),
 x1 :: number(),
 y1 :: number(),
 x2 :: number(),
 y2 :: number(),
 radius :: number()
) :: ops :: t()

Add an arc segment to the path using the control points and radius.
This adds to the current path. It does not fill or stroke anything.

 Link to this function

 begin_path(ops)

 View Source

 @spec begin_path(ops :: t()) :: ops :: t()

Begin a new path.

 Link to this function

 bezier_to(ops, cp1x, cp1y, cp2x, cp2y, x, y)

 View Source

 @spec bezier_to(
 ops :: t(),
 cp1x :: number(),
 cp1y :: number(),
 cp2x :: number(),
 cp2y :: number(),
 x :: number(),
 y :: number()
) :: ops :: t()

Add a bezier curve segment to the path using the control points.
This adds to the current path. It does not fill or stroke anything.

 Link to this function

 cap(ops, atom)

 View Source

 @spec cap(ops :: t(), type :: :butt | :round | :square) :: ops :: t()

Set the current end cap style.
Can be any one of :butt, :round, or :square

 Link to this function

 circle(ops, radius)

 View Source

 @spec circle(ops :: t(), radius :: number()) :: ops :: t()

Add a circle to the current path.
This adds to the current path. It does not fill or stroke anything.

 Link to this function

 clear(ops, color)

 View Source

 @spec clear(ops :: t(), color :: Scenic.Color.t()) :: ops :: t()

Erase the entire drawing field output.
The clear/1 function is equivalent to setting a color, creating a new rect path
that covers the entire draw field, then filling it. clear/1 does all this in a
single, compact script command.

 Link to this function

 close_path(ops)

 View Source

 @spec close_path(ops :: t()) :: ops :: t()

Close the current path.
This effectively adds a line segment from the current draw position back to
where the path was started.

 Link to this function

 deserialize(bin)

 View Source

 @spec deserialize(bin :: binary()) :: script :: t()

Transform a binary or io list into a readable script list.
This is intended to help with debugging.
Deserialization will only work for scripts serialized using the standard, un-hooked format.

 Link to this function

 draw_arc(ops, radius, radians, flag)

 View Source

 @spec draw_arc(
 ops :: t(),
 radius :: number(),
 radians :: number(),
 fill_stroke_flags :: fill_stroke()
) :: ops :: t()

Draw an arc defined by radius and an angle. Can be filled or stroked.
Creates a new path and draws it.

 Link to this function

 draw_circle(ops, radius, flag)

 View Source

 @spec draw_circle(
 ops :: t(),
 radius :: number(),
 fill_stroke_flags :: fill_stroke()
) :: ops :: t()

Draw a circle defined by a radius. Can be filled or stroked.
Creates a new path and draws it.

 Link to this function

 draw_ellipse(ops, radius0, radius1, flag)

 View Source

 @spec draw_ellipse(
 ops :: t(),
 radius0 :: number(),
 radius1 :: number(),
 fill_stroke_flags :: fill_stroke()
) :: ops :: t()

Draw an ellipse defined by two radii. Can be filled or stroked.
Creates a new path and draws it.

 Link to this function

 draw_flag(arg1)

 View Source

 @spec draw_flag(styles :: map()) :: :fill_stroke | :fill | :stroke | nil

draw_flag is a helper function to choose the appropriate fill and/or stroke flag
given a map of styles.

 Link to this function

 draw_line(ops, x0, y0, x1, y1, atom)

 View Source

 @spec draw_line(
 ops :: t(),
 x0 :: number(),
 y0 :: number(),
 x1 :: number(),
 y1 :: number(),
 :stroke
) ::
 ops :: t()

Draw a line from a start point to a finish point. Can only be stroked.
Creates a new path and draws it.

 Link to this function

 draw_quad(ops, x0, y0, x1, y1, x2, y2, x3, y3, flag)

 View Source

 @spec draw_quad(
 ops :: t(),
 x0 :: number(),
 y0 :: number(),
 x1 :: number(),
 y1 :: number(),
 x2 :: number(),
 y2 :: number(),
 x3 :: number(),
 y3 :: number(),
 fill_stroke_flags :: fill_stroke()
) :: ops :: t()

Draw a quad defined by four points. Can be filled or stroked.
Creates a new path and draws it.

 Link to this function

 draw_rectangle(ops, width, height, flag)

 View Source

 @spec draw_rectangle(
 ops :: t(),
 width :: number(),
 height :: number(),
 fill_stroke_flags :: fill_stroke()
) :: ops :: t()

Draw a rectangle defined by height and width. Can be filled or stroked.
Creates a new path and draws it.

 Link to this function

 draw_rounded_rectangle(ops, width, height, radius, flag)

 View Source

 @spec draw_rounded_rectangle(
 ops :: t(),
 width :: number(),
 height :: number(),
 radius :: number(),
 fill_stroke_flags :: fill_stroke()
) :: ops :: t()

Draw a rounded rectangle defined by height, width, and radius. Can be filled or stroked.
Creates a new path and draws it.

 Link to this function

 draw_sector(ops, radius, radians, flag)

 View Source

 @spec draw_sector(
 ops :: t(),
 radius :: number(),
 radians :: number(),
 fill_stroke_flags :: fill_stroke()
) :: ops :: t()

Draw a sector defined by radius and an angle. Can be filled or stroked.
Creates a new path and draws it.

 Link to this function

 draw_sprites(ops, src_id, cmds)

 View Source

 @spec draw_sprites(
 ops :: t(),
 image_source :: Scenic.Assets.Static.id(),
 draw_commands :: Scenic.Primitive.Sprites.draw_cmds()
) :: ops :: t()

Draw a collection of sprites.
Draws one or more subsection from a single source image.

 Link to this function

 draw_text(ops, utf8_string)

 View Source

 @spec draw_text(ops :: t(), text :: String.t()) :: ops :: t()

Draw a a block of text. Can be filled.
Creates a new path and draws it.

 Link to this function

 draw_text(ops, utf8_text, line_height)

 View Source

 @spec draw_text(ops :: t(), text :: String.t(), line_height :: number()) :: ops :: t()

Draw a a block of text with automatic new lines. Can be filled.
Creates a new path and draws it.

 Link to this function

 draw_triangle(ops, x0, y0, x1, y1, x2, y2, flag)

 View Source

 @spec draw_triangle(
 ops :: t(),
 x0 :: number(),
 y0 :: number(),
 x1 :: number(),
 y1 :: number(),
 x2 :: number(),
 y2 :: number(),
 fill_stroke_flags :: fill_stroke()
) :: ops :: t()

Draw a triangle defined by three points. Can be filled or stroked.
Creates a new path and draws it.

 Link to this function

 ellipse(ops, radius0, radius1)

 View Source

 @spec ellipse(ops :: t(), radius0 :: number(), radius1 :: number()) :: ops :: t()

Add an ellipse to the current path.
This adds to the current path. It does not fill or stroke anything.

 Link to this function

 fill_color(ops, color)

 View Source

 @spec fill_color(ops :: t(), color :: Scenic.Color.t()) :: ops :: t()

Set the current fill to an single color.
This only sets the fill paint type. You still need to call fill_path/1 or one of the
draw_* apis to actually draw something.

 Link to this function

 fill_image(ops, id)

 View Source

 @spec fill_image(ops :: t(), image :: Scenic.Assets.Static.id()) :: ops :: t()

Set the current fill to an image from the Static asset library.
This image will be automatically repeated both horizontally and vertically.
This only sets the fill paint type. You still need to call fill_path/1 or one of the
draw_* apis to actually draw something.

 Link to this function

 fill_linear(ops, start_x, start_y, end_x, end_y, color_start, color_end)

 View Source

 @spec fill_linear(
 ops :: t(),
 start_x :: number(),
 start_y :: number(),
 end_x :: number(),
 end_y :: number(),
 color_start :: Scenic.Color.t(),
 color_end :: Scenic.Color.t()
) :: ops :: t()

Set the current fill to linear gradient that goes between two colors.
This only sets the fill paint type. You still need to call fill_path/1 or one of the
draw_* apis to actually draw something.

 Link to this function

 fill_path(ops)

 View Source

 @spec fill_path(ops :: t()) :: ops :: t()

Fill the current path with the currently selected fill paint.

 Link to this function

 fill_radial(ops, center_x, center_y, inner_radius, outer_radius, color_start, color_end)

 View Source

 @spec fill_radial(
 ops :: t(),
 center_x :: number(),
 center_y :: number(),
 inner_radius :: number(),
 outer_radius :: number(),
 color_start :: Scenic.Color.t(),
 color_end :: Scenic.Color.t()
) :: ops :: t()

Set the current fill to radial gradient that goes between two colors.
This only sets the fill paint type. You still need to call fill_path/1 or one of the
draw_* apis to actually draw something.

 Link to this function

 fill_stream(ops, id)

 View Source

 @spec fill_stream(ops :: t(), id :: Scenic.Assets.Stream.id()) :: ops :: t()

Set the current fill to an image from an asset stream.
This image will be automatically repeated both horizontally and vertically.
This only sets the fill paint type. You still need to call fill_path/1 or one of the
draw_* apis to actually draw something.

 Link to this function

 finish(ops)

 View Source

 @spec finish(ops :: t()) :: final_script :: t()

Finish a script, preparing it to be sent to the ViewPort.
This function cleans up the script, which should have been created by first
calling start/0 then and series of calls to Scenic.Script functions that add
commands to the script.
finish/1 cleans up the script, reverses it, and runs an optimization pass.
The resulting script is ready to be stored in the ViewPort.

 Link to this function

 font(ops, id)

 View Source

 @spec font(ops :: t(), id :: Scenic.Assets.Static.id()) :: ops :: t()

Set the current font. Must be a valid reference into your static assets library.

 Link to this function

 font_size(ops, px)

 View Source

 @spec font_size(ops :: t(), size :: number()) :: ops :: t()

Set the current font size.

 Link to this function

 join(ops, atom)

 View Source

 @spec join(ops :: t(), type :: :bevel | :round | :miter) :: ops :: t()

Set the current line joint style.
Can be any one of :bevel, :round, or :miter

 Link to this function

 line_to(ops, x, y)

 View Source

 @spec line_to(ops :: t(), x :: number(), y :: number()) :: ops :: t()

Add a new line segment from the current position to a specified location.
This adds to the current path. It does not fill or stroke anything.

 Link to this function

 media(script)

 View Source

Extract a map of all the media (both static assets and streams) used in a script.

 Link to this function

 miter_limit(ops, limit)

 View Source

 @spec miter_limit(ops :: t(), limit :: number()) :: ops :: t()

Set the current miter limit for joints.

 Link to this function

 move_to(ops, x, y)

 View Source

 @spec move_to(ops :: t(), x :: number(), y :: number()) :: ops :: t()

Move the current draw position without adding a line segment.

 Link to this function

 pop_push_state(ops)

 View Source

 @spec pop_push_state(ops :: t()) :: ops :: t()

Reverts the style/transform state of the script then immediately pushes it again.
pop_push_state/1 is for when you have made changes that you want to revert, but then
know you are going to make more changes that you revert again. This is functionally
equivalent to calling pop_state/1 followed immediately by push_state/1, except that
it is done as a single operation in the script instead of two. This saves drawtime
compute and makes the script smaller. Any adjacent pop/push pairs in the script will
be converted to pop_push in the optimization phase of the finish/1 function.
pop_push_state/1 must be preceded with either push_state/1 and followed by either
pop_state/1 or another pop_push_state/1

 Link to this function

 pop_state(ops)

 View Source

 @spec pop_state(ops :: t()) :: ops :: t()

Reverts the style/transform state of the script to the most recently pushed state.
This function restores the style and transform states from a stack of
states. The idea is that you can make changes, then "pop" back to where
the state was before.
push_state/1 must be preceded with either push_state/1 or pop_push_state/1

 Link to this function

 push_state(ops)

 View Source

 @spec push_state(ops :: t()) :: ops :: t()

Saves the current style/transform state of the script as it is running.
This function saves the current style and transform states in a stack of
states. The idea is that you can make changes, then "pop" back to where
the state was before.
push_state/1 must be paired with an eventual pop_state/1 or pop_push_state/1

 Link to this function

 quad(ops, x0, y0, x1, y1, x2, y2, x3, y3)

 View Source

 @spec quad(
 ops :: t(),
 x0 :: number(),
 y0 :: number(),
 x1 :: number(),
 y1 :: number(),
 x2 :: number(),
 y2 :: number(),
 x3 :: number(),
 y3 :: number()
) :: ops :: t()

Add a quad to the current path.
This adds to the current path. It does not fill or stroke anything.

 Link to this function

 quadratic_to(ops, cpx, cpy, x, y)

 View Source

 @spec quadratic_to(
 ops :: t(),
 cpx :: number(),
 cpy :: number(),
 x :: number(),
 y :: number()
) ::
 ops :: t()

Add a quadratic curve segment to the path using the control points.
This adds to the current path. It does not fill or stroke anything.

 Link to this function

 rectangle(ops, width, height)

 View Source

 @spec rectangle(ops :: t(), width :: number(), height :: number()) :: ops :: t()

Add a rectangle to the current path.
This adds to the current path. It does not fill or stroke anything.

 Link to this function

 render_script(ops, id)

 View Source

 @spec render_script(ops :: t(), id :: String.t()) :: ops :: t()

Recursively draw a script by reference.
This adds a command that pauses the current script being rendered and
recursively draws another script that is referenced by id.
The new script being drawn starts with the currently set draw state and the
current state is automatically restored with the script is completed. Then
the current script continues drawing.

 Link to this function

 rotate(ops, radians)

 View Source

 @spec rotate(ops :: t(), radians :: number()) :: ops :: t()

Apply a rotation transform to the current transform stack.

 Link to this function

 rounded_rectangle(ops, width, height, radius)

 View Source

 @spec rounded_rectangle(
 ops :: t(),
 width :: number(),
 height :: number(),
 radius :: number()
) ::
 ops :: t()

Add a rounded rectangle to the current path.
This adds to the current path. It does not fill or stroke anything.

 Link to this function

 scale(ops, x, y)

 View Source

 @spec scale(ops :: t(), x :: number(), y :: number()) :: ops :: t()

Apply a scale transform to the current transform stack.

 Link to this function

 scissor(ops, w, h)

 View Source

 @spec scissor(ops :: t(), width :: number(), height :: number()) :: ops :: t()

Set the current scissor rect.
To remove the scissor rect, push the state before you use the scissor, then
pop it afterwards.

 Link to this function

 sector(ops, radius, radians)

 View Source

 @spec sector(ops :: t(), radius :: number(), radians :: number()) :: ops :: t()

Add a sector to the current path.
This adds to the current path. It does not fill or stroke anything.

 Link to this function

 serialize(script)

 View Source

 @spec serialize(script :: t()) :: iolist()

Transform a script list into a binary IO list.
Usually called from a driver.
Returns an IO list.
with {:ok, script} <- ViewPort.get_script_by_id(vp, "my_script_id") do
 Scenic.Script.serialize(script)
 |> my_render_function()
end
There are times when a driver will want to customize the serialization. For example,
GLFW driver wants fixed width names for the streams. So it hooks the serialization
of certain commands.
 io_list = Script.serialize(script, fn
 {:font, id} -> my_serialize_font(id)
 {:fill_stream, id} -> my_serialize_fill_stream(id)
 {:stroke_stream, id} -> my_serialize_stroke_stream(id)
 other -> other
end

 Link to this function

 serialize(script, intercept_fn)

 View Source

 @spec serialize(
 script :: t(),
 op_fn :: (op_fn :: script_op() -> nil | binary() | iolist() | script_op())
) :: iolist()

Transform a script list into a binary IO list with a map like interceptor function.
Usually called from a driver.
Returns an IO list.
with {:ok, script} <- ViewPort.get_script(vp, id) do
 io_list = Script.serialize(script, fn
 {:font, id} -> my_serialize_font(id)
 {:fill_stream, id} -> my_serialize_fill_stream(id)
 {:stroke_stream, id} -> my_serialize_stroke_stream(id)
 other -> other
 end)
end

 Link to this function

 serialize(script, acc, intercept_fn)

 View Source

 @spec serialize(
 script :: t(),
 accumulator :: Enum.acc(),
 (op_fn :: script_op(), state :: any() ->
 {nil, any()} | {binary(), any()} | {iolist(), any()} | {script_op(), any()})
) :: {iolist(), Enum.acc()}

Transform a script list into a binary IO list with a map_reduce like interceptor function.
Usually called from a driver.
Returns an IO list.
 {io_list, count} = Script.serialize(script, 0, fn
 {:font, id}, c -> {my_serialize_font(id), c+1}
 {:fill_stream, id}, c -> {my_serialize_fill_stream(id), c+1}
 {:stroke_stream, id}, c -> {my_serialize_stroke_stream(id), c+1}
 other, c -> {other, c+1}
 end)

 Link to this function

 start()

 View Source

 @spec start() :: ops :: t()

Create a new Script.

 Link to this function

 stroke_color(ops, color)

 View Source

 @spec stroke_color(ops :: t(), color :: Scenic.Color.t()) :: ops :: t()

Set the current stroke to an single color.
This only sets the stroke paint type. You still need to call stroke_path/1 or one of the
draw_* apis to actually draw something.

 Link to this function

 stroke_image(ops, id)

 View Source

 @spec stroke_image(ops :: t(), image :: Scenic.Assets.Static.id()) :: ops :: t()

Set the current stroke to an image from the Static asset library.
This image will be automatically repeated both horizontally and vertically.
This only sets the stroke paint type. You still need to call stroke_path/1 or one of the
draw_* apis to actually draw something.

 Link to this function

 stroke_linear(ops, start_x, start_y, end_x, end_y, color_start, color_end)

 View Source

 @spec stroke_linear(
 ops :: t(),
 start_x :: number(),
 start_y :: number(),
 end_x :: number(),
 end_y :: number(),
 color_start :: Scenic.Color.t(),
 color_end :: Scenic.Color.t()
) :: ops :: t()

Set the current stroke to linear gradient that goes between two colors.
This only sets the stroke paint type. You still need to call stroke_path/1 or one of the
draw_* apis to actually draw something.

 Link to this function

 stroke_path(ops)

 View Source

 @spec stroke_path(ops :: t()) :: ops :: t()

Stroke the current path with the currently selected stroke width/paint.

 Link to this function

 stroke_radial(ops, center_x, center_y, inner_radius, outer_radius, color_start, color_end)

 View Source

 @spec stroke_radial(
 ops :: t(),
 center_x :: number(),
 center_y :: number(),
 inner_radius :: number(),
 outer_radius :: number(),
 color_start :: Scenic.Color.t(),
 color_end :: Scenic.Color.t()
) :: ops :: t()

Set the current stroke to radial gradient that goes between two colors.
This only sets the stroke paint type. You still need to call stroke_path/1 or one of the
draw_* apis to actually draw something.

 Link to this function

 stroke_stream(ops, id)

 View Source

 @spec stroke_stream(ops :: t(), id :: Scenic.Assets.Stream.id()) :: ops :: t()

Set the current stroke to an image from an asset stream.
This image will be automatically repeated both horizontally and vertically.
This only sets the stroke paint type. You still need to call stroke_path/1 or one of the
draw_* apis to actually draw something.

 Link to this function

 stroke_width(ops, width)

 View Source

 @spec stroke_width(ops :: t(), width :: number()) :: ops :: t()

Set the current stroke width.
This only sets the stroke sidth. You still need to call stroke_path/1 or one of the
draw_* apis to actually draw something.

 Link to this function

 text_align(ops, atom)

 View Source

 @spec text_align(ops :: t(), type :: :left | :center | :right) :: ops :: t()

Set the current horizontal text alignment.
Can be any one of :left, :right, or :center

 Link to this function

 text_base(ops, atom)

 View Source

 @spec text_base(ops :: t(), type :: :top | :middle | :alphabetic | :bottom) ::
 ops :: t()

Set the current vertical text alignment.
Can be any one of :top, :middle, :alphabetic, or :bottom

 Link to this function

 transform(ops, a, b, c, d, e, f)

 View Source

 @spec transform(
 ops :: t(),
 a :: number(),
 b :: number(),
 c :: number(),
 d :: number(),
 e :: number(),
 f :: number()
) :: ops :: t()

Apply an arbitrary transform to the current transform stack.

 Link to this function

 translate(ops, x, y)

 View Source

 @spec translate(ops :: t(), x :: number(), y :: number()) :: ops :: t()

Apply a translation transform to the current transform stack.

