View Source Scholar.Neighbors.KNNRegressor (Scholar v0.4.0)
K-Nearest Neighbors Regressor.
Performs regression by computing the (weighted) mean of k-nearest neighbor labels.
Summary
Functions
Fits a k-NN regressor model.
Options
:algorithm(atom/0) - Algorithm used to compute the k-nearest neighbors. Possible values::brute- Brute-force search. SeeScholar.Neighbors.BruteKNNfor more details.:kd_tree- k-d tree. SeeScholar.Neighbors.KDTreefor more details.:random_projection_forest- Random projection forest. SeeScholar.Neighbors.RandomProjectionForestfor more details.Module implementing
fit(data, opts)andpredict(model, query). predict/2 must return a tuple containing indices of k-nearest neighbors of query points as well as distances between query points and their k-nearest neighbors.
The default value is
:brute.:weights- Weight function used in prediction. Possible values::uniform- uniform weights. All points in each neighborhood are weighted equally.:distance- weight points by the inverse of their distance. in this case, closer neighbors of a query point will have a greater influence than neighbors which are further away.
The default value is
:uniform.
Algorithm-specific options (e.g. :num_neighbors, :metric) should be provided together with the regressor options.
Examples
iex> x = Nx.tensor([[1, 2], [2, 3], [3, 4], [4, 5], [5, 6]])
iex> y = Nx.tensor([[1], [2], [3], [4], [5]])
iex> model = Scholar.Neighbors.KNNRegressor.fit(x, y, num_neighbors: 3)
iex> model.algorithm
Scholar.Neighbors.BruteKNN.fit(x, num_neighbors: 3)
iex> model.labels
Nx.tensor([[1], [2], [3], [4], [5]])
iex> x = Nx.tensor([[1, 2], [2, 3], [3, 4], [4, 5], [5, 6]])
iex> y = Nx.tensor([[1], [2], [3], [4], [5]])
iex> model = Scholar.Neighbors.KNNRegressor.fit(x, y, algorithm: :kd_tree, num_neighbors: 3, metric: {:minkowski, 1})
iex> model.algorithm
Scholar.Neighbors.KDTree.fit(x, num_neighbors: 3, metric: {:minkowski, 1})
iex> model.labels
Nx.tensor([[1], [2], [3], [4], [5]])
iex> x = Nx.tensor([[1, 2], [2, 3], [3, 4], [4, 5], [5, 6]])
iex> y = Nx.tensor([[1], [2], [3], [4], [5]])
iex> key = Nx.Random.key(12)
iex> model = Scholar.Neighbors.KNNRegressor.fit(x, y, algorithm: :random_projection_forest, num_neighbors: 2, num_trees: 4, key: key)
iex> model.algorithm
Scholar.Neighbors.RandomProjectionForest.fit(x, num_neighbors: 2, num_trees: 4, key: key)
iex> model.labels
Nx.tensor([[1], [2], [3], [4], [5]])
Predicts labels using a k-NN regressor model.
Examples
iex> x_train = Nx.tensor([[1, 2], [2, 3], [3, 4], [4, 5], [5, 6]])
iex> y_train = Nx.tensor([[1], [2], [3], [4], [5]])
iex> model = Scholar.Neighbors.KNNRegressor.fit(x_train, y_train, num_neighbors: 3)
iex> x = Nx.tensor([[1, 3], [4, 2], [3, 6]])
iex> Scholar.Neighbors.KNNRegressor.predict(model, x)
Nx.tensor([[2.0], [2.0], [4.0]])