View Source Scholar.ModelSelection (Scholar v0.3.1)
Module containing cross validation, splitting function, and other model selection methods.
Summary
Functions
General interface of cross validation.
General interface of grid search.
Perform K-Fold split on the given data.
General interface of weighted cross validation.
General interface of weighted grid search.
Functions
General interface of cross validation.
Examples
iex> folding_fun = fn x -> Scholar.ModelSelection.k_fold_split(x, 3) end
iex> scoring_fun = fn x, y ->
...> {x_train, x_test} = x
...> {y_train, y_test} = y
...> model = Scholar.Linear.LinearRegression.fit(x_train, y_train, fit_intercept?: true)
...> y_pred = Scholar.Linear.LinearRegression.predict(model, x_test)
...> mse = Scholar.Metrics.Regression.mean_square_error(y_test, y_pred)
...> mae = Scholar.Metrics.Regression.mean_absolute_error(y_test, y_pred)
...> [mse, mae]
...> end
iex> x = Nx.iota({7, 2})
iex> y = Nx.tensor([0, 1, 2, 0, 1, 1, 0])
iex> Scholar.ModelSelection.cross_validate(x, y, folding_fun, scoring_fun)
#Nx.Tensor<
f32[2][3]
[
[1.5700000524520874, 1.2149654626846313, 0.005000002216547728],
[1.100000023841858, 1.0735294818878174, 0.050000011920928955]
]
>
General interface of grid search.
The opts
must be a keyword list of list values, which will become different
combinations to perform the grid search on.
Examples
iex> folding_fun = fn x -> Scholar.ModelSelection.k_fold_split(x, 3) end
iex> scoring_fun = fn x, y, opts ->
...> {x_train, x_test} = x
...> {y_train, y_test} = y
...> model = Scholar.Linear.LogisticRegression.fit(x_train, y_train, opts)
...> y_pred = Scholar.Linear.LogisticRegression.predict(model, x_test)
...> mse = Scholar.Metrics.Regression.mean_square_error(y_test, y_pred)
...> mae = Scholar.Metrics.Regression.mean_absolute_error(y_test, y_pred)
...> [mse, mae]
...> end
iex> x = Nx.iota({7, 2})
iex> y = Nx.tensor([0, 1, 2, 0, 1, 1, 0])
iex> opts = [
...> num_classes: [3],
...> iterations: [10, 20, 50],
...> optimizer: [Polaris.Optimizers.adam(learning_rate: 0.005), Polaris.Optimizers.adam(learning_rate: 0.01)],
...> ]
iex> Scholar.ModelSelection.grid_search(x, y, folding_fun, scoring_fun, opts)
Perform K-Fold split on the given data.
Examples
iex> x = Nx.iota({7, 2})
iex> Scholar.ModelSelection.k_fold_split(x, 2) |> Enum.to_list()
[
{Nx.tensor(
[
[6, 7],
[8, 9],
[10, 11]
]
),
Nx.tensor(
[
[0, 1],
[2, 3],
[4, 5]
]
)},
{Nx.tensor(
[
[0, 1],
[2, 3],
[4, 5]
]
),
Nx.tensor(
[
[6, 7],
[8, 9],
[10, 11]
]
)}
]
General interface of weighted cross validation.
Examples
iex> folding_fun = fn x -> Scholar.ModelSelection.k_fold_split(x, 3) end
iex> scoring_fun = fn x, y, weights ->
...> {x_train, x_test} = x
...> {y_train, y_test} = y
...> {weights_train, _weights_test} = weights
...> model = Scholar.Linear.LinearRegression.fit(x_train, y_train, fit_intercept?: true, sample_weights: weights_train)
...> y_pred = Scholar.Linear.LinearRegression.predict(model, x_test)
...> mse = Scholar.Metrics.Regression.mean_square_error(y_test, y_pred)
...> mae = Scholar.Metrics.Regression.mean_absolute_error(y_test, y_pred)
...> [mse, mae]
...> end
iex> x = Nx.iota({7, 2})
iex> y = Nx.tensor([0, 1, 2, 0, 1, 1, 0])
iex> weights = Nx.tensor([1, 2, 1, 2, 1, 2, 1])
iex> Scholar.ModelSelection.weighted_cross_validate(x, y, weights, folding_fun, scoring_fun)
#Nx.Tensor<
f32[2][3]
[
[0.5010337233543396, 1.1419668197631836, 0.35123950242996216],
[0.522727370262146, 1.0526316165924072, 0.590908944606781]
]
>
Link to this function
weighted_grid_search(x, y, weights, folding_fun, scoring_fun, opts)
View SourceGeneral interface of weighted grid search.
If you want to use opts
in some functions inside scoring_fun
, you need to pass it as a parameter
like in the example below.
Examples
iex> folding_fun = fn x -> Scholar.ModelSelection.k_fold_split(x, 3) end
iex> scoring_fun = fn x, y, weights, opts ->
...> {x_train, x_test} = x
...> {y_train, y_test} = y
...> {weights_train, _weights_test} = weights
...> opts = Keyword.put(opts, :sample_weights, weights_train)
...> model = Scholar.Linear.RidgeRegression.fit(x_train, y_train, opts)
...> y_pred = Scholar.Linear.RidgeRegression.predict(model, x_test)
...> mse = Scholar.Metrics.Regression.mean_square_error(y_test, y_pred)
...> mae = Scholar.Metrics.Regression.mean_absolute_error(y_test, y_pred)
...> [mse, mae]
...> end
iex> x = Nx.iota({7, 2})
iex> y = Nx.tensor([0, 1, 2, 0, 1, 1, 0])
iex> weights = [Nx.tensor([1, 2, 1, 2, 1, 2, 1]), Nx.tensor([2, 1, 2, 1, 2, 1, 2])]
iex> opts = [
...> alpha: [0, 1, 5],
...> fit_intercept?: [true, false],
...> ]
iex> Scholar.ModelSelection.weighted_grid_search(x, y, weights, folding_fun, scoring_fun, opts)