 Link to this function

 triangle(ops, x0, y0, x1, y1, x2, y2)

 View Source

 @spec triangle(
 ops :: t(),
 x0 :: number(),
 y0 :: number(),
 x1 :: number(),
 y1 :: number(),
 x2 :: number(),
 y2 :: number()
) :: ops :: t()

Add a triangle to the current path.
This adds to the current path. It does not fill or stroke anything.

Scenic.ViewPort

Overview
The job of the ViewPort is to coordinate the flow of information between
the scenes and the drivers. Scenes and Drivers should not know anything
about each other. An app should work identically from its point of view
no matter if there is one, multiple, or no drivers currently running.
Drivers are all about rendering output and collecting input from a single
source. Usually hardware, but can also be the network or files. Drivers
only care about graphs and should not need to know anything about the
logic or state encapsulated in Scenes.
The goal is to isolate app data and logic from render data and logic. The
ViewPort is the connection between them that makes sense of the flow
of information.
OUTPUT
Practically speaking, the ViewPort is the owner of the ETS tables that
carry the graphs (and any other necessary support info). If the ViewPort
crashes, then all that information needs to be rebuilt. The ViewPort monitors
all running scenes and does the appropriate cleanup when any of them
goes DOWN.
The scene is responsible for generating graphs and writing them to
the graph ETS table. (Note: We also tried casting the graph to the ViewPort
so that the table could be non-public, but that had issues)
The drivers should only read from the graph tables.
INPUT
When user input happens, the drivers send it to the ViewPort.
Input that does not depend on screen position (key presses, audio
window events, etc.) is sent to the root scene unless some other
scene has captured that type of input (see captured input below).
If the input event does depend on position (cursor position, cursor
button presses, scrolling, etc.) then the ViewPort needs to
scan the hierarchical graph of graphs, to find the correct
scene, and the item in that scene that was "hit". The ViewPort
then sends the event to that scene, with the position projected
into the scene's local coordinate space (via the built-up stack
of matrix transformations)
CAPTURED INPUT
A scene can request to "capture" all input events of a certain type.
This means that all events of that type are sent to a certain
scene process regardless of position or root. In this way, a
text input scene nested deep in the tree can capture key presses.
Or a button can capture cursor_pos events after it has been pressed.
If a scene has "captured" a position dependent input type, that
position is projected into the scene's coordinate space before
sending the event. Note that instead of walking the graph of graphs,
the transforms provided in the input "context" field are used. You
could, in theory change that to something else before capturing,
but I wouldn't really recommend it.
Any scene can cancel the current capture. This would probably
leave the scene that thinks it has "captured" the input in an inconsistent
state, so this is not recommended.
Dynamically Creating View Ports
Pass in the same set of opts that you would use when starting Scenic in your
supervision tree. For example:
Assuming you use the default view port name from the generator
{:ok, view_port} = Scenic.ViewPort.info(:main_viewport)

opts = [
 module: Scenic.Driver.Local,
 window: [resizeable: false, title: "My Example Scenic App"],
 on_close: :stop_system
]

{:ok, [opts]} = Scenic.Driver.validate([opts])
Scenic.ViewPort.start_driver(view_port, opts)

 Anchor for this section

 Summary

 Types

 event()

 t()

 Functions

 all_script_ids(view_port)

 Retrieves a list of all registered script ids.

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 del_graph(viewport, name)

 Delete a graph by name.

 del_script(viewport, name)

 Delete a script by name.

 find_point(view_port, global_point)

 Find a scene_pid/primitive under the given point in global coordinates

 get_script(view_port, name)

 Retrieve a script

 handle_continue_input(raw_input, state)

 info(pid)

 Retrieve a %ViewPort{} struct given just the viewport's pid

 input(vp, input_event)

 Send raw input to a viewport.

 input_types()

 Returns a list of the valid input types

 put_graph(viewport, name, graph, opts \\ [])

 Put a graph by name.

 put_script(view_port, name, script, opts \\ [])

 Put a script by name.

 root_id()

 Returns the id of the first script in the drawing tree

 set_root(viewport, scene, args \\ nil)

 Set the root scene/graph of the ViewPort.

 set_theme(viewport, theme)

 Set the root theme for the ViewPort.

 start(opts)

 Start a new ViewPort

 start_driver(view_port, opts)

 stop(view_port)

 Stop a running viewport

 stop_driver(view_port, driver_pid)

 Anchor for this section

Types

 Link to this type

 event()

 View Source

 @type event() :: {event :: atom(), data :: any()}

 Link to this type

 t()

 View Source

 @type t() :: %Scenic.ViewPort{
 name: atom(),
 pid: pid(),
 script_table: reference(),
 size: {number(), number()}
}

 Anchor for this section

Functions

 Link to this function

 all_script_ids(view_port)

 View Source

 @spec all_script_ids(viewport :: t()) :: list()

Retrieves a list of all registered script ids.

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 del_graph(viewport, name)

 View Source

 @spec del_graph(viewport :: t(), name :: any()) :: :ok

Delete a graph by name.
Same as del_script/2

 Link to this function

 del_script(viewport, name)

 View Source

 @spec del_script(viewport :: t(), name :: any()) :: :ok | {:error, :not_found}

Delete a script by name.
Also unregisters the name/id pairing

 Link to this function

 find_point(view_port, global_point)

 View Source

 @spec find_point(viewport :: t(), global_point :: Scenic.Math.point()) ::
 {:ok, scene_pid :: pid(), id :: any()} | {:error, :not_found}

Find a scene_pid/primitive under the given point in global coordinates

 Link to this function

 get_script(view_port, name)

 View Source

 @spec get_script(viewport :: t(), name :: any()) ::
 {:ok, Scenic.Script.t()} | {:error, :not_found}

Retrieve a script

 Link to this function

 handle_continue_input(raw_input, state)

 View Source

 Link to this function

 info(pid)

 View Source

 @spec info(pid :: t() | GenServer.server()) :: {:ok, map()}

Retrieve a %ViewPort{} struct given just the viewport's pid

 Link to this function

 input(vp, input_event)

 View Source

 @spec input(
 viewport :: t(),
 input :: Scenic.ViewPort.Input.t()
) :: :ok | {:error, atom()}

Send raw input to a viewport.
This is used primarily by drivers to send raw user input to the viewport. Having said that,
nothing stops a scene from using it to send input into the system. There are a few cases
where that is useful.
See the input docs for the input formats you can send.

 Link to this function

 input_types()

 View Source

Returns a list of the valid input types

 Link to this function

 put_graph(viewport, name, graph, opts \\ [])

 View Source

 @spec put_graph(
 viewport :: t(),
 name :: any(),
 graph :: Scenic.Graph.t(),
 opts :: Keyword.t()
) :: {:ok, name :: any()}

Put a graph by name.
This compiles the graph to a collection of scripts

 Link to this function

 put_script(view_port, name, script, opts \\ [])

 View Source

 @spec put_script(
 viewport :: t(),
 name :: any(),
 script :: Scenic.Script.t(),
 opts :: Keyword.t()
) :: {:ok, non_neg_integer()} | {:error, atom()}

Put a script by name.
returns {:ok, id}

 Link to this function

 root_id()

 View Source

 @spec root_id() :: String.t()

Returns the id of the first script in the drawing tree
Used by drivers

 Link to this function

 set_root(viewport, scene, args \\ nil)

 View Source

 @spec set_root(
 viewport :: t(),
 scene :: atom(),
 args :: any()
) :: :ok

Set the root scene/graph of the ViewPort.
This will stop the currently running scene, including all of it's child components.
Then it starts the new scene including all of it's child components.

 Link to this function

 set_theme(viewport, theme)

 View Source

 @spec set_theme(viewport :: t(), theme :: atom() | map()) :: :ok

Set the root theme for the ViewPort.
Warning
This will restart the current root scene

 Link to this function

 start(opts)

 View Source

 @spec start(opts :: Keyword.t()) :: {:ok, t()}

Start a new ViewPort

 Link to this function

 start_driver(view_port, opts)

 View Source

 @spec start_driver(
 viewport :: t(),
 opts :: list()
) :: {:ok, pid :: GenServer.server()} | :error

 Link to this function

 stop(view_port)

 View Source

 @spec stop(viewport :: t()) :: :ok

Stop a running viewport

 Link to this function

 stop_driver(view_port, driver_pid)

 View Source

 @spec stop_driver(
 viewport :: t(),
 driver_pid :: GenServer.server()
) :: :ok

Scenic.ViewPort.Input

The low-level interface for working in input into and out of a ViewPort.
You will typically use the input related functions in Scenic.Scene, which
wrap this module and make them easy to use from a Scene module.
If you wanted monitor input from some other GenServer, or inject input into
a ViewPort, then this is the API to use.
Input events begin when a driver sends an event to the ViewPort it is attached
to. In order to keep scenes simple, and to reduce the amount of work and data
transferred when input is created (for example, a moving mouse...), events are
only sent to any scenes that have indicated that they are listening.
There are two ways a scene indicates that it is interested in an input event.
Requested Input
Normally, a scene "requests" input. This will route any keyboard or other
location independent events to the scene. However, any positional input, such
as :cursor_button will only be received it if is over an item in a graph
managed by a scene that has the input: true style.
graph
 |> rect({20, 40}, t: {10, 10}, id: :rect_in, input: true, fill: :blue)
 |> rect({20, 40}, t: {10, 50}, id: :rect_other, fill: :blue)
In the above example, the scene would only receive :cursor_button events if the
:rect_in rect is clicked. This is because it is the only rect that has the
input: true style on it.
Cursor clicks over the :rect_other rect, are not delivered to the scene.
Captured Input
If you look at the code behind components such as Button or Slider, you will see
that when the button is clicked, it "captures" the :cursor_button input type.
This causes the caller to receive all input events of that type, regardless of
the :input style. This means that even :cursor_button events that would be
otherwise be routed to some other scene are sent only to the scene that has
captured the input. The other scene that has only "requested" the event does
not receive it.
If multiple scenes have captured an input type, the most recent call wins. When
scene releases the capture, the event type remains captured but is now sent to
the second scene that had been overridden.
Sending Input
When a driver (or any other caller, but it is typically a Scenic.Driver)
wants to send an input event to the ViewPort, it creates a message and sends
it to it's ViewPort with the Scenic.ViewPort.Input.send/2 function.
Drivers have no knowledge of the running scenes. The ViewPort takes care of
that routing.
Input events are validated against Scenic.ViewPort.Input.validate/1 function.

 Anchor for this section

 Summary

 Types

 class()

 positional()

 t()

 Functions

 capture(viewport, inputs, opts \\ [])

 Capture one or more types of input.

 fetch_captures(viewport, captured_by \\ nil)

 Retrieve a list of input captured by the caller.

 fetch_captures!(viewport)

 Retrieve a list of input captured by all processes.

 fetch_requests(viewport, requested_by \\ nil)

 Retrieve a list of input requested by the caller or the process requested_by.

 fetch_requests!(viewport)

 Retrieve a list of input requested by all processes.

 release(viewport, inputs \\ :all, opts \\ [])

 Release the captured inputs from the calling process.

 release!(viewport, inputs)

 Release the captured inputs from ALL processes

 request(viewport, inputs, opts \\ [])

 Request one or more types of input.

 send(view_port, input)

 Send raw input to a viewport.

 unrequest(viewport, inputs \\ :all, opts \\ [])

 Unrequest the captured inputs from the calling process.

 validate(arg1)

 Validate an input message.

 Anchor for this section

Types

 Link to this type

 class()

 View Source

 @type class() ::
 :cursor_button
 | :cursor_scroll
 | :cursor_pos
 | :codepoint
 | :key
 | :viewport
 | :relative
 | :led
 | :switch

 Link to this type

 positional()

 View Source

 @type positional() :: :cursor_button | :cursor_scroll | :cursor_pos | :relative

 Link to this type

 t()

 View Source

 @type t() ::
 {:codepoint,
 {codepoint :: String.t(), mods :: Scenic.Driver.KeyMap.mod_keys()}}
 | {:key,
 {key :: atom(), value :: integer(),
 mods :: Scenic.Driver.KeyMap.mod_keys()}}
 | {:cursor_button,
 {button :: atom(), value :: integer(),
 mods :: Scenic.Driver.KeyMap.mod_keys(), position :: Scenic.Math.point()}}
 | {:cursor_scroll,
 {offset :: Scenic.Math.point(), position :: Scenic.Math.point()}}
 | {:cursor_pos, position :: Scenic.Math.point()}
 | {:viewport, {:enter | :exit | :reshape, xy :: Scenic.Math.point()}}
 | {:relative, vector :: Scenic.Math.point()}
 | {:led, {id :: atom(), value :: integer()}}
 | {:switch, {id :: atom(), value :: integer()}}

 Anchor for this section

Functions

 Link to this function

 capture(viewport, inputs, opts \\ [])

 View Source

 @spec capture(
 viewport :: Scenic.ViewPort.t(),
 inputs :: class() | [class()],
 opts :: Keyword.t()
) :: :ok

Capture one or more types of input.
Returns :ok or an error

 options

 Options

	:pid - Send input to the specified pid instead of the caller process.

 Link to this function

 fetch_captures(viewport, captured_by \\ nil)

 View Source

 @spec fetch_captures(
 viewport :: Scenic.ViewPort.t(),
 captured_by :: nil | pid()
) :: {:ok, list()}

Retrieve a list of input captured by the caller.
Returns: { :ok, list }

 Link to this function

 fetch_captures!(viewport)

 View Source

 @spec fetch_captures!(viewport :: Scenic.ViewPort.t()) :: {:ok, list()}

Retrieve a list of input captured by all processes.
Returns: { :ok, list }

 Link to this function

 fetch_requests(viewport, requested_by \\ nil)

 View Source

 @spec fetch_requests(
 viewport :: Scenic.ViewPort.t(),
 requested_by :: nil | pid()
) :: {:ok, list()}

Retrieve a list of input requested by the caller or the process requested_by.
Returns: { :ok, inputs }

 Link to this function

 fetch_requests!(viewport)

 View Source

 @spec fetch_requests!(viewport :: Scenic.ViewPort.t()) :: {:ok, list()}

Retrieve a list of input requested by all processes.
Returns: { :ok, inputs }

 Link to this function

 release(viewport, inputs \\ :all, opts \\ [])

 View Source

 @spec release(
 viewport :: Scenic.ViewPort.t(),
 input_class :: class() | [class()] | :all,
 opts :: Keyword.t()
) :: :ok

Release the captured inputs from the calling process.

 options

 Options

	:pid - Release from the specified pid instead of the caller process.

 Link to this function

 release!(viewport, inputs)

 View Source

 @spec release!(
 viewport :: Scenic.ViewPort.t(),
 input_class :: class() | [class()] | :all
) :: :ok

Release the captured inputs from ALL processes

 Link to this function

 request(viewport, inputs, opts \\ [])

 View Source

 @spec request(
 viewport :: Scenic.ViewPort.t(),
 inputs :: class() | [class()],
 opts :: Keyword.t()
) :: :ok

Request one or more types of input.
Returns :ok or an error

 options

 Options

	:pid - Send input to the specified pid instead of the caller process.

 Link to this function

 send(view_port, input)

 View Source

 @spec send(
 viewport :: Scenic.ViewPort.t(),
 input :: t()
) :: :ok | {:error, atom()}

Send raw input to a viewport.
This is used primarily by drivers to send raw user input to the viewport. Having said that,
nothing stops a scene or any other process from using it to send input into the system.
There are a few cases where that is useful.
See the input types for the input formats you can send.

 Link to this function

 unrequest(viewport, inputs \\ :all, opts \\ [])

 View Source

 @spec unrequest(
 viewport :: Scenic.ViewPort.t(),
 input_class :: class() | [class()] | :all,
 opts :: Keyword.t()
) :: :ok

Unrequest the captured inputs from the calling process.

 options

 Options

	:pid - Unrequest from the specified pid instead of the caller process.

 Link to this function

 validate(arg1)

 View Source

 @spec validate(input :: t()) :: :ok | {:error, :invalid}

Validate an input message.
Returns :ok if the message is valid.
Returns {:error, :invalid} if the message is not valid.

Scenic.Assets.Static

Manages static assets, which are resources such as fonts or images (jpg or png) that
ship with your application and do not change over time.
These assets live as seperate files and are hashed so that they are rejected if they
change in any way after you compile your application. They are cacheable by the
relay server if you remote your Scenic UI.
In previous versions of Scenic, static assets were rather complicated to set up
and maintain. Starting with v0.11, Scenic has an assets build pipeline that manages
the static assets library for you.
Required Configuration
Setting up the static asset pipeline requites several inputs that need to be maintained.
	Assets Directory: Typically /assets in your main app source directory. This is the
folder that holds your raw asset files.
	Assets Module: A module in your application that builds and holds the asset library.
	Assets Config: Configuration scripts in your application that indicates where the
assets directory is and your assets module.

Assets Directory
The assets directory typically is typically called /assets and lives at the root of
your application source directory. This can be changed in the config options.
Example:
my_app_src
 assets
 fonts
 roboto.ttf
 custom_font.ttf
 images
 parrot.jpg
 my_logo.png
 config
 lib
 etc...
Once the rest of the configuration is complete, adding a new font is as simple as dropping
the *.ttf file into the /assets/fonts directory and compiling your assets module. Similar
is true for images.
Assets Library
When your application is running, there needs to be a module that contains the built asset
library referring to your static assets. This library holds things like the hash of the
contents of each asset, and it's parsed metadata.
You must create this module and compile it with your application. The following example
is what this module should look like. Replace MyApplication and :my_application with
the actual name of your application.
defmodule MyApplication.Assets do
 use Scenic.Assets.Static,
 otp_app: :my_application,
 sources: [
 "assets",
 {:scenic, "deps/scenic/assets"}
],
 alias: [
 parrot: "images/parrot.jpg"
]
end
Notice that there are several configuration sections in your assets module. Sources is the list
of folders to look in to find assets. For example, if you take a dependency on a package that
contains assets, you will need to add it's assets folder here. If can omit the sources section
if you only use a single assets folder and scenic's default fonts. In other words, the sources
configuration shown above is also the default.
The :alias list creates shortcuts that refer to the files in the assets library. This is useful
if you think an asset id may change during development but want a constant way to refer to it
in your code. In the above example, the atom :parrot is mapped to the file images/parrot.jpb
and are interchangeable with each other in a graph.
In this example, the two rect fills are identical as the :parrot alias was created
in the configuration script.
Graph.build()
 |> rect({100, 50}, fill: {:image, "images/parrot.jpg"})
 |> rect({100, 50}, fill: {:image, :parrot})
The fonts fonts/roboto.ttf and fonts/roboto_mono.ttf are considered the default
fonts for Scenic and are automatically aliased to :roboto and :roboto_mono.
It is expected that you will include those two fonts in your /assets/fonts directory.
IMPORTANT NOTE: When you add a new asset to the assets directory, you may need to force this
module to recompile for them to be usable. Adding or removing a return at the end should do
the trick. In the future, there will be a file system watcher (much like Phoenix has) that
will do this automatically. Until then, it is pretty easy to do manually.
Assets Configuration
The final piece is some configuration that connects scenic and your assets module
togther. Put this in your application's config.exs file.
config :scenic, :assets,
 module: MyApplication.Assets
Troubleshooting
If you have added an asset to your assets directory and you think it should be in
your library, but it isn't, or you can't compile a scene because the asset can't
be found, then start troubleshooting with the following steps.
	Force your assets module to rebuild. Touch it in some way such as adding or removing a
carriage return at the end, then compile again.
	Check that you are using the correct id for the asset in your graph.
	If you are using an alias, check it's spelling and its assignment in the config script.
	Confirm that the asset itself has valid contents, whether it is a font (.ttf)
or an image (.jpg or .jpeg or .png)

That usually does it.
Under the Covers
When your assets module is compiled, several steps are executed by Scenic.Assets.Static
	The files in your assets directory are parsed for validity and metadata.
Valid files move on to the next step
	The valid assets files are hashed to create a cryptographic signature that is used
later when the files are loaded to confirm that they are unchanged.
	The asset files are copied into the /priv/static directory, which is where they
are actually loaded from at run time. The name of the file in this directory is
a Base.url_encode64/2 version of the hash of the file's contents.
	A map is created, which is the actual asset library used at runtime. This map
has the original file name as keys and holds the hashes, and parsed metadata
as the contents. This map is stored as a literal object in your assets module
and is the reason it needs to be compiled when you add a new asset.

If you are curious and want to see the library yourself, you can query the
MyApplication.Assets.library/0 function, which is added at compile time. Alternately,
the function Scenic.Assets.Static.library/0 should return the same library.
Future Work
There are two pieces of work to the static assets pipeline that are planned for the future.
First is a file system watcher that automatically flags your assets module to be recompiled
when the contents of the assets directory changes. This would work in a similar way to the
file system watcher used by Phoenix.
The second, larger, piece of work is to include optional transform scripts/code when
your assets module is compiled. This would let you do things like putting a very
high resolution image in the sources folder and down-scaling at compile time as
appropriate for the target device you are compiling for. In the meantime, just put
in the assets you want to use directly.

 Anchor for this section

 Summary

 Types

 id()

 t()

 Functions

 assign(lib, atom, key, value)

 library()

 Return the compiled asset library.

 load(id)

 Load the binary contents of an asset given it's id or hash.

 load(lib, id)

 meta(id)

 Fetch the metadata for an asset by id.

 meta(lib, id)

 module()

 Return the configured asset library module.

 to_hash(id)

 Transform an asset id into the file hash.

 to_hash(static, id)

 Anchor for this section

Types

 Link to this type

 id()

 View Source

 @type id() :: String.t() | atom() | {atom(), String.t()}

 Link to this type

 t()

 View Source

 @type t() :: %Scenic.Assets.Static{
 aliases: map(),
 hash_type: :sha3_256,
 meta_hash: binary(),
 metas: map(),
 module: module(),
 otp_app: atom()
}

 Anchor for this section

Functions

 Link to this function

 assign(lib, atom, key, value)

 View Source

 Link to this function

 library()

 View Source

Return the compiled asset library.

 Link to this function

 load(id)

 View Source

 @spec load(id :: any()) ::
 {:ok, data :: binary()}
 | {:error, :not_found}
 | {:error, :hash_failed}
 | {:error, File.posix()}

Load the binary contents of an asset given it's id or hash.
Return is in the form of {:ok, bin}
If the asset is not in the library, {:error, :not_found} is returned.
The contents of the file will be hashed and compared against the hash found in
the library. If this test fails, {:error, :hash_failed} is returned.
If the output file cannot be read, it returns a posix error.

 Link to this function

 load(lib, id)

 View Source

 @spec load(library :: t(), id :: any()) ::
 {:ok, data :: binary()}
 | {:error, :not_found}
 | {:error, :hash_failed}
 | {:error, File.posix()}

 Link to this function

 meta(id)

 View Source

 @spec meta(id :: any()) :: {:ok, meta :: any()} | :error

Fetch the metadata for an asset by id.
Return is in the form of {:ok, metadata}
If the hash is not in the library, :error is returned.
Example:
{:ok, meta} = Scenic.Assets.Static.meta(:parrot)

 Link to this function

 meta(lib, id)

 View Source

 @spec meta(library :: t(), id :: any()) :: {:ok, meta :: any()} | :error

 Link to this function

 module()

 View Source

Return the configured asset library module.

 Link to this function

 to_hash(id)

 View Source

 @spec to_hash(id :: any()) :: {:ok, hash :: any()} | :error

Transform an asset id into the file hash.
If you pass in a valid hash, it is returned unchanged
Example:
alias Scenic.Assets.Static
library = Static.library()

{:ok, "VvWQFjblIwTGsvGx866t8MIG2czWyIc8by6Xc88AOns"} = Static.hash(library, :parrot)
{:ok, "VvWQFjblIwTGsvGx866t8MIG2czWyIc8by6Xc88AOns"} = Static.hash(library, "images/parrot.png")
{:ok, "VvWQFjblIwTGsvGx866t8MIG2czWyIc8by6Xc88AOns"} = Static.hash(library, "VvWQFjblIwTGsvGx866t8MIG2czWyIc8by6Xc88AOns")

 Link to this function

 to_hash(static, id)

 View Source

 @spec to_hash(library :: t(), id :: any()) :: {:ok, hash :: any()} | :error

Scenic.Assets.Stream

Manage streaming assets (for now only compressed images and bitmaps) that are available
to all Scenes and ViewPorts.
The Scenic.Assets.Stream API gives to access to a running GenServer that manages an
:ets table and subscriptions to changes to named streams. This means that streaming
assets are available globally to all Scenes and ViewPorts.
You should be aware that if you have a GenServer that is rapidly updating a stream,
but no scene's are listening, then you are doing unnecessary work. If you have only a
single Scene in a single ViewPort listening to that stream, then create the stream
in the scene.
If you have multiple Scenes listening to a stream, or the same stream in multiple
ViewPorts, then create and update the stream in an independent GenServer that you
manage outside of Scenic.

 Anchor for this section

 Summary

 Types

 asset()

 id()

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 delete(id)

 Fully delete a named stream.

 exists!(id)

 Check if a named stream has been published.

 exists?(id)

 Check if a named stream has been published.

 fetch(id)

 Fetch the currently published asset in a named stream.

 put(id, asset)

 Put a streamable asset into a named stream.

 put!(asset, id)

 Same as put, but reverses the params order (making it pipe-able) and raises on failures.

 subscribe(id)

 Subscribe to changes in a named stream.

 unsubscribe(id)

 Unsubscribe to changes in a named stream.

 Anchor for this section

Types

 Link to this type

 asset()

 View Source

 @type asset() :: Scenic.Assets.Stream.Image.t() | Scenic.Assets.Stream.Bitmap.t()

 Link to this type

 id()

 View Source

 @type id() :: String.t()

 Anchor for this section

Functions

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 delete(id)

 View Source

 @spec delete(id :: String.t()) :: :ok

Fully delete a named stream.
If you recreate the stream after deleting it, you can place any asset type into
the new stream.

 Link to this function

 exists!(id)

 View Source

 @spec exists!(id :: String.t()) :: :ok

Check if a named stream has been published.
Returns a :ok if the stream is published. Raises an error if it is not.

 Link to this function

 exists?(id)

 View Source

 @spec exists?(id :: String.t()) :: boolean()

Check if a named stream has been published.
Returns a boolean indicating if the stream is published.

 Link to this function

 fetch(id)

 View Source

 @spec fetch(id :: String.t()) :: {:ok, asset :: asset()} | {:error, :not_found}

Fetch the currently published asset in a named stream.
Returns {:ok, asset} on success.
Returns {:error, :not_found} if the stream is not available.

 Link to this function

 put(id, asset)

 View Source

 @spec put(id :: String.t(), asset :: asset()) ::
 :ok | {:error, atom()} | {:error, atom(), any()}

Put a streamable asset into a named stream.
If the named stream does not exist yet, it is created. If it already exists, then
it's content is updated with the asset.
Returns :ok on success.
Note: Once a stream is create, the asset being updated must be the same type as the
asset that was originally created. I.e. you can't replace a Bitmap with an Image. This
will make more sense in the future as other assets types (audio) become supported.
The contents of the asset is (lightly) validated as it is put into the :ets table.
If the content is invalid, or a different type than what is already in the stream,
then it returns {:error, :invalid, asset_type}.

 Link to this function

 put!(asset, id)

 View Source

 @spec put!(asset :: asset(), id :: String.t()) :: asset()

Same as put, but reverses the params order (making it pipe-able) and raises on failures.
Returns the asset on success.

 Link to this function

 subscribe(id)

 View Source

 @spec subscribe(id :: String.t()) :: :ok

Subscribe to changes in a named stream.
Call this from a GenServer, typically a Driver or something you manage yourself.
When an asset stream is updated you will receive the following message.
{{Stream, :put}, stream_type, id}
You can match against stream_type to select certain kids of assets. Use the id
to fetch the contents of the asset.
When an asset stream is deleted, you will receive the following message.
{{Stream, :delete}, stream_type, id}
You can subscribe to an stream before it has been published. You will then start
receiving put messages when it is created. Your subscription will not end if the
stream is deleted.

 Link to this function

 unsubscribe(id)

 View Source

 @spec unsubscribe(id :: String.t() | :all) :: :ok

Unsubscribe to changes in a named stream.
Once your process unsubscribes to a named stream, it will stop receiving all
messages related to it

Scenic.Assets.Stream.Bitmap

This module helps you to prepare images, in the form of a bitmap, that are to be streamed
and displayed through the Scenic.Assets.Stream module.
A bitmap is a rectangular field of pixels. Each pixel can be addressed and assigned a color.
When the bitmap is put into Scenic.Assets.Stream it becomes an image that can be displayed
in a scene via Scenic.Primitive.Style.Paint.Stream.
Committed vs. Mutable
Bitmaps are interesting because a typical pattern is to change the color of many pixels in
a rapid burst, then send the image up. The bitmaps can become quite large tho, so if we
were to make a copy of it every time a single pixel was changed, that could become quite
slow.
Unfortunately, writing a NIF that manipulates individual pixels quickly and without making
a copy, breaks the immutable, functional model of Erlang/Elixir.
The compromise is that a Bitmap can be either in a "commited" state, which can be put
into Scenic.Assets.Stream, but not changed, or in a "mutable" state, which can be
manipulated rapidly, but not streamed to scenes.
When a new bitmap is built, it starts in the mutable state, unless the commit: true option is set.
alias Scenic.Assets.Stream.Bitmap

bitmap = Bitmap.build(:rgb, 20, 10, clear: :blue)
 |> Bitmap.put(2, 3, :red)
 |> Bitmap.put(9, 10, :yellow)
 |> Bitmap.commit()

Scenic.Assets.Stream.put("stream_id", bitmap)
In the above example, a new bitmap is created, that can hold an rgb color in every pixel,
is 20 pixels wide, 10 pixels high, and starts with the entire image set to the color :blue.
The :commit option is not set, so it is mutable.
Then two of the pixels are set to other colors. One :red and the other :yellow.
Finally, the image is committed, making it usable, but no longer mutable. After the image is
completed, it is sent to Scenic.Assets.Stream, which makes it available for use in a scene.
Color Depth
Bitmaps can be one of four depths. Each consumes a different amount of memory per pixel.
If you are running on a constrained memory device, or are worried about bandwidth when remoting
the UI, then you should choose the depth that you actually use. If you have lots of memory,
then :rgba is usually the fastest format.
	Depth	Bytes per pixel	Notes
	:g	1	Simple Greyscale. 256 shades of grey
	:ga	2	Greyscale plus an alhpa channel
	:rgb	3	Red/Green/Blue Millions of colors
	:rgba	4	Red/Green/Blue/Alpha

 Anchor for this section

 Summary

 Types

 depth()

 m()

 meta()

 t()

 Functions

 build(format, width, height, opts \\ [])

 Build a new bitmap with a given depth, width and height.

 clear(mutable, color)

 Set the color value of all pixels in a bitmap. This effectively erases the bitmap,
replacing it with a solid field of the supplied color.

 commit(arg)

 Change a bitmap from mutable to committed.

 get(texture, x, y)

 Get the color value of a single pixel in a bitmap.

 mutable(arg)

 Change a bitmap from committed to mutable.

 put(mutable, x, y, color)

 Set the color value of a single pixel in a bitmap.

 put_offset(mutable, offset, color)

 Set the color value of a single pixel in a bitmap using an offset from the start.

 Anchor for this section

Types

 Link to this type

 depth()

 View Source

 @type depth() :: :g | :ga | :rgb | :rgba

 Link to this type

 m()

 View Source

 @type m() :: {:mutable_bitmap, meta :: meta(), data :: binary()}

 Link to this type

 meta()

 View Source

 @type meta() :: {width :: pos_integer(), height :: pos_integer(), depth :: depth()}

 Link to this type

 t()

 View Source

 @type t() :: {Scenic.Assets.Stream.Bitmap, meta :: meta(), data :: binary()}

 Anchor for this section

Functions

 Link to this function

 build(format, width, height, opts \\ [])

 View Source

 @spec build(
 depth :: depth(),
 width :: pos_integer(),
 height :: pos_integer(),
 opts :: Keyword.t()
) :: t()

Build a new bitmap with a given depth, width and height.
Build creates a new bitmap in memory. It begins in a mutable state
and will be set to transparent black unless the :clear option is specified.
The valid depths are :g, :ga, :rgb, :rgba as explained in the following table
	Depth	Bytes per pixel	Notes
	:g	1	Simple Greyscale. 256 shades of grey
	:ga	2	Greyscale plus an alhpa channel
	:rgb	3	Red/Green/Blue Millions of colors
	:rgba	4	Red/Green/Blue/Alpha

 options

 Options

	:clear Set the new bitmap so that every pixel is the specified color.
	:commit Set to true to start the bitmap committed. Set to false for mutable. The default if not specified is mutable.

 Link to this function

 clear(mutable, color)

 View Source

 @spec clear(mutable :: m(), color :: Scenic.Color.t()) :: mutable :: m()

Set the color value of all pixels in a bitmap. This effectively erases the bitmap,
replacing it with a solid field of the supplied color.
Only works with mutable bitmaps.
The color you provide can be any valid value from the Scenic.Color module.
If the color you provide doesn't match the depth of the bitmap, this will
transform the color as appropriate to fit. For example, putting an :rgb
color into a :g (greyscale) bit map, will set the level of grey to be the average
value of the red, green, and blue channels of the supplied color

 Link to this function

 commit(arg)

 View Source

 @spec commit(mutable :: m()) :: texture :: t()

Change a bitmap from mutable to committed.
Committed bitmaps can be used by Scenic.Assets.Stream. They will not
work with the put and clear functions in this module.

 Link to this function

 get(texture, x, y)

 View Source

 @spec get(t_or_m :: t() | m(), x :: pos_integer(), y :: pos_integer()) ::
 Scenic.Color.explicit()

Get the color value of a single pixel in a bitmap.
Works with either committed or mutable bitmaps.

 Link to this function

 mutable(arg)

 View Source

 @spec mutable(texture :: t()) :: mutable :: m()

Change a bitmap from committed to mutable.
This makes a copy of the bitmap's memory to preserve the Erlang model.
Mutable bitmaps are not usable by Scenic.Assets.Stream.

 Link to this function

 put(mutable, x, y, color)

 View Source

 @spec put(
 mutable :: m(),
 x :: pos_integer(),
 y :: pos_integer(),
 color :: Scenic.Color.t()
) ::
 mutable :: m()

Set the color value of a single pixel in a bitmap.
Only works with mutable bitmaps.
The color you provide can be any valid value from the Scenic.Color module.
If the color you provide doesn't match the depth of the bitmap, this will
transform the color as appropriate to fit. For example, putting an :rgb
color into a :g (greyscale) bit map, will set the level of grey to be the average
value of the red, green, and blue channels of the supplied color

 Link to this function

 put_offset(mutable, offset, color)

 View Source

 @spec put_offset(mutable :: m(), offset :: pos_integer(), color :: Scenic.Color.t()) ::
 mutable :: m()

Set the color value of a single pixel in a bitmap using an offset from the start.
Only works with mutable bitmaps.
The color you provide can be any valid value from the Scenic.Color module.
Unlike the put function, which specifies the pixel by x and y position,
put_offset takes an offset directly into the data.
The offset would be the same as y * width + x.

Scenic.Assets.Stream.Image

This module helps you to prepare images, in the form of a compressed blob such as
a jpg or png file, that are to be streamed and displayed through the
Scenic.Assets.Stream module.
A typical use case is receiving pre-compressed images from a physical camera, then
streaming them as the fill of a rect in a scene.
This module is very simple. The only function is from_binary/1, where you supply a
binary that is a valid compressed image format. That format is verified and the
metadata is parsed out of it.
The result is a term that can be supplied to the Scenic.Assets.Stream module.
Example:
alias Scenic.Assets.Stream

def handle_info({:camera_frame, bin}, state) do
 # If the supplied bin is not a valid image, let it crash
 {:ok, img} = Stream.Image.from_binary(bin)
 Stream.put("camera", img)
 { :noreply, state }
end

 Anchor for this section

 Summary

 Types

 meta()

 t()

 Functions

 from_binary(bin)

 Create a streamable image resource from a compressed image binary.

 Anchor for this section

Types

 Link to this type

 meta()

 View Source

 @type meta() :: {width :: pos_integer(), height :: pos_integer(), mime :: String.t()}

 Link to this type

 t()

 View Source

 @type t() :: {Scenic.Assets.Stream.Image, meta :: meta(), data :: binary()}

 Anchor for this section

Functions

 Link to this function

 from_binary(bin)

 View Source

 @spec from_binary(bin :: binary()) :: {:ok, t()} | {:error, :invalid}

Create a streamable image resource from a compressed image binary.
On success, this returns {:ok, img}
The supplied binary must be a valid jpeg or png format. If it is either invalid or an
unrecognized format, this will return {:error, :invalid}

Scenic.Component behaviour

A Component is Scene that is optimized to be used as a child of another scene.
These are typically controls that you want to define once and use in multiple places.
Standard Components
Scenic includes a several standard components that you can use in your
scenes. These were chosen to be in the main library because:
	They are used frequently
	Their use promotes a certain amount of "common" look and feel

All of these components are typically added/modified via the helper functions in the
Scenic.Components module.
	Helper	Component Module	Description
	button/3	Scenic.Component.Button	A simple button
	checkbox/3	Scenic.Component.Input.Checkbox	A boolean checkbox control
	dropdown/3	Scenic.Component.Input.Dropdown	A menu-like dropdown control
	radio_group/3	Scenic.Component.Input.RadioGroup	A group of radio controls
	slider/3	Scenic.Component.Input.Slider	A slider ranging from one value to another
	text_field/3	Scenic.Component.Input.TextField	A text input field.
	toggle/3	Scenic.Component.Input.Toggle	A boolean toggle control.

defmodule MyApp.Scene.MyScene do
 use Scenic.Scene
 import Scenic.Components

 @impl Scenic.Scene
 def init(scene, text, opts) do
 graph =
 Scenic.Graph.build()
 |> button("Press Me", id: :press_me)
 |> slider({{0,100}, 0}, id: :slide_me)

 { :ok, push_graph(scene, graph) }
 end
end
Creating Custom Components
Creating a custom component that you can use in your scenes is just like creating a scene
with an extra validation function. This validation function is used when the graph that
uses your component is built in order to make sure it uses data that conforms to what your
component expects.
 defmodule MyApp.Component.Fancy do
 use Scenic.Component

 @impl Scenic.Component
 def validate(data) when is_bitstring(data), do: {:ok, data}
 def validate(_), do: {:error, "Descriptive error message goes here."}

 @impl Scenic.Scene
 def init(scene, data, opts) do
 { :ok, scene }
 end
 end
Generating/Sending Events
Communication from a component to it's parent is usually done via event messages. Scenic knows how
to route events to a component's parent. If that parent doesn't handle it, then it is automatically
routed to the parent's parent. If it gets all the way to the ViewPort itself, then it is ignored.
 defmodule MyApp.Component.Fancy do

 # ... validate, and other setup ...

 @impl Scenic.Scene
 def init(scene, data, opts) do
 # setup and push a graph here...
 { :ok, assign(scene, id: opts[:id] }
 end

 @impl Scenic.Scene
 def handle_input({:cursor_button, {0, :release, _, _}}, :btn,
 %Scene{assigns: %{id: id}} = scene
) do
 :ok = send_parent_event(scene, {:click, id})
 { :noreply, scene }
 end

 end
Notice how the component saved the original id that was passed in to the init function via
the opts list. This is then used to identify the click to the parent. This is a common pattern.
Optional: Fetch/Put Handlers
If you would like the parent scene to be able to query your component's state without waiting
for the component to send events, you can optionally implement the following handle_call functions.
This is an "informal" spec... You don't have to implement it, but it is nice when you do.
defmodule MyApp.Component.Fancy do
 use Scenic.Component

 # ... init, validate, and other functions ...

 def handle_call(:fetch, _, %{assigns: %{value: value}} = scene) do
 { :reply, {:ok, value}, scene }
 end

 def handle_call({:put, value}, _, scene) when is_bitstring(value) do
 { :reply, :ok, assign(scene, value: value) }
 end

 def handle_call({:put, _}, _, scene) do
 {:reply, {:error, :invalid}, scene}
 end
end
To make the above example more practical, you would probably also modify and push a graph when
handling the :put message. See the code for the standard input components for deeper examples.
Optional: has_children: false
If you know for certain that your component will not itself use any components, you can
set :has_children to false like this.
defmodule MyApp.Component.Fancy do
 use Scenic.Component, has_children: false
 # ...
end
When :has_children is set to false, no DynamicSupervisor is started to manage the
scene's children, overall resource use is improved, and startup time is faster. You will not,
however, be able to nested components in any scene where :has_children is false.
For example, the Scenic.Component.Button component sets :has_children to false.
This option is available for any Scene, not just components.

 Anchor for this section

 Summary

 Callbacks

 add_to_graph(graph, data, opts)

 Add this component to a Graph.

 bounds(data, styles)

 Compute the bounding box of the component.

 default_pin(data, styles)

 Provide a default pin for this component.

 validate(data)

 Validate that the data for a component is correctly formed.

 Anchor for this section

Callbacks

 Link to this callback

 add_to_graph(graph, data, opts)

 View Source

 @callback add_to_graph(graph :: Scenic.Graph.t(), data :: any(), opts :: Keyword.t()) ::
 Scenic.Graph.t()

Add this component to a Graph.
A standard add_to_graph/3 is automatically added to your component. Override this
callback if you want to customize it.

 Link to this callback

 bounds(data, styles)

 View Source

 (optional)

 @callback bounds(data :: any(), styles :: map()) :: Scenic.Graph.bounds()

Compute the bounding box of the component.
This function can be called outside of the context of a running component. The box
should be computed as if it was running with the given data and styles.

 Link to this callback

 default_pin(data, styles)

 View Source

 (optional)

 @callback default_pin(data :: any(), styles :: map()) :: Scenic.Math.vector_2()

Provide a default pin for this component.
If this callback is not implemented, then the default pin will be {0,0}.

 Link to this callback

 validate(data)

 View Source

 @callback validate(data :: any()) :: {:ok, data :: any()} | {:error, String.t()}

Validate that the data for a component is correctly formed.
This callback is required.

Scenic.Component.Button

Add a button to a graph
A button is a small scene that is pretty much just some text drawn over a
rounded rectangle. The button scene contains logic to detect when the button
is pressed, tracks it as the pointer moves around, and when it is released.
Data
title
	title - a bitstring describing the text to show in the button

Messages
If a button press is successful, it sends an event message to the host scene
in the form of:
{:click, id}
These messages can be received and handled in your scene via
Scenic.Scene.handle_event/3. For example:
...

@impl Scenic.Scene
def init(_, _opts) do
 graph =
 Graph.build()
 |> Scenic.Components.button("Sample Button", id: :sample_btn_id, t: {10, 10})

 state = %{}

 {:ok, state, push: graph}
end

@impl Scenic.Scene
def handle_event({:click, :sample_btn_id}, _from, state) do
 IO.puts("Sample button was clicked!")
 {:cont, event, state}
end
Styles
Buttons honor the following standard styles
	:hidden - If false the component is rendered. If true, it is skipped.
The default is false.
	:theme - The color set used to draw. See below. The default is :primary

Sendable Styles
Styles can be sent directly to the Button Component by adding a :styles list.
graph
|> button(
 "Example",
 styles: [font_size: 32, text_align: :right]
)
The following standard styles are supported
	:font - The default is :roboto
	:font_size - The default is 20
	:text_align - The default is :center

Options
Buttons the following options.
	:width - :auto (default) or pass in a number to set the width of the button
	:height - :auto (default) or pass in a number to set the height of the button.
	:radius - pass in a number to set the radius of the button's rounded
rectangle. The default is 3

Buttons do not use the inherited :font_size style as they should look
consistent regardless of what size the surrounding text is.
Theme
Buttons work well with the following predefined themes:
:primary, :secondary, :success, :danger, :warning, :info,
:text, :light, :dark
To pass in a custom theme, supply a map with at least the following entries:
	:text - the color of the text in the button
	:background - the normal background of the button
	:border - the border of the button
	:active - the background while the button is pressed

Usage
You should add/modify components via the helper functions in
Scenic.Components
Examples
The following example creates a simple button and positions it on the screen.
graph
|> button("Example", id: :button_id, translate: {20, 20})
The next example makes the same button as before, but colors it as a warning
button. See the options list above for more details.
graph
|> button("Example", id: :button_id, translate: {20, 20}, theme: :warning)
The final example changes the text size and alignment
graph
|> button(
 "Example",
 id: :button_id,
 translate: {20, 20},
 theme: :warning,
 styles: [text_size: 32, text_align: :right]
)

 Anchor for this section

 Summary

 Functions

 add_to_graph(graph, data, opts \\ [])

 Callback implementation for Scenic.Component.add_to_graph/3.

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 Anchor for this section

Functions

 Link to this function

 add_to_graph(graph, data, opts \\ [])

 View Source

Callback implementation for Scenic.Component.add_to_graph/3.

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

Scenic.Component.Input.Caret

Add a blinking text-input caret to a graph.
Data
height
	height - The height of the caret. The caller (TextEdit) calculates this based
on its :font_size (often the same thing).

Options
	color - any valid color.

You can change the color of the caret by setting the color option
Graph.build()
 |> caret(20, color: :white)
Usage
The caret component is used by the TextField component and usually isn't accessed directly,
although you are free to do so if it fits your needs. There is no short-cut helper
function so you will need to add it to the graph manually.
The following example adds a blue caret to a graph.
graph
 |> Caret.add_to_graph(24, id: :caret, color: :blue)

 Anchor for this section

 Summary

 Functions

 add_to_graph(graph, data, opts \\ [])

 Callback implementation for Scenic.Component.add_to_graph/3.

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 Anchor for this section

Functions

 Link to this function

 add_to_graph(graph, data, opts \\ [])

 View Source

Callback implementation for Scenic.Component.add_to_graph/3.

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

Scenic.Component.Input.Checkbox

Add a checkbox to a graph
Data
{text, checked?}
	text - must be a bitstring
	checked? - must be a boolean and indicates if the checkbox is set.

Messages
When the state of the checkbox, it sends an event message to the host scene
in the form of:
{:value_changed, id, checked?}
Styles
Buttons honor the following styles
	:hidden - If false the component is rendered. If true, it is skipped.
The default is false.
	:theme - The color set used to draw. See below. The default is :dark

Theme
Checkboxes work well with the following predefined themes: :light, :dark
To pass in a custom theme, supply a map with at least the following entries:
	:text - the color of the text in the button
	:background - the background of the box
	:border - the border of the box
	:active - the border of the box while the button is pressed
	:thumb - the color of the check mark itself

Usage
You should add/modify components via the helper functions in
Scenic.Components
Examples
The following example creates a checkbox and positions it on the screen.
graph
|> checkbox({"Example", true}, id: :checkbox_id, translate: {20, 20})

 Anchor for this section

 Summary

 Functions

 add_to_graph(graph, data, opts \\ [])

 Callback implementation for Scenic.Component.add_to_graph/3.

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 Anchor for this section

Functions

 Link to this function

 add_to_graph(graph, data, opts \\ [])

 View Source

Callback implementation for Scenic.Component.add_to_graph/3.

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

Scenic.Component.Input.Dropdown

Add a dropdown to a graph
Data
{items, initial_item}
	items - must be a list of items, each of which is: {text, id}. See below...
	initial_item - the id of the initial selected item. It can be any term
you want, however it must be an item_id in the items list. See below.

Per item data:
{text, item_id}
	text - a string that will be shown in the dropdown.
	item_id - any term you want. It will identify the item that is
currently selected in the dropdown and will be passed back to you during
event messages.

Messages
When the state of the checkbox, it sends an event message to the host scene
in the form of:
{:value_changed, id, selected_item_id}
Options
Dropdowns honor the following list of options.
Styles
Buttons honor the following styles
	:hidden - If false the component is rendered. If true, it is skipped.
The default is false.
	:theme - The color set used to draw. See below. The default is :dark

Additional Styles
Buttons honor the following list of additional styles.
	:width - pass in a number to set the width of the button.
	:height - pass in a number to set the height of the button.
	:direction - what direction should the menu drop. Can be either :down
or :up. The default is :down.

Theme
Dropdowns work well with the following predefined themes: :light, :dark
To pass in a custom theme, supply a map with at least the following entries:
	:text - the color of the text
	:background - the background of the component
	:border - the border of the component
	:active - the background of selected item in the dropdown list
	:thumb - the color of the item being hovered over

Usage
You should add/modify components via the helper functions in
Scenic.Components
Examples
The following example creates a dropdown and positions it on the screen.
graph
|> dropdown({[
 {"Dashboard", :dashboard},
 {"Controls", :controls},
 {"Primitives", :primitives}
], :controls}, id: :dropdown_id, translate: {20, 20})

 Anchor for this section

 Summary

 Functions

 add_to_graph(graph, data, opts \\ [])

 Callback implementation for Scenic.Component.add_to_graph/3.

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 Anchor for this section

Functions

 Link to this function

 add_to_graph(graph, data, opts \\ [])

 View Source

Callback implementation for Scenic.Component.add_to_graph/3.

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

Scenic.Component.Input.RadioButton

Add a single radio button to a graph.
Data
{text, id}
{text, id, selected?}
	text - a bitstring of the text to display
	id - any term. Identifies the radio button.
	selected? - boolean. true if selected. false if not. Default is false if
this term is not provided.

Usage
The RadioButton component is used by the RadioGroup component and usually isn't accessed
directly, although you are free to do so if it fits your needs. There is no short-cut
helper function so you will need to add it to the graph manually.
The following example adds a caret to a graph.
graph
|> RadioButton.add_to_graph({"A button", :an_id, true})

 Anchor for this section

 Summary

 Functions

 add_to_graph(graph, data, opts \\ [])

 Callback implementation for Scenic.Component.add_to_graph/3.

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 Anchor for this section

Functions

 Link to this function

 add_to_graph(graph, data, opts \\ [])

 View Source

Callback implementation for Scenic.Component.add_to_graph/3.

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

Scenic.Component.Input.RadioGroup

Add a radio group to a graph
The data format for RadioGroup has changed since v0.10!
Data
{radio_buttons, checked_id}
	radio_buttons must be a list of radio button data. See below.
	checked_id Is the id of the currently selected radio from the list.

radio_buttons list:
{text, radio_id}
	text - must be a bitstring
	button_id - can be any term you want. It will be passed back to you as the
group's value.
	checked? - must be a boolean and indicates if the button is selected.
checked? is not required and will default to false if not supplied.

Example showing the full data format
{[{"One", :one}, {"Two", :two}, {"Three", :three}], :two}
Messages
When the state of the radio group changes, it sends an event message to the
host scene in the form of:
{:value_changed, id, radio_id}
Options
Radio Buttons honor the following list of options.
	:theme - This sets the color scheme of the button. This can be one of
pre-defined button schemes :light, :dark, or it can be a completely custom
scheme like this: {text_color, box_background, border_color, pressed_color, checkmark_color}.

Styles
Radio Buttons honor the following styles
	:hidden - If false the component is rendered. If true, it is skipped.
The default is false.
	:theme - The color set used to draw. See below. The default is :dark

Theme
Radio buttons work well with the following predefined themes: :light,
:dark
To pass in a custom theme, supply a map with at least the following entries:
	:text - the color of the text
	:background - the background of the component
	:border - the border of the component
	:active - the background of the circle while the button is pressed
	:thumb - the color of inner selected-mark

Usage
You should add/modify components via the helper functions in
Scenic.Components
Examples
The following example creates a radio group and positions it on the screen.
graph
|> radio_group({[
 {"Radio A", :radio_a},
 {"Radio B", :radio_b},
 {"Radio C", :radio_c},
], :radio_b},
 id: :radio_group_id, translate: {20, 20})

 Anchor for this section

 Summary

 Functions

 add_to_graph(graph, data, opts \\ [])

 Callback implementation for Scenic.Component.add_to_graph/3.

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 Anchor for this section

Functions

 Link to this function

 add_to_graph(graph, data, opts \\ [])

 View Source

Callback implementation for Scenic.Component.add_to_graph/3.

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

Scenic.Component.Input.Slider

Add a slider to a graph
Data
{ extents, initial_value}
	extents gives the range of values. It can take several forms...	{min, max} If min and max are integers, then the slider value will
be an integer.
	{min, max} If min and max are floats, then the slider value will be
an float.
	[a, b, c] A list of terms. The value will be one of the terms

	initial_value Sets the initial value (and position) of the slider. It
must make sense with the extents you passed in.

Messages
When the state of the slider changes, it sends an event message to the host
scene in the form of:
{:value_changed, id, value}
Options
Sliders honor the following list of options.
Styles
Sliders honor the following styles
	:hidden - If false the component is rendered. If true, it is skipped.
The default is false.
	:theme - The color set used to draw. See below. The default is :dark

Theme
Sliders work well with the following predefined themes: :light, :dark
To pass in a custom theme, supply a map with at least the following entries:
	:border - the color of the slider line
	:thumb - the color of slider thumb

Usage
You should add/modify components via the helper functions in
Scenic.Components
Examples
The following example creates a numeric slider and positions it on the screen.
graph
|> slider({{0,100}, 0}, id: :num_slider, translate: {20,20})
The following example creates a list slider and positions it on the screen.
graph
|> slider({[
 :white,
 :cornflower_blue,
 :green,
 :chartreuse
], :cornflower_blue}, id: :slider_id, translate: {20,20})

 Anchor for this section

 Summary

 Functions

 add_to_graph(graph, data, opts \\ [])

 Callback implementation for Scenic.Component.add_to_graph/3.

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 Anchor for this section

Functions

 Link to this function

 add_to_graph(graph, data, opts \\ [])

 View Source

Callback implementation for Scenic.Component.add_to_graph/3.

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

Scenic.Component.Input.TextField

Add a text field input to a graph
Data
initial_value
	initial_value - is the string that will be the starting value

Messages
When the text in the field changes, it sends an event message to the host
scene in the form of:
{:value_changed, id, value}
Styles
Text fields honor the following styles
	:hidden - If false the component is rendered. If true, it is skipped.
The default is false.
	:theme - The color set used to draw. See below. The default is :dark

Additional Options
Text fields honor the following list of additional options.
	:filter - Adding a filter option restricts which characters can be
entered into the text_field component. The value of filter can be one of:	:all - Accept all characters. This is the default
	:number - Any characters from "0123456789.,"
	"filter_string" - Pass in a string containing all the characters you
will accept
	function/1 - Pass in an anonymous function. The single parameter will
be the character to be filtered. Return true or false to keep or reject
it.

	:hint - A string that will be shown (greyed out) when the entered value
of the component is empty.
	:hint_color - any valid color.
	:type - Can be one of the following options:	:all - Show all characters. This is the default.
	:password - Display a string of '*' characters instead of the value.

	:width - set the width of the control.

Theme
Text fields work well with the following predefined themes: :light, :dark
To pass in a custom theme, supply a map with at least the following entries:
	:text - the color of the text
	:background - the background of the component
	:border - the border of the component
	:focus - the border while the component has focus

Usage
You should add/modify components via the helper functions in
Scenic.Components
Examples
graph
|> text_field("Sample Text", id: :text_id, translate: {20,20})

graph
|> text_field(
 "", id: :pass_id, type: :password, hint: "Enter password", translate: {20,20}
)

 Anchor for this section

 Summary

 Functions

 add_to_graph(graph, data, opts \\ [])

 Callback implementation for Scenic.Component.add_to_graph/3.

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 Anchor for this section

Functions

 Link to this function

 add_to_graph(graph, data, opts \\ [])

 View Source

Callback implementation for Scenic.Component.add_to_graph/3.

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

Scenic.Component.Input.Toggle

Add toggle to a Scenic graph.
Data
on?
	on? - true if the toggle is on, pass false if not.

Styles
Toggles honor the following styles. The :light and :dark styles look nice. The other bundled themes...not so much. You can also supply your own theme.
	:hidden - If false the toggle is rendered. If true, it is skipped. The default
is false.
	:theme - The color set used to draw. See below. The default is :dark

Additional Options
Toggles also honor the following additional options.
	:border_width - the border width. Defaults to 2.
	:padding - the space between the border and the thumb. Defaults to 2
	:thumb_radius - the radius of the thumb. This determines the size of the entire toggle. Defaults to 10.
	:compat - use the pre-v0.11 positioning. The default is false

Theme
To pass in a custom theme, supply a map with at least the following entries:
	:border - the color of the border around the toggle
	:background - the color of the track when the toggle is off.
	:text - the color of the thumb.
	:thumb - the color of the track when the toggle is on.

Optionally, you can supply the following entries:
	:thumb_pressed - the color of the thumb when pressed. Defaults to :gainsboro.

Usage
You should add/modify components via the helper functions in
Scenic.Components
Examples
The following example creates a toggle.
graph
|> toggle(true, translate: {20, 20})
The next example makes a larger toggle.
graph
|> toggle(true, translate: {20, 20}, thumb_radius: 14)

 Anchor for this section

 Summary

 Functions

 add_to_graph(graph, data, opts \\ [])

 Callback implementation for Scenic.Component.add_to_graph/3.

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 Anchor for this section

Functions

 Link to this function

 add_to_graph(graph, data, opts \\ [])

 View Source

Callback implementation for Scenic.Component.add_to_graph/3.

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

Scenic.Primitive behaviour

Please see Primitives Overview for a high-level description.
What is a primitive
A primitive is the simplest thing Scenic knows how to draw on the screen. There is
a, fixed set of them, but they can be combined in a graph to draw very complicated
images.
In general, each Primitive has a piece of data that it expects to operate on. For
example, Primitive.Text requires a bitstring. Primitive.Circle requires a radius. Please
see the documentation for each primitive for details.
How to use primitives
By far, the easiest way to use primitives is to import the helper functions in
Scenic.Primitives. These helpers can both add primitives to
a scene you are building and modify later as you react to events.
import Scenic.Primitives

@graph Scenic.Graph.build()
 |> rect({100, 50}, stroke: {1, :yellow})
 |> rectangle({100, 50}, stroke: {1, :yellow})
Once you get a primitive out of a graph via functions such as Graph.modify, or Graph.get,
You can use the generic helpers in this module to access or manipulate them.
Standard Primitives
The set of primitives supported in Scenic is fixed in any given version. They have been chosen
to provide the maximum flexibility when combined together, while still requiring the minimal
amount of code and maintenance.
See the documentation for each primitive's module for details on it's data type.
	Helper	Primitive Module	Description
	arc/3	Scenic.Primitive.Arc	Draw an arc around a circle
	circle/3	Scenic.Primitive.Circle	Draw a full circle
	ellipse/3	Scenic.Primitive.Ellipse	Draw an ellipse
	group/3	Scenic.Primitive.Group	Create a group
	line/3	Scenic.Primitive.Line	Draw a line
	path/3	Scenic.Primitive.Path	Draw a complicated path
	quad/3	Scenic.Primitive.Quad	Draw a quad
	rect/3	Scenic.Primitive.Rectangle	Draw a rectangle
	rrect/3	Scenic.Primitive.RoundedRectangle	Draw a rounded rectangle
	script/3	Scenic.Primitive.Script	Run a referenced draw script
	sector/3	Scenic.Primitive.Sector	A boolean toggle control.
	sprites/3	Scenic.Primitive.Sprites	Draw a sector
	text/3	Scenic.Primitive.Text	Draw a string of text
	triangle/3	Scenic.Primitive.Triangle	Draw a triangle

 Anchor for this section

 Summary

 Types

 t()

 Callbacks

 compile(primitive, styles)

 valid_styles()

 validate(data)

 Functions

 build(module, data, opts \\ [])

 Generic builder to create a new primitive.

 contains_point?(primitive, point)

 Determines if a point is contained within a primitive.

 delete_style(primitive, type)

 Deletes a specified style from a primitive.

 delete_transform(primitive, tx_type)

 Deletes a specified transform from a primitive.

 get(primitive)

 Get the value of the primitive-specific data.

 get_style(primitive, type, default \\ nil)

 Get the value of a specific style set on the primitive.

 get_styles(primitive)

 Get the styles map from a primitive.

 get_transform(primitive, tx_type, default \\ nil)

 Get the value of a specific transform set on the primitive.

 get_transforms(primitive)

 Get the transforms map from a primitive.

 merge_opts(primitive, opts)

 Merge an options-list of styles and transforms onto a primitive.

 put(primitive, data, opts \\ [])

 Put primitive-specific data onto the primitive.

 put_style(p, type, data)

 Update the value of a specific style set on the primitive.

 put_styles(primitive, styles)

 Update the styles map in a primitive.

 put_transform(p, tx_type, data)

 Update the value of a specific transform set on the primitive.

 put_transforms(primitive, transforms)

 Update the transforms map in a primitive.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Scenic.Primitive{
 data: any(),
 default_pin: Scenic.Math.vector_2(),
 id: any(),
 module: atom(),
 opts: list(),
 parent_uid: integer(),
 styles: map(),
 transforms: map()
}

 Anchor for this section

Callbacks

 Link to this callback

 compile(primitive, styles)

 View Source

 @callback compile(primitive :: t(), styles :: Scenic.Primitive.Style.t()) ::
 script :: Scenic.Script.t()

 Link to this callback

 valid_styles()

 View Source

 @callback valid_styles() :: list()

 Link to this callback

 validate(data)

 View Source

 @callback validate(data :: any()) :: {:ok, data :: any()} | {:error, String.t()}

 Anchor for this section

Functions

 Link to this function

 build(module, data, opts \\ [])

 View Source

 @spec build(module :: atom(), data :: any(), opts :: keyword()) :: t()

Generic builder to create a new primitive.
This function is used internally. You should almost always use the helpers in
Scenic.Primitives instead.
Parameters:
	module - The module of the primitive you are building
	data - the primitive-specific data being set into the primitive
	opts - a list of style and transform options to apply to the primitive

Returns the built primitive.

 Link to this function

 contains_point?(primitive, point)

 View Source

 @spec contains_point?(primitive :: t(), point :: Scenic.Math.point()) :: map()

Determines if a point is contained within a primitive.
The supplied point must already be projected into the local coordinate space
of the primitive. In other words, this test does NOT take into account any
transforms that have been applied to the primitive.
The input mechanism takes care of this for you by projecting incoming points
by the inverse-matrix of a primitive before calling this function...
Note that some primitives, such as Group, do not inherently have a notion of
containing a point. In those cases, this function will always return false.
Parameters:
	primitive - The primitive
	point - The point to test

Returns true or false.

 Link to this function

 delete_style(primitive, type)

 View Source

 @spec delete_style(primitive :: t(), type :: atom()) :: t()

Deletes a specified style from a primitive.
Does nothing if the style is not set.
Parameters:
	primitive - The primitive
	type - atom representing the style to delete.

Returns the updated primitive.

 Link to this function

 delete_transform(primitive, tx_type)

 View Source

 @spec delete_transform(primitive :: t(), type :: atom()) :: t()

Deletes a specified transform from a primitive.
Does nothing if the transform is not set.
Parameters:
	primitive - The primitive
	type - atom representing the transform to delete.

Returns the updated primitive.

 Link to this function

 get(primitive)

 View Source

 @spec get(primitive :: t()) :: any()

Get the value of the primitive-specific data.
Parameters:
	primitive - The primitive

Returns the value of the primitive-specific data.

 Link to this function

 get_style(primitive, type, default \\ nil)

 View Source

 @spec get_style(primitive :: t(), type :: atom(), default :: any()) :: any()

Get the value of a specific style set on the primitive.
If the style is not set, it returns default
Parameters:
	primitive - The primitive
	type - atom representing the style to get.
	default - default value to return if the style is not set.

Returns the value of the style.

 Link to this function

 get_styles(primitive)

 View Source

 @spec get_styles(primitive :: t()) :: map()

Get the styles map from a primitive.
Parameters:
	primitive - The primitive

Returns the map of styles set directly onto this primitive. This does
not include any inherited styles.

 Link to this function

 get_transform(primitive, tx_type, default \\ nil)

 View Source

 @spec get_transform(primitive :: t(), type :: atom(), default :: any()) :: any()

Get the value of a specific transform set on the primitive.
If the transform is not set, it returns default
Parameters:
	primitive - The primitive
	type - atom representing the transform to get.
	default - default value to return if the transform is not set.

Returns the value of the transform.

 Link to this function

 get_transforms(primitive)

 View Source

 @spec get_transforms(primitive :: t()) :: map()

Get the transforms map from a primitive.
Parameters:
	primitive - The primitive

Returns the map of transforms set directly onto this primitive. This does
not include any inherited transforms.

 Link to this function

 merge_opts(primitive, opts)

 View Source

 @spec merge_opts(primitive :: t(), opts :: keyword()) :: t()

Merge an options-list of styles and transforms onto a primitive.
This function might go through a name-change in the future. It is really
more of a merge. The supplied list of styles and transforms
Parameters:
	primitive - The primitive

Returns the value of the primitive-specific data.

 Link to this function

 put(primitive, data, opts \\ [])

 View Source

 @spec put(primitive :: t(), data :: any(), opts :: list()) :: t()

Put primitive-specific data onto the primitive.
Like many of the functions in the Scenic.Primitive module, you are usually better
off using the helper functions in Scenic.Primitives instead.
Parameters:
	primitive - The primitive
	data - The data to set
	opts - A list of style/transform options to merge

Returns the updated primitive.

 Link to this function

 put_style(p, type, data)

 View Source

 @spec put_style(primitive :: t(), type :: atom(), data :: any()) :: t()

Update the value of a specific style set on the primitive.
Parameters:
	primitive - The primitive
	type - atom representing the style to get.
	data - the value to set on the style.

Returns the updated primitive.

 Link to this function

 put_styles(primitive, styles)

 View Source

 @spec put_styles(primitive :: t(), styles :: map()) :: t()

Update the styles map in a primitive.
Parameters:
	primitive - The primitive
	styles - The new styles map

Returns the primitive with the updated styles.

 Link to this function

 put_transform(p, tx_type, data)

 View Source

 @spec put_transform(primitive :: t(), type :: atom(), transform :: any()) :: t()

Update the value of a specific transform set on the primitive.
Parameters:
	primitive - The primitive
	type - atom representing the transform to get.
	data - the value to set on the transform.

Returns the updated primitive.

 Link to this function

 put_transforms(primitive, transforms)

 View Source

 @spec put_transforms(primitive :: t(), transforms :: map()) :: t()

Update the transforms map in a primitive.
Parameters:
	primitive - The primitive
	transforms - The new transforms map

Returns the primitive with the updated transforms.

Scenic.Primitive.Arc

Draw an arc on the screen.
An arc is a segment that traces part of the outline of a circle. If you are
looking for something shaped like a piece of pie, then you want a segment.
Arcs are often drawn on top of a segment to get an affect where a piece of pie
is filled in, but only the curvy edge is stroked.
Note that you can fill an arc, but that will result in a shape that looks
like a potato wedge.
Data
{radius, angle}
The data for an arc is a tuple.
	radius - the radius of the arc
	angle - the angle the arc is swept through in radians

Note
The format for Arc has changed since v0.10. It used to be
{radius, start_angle, end_angle}. You can achieve the same effect in the
new, simpler format by using the same radius and the new angle is the
difference between the old end_angle and start_angle. Then you can apply
a rotation transform to get it in the right position.
Styles
This primitive recognizes the following styles
	hidden - show or hide the primitive
	scissor - "scissor rectangle" that drawing will be clipped to.
	fill - fill in the area of the primitive
	cap - says how to draw the ends of the arc.
	stroke - stroke the outline of the primitive. In this case, only the curvy part.

Usage
You should add/modify primitives via the helper functions in
Scenic.Primitives
graph
 |> arc({100, 1.5}, stroke: {1, :yellow})

 Anchor for this section

 Summary

 Types

 styles_t()

 t()

 Functions

 compile(primitive, styles)

 Compile the data for this primitive into a mini script. This can be combined with others to
generate a larger script and is called when a graph is compiled.

 valid_styles()

 Returns a list of styles recognized by this primitive.

 Anchor for this section

Types

 Link to this type

 styles_t()

 View Source

 @type styles_t() :: [:hidden | :scissor | :fill | :stroke_width | :stroke_fill | :cap]

 Link to this type

 t()

 View Source

 @type t() :: {radius :: number(), angle :: number()}

 Anchor for this section

Functions

 Link to this function

 compile(primitive, styles)

 View Source

 @spec compile(primitive :: Scenic.Primitive.t(), styles :: Scenic.Primitive.Style.t()) ::
 Scenic.Script.t()

Compile the data for this primitive into a mini script. This can be combined with others to
generate a larger script and is called when a graph is compiled.

 Link to this function

 valid_styles()

 View Source

 @spec valid_styles() :: styles_t()

Returns a list of styles recognized by this primitive.

Scenic.Primitive.Circle

Draw a circle on the screen.
Data
radius
The data for an arc is a single number.
	radius - the radius of the arc

Styles
This primitive recognizes the following styles
	hidden - show or hide the primitive
	scissor - "scissor rectangle" that drawing will be clipped to.
	fill - fill in the area of the primitive
	stroke - stroke the outline of the primitive. In this case, only the curvy part.

Usage
You should add/modify primitives via the helper functions in
Scenic.Primitives
graph
 |> circle(100, stroke: {1, :yellow})

 Anchor for this section

 Summary

 Types

 styles_t()

 t()

 Functions

 compile(primitive, styles)

 Compile the data for this primitive into a mini script. This can be combined with others to
generate a larger script and is called when a graph is compiled.

 valid_styles()

 Returns a list of styles recognized by this primitive.

 Anchor for this section

Types

 Link to this type

 styles_t()

 View Source

 @type styles_t() :: [:hidden | :scissor | :fill | :stroke_width | :stroke_fill | :cap]

 Link to this type

 t()

 View Source

 @type t() :: radius :: number()

 Anchor for this section

Functions

 Link to this function

 compile(primitive, styles)

 View Source

 @spec compile(primitive :: Scenic.Primitive.t(), styles :: Scenic.Primitive.Style.t()) ::
 Scenic.Script.t()

Compile the data for this primitive into a mini script. This can be combined with others to
generate a larger script and is called when a graph is compiled.

 Link to this function

 valid_styles()

 View Source

 @spec valid_styles() :: styles_t()

Returns a list of styles recognized by this primitive.

Scenic.Primitive.Component

Add a child component to a graph.
When a scene pushes a graph containing a Component to its ViewPort,
a new scene, containing the component, is created and added as a child
to the scene that created it.
Any events the new component creates are sent up the parent. The parent
can use functions in the Scenic.Scene module to manage its children,
send them messages and such.
The standard components, such as button, slider, etc. have wrapper functions
making them very easy to add to a graph. However, if you have a custom
component you can add it to any graph manually using the add_to_graph/3
function.
You typically want to give components an :id. This will be used to identify
events coming from that components back to your scene.
import Components # contains the button helper

graph
|> button("Press Me", id: :press_me)
|> MyComponent.add_to_graph({"Some data", 123}, id: :my_component)

 Anchor for this section

 Summary

 Types

 styles_t()

 t()

 Functions

 valid_styles()

 Returns a list of styles recognized by this primitive.

 Anchor for this section

Types

 Link to this type

 styles_t()

 View Source

 @type styles_t() :: [:hidden | :scissor]

 Link to this type

 t()

 View Source

 @type t() :: {mod :: module(), param :: any(), name :: atom() | String.t()}

 Anchor for this section

Functions

 Link to this function

 valid_styles()

 View Source

 @spec valid_styles() :: styles :: styles_t()

Returns a list of styles recognized by this primitive.

Scenic.Primitive.Ellipse

Draw an ellipse on the screen.
Data
{radius_1, radius_2}
The data for an arc is a single number.
	radius_1 - the radius of the ellipse in one direction
	radius_2 - the radius of the ellipse in the other direction

Styles
This primitive recognizes the following styles
	hidden - show or hide the primitive
	scissor - "scissor rectangle" that drawing will be clipped to.
	fill - fill in the area of the primitive
	stroke - stroke the outline of the primitive. In this case, only the curvy part.

Note: you can achieve the same effect with a Circle primitive
by applying a :scale transform to it with unequal values on the axes
Usage
You should add/modify primitives via the helper functions in
Scenic.Primitives
graph
 |> ellipse({75, 100}, stroke: {1, :yellow})

 Anchor for this section

 Summary

 Types

 styles_t()

 t()

 Functions

 compile(primitive, styles)

 Compile the data for this primitive into a mini script. This can be combined with others to
generate a larger script and is called when a graph is compiled.

 valid_styles()

 Returns a list of styles recognized by this primitive.

 Anchor for this section

Types

 Link to this type

 styles_t()

 View Source

 @type styles_t() :: [:hidden | :scissor | :fill | :stroke_width | :stroke_fill]

 Link to this type

 t()

 View Source

 @type t() :: {radius_1 :: number(), radius_2 :: number()}

 Anchor for this section

Functions

 Link to this function

 compile(primitive, styles)

 View Source

 @spec compile(primitive :: Scenic.Primitive.t(), styles :: Scenic.Primitive.Style.t()) ::
 Scenic.Script.t()

Compile the data for this primitive into a mini script. This can be combined with others to
generate a larger script and is called when a graph is compiled.

 Link to this function

 valid_styles()

 View Source

 @spec valid_styles() :: styles_t()

Returns a list of styles recognized by this primitive.

Scenic.Primitive.Group

A container to hold other primitives.
Any styles placed on a group will be inherited by the primitives in the
group. Any transforms placed on a group will be multiplied into the transforms
in the primitives in the group.
Data
uids
The data for an arc is a list of internal uids for the primitives it contains.
You will not typically add these ids yourself. You should use the helper functions
with a callback to do that for you. See Usage below.
Styles
The group is special in that it accepts all styles and transforms, even if they
are non-standard. These are then inherited by any primitives, including SceneRefs.
Any styles you place on the group itself will be inherited by the primitives
contained in the group. However, these styles will not be inherited by any
component in the group.
Transforms
If you add a transform to a group, then everything in the group will also be
moved by that transform, including child components. This is a very handy way
to create some UI, then position, scale, or rotate it as needed without having
to adjust the inner elements.
Usage
You should add/modify primitives via the helper functions in
Scenic.Primitives
graph
 |> group(fn(g) ->
 g
 |> rect({200, 100}, fill: :blue)
 |> test("In a Group", fill: :yellow, translate: {20, 40})
 end,
 translate: {100, 100},
 font: :roboto
)

 Anchor for this section

 Summary

 Types

 styles_t()

 t()

 Functions

 delete(p, uid)

 increment(p, offset)

 insert_at(p, index, uid)

 valid_styles()

 Returns a list of styles recognized by this primitive.

 Anchor for this section

Types

 Link to this type

 styles_t()

 View Source

 @type styles_t() :: [:hidden | :scissor | atom()]

 Link to this type

 t()

 View Source

 @type t() :: [pos_integer()]

 Anchor for this section

Functions

 Link to this function

 delete(p, uid)

 View Source

 Link to this function

 increment(p, offset)

 View Source

 Link to this function

 insert_at(p, index, uid)

 View Source

 Link to this function

 valid_styles()

 View Source

 @spec valid_styles() :: [:hidden, ...]

Returns a list of styles recognized by this primitive.

Scenic.Primitive.Line

Draw a line on the screen.
Data
{point_a, point_b}
The data for a line is a tuple containing two points.
	point_a - position to start drawing from
	point_b - position to draw to

Styles
This primitive recognizes the following styles
	hidden - show or hide the primitive
	scissor - "scissor rectangle" that drawing will be clipped to.
	cap - says how to draw the ends of the line.
	stroke - stroke the outline of the primitive. In this case, only the curvy part.

Usage
You should add/modify primitives via the helper functions in
Scenic.Primitives
graph
 |> line({{0, 0}, {20, 40}}, stroke: {1, :yellow})

 Anchor for this section

 Summary

 Types

 styles_t()

 t()

 Functions

 bounds(data, mx, styles)

 centroid(data)

 Returns a the midpoint of the line. This is used as the default pin when applying
rotate or scale transforms.

 compile(primitive, arg2)

 Compile the data for this primitive into a mini script. This can be combined with others to
generate a larger script and is called when a graph is compiled.

 valid_styles()

 Returns a list of styles recognized by this primitive.

 Anchor for this section

Types

 Link to this type

 styles_t()

 View Source

 @type styles_t() :: [:hidden | :scissor | :stroke_width | :stroke_fill | :cap]

 Link to this type

 t()

 View Source

 @type t() :: {{x0 :: number(), y0 :: number()}, {x1 :: number(), y1 :: number()}}

 Anchor for this section

Functions

 Link to this function

 bounds(data, mx, styles)

 View Source

 Link to this function

 centroid(data)

 View Source

Returns a the midpoint of the line. This is used as the default pin when applying
rotate or scale transforms.

 Link to this function

 compile(primitive, arg2)

 View Source

 @spec compile(primitive :: Scenic.Primitive.t(), styles :: Scenic.Primitive.Style.t()) ::
 Scenic.Script.t()

Compile the data for this primitive into a mini script. This can be combined with others to
generate a larger script and is called when a graph is compiled.

 Link to this function

 valid_styles()

 View Source

 @spec valid_styles() :: styles_t()

Returns a list of styles recognized by this primitive.

Scenic.Primitive.Path

Draw a complex path on the screen described by a list of actions.
Data
list_of_commands
The data for a path is a list of commands. They are interpreted in order
when the path is drawn. See below for the commands it will accept.
Styles
This primitive recognizes the following styles
	hidden - show or hide the primitive
	scissor - "scissor rectangle" that drawing will be clipped to.
	fill - fill in the area of the primitive
	stroke - stroke the outline of the primitive. In this case, only the curvy part.
	cap - says how to draw the ends of the line.
	join - control how segments are joined.
	miter_limit - control how segments are joined.

Commands
	:begin - start a new path segment
	:close_path - draw a line back to the start of the current segment
	{:move_to, x, y} - move the current draw position
	{:line_to, x, y} - draw a line from the current position to a new location.
	{:bezier_to, c1x, c1y, c2x, c2y, x, y} - draw a bezier curve from the current position to a new location.
	{:quadratic_to, cx, cy, x, y} - draw a quadratic curve from the current position to a new location.
	{:arc_to, x1, y1, x2, y2, radius} - draw an arc from the current position to a new location.

Path vs. Script
Both the Path and the Script primitives use the Scenic.Script to create scripts that
are sent to the driver for drawing. The difference is that a Path is far more limited
in what it can do, and is inserted inline with the compiled graph that created it.
The script primitive, on the other hand, has full access to the API set of
Scenic.Script and accesses scripts by reference.
The inline vs. reference difference is important. A simple path will consume
fewer resources. BUT it will cause the entire graph to be recompiled and resent
to the driver if you change it.
A script primitive references a script that you create separately from the
graph. This means that any changes to the graph (such as an animation) will
NOT need to recompile or resend the script.
Usage
You should add/modify primitives via the helper functions in
Scenic.Primitives
graph
 |> path([
 :begin,
 {:move_to, 0, 0},
 {:bezier_to, 0, 20, 0, 50, 40, 50},
 {:line_to, 30, 60},
 :close_path
],
 fill: :blue
)

 Anchor for this section

 Summary

 Types

 cmd()

 styles_t()

 t()

 Functions

 compile(primitive, styles)

 Compile the data for this primitive into a mini script. This can be combined with others to
generate a larger script and is called when a graph is compiled.

 valid_styles()

 Returns a list of styles recognized by this primitive.

 Anchor for this section

Types

 Link to this type

 cmd()

 View Source

 @type cmd() ::
 :begin
 | :close_path
 | {:move_to, x :: number(), y :: number()}
 | {:line_to, x :: number(), y :: number()}
 | {:bezier_to, c1x :: number(), c1y :: number(), c2x :: number(),
 c2y :: number(), x :: number(), y :: number()}
 | {:quadratic_to, cx :: number(), cy :: number(), x :: number(),
 y :: number()}
 | {:arc_to, x1 :: number(), y1 :: number(), x2 :: number(), y2 :: number(),
 radius :: number()}

 Link to this type

 styles_t()

 View Source

 @type styles_t() :: [
 :hidden
 | :scissor
 | :fill
 | :stroke_width
 | :stroke_fill
 | :cap
 | :join
 | :miter_limit
]

 Link to this type

 t()

 View Source

 @type t() :: [cmd()]

 Anchor for this section

Functions

 Link to this function

 compile(primitive, styles)

 View Source

 @spec compile(primitive :: Scenic.Primitive.t(), styles :: Scenic.Primitive.Style.t()) ::
 Scenic.Script.t()

Compile the data for this primitive into a mini script. This can be combined with others to
generate a larger script and is called when a graph is compiled.
Note: Path is a "Meta" primitive. It isn't really a primitive that is represented in a
draw script. Instead, it generates it's own mini-script, which is included inline to the
graph it is contained in.
Note: The compiled script is backwards. This is an inline script, which means
it is inserted into a larger script as part of the graph compile process and
Script.finish() will be called on that later.

 Link to this function

 valid_styles()

 View Source

 @spec valid_styles() :: styles_t()

Returns a list of styles recognized by this primitive.

Scenic.Primitive.Quad

Draw a quad on the screen.
Data
{point_a, point_b, point_c, point_d}
The data for a line is a tuple containing four points.
	point_a - position to start drawing from
	point_b - position to draw to
	point_c - position to draw to
	point_d - position to draw to

Styles
This primitive recognizes the following styles
	hidden - show or hide the primitive
	scissor - "scissor rectangle" that drawing will be clipped to.
	fill - fill in the area of the primitive
	stroke - stroke the outline of the primitive. In this case, only the curvy part.
	join - control how segments are joined.
	miter_limit - control how segments are joined.

Usage
You should add/modify primitives via the helper functions in
Scenic.Primitives
graph
 |> quad(
 {{10, 0}, {20, 40}, {17, 50}, {0, 10}},
 stroke: {1, :yellow}
)

 Anchor for this section

 Summary

 Types

 styles_t()

 t()

 Functions

 compile(primitive, styles)

 Compile the data for this primitive into a mini script. This can be combined with others to
generate a larger script and is called when a graph is compiled.

 valid_styles()

 Returns a list of styles recognized by this primitive.

 Anchor for this section

Types

 Link to this type

 styles_t()

 View Source

 @type styles_t() :: [
 :hidden
 | :scissor
 | :fill
 | :stroke_width
 | :stroke_fill
 | :join
 | :miter_limit
]

 Link to this type

 t()

 View Source

 @type t() ::
 {{x0 :: number(), y0 :: number()}, {x1 :: number(), y1 :: number()},
 {x2 :: number(), y2 :: number()}, {x3 :: number(), y3 :: number()}}

 Anchor for this section

Functions

 Link to this function

 compile(primitive, styles)

 View Source

 @spec compile(primitive :: Scenic.Primitive.t(), styles :: Scenic.Primitive.Style.t()) ::
 Scenic.Script.t()

Compile the data for this primitive into a mini script. This can be combined with others to
generate a larger script and is called when a graph is compiled.

 Link to this function

 valid_styles()

 View Source

 @spec valid_styles() :: styles_t()

Returns a list of styles recognized by this primitive.

Scenic.Primitive.Rectangle

Draw a rectangle on the screen.
Data
{width, height}
The data for a line is a tuple containing two numbers.
	width - width of the rectangle
	height - height of the rectangle

Styles
This primitive recognizes the following styles
	hidden - show or hide the primitive
	scissor - "scissor rectangle" that drawing will be clipped to.
	fill - fill in the area of the primitive
	stroke - stroke the outline of the primitive. In this case, only the curvy part.
	join - control how segments are joined.
	miter_limit - control how segments are joined.

Usage
You should add/modify primitives via the helper functions in
Scenic.Primitives
graph
 |> rect({100, 50}, stroke: {1, :yellow})
 |> rectangle({100, 50}, stroke: {1, :yellow})
Note: rect is a shortcut for rectangle and they can be used interchangeably.

 Anchor for this section

 Summary

 Types

 styles_t()

 t()

 Functions

 centroid(data)

 Returns the centroid of the rectangle. This is used as the default pin when applying
rotate or scale transforms.

 compile(primitive, styles)

 Compile the data for this primitive into a mini script. This can be combined with others to
generate a larger script and is called when a graph is compiled.

 valid_styles()

 Returns a list of styles recognized by this primitive.

 Anchor for this section

Types

 Link to this type

 styles_t()

 View Source

 @type styles_t() :: [
 :hidden
 | :scissor
 | :fill
 | :stroke_width
 | :stroke_fill
 | :join
 | :miter_limit
]

 Link to this type

 t()

 View Source

 @type t() :: {width :: number(), height :: number()}

 Anchor for this section

Functions

 Link to this function

 centroid(data)

 View Source

Returns the centroid of the rectangle. This is used as the default pin when applying
rotate or scale transforms.

 Link to this function

 compile(primitive, styles)

 View Source

 @spec compile(primitive :: Scenic.Primitive.t(), styles :: Scenic.Primitive.Style.t()) ::
 Scenic.Script.t()

Compile the data for this primitive into a mini script. This can be combined with others to
generate a larger script and is called when a graph is compiled.

 Link to this function

 valid_styles()

 View Source

 @spec valid_styles() :: styles_t()

Returns a list of styles recognized by this primitive.

Scenic.Primitive.RoundedRectangle

Draw a rectangle with rounded corners on the screen.
Data
{width, height, radius}
The data for a line is a tuple containing three numbers.
	width - width of the rectangle
	height - height of the rectangle
	radius - radius of the corners

Styles
This primitive recognizes the following styles
	hidden - show or hide the primitive
	scissor - "scissor rectangle" that drawing will be clipped to.
	fill - fill in the area of the primitive
	stroke - stroke the outline of the primitive. In this case, only the curvy part.

Usage
You should add/modify primitives via the helper functions in
Scenic.Primitives
graph
 |> rrect({100, 50, 4}, stroke: {1, :yellow})
 |> rounded_rectangle({100, 50, 4}, stroke: {1, :yellow})
Note: rrect is a shortcut for rounded_rectangle and they can be used
interchangeably.

 Anchor for this section

 Summary

 Types

 styles_t()

 t()

 Functions

 centroid(data)

 Returns a the centroid of the rectangle. This is used as the default pin when applying
rotate or scale transforms.

 compile(primitive, styles)

 Compile the data for this primitive into a mini script. This can be combined with others to
generate a larger script and is called when a graph is compiled.

 valid_styles()

 Returns a list of styles recognized by this primitive.

 Anchor for this section

Types

 Link to this type

 styles_t()

 View Source

 @type styles_t() :: [:hidden | :scissor | :fill | :stroke_width | :stroke_fill]

 Link to this type

 t()

 View Source

 @type t() :: {width :: number(), height :: number(), radius :: number()}

 Anchor for this section

Functions

 Link to this function

 centroid(data)

 View Source

Returns a the centroid of the rectangle. This is used as the default pin when applying
rotate or scale transforms.

 Link to this function

 compile(primitive, styles)

 View Source

 @spec compile(primitive :: Scenic.Primitive.t(), styles :: Scenic.Primitive.Style.t()) ::
 Scenic.Script.t()

Compile the data for this primitive into a mini script. This can be combined with others to
generate a larger script and is called when a graph is compiled.

 Link to this function

 valid_styles()

 View Source

 @spec valid_styles() :: styles_t()

Returns a list of styles recognized by this primitive.

Scenic.Primitive.Script

A reference to a draw script.
The Script primitive is used to refer to a script that you created
and loaded into the ViewPort separately from the graph. This script also
has full access to the Scenic.Script API.
For example, the check mark shape in the Checkbox control is a draw
script that is reference by the checkbox control's graph. A graph
can reference the same script multiple times, which is very efficient
as the script is only sent to the drivers once.
If the graph is modified later, then any scripts it references will not
need to be resent to the drivers. This is an isolation of concerns. The same
is true in reverse. If you rebuild a script and send it to the
ViewPort, the script will be sent to the drivers, but any graphs that
reference it do not need to be.
Script vs. Path
Both the Path and the Script primitives use the Scenic.Script to create scripts that
are sent to the driver for drawing. The difference is that a Path is far more limited
in what it can do, and is inserted inline with the compiled graph that created it.
The script primitive, on the other hand, has full access to the API set of
Scenic.Script and accesses scripts by reference.
The inline vs. reference difference is important. A simple path will consume
fewer resources. BUT it will cause the entire graph to be recompiled and resent
to the driver if you change it.
A script primitive references a script that you create separately from the
graph. This means that any changes to the graph (such as an animation) will
NOT need to recompile or resend the script.
Usage
You should add/modify primitives via the helper functions in
Scenic.Primitives
This example is based on the check mark script from the Checkbox control.
 alias Scenic.Script

 # build the checkmark script
 my_script =
 Script.start()
 |> Script.push_state()
 |> Script.join(:round)
 |> Script.stroke_width(3)
 |> Script.stroke_color(:light_blue)
 |> Script.begin_path()
 |> Script.move_to(0, 8)
 |> Script.line_to(5, 13)
 |> Script.line_to(12, 1)
 |> Script.stroke_path()
 |> Script.pop_state()
 |> Script.finish()

 # push the script to the ViewPort
 scene = push_script(scene, my_script, "My Script")

 # refer to the script in a graph, and position it
 graph
 |> script("My Script", translate: {3, 2})

 Anchor for this section

 Summary

 Types

 styles_t()

 Functions

 valid_styles()

 Returns a list of styles recognized by this primitive.

 Anchor for this section

Types

 Link to this type

 styles_t()

 View Source

 @type styles_t() :: [:hidden | :scissor]

 Anchor for this section

Functions

 Link to this function

 valid_styles()

 View Source

 @spec valid_styles() :: styles_t()

Returns a list of styles recognized by this primitive.

Scenic.Primitive.Sector

Draw an sector on the screen.
An sector is a shape that looks like a piece of pie.
Data
{radius, angle}
The data for an Sector is a tuple.
	radius - the radius of the Sector
	angle - the angle the Sector is swept through in radians

Note
The format for Sector has changed since v0.10. It used to be
{radius, start_angle, end_angle}. You can achieve the same effect in the
new, simpler format by using the same radius and the new angle is the
difference between the old end_angle and start_angle. Then you can apply
a rotation transform to get it in the right position.
Styles
This primitive recognizes the following styles
	hidden - show or hide the primitive
	scissor - "scissor rectangle" that drawing will be clipped to.
	fill - fill in the area of the primitive
	stroke - stroke the outline of the primitive. In this case, only the curvy part.

Usage
You should add/modify primitives via the helper functions in
Scenic.Primitives
graph
 |> sector({100, 1.5}, stroke: {1, :yellow})

 Anchor for this section

 Summary

 Types

 styles_t()

 t()

 Functions

 bounds(arc_data, mx \\ nil)

 compile(primitive, styles)

 Compile the data for this primitive into a mini script. This can be combined with others to
generate a larger script and is called when a graph is compiled.

 valid_styles()

 Returns a list of styles recognized by this primitive.

 Anchor for this section

Types

 Link to this type

 styles_t()

 View Source

 @type styles_t() :: [
 :hidden
 | :scissor
 | :fill
 | :stroke_width
 | :stroke_fill
 | :join
 | :miter_limit
]

 Link to this type

 t()

 View Source

 @type t() :: {radius :: number(), angle :: number()}

 Anchor for this section

Functions

 Link to this function

 bounds(arc_data, mx \\ nil)

 View Source

 Link to this function

 compile(primitive, styles)

 View Source

 @spec compile(primitive :: Scenic.Primitive.t(), styles :: Scenic.Primitive.Style.t()) ::
 Scenic.Script.t()

Compile the data for this primitive into a mini script. This can be combined with others to
generate a larger script and is called when a graph is compiled.

 Link to this function

 valid_styles()

 View Source

 @spec valid_styles() :: styles_t()

Returns a list of styles recognized by this primitive.

Scenic.Primitive.Sprites

Draw one or more sprites from a single source image.
Overview
The term "sprite" means one or more subsections of a larger image
that get rendered to the screen. You can do many things with sprites
including animations and zooming in and out of an image and more.
Data Format
{ source_image_id, draw_commands }
source_image_id refers to an image in the Scenic.Assets.Static
library. This can be either the file name from your asset sources
or an alias that you set up in your configuration scripts.
draw_commands is a list of source/destination drawing commands that
are executed in order when the primitive renders.
[{{src_x, src_y}, {src_w, src_h}, {dst_x, dst_y}, {dst_w, dst_h}}]
Each draw command is an x/y position and width/height of a rectangle in
the source image, followed by the x/y position and width/height
rectangle in the destination space.
In other words, This copies rectangular images from the source
indicated by image_id and draws them in the coordinate space of
the graph.
The size of the destination rectangle does NOT need to be the same as the
source. This allows you to grow or shrink the image as needed. You can
use this to zoom in or zoom out of the source image.
Animations
Sprites are common in the game industry and can be used to
create animations, manage large numbers of small images and more.
For example, in many games a character walking is built as a series
of frames in an animation that all live together in a single image
file. When it comes time to draw, the different frames are rendered
to the screen one after the other to give the appearance that the
character is animating.
A simpler example would be an image of a device with a blinking
light on it. The same device would be in the source image twice.
Once with the light on, and once with it off. Then you render the
appropriate portion of source image on a timer.
Usage
You should add/modify primitives via the helper functions in
Scenic.Primitives
This example draws the same source rectangle twice in different locations.
The first is at full size, the second is expanded 10x.
graph
 |> sprites({ "images/my_sprites.png", [
 {{0,0}, {10, 20}, {10, 10}, {10, 20}},
 {{0,0}, {10, 20}, {100, 100}, {100, 200}},
]})

 Anchor for this section

 Summary

 Types

 draw_cmd()

 draw_cmds()

 styles_t()

 t()

 Functions

 valid_styles()

 Returns a list of styles recognized by this primitive.

 Anchor for this section

Types

 Link to this type

 draw_cmd()

 View Source

 @type draw_cmd() ::
 {{sx :: number(), sy :: number()}, {sw :: number(), sh :: number()},
 {dx :: number(), dy :: number()}, {dw :: number(), dh :: number()}}

 Link to this type

 draw_cmds()

 View Source

 @type draw_cmds() :: [draw_cmd()]

 Link to this type

 styles_t()

 View Source

 @type styles_t() :: [:hidden | :scissor]

 Link to this type

 t()

 View Source

 @type t() :: {image :: Scenic.Assets.Static.id(), draw_cmds()}

 Anchor for this section

Functions

 Link to this function

 valid_styles()

 View Source

 @spec valid_styles() :: styles_t()

Returns a list of styles recognized by this primitive.

Scenic.Primitive.Text

Draw text on the screen.
Data
text
The data for a Text primitive is a bitstring
	text - the text to draw

Styles
This primitive recognizes the following styles
	hidden - show or hide the primitive
	scissor - "scissor rectangle" that drawing will be clipped to.
	fill - fill in the area of the text. Only solid colors!
	font - name (or key) of font to use
	font_size - point size of the font
	text_align - horizontal alignment of lines of text
	text_base - vertical alignment of lines of text
	line_height - spacing between lines of text

Usage
You should add/modify primitives via the helper functions in
Scenic.Primitives
graph
 |> text("Some example text", fill: :green, font: :roboto_mono, font_size: 64)

 Anchor for this section

 Summary

 Types

 styles_t()

 t()

 Functions

 valid_styles()

 Returns a list of styles recognized by this primitive.

 Anchor for this section

Types

 Link to this type

 styles_t()

 View Source

 @type styles_t() :: [
 :hidden
 | :scissor
 | :font
 | :font_size
 | :line_height
 | :text_align
 | :text_base
 | :line_height
]

 Link to this type

 t()

 View Source

 @type t() :: String.t()

 Anchor for this section

Functions

 Link to this function

 valid_styles()

 View Source

 @spec valid_styles() :: styles_t()

Returns a list of styles recognized by this primitive.

Scenic.Primitive.Triangle

Draw a triangle on the screen.
Data
{point_a, point_b, point_c}
The data for a line is a tuple containing three points.
	point_a - position to start drawing from
	point_b - position to draw to
	point_c - position to draw to

Styles
This primitive recognizes the following styles
	hidden - show or hide the primitive
	scissor - "scissor rectangle" that drawing will be clipped to.
	fill - fill in the area of the primitive
	stroke - stroke the outline of the primitive. In this case, only the curvy part.
	join - control how segments are joined.
	miter_limit - control how segments are joined.

Usage
You should add/modify primitives via the helper functions in
Scenic.Primitives
graph
 |> triangle(
 {{10, 0}, {20, 40}, 0, 20}},
 stroke: {1, :yellow}
)

 Anchor for this section

 Summary

 Types

 styles_t()

 t()

 Functions

 centroid(data)

 Returns the centroid of the triangle. This is used as the default pin when applying
rotate or scale transforms.

 compile(primitive, styles)

 Compile the data for this primitive into a mini script. This can be combined with others to
generate a larger script and is called when a graph is compiled.

 valid_styles()

 Returns a list of styles recognized by this primitive.

 Anchor for this section

Types

 Link to this type

 styles_t()

 View Source

 @type styles_t() :: [
 :hidden
 | :scissor
 | :fill
 | :stroke_width
 | :stroke_fill
 | :join
 | :miter_limit
]

 Link to this type

 t()

 View Source

 @type t() ::
 {{x0 :: number(), y0 :: number()}, {x1 :: number(), y1 :: number()},
 {x2 :: number(), y2 :: number()}}

 Anchor for this section

Functions

 Link to this function

 centroid(data)

 View Source

Returns the centroid of the triangle. This is used as the default pin when applying
rotate or scale transforms.

 Link to this function

 compile(primitive, styles)

 View Source

 @spec compile(primitive :: Scenic.Primitive.t(), styles :: Scenic.Primitive.Style.t()) ::
 Scenic.Script.t()

Compile the data for this primitive into a mini script. This can be combined with others to
generate a larger script and is called when a graph is compiled.

 Link to this function

 valid_styles()

 View Source

 @spec valid_styles() :: styles_t()

Returns a list of styles recognized by this primitive.

Scenic.Primitive.Style behaviour

Modify the look of a primitive by applying a Style.
Styles are optional modifiers that you can put on any primitive. Each style does a
specific thing and some only affect certain primitives.
Graph.build()
 |> rect({100, 50}, fill: blue, stroke: {2, :yellow})
The above example draws a rectangle, that is filled with blue and outlined in yellow.
The primitive is Scenic.Primitive.Rectangle and the styles are :fill and :stroke.
Inheritance
Styles are inherited by primitives that are placed in a group. This allows you to set
styles that will be used by many primitives. Those primitives can override the style
set on the group by setting it again.
Example:
Graph.build(font: :roboto, font_size: 24)
 |> text("Some text drawn using roboto")
 |> text("Text using roboto_mono", font: :roboto_mono)
 |> text("back to drawing in roboto")
In the above example, the text primitives inherit the fonts set on the root group
when the Graph is created. The middle text primitive overrides the :font style,
but keeps using the :font_size set on the group.
Components
In general, styles are NOT inherited across a component boundary unless they are
explicitly set on the component itself. This allows components to manage their own
consistent look and feel.
The exception to this rule is the :theme style. This IS inherited across groups
and into components. This allows you to set an overall color scheme such as
:light or :dark that makes sense with the components.

 Anchor for this section

 Summary

 Types

 t()

 Callbacks

 validate(data)

 Functions

 default()

 The default styles if none are set.

 valid_styles()

 List of the valid style types

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %{
 required([
 :cap
 | :fill
 | :font
 | :font_size
 | :hidden
 | :input
 | :join
 | :line_height
 | :miter_limit
 | :scissor
 | :stroke
 | :text_align
 | :text_base
 | :theme
]) => any()
}

 Anchor for this section

Callbacks

 Link to this callback

 validate(data)

 View Source

 @callback validate(data :: any()) :: {:ok, data :: any()} | {:error, String.t()}

 Anchor for this section

Functions

 Link to this function

 default()

 View Source

The default styles if none are set.
%{font: :roboto, line_height: 1.2, font_size: 24, text_align: :left, text_base: :alphabetic}

 Link to this function

 valid_styles()

 View Source

List of the valid style types

Scenic.Primitive.Style.Cap

Set how to draw the end of a line.
Example:
graph
|> line({{0,0}, {100,100}}, cap: :round)
Data Format
Cap can be any of the following values:
	:butt - End of the line is flat, passing through the end point.
	:round - End of the line is round, radiating from the end point.
	:square - End of the line is flat, but projecting a square around the end point.

Scenic.Primitive.Style.Fill

Fill primitives with the specified paint.
Example:
graph
|> rectangle({10, 20}, fill: :blue)
Data Format
Any valid paint. This can any be any paint format defined by the following modules:
	Scenic.Primitive.Style.Paint.Color
	Scenic.Primitive.Style.Paint.Image
	Scenic.Primitive.Style.Paint.LinearGradient
	Scenic.Primitive.Style.Paint.RadialGradient
	Scenic.Primitive.Style.Paint.Stream

See the documentation for the paint module for further details.

Scenic.Primitive.Style.Font

Set the font used to draw text.
Example:
graph
 |> text("Hello World", font: "fonts/my_fancy_font.ttf")
Data Format
You can use any font loaded into your static assets library. You can also
refer to the font by either it's library file name, or an alias that you
have configured.
The following example shows both ways to identify a font.
Graph.build()
 |> text("By name", font: "fonts/roboto.ttf")
 |> text("By alias", font: :roboto)
Standard Fonts
You are highly encouraged to use Roboto and Roboto Mono as the standard system
fonts for Scenic. Aliases are automatically set up for them.
	Alias	Font
	:roboto	"fonts/roboto.ttf"
	:roboto_mono	"fonts/roboto_mono.ttf"

It is expected that you will include the roboto.ttf and roboto_mono.ttf files
in your asset source folder. You don't technically need to, but if you don't
then those aliases won't work.

 Anchor for this section

 Summary

 Functions

 err_invalid(invalid)

 Anchor for this section

Functions

 Link to this function

 err_invalid(invalid)

 View Source

Scenic.Primitive.Style.FontSize

The point-size to draw text in.
Example:
graph
 |> text("Small", font_size: 12.5)
 |> text("Large", font_size: 64)
Data Format
Any number greater than or equal to 6.

Scenic.Primitive.Style.Hidden

Flags whether or not to draw a primitive.
Example:
graph
 |> rect({100, 200}, hidden: true)
Data Format
	true - "Hide" the primitive. Drawing is skipped.
	false - "Show" the primitive. Drawing is run.

Note: setting hidden: true on a group will hide all the primitives in
the group. This is very efficient as it simply skips drawing the group
and everything in it.
The Hidden style is a handy way to create a set of primitives that you can
quickly show and hide on demand.

Scenic.Primitive.Style.Input

Flags whether or not track cursor_button events on this primitive.
Example:
graph
 |> rect({100, 200}, id: :my_rect, input: :cursor_button)
Data Format
The data for the input style is the type of input you want to receive when the cursor
is positioned over the primitive. This can be any single member or combination (in a list)
of the following input types
	:cursor_button - Went when a button on the cursor (mouse) was used.
	:cursor_pos - Sent when the cursor moves over the primitive.
	:cursor_scroll - Sent when the cursor's scroll wheel moves.

graph
 |> rect({100, 200}, id: :my_rect, input: [:cursor_button, :cursor_pos])

Scenic.Primitive.Style.Join

Set how to connect two lines in a path.
Works with primitives that have clear joints, such as Rectangle,
Quad, Triangle, and Path.
Example:
graph
 |> triangle({{0,40},{40,40},{40,0}}
 join: :round,
 stroke: {2, :green}
)
Data Format
Join can be any of the following values:
	:miter - Miter the pointy part of the joint.
	:round - Round the entire joint.
	:bevel - Bevel the joint.

Scenic.Primitive.Style.LineHeight

Adjust the vertical spacing of lines of text in a single block.
Data Format
This is expressed as a percentage of the size of the font. So a value of 1.2
would mean 120% the font size as the spacing from baseline to baseline.
The behavior of this style is intended to be very similar to the line_height CSS
style.
Example:
graph
 |> text("Some Text\r\nMore Text", line_height: 1.1)
The default if :line_height is not specified is 1.2. Set this style if
you want to override it.
Note
This style is not actually represented in the low-level Scenic.Script format.
Instead it is a hint that is processed when a graph is "compiled" into a script.
Essentially it instructs the graph compiler to automatically apply transforms to
each line in a multi-line text string that separate out the lines of text from
each other.

Scenic.Primitive.Style.MiterLimit

Automatically miter joints if they are too sharp.
Example:
graph
 |> triangle({{0, 40}, {40, 40}, {40, 0}},
 miter_limit: 2,
 stroke: {2, :green}
)
Data Format
A number greater than zero.

Scenic.Primitive.Style.Scissor

Define a "Scissor Rectangle" that drawing will be clipped to.
Example:
graph
 |> triangle({{0, 40}, {40, 40}, {40, 0}},
 miter_limit: 2,
 fill: :green,
 scissor: {20, 40}
)
Data Format
{width, height}
	width - Width of the scissor rectangle.
	height - Height of the scissor rectangle.

Scenic.Primitive.Style.Stroke

Draw an outline around a primitive with the given paint.
Example:
graph
 |> triangle({{0,40},{40,40},{40,0}}
 miter_limit: 2,
 stroke: {2, :green}
)
Data Format
{width, paint}
	width - Width of the border being stroked.
	paint - Any paint data.

The paint can any be any format defined by the following modules:
	Scenic.Primitive.Style.Paint.Color
	Scenic.Primitive.Style.Paint.Image
	Scenic.Primitive.Style.Paint.LinearGradient
	Scenic.Primitive.Style.Paint.RadialGradient
	Scenic.Primitive.Style.Paint.Stream

See the documentation for the paint module for further details.

Scenic.Primitive.Style.TextAlign

Set the horizontal alignment of the text with regard to the start point.
Example:
graph
|> text("Some Text", text_align: :center)
Data Format
TextAlign can be any one of the following values
	:left - Left side alignment.
	:right - Right side alignment.
	:center - Centered alignment.

Scenic.Primitive.Style.TextBase

Set the vertical alignment of text.
Example:
graph
 |> text("Some Text", text_base: :alphabetic)
Data Format
TextBase can be any one of the following values
	:top - The top of the em square.
	:middle - The middle of the em square.
	:alphabetic - The normal alphabetic baseline.
	:bottom - The bottom of the bounding box.

The default if :text_base is undefined is :alphabetic.
The alphabetic baseline is at the bottom of characters such as "a", but above the
bottom of characters with descending tails, such as "g" or "y". This the standard
baseline from the world of typography. It may be unintuitive if you expected it
to be at the top of the characters, like most of the primitives in Scenic.
If that is what you want, then set :text_base to :top

Scenic.Primitive.Style.Theme

Themes are a way to bundle up a set of colors that are intended to be used
by components invoked by a scene.
There are a set of pre-defined themes.
You can also pass in a map of color values.
Unlike other styles, The currently set theme is given to child components.
Each component gets to pick, choose, or ignore any colors in a given style.
Predefined Themes
	:dark - This is the default and most common. Use when the background is dark.
	:light - Use when the background is light colored.

Specialty Themes
The remaining themes are designed to color the standard components and don't really
make much sense when applied to the root of a graph. You could, but it would be...
interesting.
The most obvious place to use them is with Button
components.
	:primary - Blue background. This is the primary button type indicator.
	:secondary - Grey background. Not primary type indicator.
	:success - Green background.
	:danger - Red background. Use for irreversible or dangerous actions.
	:warning - Orange background.
	:info - Lightish blue background.
	:text - Transparent background.

Scenic.Primitive.Style.Paint

Paint is used to "fill" the area of primitives.
When you apply the :fill style to a primitive, you must supply valid
paint data.
There are five types of paint.
	Scenic.Primitive.Style.Paint.Color
	Scenic.Primitive.Style.Paint.Image
	Scenic.Primitive.Style.Paint.LinearGradient
	Scenic.Primitive.Style.Paint.RadialGradient
	Scenic.Primitive.Style.Paint.Stream

See the documentation for the paint module for further details.

Scenic.Primitive.Style.Paint.Color

Fill a primitive with a single color
The color paint is used as the data for the :fill style.
Data Format
{:color, valid_color}
The full format is a tuple with two parameters. The first is the :color atom indicating
that this is color paint data. The second is any valid color (see below).
Valid Colors
You can pass in any color format that is supported by the Scenic.Color.to_rgba/1 function.
This includes any named color. See the documentation for Scenic.Color for more information.
Example:
graph
 |> rect({100,200}, fill: {:color, :blue})
 |> rect({100,200}, stroke: {1, {:color, :green}})
Shortcut Format
valid_color
Because the color paint type is used so frequently, you can simply pass in any valid
color and the :fill style will infer that it is to be used as paint.
Example:
graph
 |> rect({100,200}, fill: :blue)
 |> rect({100,200}, stroke: {1, :green})

Scenic.Primitive.Style.Paint.Image

Fill a primitive with an image from Scenic.Assets.Static
Data Format
{:image, id}
Fill with the static image indicated by id
The id can be either the name of the file when the static assets library was built
or an alias that you set up in your conig. The following example has the alias
:parrot pointing to the "images/parrot.png" file, so both fills are identical.
Graph.build()
 |> rect({100, 50}, fill: {:image, "images/parrot.jpg"})
 |> rect({100, 50}, fill: {:image, :parrot})
Note that this is a fill, and the images will repeat automatically if the primitive
being filled is larger than the source image.
If you want more control, such as no repeats, a subsection of the image, or scaling
the image up or down when you draw it, use the Sprites primitive.

Scenic.Primitive.Style.Paint.LinearGradient

Fill a primitive with a linear gradient between two colors
Data Format
{:linear, {start_x, start_y, end_x, end_y, color_start, color_end}}
This example fills with a smooth linear gradient that goes from blue in the upper left
corner of the rect to yellow in the lower right corner.
Graph.build()
 |> rect({100, 50}, fill: {:linear, {0, 0, 100, 50, :blue, :yellow}})

Scenic.Primitive.Style.Paint.RadialGradient

Fill a primitive with a radial gradient between two colors
Data Format
{:radial, {center_x, center_y, inner_radius, outer_radius, color_start, color_end}}
This example fills a rect with a smooth linear gradient that goes from blue in the
center and transitions to yellow in an outer ring.
Graph.build()
 |> rect({100, 50}, fill: {:linear, {50, 25, 10, 45, :blue, :yellow}})

Scenic.Primitive.Style.Paint.Stream

Fill a primitive with an image or bitmap from Scenic.Assets.Stream
Data Format
{:stream, key}
Fill with the static image indicated by key
This example fills a rect with the contents of the "color_cycle" stream.
When the source of the stream updates the bitmap it contains, the rect's
fill will automatically be updated.
Graph.build()
 |> rect({100, 50}, fill: {:stream, "color_cycle"})
See the documentation for Scenic.Assets.Stream for more information on how to
create and manage streams.

Scenic.Primitive.Transform behaviour

Change the position, rotation, scale and more of a primitive.
Unlike html, which uses auto-layout to position items on the screen, Scenic moves primitives around using matrix transforms. This is common in video games and provides powerful control of your primitives.
A matrix is an array of numbers that can be used to change the positions, rotations, scale and more of locations.
Don't worry! You will not need to look at any matrices unless you want to get fancy. In Scenic, you will rarely (if ever) create matrices on your own (you can if you know what you are doing!), and will instead use the transform helpers.
Multiple transforms can be applied to any primitive. Transforms combine down the graph to create a very flexible way to manage your scene.
There are a fixed set of transform helpers that create matrices for you.
	Matrix hand specify a matrix.
	Pin set a pin to rotate or scale around. Most primitives define a sensible default pin.
	Rotate rotate around the pin.
	Scale scale larger or smaller. Centered around the pin.
	Translate move/translate horizontally and veritcally.

Specifying Transforms
You apply transforms to a primitive the same way you specify styles.
graph =
 Graph.build
 |> circle(100, fill: {:color, :green}, translate: {200, 200})
 |> ellipse({40, 60, fill: {:color, :red}, rotate: 0.4, translate: {100, 100})
Don't worry about the order you apply transforms to a single object. Scenic will multiply them together in the correct way when it comes time to render them.

 Anchor for this section

 Summary

 Callbacks

 validate(data)

 Functions

 combine(txs)

 Given a Map describing the transforms on a primitive, calculate the combined matrix
that should be applied.

 Anchor for this section

Callbacks

 Link to this callback

 validate(data)

 View Source

 @callback validate(data :: any()) :: {:ok, data :: any()} | {:error, String.t()}

 Anchor for this section

Functions

 Link to this function

 combine(txs)

 View Source

Given a Map describing the transforms on a primitive, calculate the combined matrix
that should be applied.
This is trickier than just multiplying them together. Rotations, translations and scale,
need to be done in the right order, which is why this function is provided.
You will not normally need to use this function. It is used internally by the input system.

Scenic.Primitive.Transform.Matrix

Apply an arbitrary matrix.
Applies an arbitrary 4x4 matrix to a primitive. For now, only the 2-D part
of the matrix actually does anything. Am using 4x4 though for future compatibility.
Example:
@matrix [0, 1, 2, 3,
 4, 5, 6, 7,
 8, 9, 10, 11,
 12, 13, 14, 15]
 |> Scenic.Math.Matrix.Matrix.Utils.to_binary()

graph
 |> text("Transformer!", matrix: @matrix)

 Anchor for this section

 Summary

 Functions

 validate(mx)

 Callback implementation for Scenic.Primitive.Transform.validate/1.

 Anchor for this section

Functions

 Link to this function

 validate(mx)

 View Source

Callback implementation for Scenic.Primitive.Transform.validate/1.

Scenic.Primitive.Transform.Pin

Set the pin for rotate and scale transforms.
When rotating or scaling, you need to set the point that doesn't move. This is
the pin. If you don't set one, Scenic will try to use a sensible default for
whatever primitive you are transforming.
Use the :pin option to set it explicitly
{pin_x, pin_y}
Example:
graph
 |> text("Rotated!", rotate: 1.2, pin: {10, 20})

 Anchor for this section

 Summary

 Functions

 validate(data)

 Callback implementation for Scenic.Primitive.Transform.validate/1.

 Anchor for this section

Functions

 Link to this function

 validate(data)

 View Source

Callback implementation for Scenic.Primitive.Transform.validate/1.

Scenic.Primitive.Transform.Rotate

Apply a rotation matrix.
Always rotates around the z-axis (coming out of the screen).
The value is given in radians.
Positive values rotate clockwise.
The rotation is pinned to the sensible default for each primitive, or to the
:pin that you assign explicitly.
Example:
graph
 |> text("Rotated!", rotate: 1.2)
 |> text("Rotated!", rotate: 1.2, pin: {10, 20})
Shortcut
Rotation is common enough that you can use :r as a shortcut.
Example:
graph
|> text("Rotated!", r: 1.2)

 Anchor for this section

 Summary

 Functions

 validate(radians)

 Callback implementation for Scenic.Primitive.Transform.validate/1.

 Anchor for this section

Functions

 Link to this function

 validate(radians)

 View Source

Callback implementation for Scenic.Primitive.Transform.validate/1.

Scenic.Primitive.Transform.Scale

Apply a scale matrix.
Increase or shrink by the provided multiplier. This can take two forms:
	multiplier - scale both x and y directions by the same multiplier
	{mul_x, mul_y} - scale x and y directions independently

Scaling is pinned to the sensible default for each primitive, or to the
:pin that you assign explicitly.
Example:
graph
 |> text("Scaled!", scale: 1.2)
 |> text("Scaled!", scale: {1.0, 1.2}, pin: {10, 20})
Shortcut
Scaling is common enough that you can use :s as a shortcut.
Example:
graph
 |> text("Scaled!", s: 1.2)

 Anchor for this section

 Summary

 Functions

 validate(s)

 Callback implementation for Scenic.Primitive.Transform.validate/1.

 Anchor for this section

Functions

 Link to this function

 validate(s)

 View Source

Callback implementation for Scenic.Primitive.Transform.validate/1.

Scenic.Primitive.Transform.Translate

Apply a translation matrix.
This is used to position primitives on the screen
{x, y} - move the primitive by the given amounts
Example:
graph
 |> text("Scaled!", translate: {10, 20})
Shortcut
Translating is common enough that you can use :t as a shortcut.
Example:
graph
 |> text("Scaled!", t: {10, 20})

 Anchor for this section

 Summary

 Functions

 validate(data)

 Callback implementation for Scenic.Primitive.Transform.validate/1.

 Anchor for this section

Functions

 Link to this function

 validate(data)

 View Source

Callback implementation for Scenic.Primitive.Transform.validate/1.

Scenic.Math

Helper functions that support Scenic mathematical operations.
The math functions are fairly straightforward. When performance is needed some
have been broken out into a NIF.
The NIF functions are currently written for compatibility over top speed and
as such, there is an opportunity to further improve them by calling out to
CPU-specific vector instructions in the future.

 Anchor for this section

 Summary

 Types

 line()

 matrix()

 matrix_list()

 point()

 quad()

 triangle()

 vector_2()

 Anchor for this section

Types

 Link to this type

 line()

 View Source

 @type line() :: {p0 :: point(), p1 :: point()}

 Link to this type

 matrix()

 View Source

 @type matrix() :: binary()

 Link to this type

 matrix_list()

 View Source

 @type matrix_list() :: [number()]

 Link to this type

 point()

 View Source

 @type point() :: {x :: number(), y :: number()}

 Link to this type

 quad()

 View Source

 @type quad() :: {p0 :: point(), p1 :: point(), p2 :: point(), p3 :: point()}

 Link to this type

 triangle()

 View Source

 @type triangle() :: {p0 :: point(), p1 :: point(), p2 :: point()}

 Link to this type

 vector_2()

 View Source

 @type vector_2() :: {x :: number(), y :: number()}

Scenic.Math.Line

A collection of functions to work with lines.
Lines are always two points in a tuple.
{point_a, point_b}
{{x0, y0}, {x1, y1}}

 Anchor for this section

 Summary

 Functions

 intersection(line_a, line_b)

 Find the point of intersection between two lines.

 parallel(line, distance)

 Find a new line that is parallel to the given line and separated
by the given distance.

 round(line)

 Round the points that define a line so that they are made
up of integers.

 trunc(line)

 Truncate the points that define a line so that they are made
up of integers.

 Anchor for this section

Functions

 Link to this function

 intersection(line_a, line_b)

 View Source

 @spec intersection(line_a :: Scenic.Math.line(), line_b :: Scenic.Math.line()) ::
 Scenic.Math.point()

Find the point of intersection between two lines.
Parameters:
	line_a - A line defined by two points. {point_a, point_b}
	line_b - A line defined by two points. {point_a, point_b}

Returns:
A point

 examples

 Examples

 iex> Scenic.Math.Line.intersection({{1, 1}, {3, 3}}, {{3, 1}, {1, 3}})
 {2.0, 2.0}

 Link to this function

 parallel(line, distance)

 View Source

 @spec parallel(line :: Scenic.Math.line(), distance :: number()) :: Scenic.Math.line()

Find a new line that is parallel to the given line and separated
by the given distance.
Parameters:
	line - A line defined by two points. {point_a, point_b}
	distance - The perpendicular distance to the new line.

Returns:
A line

 examples

 Examples

iex> Scenic.Math.Line.parallel({{1, 1}, {1, 2}}, 2)
{{3.0, 1.0}, {3.0, 2.0}}

 Link to this function

 round(line)

 View Source

 @spec round(line :: Scenic.Math.line()) :: Scenic.Math.line()

Round the points that define a line so that they are made
up of integers.
Parameters:
	line - A line defined by two points. {point_a, point_b}

Returns:
A line

 examples

 Examples

iex> Scenic.Math.Line.round({{1.5, 1.6}, {2.1, 2.56}})
{{2, 2}, {2, 3}}

 Link to this function

 trunc(line)

 View Source

 @spec trunc(line :: Scenic.Math.line()) :: Scenic.Math.line()

Truncate the points that define a line so that they are made
up of integers.
Parameters:
	line - A line defined by two points. {point_a, point_b}

Returns:
A line

 examples

 Examples

iex> Scenic.Math.Line.trunc({{1.1, 1.1}, {2.0, 2.0}})
{{1, 1}, {2, 2}}
iex> Scenic.Math.Line.trunc({{-1, 1}, {-2.0, 2.0}})
{{-1, 1}, {-2, 2}}

Scenic.Math.Matrix

A collection of functions to work with matrices.
All the matrix fucntions in this module work exclusively with the binary form
of a matrix, which is a compact binary of 16 4-byte floats.
If you would like to convert back and forth from the more human friendly list
version, then please use the functions in Scenic.Math.Matrix.Utils

 Anchor for this section

 Summary

 Functions

 add(matrix_a, matrix_b)

 Add two matrices together.

 adjugate(matrix)

 Calculate the adjugate of a matrix

 build_rotate_around(angle, pin)

 Build a matrix that represents a 2D rotation around a point.

 build_rotation(angle)

 Build a matrix that represents a 2D rotation around the origin.

 build_scale(scale)

 Build a matrix that represents a scaling operation.

 build_translation(vector_2)

 Build a matrix that represents a simple translation.

 close?(matrix_a, matrix_b, tolerance \\ 1.0e-6)

 Test if two matrices are close in value to each other.

 determinant(matrix)

 Calculate the determinant of a matrix

 div(matrix, scalar)

 Divide a matrix by a scalar.

 get(matrix, x, y)

 Get a single value out of a binary matrix.

 get_xy(matrix)

 Extract the 2D vector represented by the matrix.

 identity()

 The identity matrix

 invert(matrix)

 Inverte a matrix.

 mul(matrix_list)

 Multiply a list of matrices together.

 mul(matrix, multiplier)

 Multiply a matrix by another matrix or a scalar.

 project_vector(matrix, arg)

 Project a vector by a matrix.

 project_vectors(a, vector_bin)

 Project a list of vectors by a matrix.

 put(matrix, x, y, v)

 Put a single value into a binary matrix.

 rotate(matrix, angle)

 Multiply a matrix by a rotation.

 scale(matrix, scale)

 Multiply a matrix by a scale factor.

 sub(matrix_a, matrix_b)

 Subtract one matrix from another.

 translate(matrix, vector_2)

 Multiply a matrix by a translation.

 transpose(matrix)

 Transpose a matrix

 zero()

 A matrix where all the values are 0

 Anchor for this section

Functions

 Link to this function

 add(matrix_a, matrix_b)

 View Source

 @spec add(matrix_a :: Scenic.Math.matrix(), matrix_b :: Scenic.Math.matrix()) ::
 Scenic.Math.matrix()

Add two matrices together.
This operation is implemented as a NIF for performance.
Parameters:
	matrix_a: The first matrix
	matrix_b: The second matrix

Returns:
The resulting matrix

 Link to this function

 adjugate(matrix)

 View Source

 @spec adjugate(matrix :: Scenic.Math.matrix()) :: Scenic.Math.matrix()

Calculate the adjugate of a matrix
This operation is implemented as a NIF for performance.
Parameters:
	matrix: A matrix

Returns:
The resulting matrix

 Link to this function

 build_rotate_around(angle, pin)

 View Source

 @spec build_rotate_around(angle :: number(), pin :: Scenic.Math.point()) ::
 Scenic.Math.matrix()

Build a matrix that represents a 2D rotation around a point.
Parameters:
	angle: the amount to rotate, in radians
	pin: position to pin the rotation around

Returns:
A binary matrix

 Link to this function

 build_rotation(angle)

 View Source

 @spec build_rotation(angle :: number()) :: Scenic.Math.matrix()

Build a matrix that represents a 2D rotation around the origin.
Parameters:
	angle: the amount to rotate, in radians

Returns:
A binary matrix

 Link to this function

 build_scale(scale)

 View Source

 @spec build_scale(scale :: number() | Scenic.Math.vector_2()) :: Scenic.Math.matrix()

Build a matrix that represents a scaling operation.
Parameters:
	scale: the amount to scale by. Can be either a number or a vector_2

Returns:
A binary matrix

 Link to this function

 build_translation(vector_2)

 View Source

 @spec build_translation(vector_2 :: Scenic.Math.vector_2()) :: Scenic.Math.matrix()

Build a matrix that represents a simple translation.
Parameters:
	vector_2: the vector defining how much to translate

Returns:
A binary matrix

 Link to this function

 close?(matrix_a, matrix_b, tolerance \\ 1.0e-6)

 View Source

 @spec close?(
 matrix_a :: Scenic.Math.matrix(),
 matrix_a :: Scenic.Math.matrix(),
 tolerance :: number()
) ::
 boolean()

Test if two matrices are close in value to each other.
Parameters:
	matrix_a: The first matrix
	matrix_b: The second matrix
	tolerance: Defines what close means. Defaults to: 0.000001

Returns:
A boolean

 Link to this function

 determinant(matrix)

 View Source

 @spec determinant(matrix :: Scenic.Math.matrix()) :: Scenic.Math.matrix()

Calculate the determinant of a matrix
This operation is implemented as a NIF for performance.
Parameters:
	matrix: A matrix

Returns:
The resulting matrix

 Link to this function

 div(matrix, scalar)

 View Source

 @spec div(matrix :: Scenic.Math.matrix(), divisor :: number()) :: Scenic.Math.matrix()

Divide a matrix by a scalar.
This operation is implemented as a NIF for performance.
Parameters:
	matrix: A matrix
	divisor: A number (scalar) to divide by

Returns:
The resulting matrix

 Link to this function

 get(matrix, x, y)

 View Source

 @spec get(matrix :: Scenic.Math.matrix(), x :: number(), y :: number()) :: number()

Get a single value out of a binary matrix.
Parameters:
	matrix: The source matrix
	x: the column to pull the data from
	y: the row to pull the data from

Returns:
A number

 Link to this function

 get_xy(matrix)

 View Source

 @spec get_xy(matrix :: Scenic.Math.matrix()) :: Scenic.Math.vector_2()

Extract the 2D vector represented by the matrix.
Parameters:
	matrix: The source matrix

Returns:
A vector_2

 Link to this function

 identity()

 View Source

 @spec identity() :: Scenic.Math.matrix()

The identity matrix

 Link to this function

 invert(matrix)

 View Source

 @spec invert(matrix :: Scenic.Math.matrix()) :: Scenic.Math.matrix()

Inverte a matrix.
This operation is implemented as a NIF for performance.
Parameters:
	matrix: A matrix

Returns:
The resulting matrix

 Link to this function

 mul(matrix_list)

 View Source

 @spec mul(matrix_list :: [Scenic.Math.matrix()]) :: Scenic.Math.matrix()

Multiply a list of matrices together.
This operation is implemented as a NIF for performance.
Parameters:
	matrix_list: A list of matrices

Returns:
The resulting matrix

 Link to this function

 mul(matrix, multiplier)

 View Source

 @spec mul(
 matrix :: Scenic.Math.matrix(),
 multiplier :: number() | Scenic.Math.matrix()
) ::
 Scenic.Math.matrix()

Multiply a matrix by another matrix or a scalar.
This operation is implemented as a NIF for performance.
Parameters:
	matrix: A matrix
	multiplier: A number (scalar) or a matrix to multiply by

Returns:
The resulting matrix

 Link to this function

 project_vector(matrix, arg)

 View Source

 @spec project_vector(
 matrix :: Scenic.Math.matrix(),
 vector_2 :: Scenic.Math.vector_2()
) ::
 Scenic.Math.vector_2()

 @spec project_vector(
 matrix :: Scenic.Math.matrix(),
 vector_list :: [Scenic.Math.vector_2()]
) :: [
 Scenic.Math.vector_2()
]

Project a vector by a matrix.
This operation is implemented as a NIF for performance.
Parameters:
	matrix: A matrix
	vector: The vector to project

Returns:
The projected vector

 Link to this function

 project_vectors(a, vector_bin)

 View Source

Project a list of vectors by a matrix.
This operation is implemented as a NIF for performance.
Parameters:
	matrix: A matrix
	vectors: The list of vectors to project

Returns:
A list of projected vectors

 Link to this function

 put(matrix, x, y, v)

 View Source

 @spec put(matrix :: Scenic.Math.matrix(), x :: number(), y :: number(), v :: number()) ::
 Scenic.Math.matrix()

Put a single value into a binary matrix.
Parameters:
	matrix: The source matrix
	x: the column to pull the data from
	y: the row to pull the data from
	v: the value to put into the matrix. Must be a number.

Returns:
A number

 Link to this function

 rotate(matrix, angle)

 View Source

 @spec rotate(matrix :: Scenic.Math.matrix(), angle :: number() | nil) ::
 Scenic.Math.matrix()

Multiply a matrix by a rotation.
Parameters:
	matrix: The incoming source matrix
	angle: the amount to rotate, in radians or nil (which does nothing

Returns:
A binary matrix

 Link to this function

 scale(matrix, scale)

 View Source

 @spec scale(
 matrix :: Scenic.Math.matrix(),
 scale :: number() | Scenic.Math.vector_2() | nil
) ::
 Scenic.Math.matrix()

Multiply a matrix by a scale factor.
Parameters:
	matrix: The incoming source matrix
	scale: the amount to scale by. Can be either a number, a vector, or nil (which does nothing)

Returns:
A binary matrix

 Link to this function

 sub(matrix_a, matrix_b)

 View Source

 @spec sub(matrix_a :: Scenic.Math.matrix(), matrix_b :: Scenic.Math.matrix()) ::
 Scenic.Math.matrix()

Subtract one matrix from another.
This operation is implemented as a NIF for performance.
Parameters:
	matrix_a: The first matrix
	matrix_b: The second matrix, which is subtracted from the first

Returns:
The resulting matrix

 Link to this function

 translate(matrix, vector_2)

 View Source

 @spec translate(
 matrix :: Scenic.Math.matrix(),
 vector_2 :: Scenic.Math.vector_2() | nil
) ::
 Scenic.Math.matrix()

Multiply a matrix by a translation.
Parameters:
	matrix: The incoming source matrix
	vector_2: the vector to translate by or nil (which does nothing)

Returns:
A binary matrix

 Link to this function

 transpose(matrix)

 View Source

 @spec transpose(matrix :: Scenic.Math.matrix()) :: Scenic.Math.matrix()

Transpose a matrix
This operation is implemented as a NIF for performance.
Parameters:
	matrix: A matrix

Returns:
The resulting matrix

 Link to this function

 zero()

 View Source

 @spec zero() :: Scenic.Math.matrix()

A matrix where all the values are 0

Scenic.Math.Matrix.Utils

Helper functions for working with matrices.
The matrix format for the main Scenic.Math.Matrix functions is a 64 byte
binary blob containing 16 4-byte floats. This is great for doing the math in
code, but not so great for reading or understanding the values by a human.
These functions transform more readable/writable formats into the binary blob
and vice versa.

 Anchor for this section

 Summary

 Functions

 to_binary(matrix_list)

 Convert a readable format into a binary blob.

 to_list(matrix)

 Convert a binary matrix into a list of 16 numbers.

 Anchor for this section

Functions

 Link to this function

 to_binary(matrix_list)

 View Source

 @spec to_binary(matrix :: Scenic.Math.matrix_list()) :: Scenic.Math.matrix()

Convert a readable format into a binary blob.
Parameters:
	matrix_list - a list of 16 numbers

Returns:
A binary matrix blob

 Link to this function

 to_list(matrix)

 View Source

Convert a binary matrix into a list of 16 numbers.
Parameters:
	matrix - a binary matrix

Returns:
A list of 16 numbers

Scenic.Math.Vector2

A collection of functions to work with 2D vectors.
2D vectors are always two numbers in a tuple.
{3, 4}
{3.5, 4.7}

 Anchor for this section

 Summary

 Functions

 add(vector2_a, vector2_b)

 Add two vectors together.

 bounds(vectors)

 Given a list of vectors, find the {left, top, right, bottom} of the bounding box.

 clamp(vector, min, max)

 Clamp a vector to the space between two other vectors.

 cross(vector2_a, vector2_b)

 Calculates the cross product of two vectors.

 distance(vector2_a, vector2_b)

 distance_squared(a, b)

 div(vector2_a, vector2_b)

 Divide a vector by a scalar.

 dot(vector2_a, vector2_b)

 Calculates the dot product of two vectors.

 down()

 A vector that points straight down by 1.

 in_bounds?(vector, bounds)

 Determine if a vector is in the bounds (or clamp space) between
two other vectors.

 in_bounds?(vector, min, max)

 Determine if a vector is in the bounds (or clamp space) between
two other vectors.

 invert(vector_2)

 Invert a vector.

 left()

 A vector that points left by 1.

 length(vector2)

 Calculates the length of the vector.

 length_squared(vector2)

 Calculates the squared length of the vector.

 lerp(vector_a, vector_a, t)

 Calculate the lerp of two vectors.

 max(vector2_a, vector2_b)

 Find a new vector derived from the highest x and y from two given vectors.

 min(vector2_a, vector2_b)

 Find a new vector derived from the lowest x and y from two given vectors.

 mul(vector2_a, vector2_b)

 Multiply a vector by a scalar.

 nlerp(vector_a, vector_a, t)

 Calculate the nlerp (normalized lerp) of two vectors.

 normalize(vector2)

 Normalize a vector so it has the same angle, but a length of 1.

 one()

 A vector that points to {1,1}.

 project(vector_a, matrix)

 Project a vector into the space defined by a matrix

 right()

 A vector that points right by 1.

 round(vector_2)

 Round the values of a vector to the nearest integers.

 sub(vector2_a, vector2_b)

 Subtract one vector from another.

 trunc(vector_2)

 Truncate the values of a vector into integers.

 unity_x()

 A vector that points to {1,0}.

 unity_y()

 A vector that points to {0,1}.

 up()

 A vector that points straight up by 1.

 zero()

 A vector that points to the origin.

 Anchor for this section

Functions

 Link to this function

 add(vector2_a, vector2_b)

 View Source

 @spec add(vector2_a :: Scenic.Math.vector_2(), vector2_b :: Scenic.Math.vector_2()) ::
 Scenic.Math.vector_2()

Add two vectors together.
Parameters:
	vector2_a - the first vector to be added
	vector2_b - the second vector to be added

Returns:
A new vector which is the result of the addition

 examples

 Examples

iex> Scenic.Math.Vector2.add({1.0, 5.0}, {3.0, 3.0})
{4.0, 8.0}

 Link to this function

 bounds(vectors)

 View Source

 @spec bounds(vectors :: nil | [Scenic.Math.vector_2()]) ::
 {left :: number(), top :: number(), right :: number(), bottom :: number()}

Given a list of vectors, find the {left, top, right, bottom} of the bounding box.

 Link to this function

 clamp(vector, min, max)

 View Source

 @spec clamp(
 vector :: Scenic.Math.vector_2(),
 min :: Scenic.Math.vector_2(),
 max :: Scenic.Math.vector_2()
) :: Scenic.Math.vector_2()

Clamp a vector to the space between two other vectors.
Parameters:
	vector2 - the vector to be clamped
	min - the vector defining the minimum boundary
	max - the vector defining the maximum boundary

Returns:
A vector derived from the space between two other vectors

 Link to this function

 cross(vector2_a, vector2_b)

 View Source

 @spec cross(vector2_a :: Scenic.Math.vector_2(), vector2_b :: Scenic.Math.vector_2()) ::
 number()

Calculates the cross product of two vectors.
Parameters:
	vector2_a - the first vector
	vector2_b - the second vector

Returns:
A number which is the result of the cross product

 Link to this function

 distance(vector2_a, vector2_b)

 View Source

 Link to this function

 distance_squared(a, b)

 View Source

 Link to this function

 div(vector2_a, vector2_b)

 View Source

 @spec div(vector2 :: Scenic.Math.vector_2(), scalar :: number()) ::
 Scenic.Math.vector_2()

Divide a vector by a scalar.
Parameters:
	vector2 - the vector
	scalar - the scalar value

Returns:
A new vector which is the result of the division

 Link to this function

 dot(vector2_a, vector2_b)

 View Source

 @spec dot(vector2_a :: Scenic.Math.vector_2(), vector2_b :: Scenic.Math.vector_2()) ::
 number()

Calculates the dot product of two vectors.
Parameters:
	vector2_a - the first vector
	vector2_b - the second vector

Returns:
A number which is the result of the dot product

 Link to this function

 down()

 View Source

A vector that points straight down by 1.

 Link to this function

 in_bounds?(vector, bounds)

 View Source

 @spec in_bounds?(vector :: Scenic.Math.vector_2(), bounds :: Scenic.Math.vector_2()) ::
 boolean()

Determine if a vector is in the bounds (or clamp space) between
two other vectors.
Parameters:
	vector2 - the vector to be tested
	bounds - a vector defining the boundary

Returns:
true or false

 Link to this function

 in_bounds?(vector, min, max)

 View Source

 @spec in_bounds?(
 vector :: Scenic.Math.vector_2(),
 min :: Scenic.Math.vector_2(),
 max :: Scenic.Math.vector_2()
) :: boolean()

Determine if a vector is in the bounds (or clamp space) between
two other vectors.
Parameters:
	vector2 - the vector to be tested
	min - the vector defining the minimum boundary
	max - the vector defining the maximum boundary

Returns:
A vector derived from the space between two other vectors

 Link to this function

 invert(vector_2)

 View Source

 @spec invert(vector_2 :: Scenic.Math.vector_2()) :: Scenic.Math.vector_2()

Invert a vector.
Parameters:
	vector_2 - the vector to be inverted

Returns:
The inverted vector

 examples

 Examples

iex> Scenic.Math.Vector2.invert({2, 2})
{-2, -2}

 Link to this function

 left()

 View Source

A vector that points left by 1.

 Link to this function

 length(vector2)

 View Source

 @spec length(vector2 :: Scenic.Math.vector_2()) :: number()

Calculates the length of the vector.
This is slower than calculating the squared length.
Parameters:
	vector2 - the vector

Returns:
A number which is the length

 Link to this function

 length_squared(vector2)

 View Source

 @spec length_squared(vector2 :: Scenic.Math.vector_2()) :: number()

Calculates the squared length of the vector.
This is faster than calculating the length if all you want to do is
compare the lengths of two vectors against each other.
Parameters:
	vector2 - the vector

Returns:
A number which is the square of the length

 Link to this function

 lerp(vector_a, vector_a, t)

 View Source

 @spec lerp(
 vector_a :: Scenic.Math.vector_2(),
 vector_b :: Scenic.Math.vector_2(),
 t :: number()
) :: Scenic.Math.vector_2()

Calculate the lerp of two vectors.
See This explanation for more info.
Parameters:
	vector_a - the first vector
	vector_b - the second vector
	t - the "t" value (see link above). Must be between 0 and 1.

Returns:
A vector, which is the result of the lerp.

 Link to this function

 max(vector2_a, vector2_b)

 View Source

 @spec max(vector2_a :: Scenic.Math.vector_2(), vector2_b :: Scenic.Math.vector_2()) ::
 Scenic.Math.vector_2()

Find a new vector derived from the highest x and y from two given vectors.
Parameters:
	vector2_a - the first vector
	vector2_b - the second vector

Returns:
A vector derived from the highest x and y from two given vectors

 Link to this function

 min(vector2_a, vector2_b)

 View Source

 @spec min(vector2_a :: Scenic.Math.vector_2(), vector2_b :: Scenic.Math.vector_2()) ::
 Scenic.Math.vector_2()

Find a new vector derived from the lowest x and y from two given vectors.
Parameters:
	vector2_a - the first vector
	vector2_b - the second vector

Returns:
A vector derived from the lowest x and y from two given vectors

 Link to this function

 mul(vector2_a, vector2_b)

 View Source

 @spec mul(vector2 :: Scenic.Math.vector_2(), scalar :: number()) ::
 Scenic.Math.vector_2()

Multiply a vector by a scalar.
Parameters:
	vector2 - the vector
	scalar - the scalar value

Returns:
A new vector which is the result of the multiplication

 Link to this function

 nlerp(vector_a, vector_a, t)

 View Source

 @spec nlerp(
 vector_a :: Scenic.Math.vector_2(),
 vector_b :: Scenic.Math.vector_2(),
 t :: number()
) :: Scenic.Math.vector_2()

Calculate the nlerp (normalized lerp) of two vectors.
See This explanation for more info.
Parameters:
	vector_a - the first vector
	vector_b - the second vector
	t - the "t" value (see link above). Must be between 0 and 1.

Returns:
A vector, which is the result of the nlerp.

 Link to this function

 normalize(vector2)

 View Source

 @spec normalize(vector2 :: Scenic.Math.vector_2()) :: Scenic.Math.vector_2()

Normalize a vector so it has the same angle, but a length of 1.
Parameters:
	vector2 - the vector

Returns:
A vector with the same angle as the original, but a length of 1

 Link to this function

 one()

 View Source

A vector that points to {1,1}.

 Link to this function

 project(vector_a, matrix)

 View Source

 @spec project(
 vector :: Scenic.Math.vector_2() | [Scenic.Math.vector_2()],
 matrix :: Scenic.Math.matrix()
) :: Scenic.Math.vector_2() | [Scenic.Math.vector_2()]

Project a vector into the space defined by a matrix
Parameters:
	vector - the vector, or a list of vectors
	matrix - the matrix

Returns:
A projected vector (or list of vectors)

 Link to this function

 right()

 View Source

A vector that points right by 1.

 Link to this function

 round(vector_2)

 View Source

 @spec round(vector_2 :: Scenic.Math.vector_2()) :: Scenic.Math.vector_2()

Round the values of a vector to the nearest integers.
Parameters:
	vector_2 - the vector to be rounded

Returns:
The integer vector

 examples

 Examples

iex> Scenic.Math.Vector2.round({1.2, 1.56})
{1, 2}

 Link to this function

 sub(vector2_a, vector2_b)

 View Source

 @spec sub(vector2_a :: Scenic.Math.vector_2(), vector2_b :: Scenic.Math.vector_2()) ::
 Scenic.Math.vector_2()

Subtract one vector from another.
Parameters:
	vector2_a - the first vector
	vector2_b - the second vector, which will be subtracted from the first

Returns:
A new vector which is the result of the subtraction

 Link to this function

 trunc(vector_2)

 View Source

 @spec trunc(vector_2 :: Scenic.Math.vector_2()) :: Scenic.Math.vector_2()

Truncate the values of a vector into integers.
Parameters:
	vector_2 - the vector to be truncated

Returns:
The integer vector

 examples

 Examples

iex> Scenic.Math.Vector2.trunc({1.6, 1.2})
{1, 1}

 Link to this function

 unity_x()

 View Source

A vector that points to {1,0}.

 Link to this function

 unity_y()

 View Source

A vector that points to {0,1}.

 Link to this function

 up()

 View Source

A vector that points straight up by 1.

 Link to this function

 zero()

 View Source

A vector that points to the origin.

Scenic.Driver.Error exception

mix scenic.run

Starts the application
The --no-halt flag is automatically added.

 (()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

